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Abstract
We consider the problem of asynchronous stochas-
tic optimization, where an optimization algo-
rithm makes updates based on stale stochas-
tic gradients of the objective that are subject
to an arbitrary (possibly adversarial) sequence
of delays. We present a procedure which, for
any given 𝑞 ∈ (0, 1], transforms any stan-
dard stochastic first-order method to an asyn-
chronous method with convergence guarantee de-
pending on the 𝑞-quantile delay of the sequence.
This approach leads to convergence rates of the
form 𝑂 (𝜏𝑞/𝑞𝑇 + 𝜎/

√
𝑞𝑇) for non-convex and

𝑂 (𝜏2
𝑞/(𝑞𝑇)2 + 𝜎/

√
𝑞𝑇) for convex smooth prob-

lems, where 𝜏𝑞 is the 𝑞-quantile delay, gener-
alizing and improving on existing results that
depend on the average delay. We further show
a method that automatically adapts to all quan-
tiles simultaneously, without any prior knowl-
edge of the delays, achieving convergence rates
of the form 𝑂 (inf𝑞 𝜏𝑞/𝑞𝑇 + 𝜎/

√
𝑞𝑇) for non-

convex and 𝑂 (inf𝑞 𝜏2
𝑞/(𝑞𝑇)2 + 𝜎/

√
𝑞𝑇) for con-

vex smooth problems. Our technique is based on
asynchronous mini-batching with a careful batch-
size selection and filtering of stale gradients.

1. Introduction
Stochastic first-order optimization methods play a pivotal
role in modern machine learning. Given their sequential
nature, large-scale applications employ distributed optimiza-
tion techniques to leverage multiple cores or machines.
Mini-batching (Cotter et al., 2011; Dekel et al., 2012; Duchi
et al., 2012), perhaps the most common approach, involves
computing several stochastic gradients of a single model
across a number of distributed workers, sending them to
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a server for averaging, followed by an update step to the
model. A primary drawback of this method is the syn-
chronization performed by the server, which confines the
iteration time to be aligned with that of the slowest machine.
Hence, variation in arrival time of stochastic gradients due
to different factors such as hardware imbalances and varying
communication loads, can dramatically degrade optimiza-
tion performance.

An approach to mitigate degradation caused by delayed gra-
dient computation is asynchronous stochastic optimization
(Nedić et al., 2001; Agarwal & Duchi, 2011; Chaturapruek
et al., 2015; Lian et al., 2015; Feyzmahdavian et al., 2016),
where stochastic gradients from each worker are sent to a
server, which applies them immediately and without syn-
chronization. Thus, an update is executed as soon as a
stochastic gradient is received by the server, independent
of other pending gradients. A significant challenge in these
methods is the use of stale gradients, i.e., gradients that were
computed in earlier steps and thus suffer from substantial de-
lays, potentially rendering them outdated. Numerous studies
have investigated asynchronous optimization under various
delay models, including recent results under constant delay
(Arjevani et al., 2020; Stich & Karimireddy, 2020), constant
compute time per machine (Tyurin & Richtarik, 2023), and
the more general arbitrary delay model (Aviv et al., 2021;
Cohen et al., 2021; Mishchenko et al., 2022; Koloskova
et al., 2022; Feyzmahdavian & Johansson, 2023), where
the sequence of delays is entirely arbitrary, and possibly
generated by an adversary. The latter challenging setting is
the focus of our work.

Early work on asynchronous stochastic optimization consid-
ered constant or bounded delay and showed that the maximal
delay only affects a lower-order term in the convergence
rates, first for quadratic objectives (Arjevani et al., 2020)
and subsequently for general smooth functions (Stich &
Karimireddy, 2020). More recent studies in the arbitrary
delay model established that a tighter dependence can be
obtained, moving from dependency on the maximal delay to
bounds depending on the average delay (Cohen et al., 2021;
Aviv et al., 2021; Feyzmahdavian & Johansson, 2023) or
the number of distributed workers (Mishchenko et al., 2022;
Koloskova et al., 2022).
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However, existing results for the arbitrary delay model suf-
fer from several shortcomings. First and foremost, while the
dependence on the average delay is tight in some scenarios
(e.g., with constant, or nearly constant delays), it remains un-
clear whether better guarantees can be achieved in situations
with large variations in delays. Indeed, the average delay is
known not to be robust to outliers, which are common in
vastly distributed settings, and ideally one would desire to
rely on a more robust statistic of the delay sequence, such
as the median. Second, no accelerated rates have been es-
tablished for convex smooth optimization, and many of the
existing convergence results, notably in non-convex smooth
optimization, require a known bound on the average delay
or on the number of workers. Lastly, the design and analysis
of asynchronous stochastic optimization methods are rather
ad-hoc, necessitating the analysis of methods from scratch
for each and every optimization scenario.

1.1. Summary of Contributions

In this work we address the shortcomings mentioned above.
Our main contributions are summarized as follows:

Black-box conversion for a given quantile delay. Our
first contribution is a simple black-box procedure for trans-
forming standard stochastic optimization algorithms into
asynchronous optimization algorithms with convergence
rates depending on the median delay, and more generally—
on any quantile of choice of the delay sequence. More
specifically, given any 𝑞 and an upper bound 𝜏𝑞 over the
𝑞-quantile delay, and given virtually any standard stochastic
first-order optimization method, our procedure produces
an asynchronous optimization method whose convergence
rate depends on 𝜏𝑞 rather than on the average delay. When
coupled with SGD for non-convex or convex Lipschitz ob-
jectives, and with accelerated SGD for convex smooth ob-
jectives, we establish state-of-the-art convergence results in
the respective asynchronous optimization settings; these are
detailed in the third column of Table 1.

The guarantees for non-convex and convex optimization
improve upon previous results that depend on the average
delay bound (Cohen et al., 2021; Mishchenko et al., 2022;
Koloskova et al., 2022; Feyzmahdavian & Johansson, 2023).
When considering 𝑞 = 0.5 for example, the improvement
follows since the median is always bounded by twice the
average delay, but it can also be arbitrarily smaller than
the average delay.1 In Appendix C we further demonstrate
cases where the median itself is significantly larger than
other, smaller quantiles of the sequence; our procedure is
able to provide bounds depending on the latter, provided an

1 Indeed, this follows from a simple application of Markov’s
inequality: 𝜏med ≤ 𝜏avg/Pr(𝑑𝑡 ≥ 𝜏med) ≤ 2𝜏avg, where 𝑡 is chosen
uniformly at random. On the other hand, for the delay sequence
𝑑𝑡 = 1[𝑡 > 𝑇/2 + 1] (𝑡 − 1), we have 𝜏med = 0 and 𝜏avg = Ω(𝑇).

upper bound on the respective quantile delay.

Furthermore, to our knowledge, this result yields the first
accelerated convergence guarantee for convex smooth prob-
lems with arbitrary delays. The results are established in
a fully black-box manner, requiring only the simpler anal-
yses of classical methods instead of specialized analyses
in the asynchronous setting. We also note that many more
convergence results may be obtained using our procedure
with other standard optimization methods, for example us-
ing SGD for strongly convex objectives, results with high-
probability guarantees and with state-of-the-art adaptive
methods such as AdaGrad-norm (Ward et al., 2020; Faw
et al., 2022; Attia & Koren, 2023; Liu et al., 2023) and other
parameter-free methods (Attia & Koren, 2024; Khaled &
Jin, 2024; Kreisler et al., 2024).

Black-box conversion for all quantiles simultaneously.
Our second main contribution is a more intricate black-box
procedure which does not require any upper bound on the
delays but instead adaptively and automatically matches the
convergence rate corresponding to the best quantile-delay
bound in hindsight. The fourth column of Table 1 presents
the results of the procedure when coupled with SGD and
accelerated SGD.

The results provide the first convergence guarantees for
asynchronous non-convex smooth and convex Lipschitz
problems that does not require any bound of the average
delay (or on the number of machines), and accelerated rates
for convex smooth optimization. In addition, we recall
that the average and median delays could be overly pes-
simistic compared to other quantile delays (we discuss this
in Appendix C), while our adaptive quantile guarantee auto-
matically adjusts to the best quantile bound in hindsight and
therefore avoids suboptimal factors in its convergence rate.

Experimental Evaluation. Finally, we demonstrate that
coupling SGD with our first proposed black-box conver-
sion improves performance over vanilla asynchronous SGD
when training a neural network on a classification task in a
simulated asynchronous computation setting.

1.2. Discussion and Relation to Previous Work

Fixed delay model. Earlier work on delayed stochastic
optimization considered a model where the delay is fixed.
The work of Arjevani et al. (2020) on quadratic objectives
followed by the results of Stich & Karimireddy (2020) for
general smooth objectives established that the delay param-
eter affects the “deterministic” low-order convergence term
of SGD, which can be extended to a dependence on the
maximal delay in the more general arbitrary delay model.
This dependence on the maximal delay is the best one can
achieve for (fixed stepsize) vanilla SGD in the arbitrary de-
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Table 1: Convergence results for 𝑇 rounds of asynchronous stochastic optimization with arbitrary delays (other delay models are omitted
from the table); 𝜏avg is the average delay and 𝜏𝑞 is the 𝑞-quantile delay. Note that quantile-delay bounds are superior to average-delay
bounds, as the median delay (𝑞 = 1/2) is always bounded by twice the average delay, and may be significantly smaller; see Appendix C
for details. Only the results of Algorithm 2 and (Aviv et al., 2021) depend on the actual delay parameters and not on known upper bounds.
The results of Koloskova et al. (2022); Mishchenko et al. (2022) depend in fact on the number of machines in a master-worker setup,
which upper bounds the average delay (see Appendix B).

