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ABSTRACT

While current methods for training robust deep learning models optimize robust
accuracy, they significantly reduce natural accuracy, hindering their adoption in
practice. Further, the resulting models are often both robust and inaccurate on
numerous samples, providing a false sense of safety for those. In this work, we
extend prior works in three main directions. First, we explicitly train the models to
jointly maximize robust accuracy and minimize robust inaccuracy. Second, since
the resulting models are trained to be robust only if they are accurate, we leverage
robustness as a principled abstain mechanism. Finally, this abstain mechanism al-
lows us to combine models in a compositional architecture that significantly boosts
overall robustness without sacrificing accuracy. We demonstrate the effectiveness
of our approach for empirical and certified robustness on six recent state-of-the-
art models and four datasets. For example, on CIFAR-10 with ε∞ = 1/255, we
successfully enhanced the robust accuracy of a pre-trained model from 26.2% to
87.8% while even slightly increasing its natural accuracy from 97.8% to 98.0%.

1 INTRODUCTION

In recent years, there has been a significant amount of work that studies and improves adversar-
ial (Carlini & Wagner, 2017; Croce & Hein, 2020b; Goodfellow et al., 2014; Madry et al., 2018;
Szegedy et al., 2013) and certified robustness (Balunovic & Vechev, 2019; Cohen et al., 2019; Salman
et al., 2019; Xu et al., 2020; Zhai et al., 2020; Zhang et al., 2019b) of neural networks. However,
currently, there is a key limitation that hinders the wider adoption of robust models in practice.

Robustness vs Accuracy Tradeoff Despite substantial progress in training robust models, existing
robust training methods typically improve model robustness at the cost of decreased standard accuracy.
To address this limitation, a number of recent works study this issue in detail and propose new methods
to mitigate it (Mueller et al., 2020; Raghunathan et al., 2020; Stutz et al., 2019; Yang et al., 2020).

Our Work In this work, we advance the line of work that aims to boost robustness without sacrific-
ing accuracy, but we approach the problem from a new perspective – by avoiding robust inaccuracy.

Concretely, we propose a new training method that jointly maximizes robust accuracy while mini-
mizing robust inaccuracy. We illustrate the effect of our training on a synthetic dataset (three classes
sampled from Gaussian distributions) in Figure 1, showing the decision boundaries of three models,
trained using standard training Lstd, adversarial training LTRADES (Zhang et al., 2019a), and our
training LERA (Equation 4). First, observe that while the Lstd trained model achieves 100% accuracy,
only 91.1% of these samples are robust (and accurate). When using LTRADES, we can observe the

Table 1: Improvement of applying our approach to models trained to optimize natural accuracy only.
Here, Racc

rob denotes the robust accuracy and Rnat denotes the standard (non-adversarial) accuracy.

CIFAR-10 CIFAR-100 MTSD SBB
Zhao et al. (2020), B∞

1/255 (WideResNet-28-10), B∞
2/255 (ResNet-50), B∞

2/255 (ResNet-50), B∞
2/255

Racc
rob 26.2

+61.6%−−−−−−→ 87.8 3.1
+38.8%−−−−−−→ 41.9 40.7

+29.2%−−−−−−→ 69.9 44.7
+37.7%−−−−−−→ 82.4

Rnat 97.8
+0.2%−−−−−→ 98.0 80.17

+0.01%−−−−−−→ 80.18 93.8
+0.2%−−−−−→ 94.0 91.4

−0.1%−−−−−→ 91.3
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Figure 1: Decision regions for models trained via standard training Lstd, adversarial training LTRADES
(Zhang et al., 2019a), and our training LERA (Equation 4). Here, our LERA achieves the same robust
accuracy as LTRADES but avoids all robust inaccurate samples by making them non-robust. Note that
all models predict over all three classes, however, the decision regions for class 2 of the LTRADES and
LERA trained models are too small to be visible. For more details, please refer to Appendix A.2.

robustness vs accuracy tradeoff – the robust accuracy improves to 98.4% at the expense of 1.6%
(robust) inaccuracy. In contrast, using LERA, we retain the high robust accuracy of 98