SETTING
PRIOR

STATE-OF-THE-ART
ALGORITHM 1

(COR. 2)
ALGORITHM 2
(THMS. 3,6)

CENTRALIZED
OPTIMIZATION

non-convex, smooth 1+𝜏avg
𝑇
+ 𝜎√

𝑇

[a] 1+𝜏𝑞
𝑞𝑇
+ 𝜎√

𝑞𝑇
inf𝑞

1+𝜏𝑞
𝑞𝑇
+ 𝜎√

𝑞𝑇

1
𝑇
+ 𝜎√

𝑇

[d]

convex, smooth 1+𝜏avg
𝑇
+ 𝜎√

𝑇

[b] 1+𝜏2
𝑞

(𝑞𝑇 )2 +
𝜎√
𝑞𝑇

inf𝑞
1+𝜏2

𝑞

(𝑞𝑇 )2 +
𝜎√
𝑞𝑇

1
𝑇2 + 𝜎√

𝑇

[e]

convex, non-smooth
√

1+𝜏avg (1+𝜎)√
𝑇

[c]
√

1+𝜏𝑞+𝜎√
𝑞𝑇

inf𝑞
√

1+𝜏𝑞+𝜎√
𝑇

1+𝜎√
𝑇

[e]

a(Cohen et al., 2021; Mishchenko et al., 2022; Koloskova et al., 2022), b(Aviv et al., 2021; Cohen et al., 2021;
Feyzmahdavian & Johansson, 2023), c(Mishchenko et al., 2022), d(Ghadimi & Lan, 2013), e(Lan, 2012).

layed model, without further modifications to the algorithm;
for completeness, we prove this formally in Appendix D.

Bounded average delay. Several recent works targeted
the arbitrary delay model, devising methods which obtain
better convergence rates that does not depend on the maxi-
mal delay. Cohen et al. (2021) proposed the “picky SGD”
method, where stale gradients are ignored if they are far
from the current step, obtaining rates that depends on the
average delay for non-convex and convex-smooth problems.
Although their method does not implicitly require a known
delay bound, to ensure convergence given a fixed steps bud-
get an average delay bound is required. In addition, their
method provides a guarantee only for the best encountered
point (which cannot be computed efficiently) instead of
the output of the algorithm, and non-accelerated rates for
convex-smooth objectives. Feyzmahdavian & Johansson
(2023) provides a guarantee for convex smooth optimiza-
tion that depends on the average delay by filtering gradients
with delay larger than twice the average delay bound (which
is essentially used as a median delay bound). Similarly
to the other works, a known bound is required and only a
non-accelerated rate is provided. Aviv et al. (2021) is the
only work we are aware of that does not require a known
delay bound, but their result holds only for convex-smooth
problems and does not yield accelerated rates. Our quantile-
adaptive results, on the other hand, avoid the limitations
mentioned above.

Two later studies focused on the arbitrary delay model but
under the assumption of a bounded number of machines
(Koloskova et al., 2022; Mishchenko et al., 2022). By ad-
justing the stepsizes of SGD according to this quantity they
provided guarantees that depends on the number of ma-
chines. As previously observed, the average delay is in fact
bounded by the number of machines (see Appendix B for a
short proof) and as such we improve upon these results in a
similar fashion.

Other delay models. While the arbitrary delay model has
garnered attention in recent years, additional delay models
were considered in previous work. Sra et al. (2016) studied
the convergence of asynchronous SGD while either assum-
ing a uniform delay distribution with a bounded support
or delay distributions with bounded first and second mo-
ments. Closely related to our paper is the work by Tyurin &
Richtarik (2023), who use mini-batching to achieve guaran-
tees for non-convex, convex and convex smooth optimiza-
tion (included accelerated rates) using standard optimization
methods. The asynchronous model of (Tyurin & Richtarik,
2023) is limited to a constant compute time per machine
with a finite number of machines, and does not support vari-
ation in delays due to variable communication times and
failures of machines, like the arbitrary delays does. Our
approach may be viewed as a considerable generalization of
the asynchronous mini-batching technique to the arbitrary
delay model, achieving adaptivity to the delay quantiles
instead of the top-𝑚 machines as in (Tyurin & Richtarik,
2023). Yet another delay model studied in several works
involves delayed updates to specific coordinates in a shared
parameter vector (Recht et al., 2011; Mania et al., 2017;
Leblond et al., 2018).

Asynchronous mini-batching. Several works used mini-
batching in an asynchronous setting. Feyzmahdavian et al.
(2016) considered the use of mini-batching at the worker
level, using a maximal delay bound and achieving sub-
optimal results with respect to the maximal delay. We on
the other hand use mini-batching across workers to reduce
the effect of stale gradients. Dutta et al. (2018) discussed
several variants of synchronous and asynchronous SGD (in-
cluding K-batch sync SGD which is similar to our use of
asynchronous mini-batching), focusing on the wall clock-
time given certain distribution assumptions on the compute
time per worker. While providing insight regarding the run-
time of the variants, they do not consider the fact that one
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can increase the batch size of SGD to a certain point (at the
cost of fewer update steps) without degrading the theoreti-
cal performance. As mentioned above, the closely related
“Rennala SGD” method of Tyurin & Richtarik (2023) used
asynchronous mini-batching in a more restricted fixed com-
putation model, where each machine 𝑚 computes gradients
at a constant Δ𝑚 time.

Beyond homogeneous i.i.d. data. One way to move be-
yond the standard assumption of homogeneous i.i.d. data
is to consider asynchronous optimization with heteroge-
neous data, where different workers access disjoint subsets
of the training set (Mishchenko et al., 2022; Koloskova
et al., 2022; Tyurin & Richtarik, 2023; Islamov et al., 2024).
Prior work in this setting often relies on additional struc-
tural assumptions–for example, fixed per-machine delays
(Tyurin & Richtarik, 2023, Theorem A.4) or specific dis-
tributional assumptions (Mishchenko et al., 2022, Assump-
tion 2)–which are typically required to ensure that data on
slower machines is accessed frequently enough for effective
optimization. Moreover, recent work has explored the im-
pact of Markovian sampling strategies, where temporally
correlated samples induce biased gradient oracles, as com-
monly encountered in reinforcement learning, on optimiza-
tion with delayed feedback (Adibi et al., 2024; Dal Fabbro
et al., 2024). Extending our framework to accommodate
such forms of data heterogeneity and temporal dependence
presents a promising direction for future research.

Delayed feedback in online learning and Multi-Armed
Bandits. Scenarios of delayed feedback were also stud-
ied in the literature on online learning and multi-armed
bandits (Dudik et al., 2011; Joulani et al., 2013; Vernade
et al., 2017; Gael et al., 2020). In particular, the work of
Lancewicki et al. (2021) achieves a regret guarantee with an
adaptivity to the quantiles of the delays distribution, analo-
gous to our result in the stochastic optimization setup.

Concurrent work. Recently and concurrently to our work,
Tyurin (2025) and Maranjyan et al. (2024) studied de-
lay models that extend the fixed-compute framework of
Tyurin & Richtarik (2023). Most relevant to our work,
Tyurin (2025) demonstrated that SGD with gradient filter-
ing and accumulation is optimal in their time-delay model,
by proving a lower bound for zero-respecting first-order
algorithms. While their computational model accommo-
dates arbitrary delays, it deviates from prior asynchronous
frameworks (e.g., Cohen et al., 2021; Mishchenko et al.,
2022; Koloskova et al., 2022) and results in recursive con-
vergence bounds that lack direct interpretation. In contrast,
our approach provides more informative guarantees derived
from natural empirical quantities, such as the quantiles of
observed delays. Maranjyan et al. (2024), on the other hand,
addresses scenarios where worker computations may take

arbitrarily long or hang indefinitely. Notably, their method
requires prior knowledge of delay distributions and allowing
worker restarts mid-computation.

2. Preliminaries
2.1. Stochastic Optimization Setup

In this work we are interested in minimization of a dif-
ferentiable function 𝑓 : W → ℝ for some convex set
W ⊆ ℝ𝑑 . We assume a standard stochastic first-order
model, in which we are provided with an unbiased gradient
oracle 𝑔 :W → ℝ𝑑 with bounded variance, i.e., for any 𝑤,

𝔼[𝑔(𝑤)] = ∇ 𝑓 (𝑤) and 𝔼[∥𝑔(𝑤) − ∇ 𝑓 (𝑤)∥2] ≤ 𝜎2

for some 𝜎 ≥ 0. In the following sections we will discuss
algorithms which receive an initialization 𝑤1 ∈ W, per-
forms 𝑇 gradient queries and output a point 𝑤. We consider
the following optimization scenarios:

(i) Non-convex setting. In this case we assume that the
domain is unconstrained (W = ℝ𝑑), 𝑓 is 𝛽-smooth,2

and lower bounded by some 𝑓★. We also assume that
the algorithm receives a bound 𝐹 ≥ 𝑓 (𝑤1) − 𝑓★.

(ii) Convex non-smooth setting. Here we assume that the
domain has a bounded diameter, i.e., for any 𝑥, 𝑦 ∈
W, ∥𝑥 − 𝑦∥ ≤ 𝐷 for some 𝐷 > 0, and that 𝑓 is
convex and 𝐺-Lipschitz overW.

(iii) Convex smooth setting. Finally, we also consider the
setting where domain is unconstrained (W = ℝ𝑑)
and the objective 𝑓 is convex, 𝛽-smooth, and admits a
minimizer 𝑤★ ∈ arg min 𝑓 (𝑤). We also assume that
the algorithm receives a bound 𝐷 ≥ ∥𝑤1 − 𝑤★∥.

2.2. Asynchronous Optimization with Arbitrary Delays

We consider the same asynchronous optimization model as
in (Aviv et al., 2021; Cohen et al., 2021), which consists of
𝑇 rounds, where each round involves the following: (i) The
algorithm chooses a model 𝑤𝑡 ; (ii) the algorithm receives
a pair (𝑔𝑡 , 𝑑𝑡 ), where 𝑔𝑡 is a stochastic gradient of 𝑓 at
𝑤𝑡−𝑑𝑡 . The delays 𝑑𝑡 here are entirely arbitrary, and can be
thought of as chosen by an oblivious adversary (in advanced,
before the actual optimization process begins). Note this
means that the delays are assumed to be independent (in
a probabilistic sense) of the stochastic gradients observed
during optimization.

Throughout, we let 𝜏avg denote the average delay; 𝜏med de-
note the median delay; and 𝜏𝑞 denote the 𝑞-quantile delay3.

2A function 𝑓 is said to be 𝛽-smooth if for any 𝑥, 𝑦 ∈ W,
∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝛽∥𝑥 − 𝑦∥. This condition also implies that
for any 𝑥, 𝑦 ∈ W, 𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + 1

2 𝛽∥𝑦 − 𝑥∥
2.

3We define a 𝑞-quantile of the delay sequence for 𝑞 ∈ (0, 1] as
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We further treat the quantile delays (𝜏𝑞 for 𝑞 ∈ (0, 1]) as
integers. This can be done without loss of generality be-
cause the delays are all integers, so ⌊𝜏𝑞⌋ remains a valid
𝑞-quantile, and smaller quantile delays tighten our guaran-
tees.

2.3. Classical Stochastic First-Order Optimization

Our asynchronous mini-batching technique enables the di-
rect application of classical stochastic optimization methods
in a delayed setting. Since we use these methods in a black-
box manner, we do not present them here but rather only
state the relevant rates of convergence. The exact conver-
gence results we give here are taken from Lan (2020) and
are specified in more detail in Appendix A.

Following are the algorithms we use in our work, which re-
ceive an initialization 𝑤1 ∈ W, performs 𝑇 gradient queries
and output a point 𝑤:

(i) Stochastic gradient descent (SGD, Lan, 2020),
which in the non-convex setting guarantees that
𝔼[∥∇ 𝑓 (𝑤)∥2] = 𝑂 (𝛽𝐹/𝑇 + 𝜎

√
𝛽𝐹/
√
𝑇), and in

the convex smooth setting provides the guarantee
𝔼[ 𝑓 (𝑤) − 𝑓 (𝑤★)] = 𝑂 (𝛽𝐷2/𝑇 + 𝜎𝐷/

√
𝑇) (Lan,

2020, Corollary 6.1).

(ii) Projected stochastic gradient descent (PSGD, Lan,
2020), which in the convex non-smooth setting pro-
vides a guarantee of 𝔼[ 𝑓 (𝑤) − min𝑤∈W 𝑓 (𝑤)] =

𝑂 (𝐷 (𝐺 + 𝜎)/
√
𝑇) (Lan, 2020, Theorem 4.1).

(iii) Accelerated stochastic gradient descent (accelerated
SGD, Lan, 2020), which guarantees in the convex
smooth setting that (Lan, 2020, Proposition 4.4)

𝔼[ 𝑓 (𝑤) − 𝑓 (𝑤★)] = 𝑂 (𝛽𝐷2/𝑇2 + 𝜎𝐷/
√
𝑇).

3. Asynchronous Mini-Batching
In this section we present and analyze a general template
for mini-batching with asynchronous computation. The
template, presented in Algorithm 1, receives a batch size
parameter and a stochastic optimization algorithmA(𝜎, 𝐾),
an algorithm performing 𝐾 point queries for stochastic gra-
dients which has a variance bounded by 𝜎2 to compute
an output point. Then the template uses the asynchronous
computations to simulate mini-batched optimization, ignor-
ing stale gradients with respect to the inner iterations of A
according to their delays.

Following is our main result about Algorithm 1, which pro-
vides a black-box conversion of standard optimization rates

any 𝜏𝑞 ≥ 0 that satisfies both Pr(𝑑 ≤ 𝜏𝑞) ≥ 𝑞 and Pr(𝑑 ≥ 𝜏𝑞) ≥
1 − 𝑞, where 𝑑 is sampled uniformly from {𝑑1, . . . , 𝑑𝑇 }. We also
define the 1-quantile 𝜏1 ≜ 𝜏max.

to asynchronous optimization rates using the asynchronous
mini-batching scheme.

Algorithm 1: Asynchronous mini-batching
Input: Batch size 𝐵, stochastic optimization

algorithm A(𝜎, 𝐾)
𝑡 ← 1 # rounds count
for 𝑘 ← 1, 2, . . . , 𝐾 do # queries count

Get query 𝑤̃𝑘 from A
𝑡𝑘 ← 𝑡 # first step with 𝑤𝑡 = 𝑤̃𝑘
𝑏 ← 0
𝑔̃𝑘 ← 0
while 𝑏 < 𝐵 do

Play 𝑤𝑡 = 𝑤̃𝑘
Receive (𝑔𝑡 , 𝑑𝑡 )
if 𝑡𝑘 ≤ 𝑡 − 𝑑𝑡 then # ensures 𝑤𝑡−𝑑𝑡 = 𝑤̃𝑘

𝑔̃𝑘 ← 𝑔̃𝑘 + 1
𝐵
𝑔𝑡

𝑏 ← 𝑏 + 1
𝑡 ← 𝑡 + 1

Send response 𝑔̃𝑘 to A
Output result produced by A

Theorem 1. Let F be some function class of differentiable
functions, let 𝑓 ∈ F and let 𝑔 be a stochastic first-order
oracle with 𝜎2-bounded variance. Let A(𝜎, 𝐾) be a 𝐾-
query stochastic first-order optimization algorithm for class
F with a convergence rate guarantee of Rate( 𝑓 , 𝜎, 𝐾).
For 𝑇 asynchronous rounds, let 𝜏𝑞 be the 𝑞-quantile de-
lay for some 𝑞 ∈ (0, 1], and let 𝐵 = max{1, 𝜏𝑞} for some
𝜏𝑞 ≥ 𝜏𝑞 . Then the output of Algorithm 1 with batch size
𝐵 and A(𝜎/

√
𝐵, ⌊𝑞𝑇/(1 + 2𝜏𝑞)⌋) has a convergence rate

guarantee of Rate( 𝑓 , 𝜎/
√︁

max{1, 𝜏𝑞}, ⌊𝑞𝑇/(1 + 2𝜏𝑞)⌋).

Theorem 1 uses a delay bound of the 𝑞-quantile delay and
an optimization algorithm, inheriting the convergence rate
of the original algorithm with a modified effective number
of steps that depends on the delay quantile and decreased
stochastic variance bound due to the mini-batching. Note
that the above guarantee can be significantly stronger than
that of naive synchronous mini-batching, where the iteration
time is determined by the slowest machine, since the pro-
posed method allows faster machines to contribute multiple
times per batch. To better understand the result we present
the following corollary, which is a direct application of the
theorem with the classical stochastic methods detailed in
Appendix A.

Corollary 2. Let 𝑓 : W → ℝ be a differentiable func-
tion, 𝑔 :W → ℝ𝑑 a first-order oracle of 𝑓 with variance
bounded by 𝜎2 ≥ 0, 𝑇 > 0 the number of asynchronous
rounds, 𝑞 ∈ (0, 1] and 𝜏𝑞 > 0 such that 𝜏𝑞 ≤ 𝜏𝑞 , where 𝜏𝑞
is the 𝑞-quantile delay. Then the following holds:

(i) In the non-convex smooth setting, Algorithm 1 with
tuned SGD and batch size of max{1, 𝜏𝑞} produce 𝑤
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which satisfy

𝔼[∥∇ 𝑓 (𝑤)∥2] = 𝑂
( (1 + 𝜏𝑞)𝛽𝐹

𝑞𝑇
+ 𝜎
√
𝛽𝐹

√
𝑞𝑇

)
.

(ii) In the convex smooth setting, Algorithm 1 with tuned
SGD and batch size of max{1, 𝜏𝑞} produce 𝑤 which
satisfy

𝔼[ 𝑓 (𝑤) − 𝑓 (𝑤★)] = 𝑂
(
(1 + 𝜏𝑞)𝛽𝐷2

𝑞𝑇
+ 𝐷𝜎
√
𝑞𝑇

)
.

(iii) In the convex smooth setting, Algorithm 1 with tuned
accelerated SGD and batch size of max{1, 𝜏𝑞} pro-
duce 𝑤 which satisfy

𝔼[ 𝑓 (𝑤) − 𝑓 (𝑤★)] = 𝑂
(
(1 + 𝜏𝑞)2𝛽𝐷2

(𝑞𝑇)2
+ 𝐷𝜎
√
𝑞𝑇

)
.

(iv) In the convex Lipschitz setting, Algorithm 1 with tuned
projected SGD and batch size of max{1, 𝜏𝑞} produce
𝑤 which satisfy

𝔼[ 𝑓 (𝑤) − min
𝑤∈W

𝑓 (𝑤)] = 𝑂
(
𝐷 (

√︁
1 + 𝜏𝑞𝐺 + 𝜎)
√
𝑞𝑇

)
.

Proof. The result follows by a simple application of Theo-
rem 1, which provides a rate of

Rate( 𝑓 , 𝜎/
√︁

max{1, 𝜏𝑞}, ⌊𝑞𝑇/(1 + 2𝜏𝑞)⌋),

with each of the standard convergence guarantees (Lem-
mas 3 to 6 in Appendix A). □

We shortly remark that, as the median delay is bounded by
twice the average delay and may be much smaller, and as
the number of machines is always larger than the average
delay (see Appendices B and C for details), our results pro-
vide tighter guarantees than existing results that depend on
an average delay bound or the number of machines (Cohen
et al., 2021; Mishchenko et al., 2022; Koloskova et al., 2022;
Feyzmahdavian & Johansson, 2023), without requiring a
specialized optimization analysis in the asynchronous set-
ting. In addition, we are the first to provide an accelerated
rate in the convex smooth setting.

Following is the key lemma for proving Theorem 1, which
provides a condition to ensure that A receives sufficiently
many updates so as to produce a effective result. Its proof
follows.

Lemma 1. Let 𝐵 ∈ ℕ and A(𝜎, 𝐾) a stochastic optimiza-
tion algorithm for some 𝐾 ∈ ℕ and 𝜎 ≥ 0. Then when
running Algorithm 1 with batch size 𝐵 and algorithm A for

𝑇 asynchronous rounds, a sufficient condition for an output
to be produced is

𝐾 ≤ sup
𝑞∈ (0,1]

⌊
𝑞𝑇

𝐵 + 𝜏𝑞

⌋
.

Proof of Lemma 1. Let 𝐾 ′ be the number of responses A
receives and assume by contradiction that 𝐾 ′ < 𝐾. Let
𝑞 ∈ (0, 1]. At least ⌈𝑞𝑇⌉ rounds have a delay less or equal
𝜏𝑞 . Let 𝑛(𝑘) be the number of asynchronous rounds with
delay less or equal 𝜏𝑞 at times 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. Assume
by contradiction that 𝑛(𝑘) > 𝐵 + 𝜏𝑞 for some 𝑘 , and let
𝑆 = (𝑎1, . . . , 𝑎𝑛(𝑘 ) ) be the rounds during the 𝑘’th iteration
with 𝑑𝑎𝑖 ≤ 𝜏𝑞 ordered in an increasing order. For any 𝑖 > 𝜏𝑞
(which implies that 𝑖 ≥ 𝜏𝑞 + 1 as both are integers), as the
sequence is non-decreasing and 𝑎1 ≥ 𝑡𝑘 ,

𝑎𝑖 − 𝑡𝑘 ≥ 𝑎𝑖 − 𝑎1 ≥ 𝑖 − 1 ≥ 𝜏𝑞 ≥ 𝑑𝑎𝑖 ,

which means that the inner “if” condition is satisfied and
contradicts the condition of the while loop, 𝑏 ≤ 𝐵, since
there are at least 𝐵 + 1 rounds 𝑎𝑖 ∈ 𝑆 with 𝑖 > 𝜏𝑞 (because
our assumption by contradiction yields |𝑆 | ≥ 𝐵 + 𝜏𝑞 + 1 as
we deal with integers). Thus, 𝑛(𝑘) ≤ 𝐵+𝜏𝑞 for all 𝑘 ∈ [𝐾 ′].
As each 𝐵 + 𝜏𝑞 consecutive rounds with delay less or equal
𝜏𝑞 must account for a response to A, and we have at least
⌈𝑞𝑇⌉ such rounds,

𝐾 ′ ≥
⌊
𝑞𝑇

𝐵 + 𝜏𝑞

⌋
.

As this is true for any 𝑞 ∈ (0, 1],

𝐾 ′ ≥ sup
𝑞∈ (0,1]

⌊
𝑞𝑇

𝐵 + 𝜏𝑞

⌋
≥ 𝐾

which contradicts the assumption 𝐾 ′ < 𝐾 . □

We proceed to prove the main result.

Proof of Theorem 1. By Lemma 1 𝑤 is produced since

sup
𝑞′∈ (0,1]

⌊
𝑞′𝑇

𝐵 + 𝜏𝑞′

⌋
≥

⌊
𝑞𝑇

𝐵 + 𝜏𝑞

⌋
≥

⌊
𝑞𝑇

1 + 2𝜏𝑞

⌋
= 𝐾.

The 𝑡𝑘 ≤ 𝑡 − 𝑑𝑡 condition ensures that the gradient at round
𝑡 is of 𝑤̃𝑘 , as 𝑤𝑡 = 𝑤̃𝑘 for all 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. We conclude
using the linearity of the variance to bound the variance of
the mini-batch,

𝔼
[
∥𝑔̃𝑘 − ∇ 𝑓 (𝑤̃𝑘)∥2

]
≤ 𝜎2

max{1, 𝜏𝑞}
,

invoking the rate guarantee of

A(𝜎/
√︁

max{1, 𝜏𝑞}, ⌊𝑞𝑇/(1 + 2𝜏𝑞)⌋). □
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4. Quantile Adaptivity
The method described in the previous section require as
input an upper bound of a given quantile of the delays. Next,
we show how to achieve more robust guarantees without
prior knowledge about the delays, by establishing guaran-
tees that are competitive with respect to all quantiles simul-
taneously.

First, let us clarify our objective. We begin with the smooth
non-convex case. Let 𝑞 ∈ (0, 1] be an arbitrary quantile.
Using Corollary 2 with the tight quantile delay bound 𝜏𝑞 ,
we can obtain a rate of

𝑂

( (1 + 𝜏𝑞)𝛽𝐹
𝑞𝑇

+ 𝜎
√
𝛽𝐹

√
𝑞𝑇

)
.

As each 𝑞 ∈ (0, 1] produce a difference guarantee, our
objective is to provide a guarantee of

𝑂

(
inf

𝑞∈ (0,1]

(1 + 𝜏𝑞)𝛽𝐹
𝑞𝑇

+ 𝜎
√
𝛽𝐹

√
𝑞𝑇

)
,

without knowing in advance which quantile 𝑞 achieves this
infimum.

Our quantile-adaptive template of asynchronous mini-
batching appears in Algorithm 2. Since the best quantile (for
which the best convergence rate is achieved) is not known
in advance, it cannot be used to tune the batch size. For
that reason, the template extends Algorithm 1 by perform-
ing multiple asynchronous mini-batching iterations with
different batch sizes and time horizons, essentially making
it into an any-time algorithm using a doubling procedure
(Cesa-Bianchi & Lugosi, 2006). By carefully selecting the
parameters, we can achieve the desired quantile adaptivity.

Following is our second main result which provides quantile
adaptivity by coupling Algorithm 2 with SGD and acceler-
ated SGD. Additional results using SGD in the convex and
convex smooth settings appear in Appendix E.

Theorem 3. LetW ⊆ ℝ𝑑 be a convex set, 𝑓 : W → ℝ

be a differentiable function, 𝑔 : W → ℝ𝑑 an unbiased
gradient oracle of 𝑓 with 𝜎2-bounded variance, 𝑇 ∈ ℕ

and 𝑤1 ∈ W. Running Algorithm 2 for 𝑇 asynchronous
steps with some parameters A, 𝐵1, 𝐵2, . . . and 𝑇1, 𝑇2, . . .,
let𝑊 = (𝑤1, . . . , 𝑤𝐼 ) be the outputs of A, and let 𝑤 be 𝑤𝐼
if 𝑊 is non-empty and 𝑤1 otherwise. Then the following
holds:

(i) If W = ℝ𝑑 , 𝑓 is 𝛽-smooth and lower bounded by
𝑓★, settingA(𝐾) to be 𝐾-steps SGD initialized at 𝑤1
with stepsize 1

𝛽
,

𝐾𝑖 = 2𝑖−1 and 𝐵𝑖 = max
{
1,

⌈
𝜎2𝐾𝑖
2𝛽𝐹

⌉}
,

Algorithm 2: Asynchronous mini-batching sweep
Input: Batch sizes 𝐵𝑖 , Epoch lengths 𝐾𝑖 , 𝐾-query

algorithm A(𝐾)4
𝑡 ← 1 # rounds count
for 𝑖 ← 1, 2, . . . do

Initialize A(𝐾𝑖)
for 𝑘 ← 1, 2, . . . , 𝐾𝑖 do # query count at ith epoch

Get query 𝑤̃ (𝑖)
𝑘

from A
𝑡
(𝑖)
𝑘
← 𝑡 # first step with 𝑤𝑡 = 𝑤̃

(𝑖)
𝑘

𝑏 ← 0
𝑔̃
(𝑖)
𝑘
← 0

while 𝑏 < 𝐵𝑖 do
Play 𝑤𝑡 = 𝑤̃

(𝑖)
𝑘

Receive (𝑔𝑡 , 𝑑𝑡 )
if 𝑡 (𝑖)
𝑘
≤ 𝑡 − 𝑑𝑡 then # ensures 𝑤𝑡−𝑑𝑡 = 𝑤̃

(𝑖)
𝑘

𝑔̃
(𝑖)
𝑘
← 𝑔̃

(𝑖)
𝑘
+ 1
𝐵𝑖
𝑔𝑡

𝑏 ← 𝑏 + 1
𝑡 ← 𝑡 + 1

Send response 𝑔̃ (𝑖)
𝑘

to A
Receive output 𝑤𝑖 from A

for some 𝐹 ≥ 𝑓 (𝑤1) − 𝑓★, then

𝔼
[
∥∇ 𝑓 (𝑤)∥2

]
≤ inf
𝑞∈ (0,1]

24(1 + 2𝜏𝑞)𝛽𝐹
𝑞𝑇

+ 24𝜎
√
𝛽𝐹

√
𝑞𝑇

.

(ii) IfW = ℝ𝑑 , 𝑓 is convex, 𝛽-smooth and admits a min-
imizer 𝑤★, setting A(𝐾) to be 𝐾-steps accelerated
SGD initialized at 𝑤1 with stepsize 1

4𝛽 , 𝐾𝑖 = 2𝑖−1, and

𝐵𝑖 = max
{
1,

⌈
𝜎2𝐾𝑖 (𝐾𝑖 + 1)2

12𝛽2𝐷2

⌉}
.

for some 𝐷 ≥ ∥𝑤1 − 𝑤★∥, then 𝔼[ 𝑓 (𝑤) − 𝑓 (𝑤★)] is
bounded by

inf
𝑞∈ (0,1]

192(1 + 2𝜏𝑞)2𝛽𝐷2

𝑞2𝑇2 + 72𝜎𝐷
√
𝑞𝑇

.

Note that the infimum over quantiles in the statement above
is at least as good as the median (or any other given quan-
tile), improving upon Corollary 2 by automatically adapting
to the best quantile without requiring any prior knowledge
of a quantile upper bound. This is achieved by maximiz-
ing the batch size according to the underlying rate of A
instead of using the delay bound. As discussed at length
in Sections 1.1 and 1.2, this adaptivity to quantile delays is
more robust than existing average delay dependent results,
and can further achieve accelerated guarantees for convex
smooth objectives.

4We omit the variance input parameter of A in Algorithm 2
since it is not used.
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Next is the key lemma of the procedure which links the total
number of rounds 𝑇 with the effective number of responses
A receives. It is essentially an extension of Lemma 1 and
follows the same proof technique. For the proof see Ap-
pendix F.

Lemma 2. Let 𝐵1, 𝐵2, . . . be a non-decreasing sequence of
positive integers and 𝐾𝑖 = 2𝑖−1 for 𝑖 ∈ ℕ. Running Algo-
rithm 2 for𝑇 ∈ ℕ asynchronous steps, let𝑊 = (𝑤1, . . . , 𝑤𝐼 )
be the outputs ofA. Then assuming𝑊 is not empty, for any
𝑞 ∈ (0, 1],

𝑞𝑇 < 2(𝐵𝐼+1 + 𝜏𝑞)𝐾𝐼+1.

Following is the proof of item (i) of Theorem 3; we defer
the proof of other items to Appendix F.

Proof of Theorem 3 (i). If 𝑊 is empty, then 𝑇 < 𝐵1 (as
𝑇1 = 1 and the condition 1 = 𝑡

(1)
1 ≤ 𝑡 − 𝑑𝑡 is always

satisfied). Hence, as 𝑇 ≥ 1, 𝐵1 > 1 and 𝑇 < 𝜎2

2𝛽𝐹 , and from
smoothness,

∥∇ 𝑓 (𝑤)∥2 = ∥∇ 𝑓 (𝑤1)∥2 ≤ 2𝛽𝐹 <
𝜎2

𝑇
≤ 𝜎2

𝑞𝑇

for all 𝑞 ∈ (0, 1], where the first inequality follows by
using a standard property of smooth functions, ∥∇ 𝑓 (𝑤)∥2 ≤
2𝛽( 𝑓 (𝑤) − 𝑓★), which is established by the smoothness
property between 𝑤+ = 𝑤 − 1

𝛽
∇ 𝑓 (𝑤) and 𝑤,

𝑓★ − 𝑓 (𝑤) ≤ 𝑓 (𝑤+) − 𝑓 (𝑤)

≤ ∇ 𝑓 (𝑤) ·
(
𝑤+ − 𝑤

)
+ 𝛽

2


𝑤+ − 𝑤

2

= − 1
2𝛽
∥∇ 𝑓 (𝑤)∥2.

We proceed to the case where 𝑊 is not empty. Let 𝑞 ∈
(0, 1]. By Lemma 2, 𝑞𝑇 < 2(𝐵𝐼+1 + 𝜏𝑞)𝐾𝐼+1. If 𝐵𝐼+1 ≤
max{1, 𝜏𝑞},

𝑞𝑇 ≤ 2(1 + 2𝜏𝑞)𝐾𝐼+1 =⇒ 1
𝐾𝐼
≤

4(1 + 2𝜏𝑞)
𝑞𝑇

.

If 𝐵𝐼+1 > max{1, 𝜏𝑞},

𝑞𝑇 ≤ 4𝐵𝐼+1𝐾𝐼+1 ≤
4𝜎2𝐾2

𝐼+1
𝛽𝐹

=⇒ 1
𝐾𝐼
≤ 4𝜎
√
𝛽𝐹𝑞𝑇

.

We are left with applying a standard convergence result for
SGD, which is detailed in Lemma 3 and establishes that

𝔼
[
∥∇ 𝑓 (𝑤)∥2

]
≤ 2𝛽𝐹

𝐾
+

√︂
8𝜎2𝛽𝐹

𝐾
,

where 𝑤 is the output (a uniformly sampled iterate) of 𝐾-
steps SGD with a fixed stepsize 𝛾 = min{1/𝛽,

√︁
2𝐹/𝜎2𝛽𝐾}.

To that end note that 𝑔̃ (𝐼 )
𝑘

is the average of 𝐵𝐼 i.i.d. unbiased
estimations of ∇ 𝑓 (𝑤̃ (𝐼 )

𝑘
), and by the linearity of the variance

has variance bounded by 𝜎2/𝐵𝐼 . Thus, our selection of
parameters enables us to use Lemma 3 and establish that

𝔼
[
∥∇ 𝑓 (𝑤𝐼 )∥2

]
≤ 2𝛽𝐹

𝐾𝐼
+

√︄
8𝜎2𝛽𝐹

𝐵𝐼𝐾𝐼
≤ 6𝛽𝐹

𝐾𝐼

≤
24(1 + 2𝜏𝑞)𝛽𝐹

𝑞𝑇
+ 24𝜎

√
𝛽𝐹

√
𝑞𝑇

.

As this holds for any 𝑞 ∈ (0, 1],

𝔼
[
∥∇ 𝑓 (𝑤𝐼 )∥2

]
≤ inf
𝑞∈ (0,1]

24(1 + 2𝜏𝑞)𝛽𝐹
𝑞𝑇

+ 24𝜎
√
𝛽𝐹

√
𝑞𝑇

. □

5. Experimental Evaluation
To illustrate the benefits of asynchronous mini-batching,
we compare “vanilla” asynchronous SGD (denoted Async-
SGD) with a practical variant of our mini-batch method
(Algorithm 1), which uses SGD, denoted Async-MB-SGD,
for training a fully connected neural network on the Fashion-
MNIST classification dataset (Xiao et al., 2017).5 The
dataset consists of 60,000 training images and 10,000 test
images, each of size 28 × 28 pixels and labeled across 10
classes. We use test accuracy as the evaluation metric.

Practical modifications. Consider a scenario with a con-
stant delay, 𝑑𝑡 = 𝜏, for all 𝑡 ∈ [𝑇]. When running Algo-
rithm 1 with batch size 𝜏, only one model update occurs
every 2𝜏−1 gradient computations, and 𝜏−1 of those gradi-
ents are discarded. Although the large amount of discarded
gradients only affects the constant factors in the theoretical
analysis, it is inefficient in practice. To avoid discarding
many gradient computations that are only slightly stale, we
modify the condition “if 𝑡𝑘 ≤ 𝑡 − 𝑑𝑡 then” in Algorithm 1 to
“if 𝑡max{𝑘−2,1} ≤ 𝑡 − 𝑑𝑡 then”. This change allows the use of
slightly older gradients, resulting in an effective delay of at
most 2, while increasing the proportion of computations that
contribute to model updates. Although this modification in-
troduces a small amount of gradient staleness, the improved
utilization of computed gradients is beneficial in practice.
Our experiments report performance using this variant.

Asynchronous workers setup. We adopt the two-phase
asynchronous simulation framework of Cohen et al. (2021).
In the first phase, we simulate compute times for each
worker by drawing from a weighted mixture of two Poisson
distributions. In the second phase, we simulate training
by having each worker deliver gradients to a central server

5We also experimented with filtering gradients whose delays
exceed the number of machines, as proposed by Koloskova et al.
(2022), but observed performance similar to that of Async-SGD.
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Table 2: Fashion-MNIST test accuracies for Async-SGD and Async-MB-SGD across different numbers of workers and update steps. The
test accuracy column reports mean ± standard deviation across 3 runs with different seeds.

NUM. WORKERS NUM. STEPS METHOD LEARNING RATE TEST ACCURACY

40 7,500 Async-SGD 0.021544 0.8449 ± 0.0013
Async-MB-SGD(𝐵=2) 0.100000 0.8457 ± 0.0004

160 30,000 Async-SGD 0.010000 0.8585 ± 0.0017
Async-MB-SGD(𝐵=8) 0.215443 0.8620 ± 0.0008

640 120,000 Async-SGD 0.002154 0.8623 ± 0.0015
Async-MB-SGD(𝐵=8) 0.100000 0.8737 ± 0.0002
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Figure 1: Comparison of Fashion-MNIST test accuracy for Async-SGD and Async-MB-SGD with varying numbers of workers and
update steps. (left) 40 workers, 7,500 steps, (middle) 160 workers, 30,000 steps, (right) 640 workers, 120,000 steps. Each plot presents
the mean and standard deviation across 3 runs.

according to the generated compute schedule. Specifically,
we follow schedule B of Cohen et al. (2021), where each
compute time is drawn from a Poisson distribution with
parameter 𝑃 with probability 0.92 and from a Poisson dis-
tribution with parameter 150𝑃 with probability 0.08, using
𝑃 = 4.06. To avoid compute times of 0, the Poisson distri-
butions are shifted by +1. In contrast to Cohen et al. (2021),
we sample a single compute time per update instead of sep-
arating the gradient computation and the gradient update.
We conduct experiments with 40, 160, and 640 workers,
using 7,500, 30,000, and 120,000 update steps, respectively.
The linear relationship between the number of workers and
update steps reflects the increase in total computation when
scaling the number of workers over a fixed time budget.

Model and training setup. We train a three-layer fully
connected neural network with input dimension 728 = 282,
hidden layers of sizes 256 and 128, an output layer of size
10, and ReLU activations. The model is trained using the
cross-entropy loss. To reduce the variation of the last iterate,
we use exponential moving averaging with decay 0.99. Each
worker uses a local mini-batch of size 8. The learning rate is
selected separately for each algorithm from a geometric grid
with multiplicative factor 3√10: for Async-SGD we search
over the range [0.001, 1.0], and for Async-MB-SGD over
[0.01, 1.0]. For Async-MB-SGD, we additionally tune the
aggregation batch size 𝐵 (i.e., the number of updates the
server accumulates before modifying the model) over the

set {1, 2, 4, 8, 16, 32}. For the best set of hyperparameters,
we report the mean and standard deviation across 3 runs.

5.1. Results and Discussion

Table 2 reports test accuracy under various worker–step
configurations. Async-SGD and Async-MB-SGD perform
similarly with 40 workers, with a slight edge to Async-MB-
SGD with an accuracy of 84.57%. On the other hand, when
the number of workers increases to 160 and 640, Async-MB-
SGD consistently outperforms Async-SGD, with accuracy
gaps of 0.35% and 1.1%. Notably, Async-MB-SGD uses
a significantly larger stepsize, which aligns with expecta-
tions: the method experiences smaller effective delays due
to gradient filtering and benefits from reduced variance via
mini-batching. Figure 1 presents test accuracy plots under
different configurations. We observe smoother curves with
Async-MB-SGD, particularly at larger worker counts. This
behavior likely also results from the method’s ability to
reduce the effective delay of gradient updates.

These results highlight the robustness of Async-MB-SGD
to the scale of the number of workers. By mitigating the
effects of delayed updates through gradient filtering and
mini-batching, the method maintains strong performance
and supports larger learning rates even under highly asyn-
chronous conditions. This suggests that Async-MB-SGD
can serve as a practical alternative to vanilla asynchronous
SGD in large-scale distributed training settings.
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A. Standard Convergence Bounds in Stochastic Optimization
Convergence result of SGD for non-convex smooth optimization from Lan (2020) (Corollary 6.1).

Lemma 3. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth function lower bounded by 𝑓★. Let 𝑔 : ℝ𝑑 → ℝ𝑑 be an unbiased gradient
oracle of 𝑓 with 𝜎2-bounded variance. Then running SGD (termed RSGD in Lan, 2020) for 𝐾 steps, initialized at 𝑤1 ∈ ℝ𝑑
and with stepsizes 𝛾𝑘 = min{1/𝛽,

√︁
2𝐹/𝜎2𝛽𝐾}, where 𝐹 ≥ 𝑓 (𝑤1) − 𝑓★, produce 𝑤 which satisfy

𝔼
[
∥∇ 𝑓 (𝑤)∥2

]
≤ 2𝛽𝐹

𝐾
+

√︂
8𝜎2𝛽𝐹

𝐾
.

Convergence result of SGD for convex smooth optimization from Lan (2020) (Corollary 6.1).

Lemma 4. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth convex function admitting a minimizer 𝑤★. Let 𝑔 : ℝ𝑑 → ℝ𝑑 be an unbiased
gradient oracle of 𝑓 with 𝜎2 bounded variance. Then running SGD (termed RSGD in Lan, 2020) for 𝐾 steps, initialized at
𝑤1 ∈ ℝ𝑑 and with stepsizes 𝛾𝑘 = min{1/𝛽,

√︁
𝐷2/𝜎2𝐾}, where 𝐷 ≥ ∥𝑤1 − 𝑤★∥, produce 𝑤 which satisfy

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 𝛽𝐷2

𝐾
+ 2𝜎𝐷
√
𝐾
.

Convergence result of accelerated SGD (AC-SA) for convex smooth optimization from Lan (2020) (Proposition 4.4).

Lemma 5. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth convex function admitting a minimizer 𝑤★. Let 𝑔 : ℝ𝑑 → ℝ𝑑 be an unbiased
gradient oracle of 𝑓 with 𝜎2 bounded variance. Then running accelerated SGD (termed AC-SA in Lan, 2020) for 𝐾 steps,
initialized at 𝑤1 ∈ ℝ𝑑 and with parameters 𝛼𝑡 = 2

𝑡+1 and 𝛾𝑡 = 𝛾𝑡 where

𝛾 = min


1
4𝛽
,

√︄
3𝐷2

4𝜎2𝐾 (𝐾 + 1)2


and 𝐷 ≥ ∥𝑤1 − 𝑤★∥, produce 𝑤 which satisfy

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 4𝛽𝐷2

𝐾 (𝐾 + 1) +
4𝜎𝐷
√

3𝐾
.

Convergence result of SGD for convex Lipschitz optimization from Lan (2020) (Theorem 4.1, Equation 4.1.12).

Lemma 6. LetW ⊂ ℝ𝑑 be a convex set with diameter bounded by 𝐷. Let 𝑓 :W → ℝ be a 𝐺-Lipschitz convex function
and 𝑤★ ∈ arg min𝑤∈W 𝑓 (𝑤). Let 𝑔 : ℝ𝑑 → ℝ𝑑 be an unbiased sub-gradient oracle of 𝑓 with 𝜎2 bounded variance.
Then running projected SGD (termed stochastic mirror descent in Lan, 2020) for 𝐾 steps, initialized at 𝑤1 ∈ W and with
stepsizes 𝛾𝑡 = 𝐷/

√︁
(𝐺2 + 𝜎2)𝐾 , produce 𝑤 which satisfy

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 2𝐷

√
𝐺2 + 𝜎2
√
𝐾

.

B. Average Delay is Bounded by Number of Machines
In the arbitrary delay model, it was previously remarked (Koloskova et al., 2022; Feyzmahdavian & Johansson, 2023) that if
the gradients are produced by a constant number of machines (the setting Koloskova et al. (2022); Mishchenko et al. (2022)
considered), the average delay is smaller than the number of machines. For completeness we state and prove this property
below.

Lemma 7. Let 𝑑1, . . . , 𝑑𝑇 be an arbitrary delay sequence produced by 𝑀 machines. Then the average delay is lower
bounded by the number of machines. In particular, 1

𝑇

∑𝑇
𝑡=1 𝑑𝑡 ≤ 𝑀 − 1.

Proof. For any 𝑚 ∈ [𝑀], let 𝑆𝑚 = {𝑘𝑚,1, 𝑘𝑚,2, . . . , 𝑘𝑚,𝑛(𝑚) } be the rounds where the gradient was computed by machine
𝑚, where 𝑛(𝑘) is the total number of gradients produced by machine 𝑚. Rearranging the summation of delays and treating
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𝑘𝑚,0 = 0,

𝑇∑︁
𝑡=1

𝑑𝑡 =
∑︁

𝑚∈[𝑀 ]

𝑛(𝑚)∑︁
𝑖=1

𝑘𝑚,𝑖 − 𝑘𝑚,𝑖−1 − 1 = −𝑇 +
∑︁

𝑚∈[𝑀 ]

𝑛(𝑚)∑︁
𝑖=1

𝑘𝑚,𝑖 − 𝑘𝑚,𝑖−1

= −𝑇 +
∑︁

𝑚∈[𝑀 ]
𝑘𝑚,𝑛(𝑚) .

As 𝑘𝑚,𝑛(𝑚) ≠ 𝑘𝑚′ ,𝑛(𝑚′ ) if 𝑚 ≠ 𝑚′ (as each step has only a single gradient),

𝑇∑︁
𝑡=1

𝑑𝑡 = −𝑇 +
∑︁

𝑚∈[𝑀 ]
𝑘𝑚,𝑛(𝑚) ≤ −𝑇 +

𝑇∑︁
𝑡=𝑇−𝑀+1

𝑡 = −𝑇 + 𝑀 (𝑇 − 𝑀 + 1 + 𝑇)
2

=
2𝑀𝑇 − 𝑀2 + 𝑀 − 2𝑇

2
≤ 𝑇 (𝑀 − 1).

Dividing both sides by 𝑇 we conclude 1
𝑇

∑𝑇
𝑡=1 𝑑𝑡 ≤ 𝑀 − 1. □

C. Best Quantile Bound Arbitrarily Improves over Average and Median
As we establish in Theorem 1 and Corollary 2, given a bound of the median delay (or any other quantile), it is possible to
convert classical optimization methods to asynchronous optimization methods in a black-box manner. Note that by a simple
application of Markov’s inequality, the median delay is bounded by twice the average delay, as 𝜏med ≤ 𝜏avg/Pr(𝑑𝑡 ≥ 𝜏med) ≤
2𝜏avg, where 𝑡 is chosen uniformly at random. On the other hand, for the delay sequence 𝑑𝑡 = 1[𝑡 > 𝑇/2 + 1] (𝑡 − 1), we
have 𝜏avg = Ω(𝑇) and a significantly smaller 𝜏med = 0.

A natural question is whether we can improve beyond the average or median delay dependency. To gain intuition consider
the following simple delay sequence, which is produced by performing asynchronous optimization with 𝑀 machines where
one machine is 𝑛 times as fast for 𝑇 = 𝑛 + 𝑀 − 1 steps,

𝑑𝑡 =

{
0 if 𝑡 ≤ 𝑛;
𝑡 − 1 otherwise.

In the 𝛽-smooth non-convex case, assuming 𝜎 = 0, it is straightforward to see that the best approach is to perform SGD and
ignore all stale gradients, as they do not provide additional information, achieving a convergence rate of

𝑂

(
𝛽( 𝑓 (𝑤1) − 𝑓★)

𝑛

)
= 𝑂

(
𝛽( 𝑓 (𝑤1) − 𝑓★)
𝑇 · 𝑛

𝑛+𝑀−1

)
= 𝑂

(
𝛽( 𝑓 (𝑤1) − 𝑓★)

𝑞𝑇

)
,

where 𝑞 = 𝑛+𝑀−1
𝑛

is the maximal quantile of the gradients with zero delay. In case 𝑞 < 1
2 , the median and average delays

will be Ω(𝑛), and dependence on them will lead to far worse guarantees. To that end, we would like a result more robust to
the delay distribution which better ignores outliers.

D. Lower Bound for “Vanilla” Fixed Stepsize Asynchronous SGD
The following theorem shows that, without further assumptions or modifications to the algorithm, the performance of vanilla
(non-adaptive) asynchronous SGD with a fixed stepsize must degrade according to the maximal delay, similarly to the
upper bound of Stich & Karimireddy (2020). In particular, assuming 𝜏max = 𝑜(𝑇), the delay sequence defined in Theorem 4
satisfies 𝜏avg = 𝑜(𝜏max). The result may seem inconsistent with the upper bound of asynchronous SGD from Koloskova et al.
(2022), which degrades as √𝜏avg𝜏max. However, this is not the case, as their definition of average delay includes “imaginary”
delays from machines that return results after round 𝑇 , rather than accounting solely for the observed sequence.
Theorem 4. For any 𝑇 ∈ ℕ, 𝜏max ∈ [𝑇 − 2] and 𝑤1 ∈ ℝ, there exists a delay sequence of length 𝑇 with maximal delay
𝜏max and average delay bounded by 𝜏2

max/𝑇 , which can be produced by 𝜏max + 1 machines, and a 𝛽-smooth convex function
𝑓 : ℝ→ ℝ admitting a minimizer 𝑤★, such that for any 𝜂 > 6

𝛽 (1+𝜏max ) , the iterates of 𝑇-steps asynchronous SGD with the
delay sequence and deterministic gradients, initialized at 𝑤1 with stepsize 𝜂, satisfy

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≥

4(1 + 𝜏max)𝛽( 𝑓 (𝑤1) − 𝑓 (𝑤★))
𝑇
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and

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) ≥
(1 + 𝜏max)𝛽∥𝑤1 − 𝑤★∥2

𝑇
.

Note that the above theorem holds for 𝜂 > 6/𝛽(1 + 𝜏max). For a smaller value of 𝜂, the worst-case convergence guarantee of
standard SGD (even without noise or delays) is Ω((1 + 𝜏max)𝛽/𝑇), which is also tight in the worst case. We cover this case
in Appendix D.1.

Proof of Theorem 4. Let 𝑓 (𝑤) = 𝛽

2 ∥𝑤∥
2 which is 𝛽-smooth and convex function admitting a minimizer 𝑤★ = 0. We

consider the following delay sequence,

𝑑𝑡 =

{
𝑡 − 1 if 𝑡 ≤ 𝜏max + 1;
0 otherwise.

Note that the maximal delay is 𝜏max and

𝜏avg =
1
𝑇

𝜏max+1∑︁
𝑡=1

𝑡 − 1 =
(𝜏max + 1)𝜏max

2𝑇
≤
𝜏2

max

𝑇
.

In addition, this sequence can be made with 𝜏max + 1 machines, where the first 𝜏max + 1 rounds are produced by different
machines and the rest are produced by the last. The trajectory of the first 𝜏max + 2 iterates can be written as

𝑤𝑡 = 𝑤1 − 𝜂(𝑡 − 1)∇ 𝑓 (𝑤1) = 𝑤1 (1 − 𝜂𝛽(𝑡 − 1)).

Thus, the average squared gradient norm can be bounded by

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≥

𝛽2

𝑇

𝜏max+2∑︁
𝑡=𝜏max/2+2

(1 − 𝜂𝛽(𝑡 − 1))2∥𝑤1∥2.

Note that we treat 𝜏max as an even number, this is done for simplicity and the odd case affects only a slight constant
modification as 𝜏max + 1 ≤ 2𝜏max. As 𝜂 > 6

𝛽 (𝜏max+1) , for 𝑡 ≥ 𝜏max/2 + 2, 𝜂𝛽(𝑡 − 1) ≥ 3 and

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≥

𝛽2∥𝑤1∥2

𝑇

𝜏max+2∑︁
𝑡=𝜏max/2+2

4

≥ 2𝛽2∥𝑤1∥2 (𝜏max + 1)
𝑇

.

By a standard application of smoothness, 𝑓 (𝑤1) − 𝑓 (𝑤★) ≤ 𝛽

2 ∥𝑤1 − 𝑤★∥2. Hence,

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≥

4𝛽( 𝑓 (𝑤1) − 𝑓 (𝑤★)) (𝜏max + 1)
𝑇

.

And for the second inequality, as 𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) = 𝛽

2 ∥𝑤𝑡 ∥
2 = 1

2𝛽 ∥∇ 𝑓 (𝑤𝑡 )∥
2,

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓★ ≥
1

2𝛽𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2

≥ 𝛽∥𝑤1 − 𝑤★∥2 (𝜏max + 1)
𝑇

. □

14
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D.1. Lower Bound for “Vanilla” Asynchronous SGD with Small Fixed Stepsize

In Theorem 4 we provided a lower bound for 𝛽-smooth optimization using fixed stepsize asynchronous SGD with stepsize
𝜂 > 6

𝛽 (1+𝜏max ) , where 𝜏max is the maximal delay of the arbitrary delay sequence. Next, we complement this result with a
simple lower bound for any delay sequence (which holds in particular for the centralized case by setting 𝑑𝑡 = 0 for all
𝑡 ∈ [𝑇]), that has an inverse dependence on the stepsize, and yields for 𝜂 ≤ 6

𝛽 (1+𝜏max ) the same lower bound of Theorem 4
(up to constant factors).

Theorem 5. For any 𝑇 ∈ ℕ, 𝑤1 ∈ ℝ, 𝛽 > 0 and 𝜂 > 0, there exists a 𝛽-smooth convex function 𝑓 : ℝ→ ℝ admitting a
minimizer 𝑤★ ∈ [−1, 1], such that for any delay sequence 𝑑1, . . . , 𝑑𝑇 , the iterates of 𝑇-steps asynchronous (S)GD with the
delay sequence and deterministic gradients, initialized at 𝑤1 and with stepsize 𝜂, satisfy

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 ≥

𝛽( 𝑓 (𝑤1) − 𝑓 (𝑤★))
2 max{1, 2𝛽𝜂𝑇}

and

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) ≥
𝛽∥𝑤1 − 𝑤★∥2

8 max{1, 2𝛽𝜂𝑇} .

Proof. Without loss of generality, we will assume that 𝑤1 ≥ 0 and let 𝑤★ = −1 (otherwise, use 𝑤★ = 1 and a similar
argument will hold). Let 𝑓 (𝑤) = 𝜖

2 ∥𝑤 − 𝑤
★∥2 for 𝜖 = min{𝛽, 1/(2𝜂𝑇)}, which is 𝛽-smooth and convex function admitting

a minimizer 𝑤★.

We will prove by induction that 1
2 (𝑤1 − 𝑤★) ≤ (𝑤𝑡 − 𝑤★) ≤ (𝑤1 − 𝑤★) for all 𝑡 ∈ [𝑇]. The base case 𝑡 = 1 is immediate

since 𝑤1 − 𝑤★ > 0. At step 𝑡,

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇ 𝑓 (𝑤𝑡−𝑑𝑡 ) = 𝑤1 − 𝜂
𝑡∑︁
𝑠=1
∇ 𝑓 (𝑤𝑠−𝑑𝑠 ) = 𝑤1 − 𝜂𝜖

𝑡∑︁
𝑠=1
(𝑤𝑠−𝑑𝑠 − 𝑤★).

Hence, by the induction assumption and the definition of 𝜖 ,

𝑤𝑡+1 − 𝑤★ ≥ (𝑤1 − 𝑤★) − 𝜂𝜖𝑡 (𝑤1 − 𝑤★) ≥
1
2
(𝑤1 − 𝑤★).

On the other hand, as 𝑤𝑠−𝑑𝑠 − 𝑤★ ≥ 1
2 (𝑤1 − 𝑤★) > 0 by the induction,

(𝑤𝑡+1 − 𝑤★) = (𝑤1 − 𝑤★) − 𝜂𝜖
𝑡∑︁
𝑠=1
(𝑤𝑠−𝑑𝑠 − 𝑤★) ≤ (𝑤1 − 𝑤★),

concluding the proof by induction. Hence,

1
𝑇

𝑇∑︁
𝑡=1
∥∇ 𝑓 (𝑤𝑡 )∥2 =

𝜖2

𝑇

𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤★∥2 ≥

𝜖2

4𝑇

𝑇∑︁
𝑡=1
∥𝑤1 − 𝑤★∥2 =

𝛽( 𝑓 (𝑤1) − 𝑓 (𝑤★))
2 max{1, 2𝛽𝜂𝑇}

and

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★) =
𝜖

2𝑇

𝑇∑︁
𝑡=1
∥𝑤𝑡 − 𝑤★∥2 ≥

𝜖

8𝑇

𝑇∑︁
𝑡=1
∥𝑤1 − 𝑤★∥2 =

𝛽∥𝑤1 − 𝑤★∥2

8 max{1, 2𝛽𝜂𝑇} .

□

E. Additional Results using Algorithm 2
Following are additional applications of Algorithm 2 using projected SGD in the convex non-smooth and SGD in the convex
smooth setting. Their proofs follow.
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Theorem 6. LetW ⊂ ℝ𝑑 be a convex set with diameter bounded by 𝐷, 𝑓 :W → ℝ be a 𝐺-Lipschitz convex function and
𝑤★ ∈ arg min𝑤∈W 𝑓 (𝑤). Let 𝑔 : W → ℝ𝑑 be an unbiased gradient oracle of 𝑓 with 𝜎2-bounded variance, 𝑇 ∈ ℕ and
𝑤1 ∈ W. Let A(𝐾) be stochastic mirror descent initialized at 𝑤1 with stepsize

𝛾𝑡 =
𝐷√︁

(𝐺2 + 𝜎2/𝐵)𝐾
,

where

𝐵 = max
{
1,

⌈
𝜎2

𝐺2

⌉}
.

Let 𝑊 = (𝑤1, . . . , 𝑤𝐼 ) be the outputs of A by running Algorithm 2 for 𝑇 ∈ ℕ asynchronous steps with parameters A,
𝐾𝑖 = 2𝑖−1 and 𝐵𝑖 = 𝐵. Then

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

𝐷𝐺
√︁

32(1 + 2𝜏𝑞) + 𝐷𝜎
√

48
√
𝑞𝑇

,

where 𝑤 = 𝑤𝐼 if𝑊 is not empty, and 𝑤1 otherwise.

Theorem 7. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth convex function admitting a minimizer 𝑤★, 𝑔 : ℝ𝑑 → ℝ𝑑 be an unbiased
gradient oracle of 𝑓 with 𝜎2-bounded variance, 𝑇 ∈ ℕ and 𝑤1 ∈ ℝ𝑑 . Let A(𝐾) be SGD initialized at 𝑤1 with stepsize
𝛾𝑘 =

1
𝛽

. Let𝑊 = (𝑤1, . . . , 𝑤𝐼 ) be the outputs of A by running Algorithm 2 for 𝑇 ∈ ℕ asynchronous steps with parameters
A,

𝐾𝑖 = 2𝑖−1 and 𝐵𝑖 = max
{
1,

⌈
𝜎2𝐾𝑖

𝛽2𝐷2

⌉}
.

Then

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

12(1 + 2𝜏𝑞)𝛽𝐷2

𝑞𝑇
+ 𝜎𝐷

√
288

√
𝑞𝑇

,

where 𝑤 = 𝑤𝐼 if𝑊 is not empty, and 𝑤1 otherwise.

E.1. Proof of Theorem 6

If𝑊 is empty, then 𝑇 < 𝐵 (as 𝑇1 = 1 and the condition 1 = 𝑡
(1)
1 ≤ 𝑡 − 𝑑𝑡 is always satisfied). Hence, as 𝑇 ≥ 1,

𝑇 <
𝜎2

𝐺2 ,

and using the Lipschitz and diameter assumptions,

𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑓 (𝑤1) − 𝑓 (𝑤★) ≤ 𝐷𝐺 <
𝐷𝜎
√
𝑇
≤ 𝐷𝜎
√
𝑞𝑇

for all 𝑞 ∈ (0, 1]. We proceed to the case where𝑊 is not empty. Let 𝑞 ∈ (0, 1]. By Lemma 2,

𝑞𝑇 < 2(𝐵 + 𝜏𝑞)𝐾𝐼+1.

If 𝐵 ≤ max{1, 𝜏𝑞},

𝑞𝑇 ≤ 2(1 + 2𝜏𝑞)𝐾𝐼+1 =⇒ 𝐷2 (𝐺2 + 𝜎2/𝐵)
𝐾𝐼

≤
8(1 + 2𝜏𝑞)𝐷2𝐺2

𝑞𝑇
.

If 𝐵 > max{1, 𝜏𝑞}, 𝜎 > 𝐺, 𝐵 = ⌈𝜎2/𝐺2⌉ and

𝑞𝑇 ≤ 4𝐵𝐾𝐼+1 =⇒ 𝐷2 (𝐺2 + 𝜎2/𝐵)
𝐾𝐼

≤ 8𝐵𝐷2 (𝐺2 + 𝜎2/𝐵)
𝑞𝑇

≤ 24𝐷2𝜎2

𝑞𝑇
,

16
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where the last inequality follows by 𝐵𝐺2 ≤ 2𝜎2. We are left with applying Lemma 3. To that end note that 𝑔̃ (𝐼 )
𝑘

is the
average of 𝐵 i.i.d. unbiased estimations of ∇ 𝑓 (𝑤̃ (𝐼 )

𝑘
), and by the linearity of the variance has variance bounded by 𝜎2/𝐵.

Thus, our selection of parameters enable us to use Lemma 6 and establish that

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤

2𝐷
√︁
𝐺2 + 𝜎2/𝐵
√
𝐾𝐼

≤
𝐷𝐺

√︁
32(1 + 2𝜏𝑞) + 𝐷𝜎

√
96

√
𝑞𝑇

.

As this holds for any 𝑞 ∈ (0, 1],

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

𝐷𝐺
√︁

32(1 + 2𝜏𝑞) + 𝐷𝜎
√

96
√
𝑞𝑇

. □

E.2. Proof of Theorem 7

If𝑊 is empty, then 𝑇 < 𝐵1 (as 𝑇1 = 1 and the condition 1 = 𝑡
(1)
1 ≤ 𝑡 − 𝑑𝑡 is always satisfied). Hence, as 𝑇 ≥ 1,

𝑇 <
𝜎2

𝛽2𝐷2 ,

and from smoothness,

𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑓 (𝑤1) − 𝑓 (𝑤★) ≤
𝛽𝐷2

2
<
𝜎𝐷

2
√
𝑇
≤ 𝜎𝐷

2
√
𝑞𝑇

for all 𝑞 ∈ (0, 1]. We proceed to the case where𝑊 is not empty. Let 𝑞 ∈ (0, 1]. By Lemma 2,

𝑞𝑇 < 2(𝐵𝐼+1 + 𝜏𝑞)𝐾𝐼+1.

If 𝐵𝐼+1 ≤ max{1, 𝜏𝑞},

𝑞𝑇 ≤ 2(1 + 2𝜏𝑞)𝐾𝐼+1 =⇒ 1
𝐾𝐼

<
4(1 + 2𝜏𝑞)

𝑞𝑇
.

If 𝐵𝐼+1 > max{1, 𝜏𝑞},

𝑞𝑇 ≤ 4𝐵𝐼+1𝐾𝐼+1 ≤
8𝜎2𝐾2

𝐼+1
𝛽2𝐷2 =⇒ 1

𝐾𝐼
≤ 𝜎

√
32

𝛽𝐷
√
𝑞𝑇
.

We are left with applying Lemma 4. To that end note that 𝑔̃ (𝐼 )
𝑘

is the average of 𝐵𝐼 i.i.d. unbiased estimations of ∇ 𝑓 (𝑤̃ (𝐼 )
𝑘
),

and by the linearity of the variance has variance bounded by 𝜎2/𝐵𝐼 . Thus, our selection of parameters enable us to use
Lemma 5 and establish that

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤ 𝛽𝐷2

𝐾𝐼
+ 2𝜎𝐷
√
𝐵𝐼𝐾𝐼

≤ 3𝛽𝐷2

𝐾𝐼
≤

12(1 + 2𝜏𝑞)𝛽𝐷2

𝑞𝑇
+ 𝜎𝐷

√
288

√
𝑞𝑇

.

As this holds for any 𝑞 ∈ (0, 1],

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

12(1 + 2𝜏𝑞)𝛽𝐷2

𝑞𝑇
+ 𝜎𝐷

√
288

√
𝑞𝑇

. □

F. Proofs of Section 4
F.1. Proof of Lemma 2

Let 𝑖 ∈ [𝐼 + 1] and 𝑘 ∈ [𝐾𝑖]. Let 𝑛(𝑖, 𝑘) be the number of rounds with delay less or equal 𝜏𝑞 at times 𝑡 (𝑖)
𝑘
≤ 𝑡 < 𝑡 (𝑖)

𝑘+1 for
𝑘 < 𝐾𝑖 and 𝑡 (𝑖)

𝐾𝑖
≤ 𝑡 < 𝑡 (𝑖+1)1 for 𝑘 = 𝐾𝑖 . Assume by contradiction that 𝑛(𝑖, 𝑘) > 𝐵𝑖 + 𝜏𝑞 , and let 𝑆 = (𝑎1, . . . , 𝑎𝑛𝑖,𝑘 ) be the
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rounds of the (𝑖, 𝑘) iteration with 𝑑𝑎𝑖 ≤ 𝜏𝑞 ordered in an increasing order. For any 𝑖 > 𝜏𝑞 , as the sequence is non-decreasing
and 𝑎1 ≥ 𝑡 (𝑖)𝑘 ,

𝑎𝑖 − 𝑡 (𝑖)𝑘 ≥ 𝑎𝑖 − 𝑎1 ≥ 𝜏𝑞 ≥ 𝑑𝑎𝑖 ,

which means that the inner “if” condition is satisfied and contradicts the condition of the while loop, 𝑏 ≤ 𝐵𝑖 , since there is at
least 𝐵𝑖 + 1 rounds with 𝑖 > 𝜏𝑞 . Thus, 𝑛(𝑖, 𝑘) ≤ 𝐵𝑖 + 𝜏𝑞 for all 𝑖 ∈ [𝐼 + 1] and 𝑘 ∈ [𝐾]. As each 𝐵𝑖 + 𝜏𝑞 rounds with delay
less or equal 𝜏𝑞 during the 𝑖’th iteration must account for a response to A, and as we have at least ⌈𝑞𝑇⌉ such rounds in total,

𝑞𝑇 <
𝐼+1∑︁
𝑖=1

𝐾𝑖 (𝐵𝑖 + 𝜏𝑞),

otherwise 𝑤𝐼 will not be the last produced 𝑤𝑖 . Hence, as (𝐵𝑖)𝑖 is non-decreasing and (𝐾𝑖)𝑖 is a geometric series,

𝑞𝑇 < (𝐵𝐼+1 + 𝜏𝑞)
𝐼+1∑︁
𝑖=1

𝐾𝑖 ≤ 2(𝐵𝐼+1 + 𝜏𝑞)𝐾𝐼+1. □

F.2. Proof of Theorem 3

For completeness, we restate each part of Theorem 3 as a full theorem and provide the proofs.

Theorem 8 (Theorem 3 (i)). Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth function lower bounded by 𝑓★, 𝑔 : ℝ𝑑 → ℝ𝑑 an unbiased
gradient oracle of 𝑓 with 𝜎2-bounded variance, 𝑇 ∈ ℕ and 𝑤1 ∈ ℝ𝑑 . Let A(𝐾) be SGD initialized at 𝑤1 with stepsize 1

𝛽
.

Let𝑊 = (𝑤1, . . . , 𝑤𝐼 ) be the outputs of A by running Algorithm 2 for 𝑇 ∈ ℕ asynchronous rounds with parameters A,

𝐾𝑖 = 2𝑖−1 and 𝐵𝑖 = max
{
1,

⌈
𝜎2𝐾𝑖
2𝛽𝐹

⌉}
,

for some 𝐹 ≥ 𝑓 (𝑤1) − 𝑓★. Then

𝔼
[
∥∇ 𝑓 (𝑤)∥2

]
≤ inf
𝑞∈ (0,1]

24(1 + 2𝜏𝑞)𝛽𝐹
𝑞𝑇

+ 24𝜎
√
𝛽𝐹

√
𝑞𝑇

,

where 𝑤 = 𝑤𝐼 is𝑊 is not empty, and 𝑤1 otherwise.

The proof of Theorem 3 (i) is already provided in Section 4.

Theorem 9 (Theorem 3 (ii)). Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth convex function admitting a minimizer 𝑤★, 𝑔 : ℝ𝑑 → ℝ𝑑 be
an unbiased gradient oracle of 𝑓 with 𝜎2-bounded variance, 𝑇 ∈ ℕ and 𝑤1 ∈ ℝ𝑑 . LetA(𝐾) be accelerated SGD initialized
at 𝑤1 with parameters 𝛼𝑡 = 2

𝑡+1 and 𝛾𝑡 = 𝛾𝑡 where 𝛾 = 1
4𝛽 and 𝐷 ≥ ∥𝑤1 − 𝑤★∥. Let𝑊 = (𝑤1, . . . , 𝑤𝐼 ) be the outputs ofA

by running Algorithm 2 for 𝑇 ∈ ℕ asynchronous rounds with parameters A,

𝐾𝑖 = 2𝑖−1 and 𝐵𝑖 = max
{
1,

⌈
𝜎2𝐾𝑖 (𝐾𝑖 + 1)2

12𝛽2𝐷2

⌉}
.

Then

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

192(1 + 2𝜏𝑞)2𝛽𝐷2

𝑞2𝑇2 + 48𝜎𝐷
√
𝑞𝑇

,

where 𝑤 = 𝑤𝐼 if𝑊 is not empty, and 𝑤1 otherwise.

Proof of Theorem 9. If𝑊 is empty, then 𝑇 < 𝐵1 (as 𝑇1 = 1 and the condition 1 = 𝑡
(1)
1 ≤ 𝑡 − 𝑑𝑡 is always satisfied). Hence,

as 𝑇 ≥ 1,

𝑇 <
𝜎2

3𝛽2𝐷2 <
𝜎2

𝛽2𝐷2 ,

18
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and from smoothness,

𝑓 (𝑤) − 𝑓 (𝑤★) = 𝑓 (𝑤1) − 𝑓 (𝑤★) ≤
𝛽𝐷2

2
<
𝜎𝐷

2
√
𝑇
≤ 𝜎𝐷

2
√
𝑞𝑇

for all 𝑞 ∈ (0, 1]. We proceed to the case where𝑊 is not empty. Let 𝑞 ∈ (0, 1]. By Lemma 2,

𝑞𝑇 < 2(𝐵𝐼+1 + 𝜏𝑞)𝐾𝐼+1.

If 𝐵𝐼+1 ≤ max{1, 𝜏𝑞},

𝑞𝑇 ≤ 2(1 + 2𝜏𝑞)𝐾𝐼+1 =⇒ 1
𝐾𝐼 (𝐾𝐼 + 1) <

1
𝐾2
𝐼

≤
16(1 + 2𝜏𝑞)2

𝑞2𝑇2 .

If 𝐵𝐼+1 > max{1, 𝜏𝑞},

𝑞𝑇 ≤ 4𝐵𝐼+1𝐾𝐼+1 ≤
2𝜎2𝐾2

𝐼+1 (𝐾𝐼+1 + 1)2

3𝛽2𝐷2 =⇒ 1
𝐾𝐼 (𝐾𝐼 + 1) ≤

𝜎
√︁

32/3
𝛽𝐷
√
𝑞𝑇
≤ 4𝜎
𝛽𝐷
√
𝑞𝑇
.

We are left with applying Lemma 5. To that end note that 𝑔̃ (𝐼 )
𝑘

is the average of 𝐵𝐼 i.i.d. unbiased estimations of ∇ 𝑓 (𝑤̃ (𝐼 )
𝑘
),

and by the linearity of the variance has variance bounded by 𝜎2/𝐵𝐼 . Thus, our selection of parameters enable us to use
Lemma 5 and establish that

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤ 4𝛽𝐷2

𝐾𝐼 (𝐾𝐼 + 1) +
4𝜎𝐷
√

3𝐵𝐼𝐾𝐼
≤ 12𝛽𝐷2

𝐾𝐼 (𝐾𝐼 + 1) ≤
192(1 + 2𝜏𝑞)2𝛽𝐷2

𝑞2𝑇2 + 48𝜎𝐷
√
𝑞𝑇

.

As this holds for any 𝑞 ∈ (0, 1],

𝔼
[
𝑓 (𝑤𝐼 ) − 𝑓 (𝑤★)

]
≤ inf
𝑞∈ (0,1]

192(1 + 2𝜏𝑞)2𝛽𝐷2

𝑞2𝑇2 + 48𝜎𝐷
√
𝑞𝑇

. □
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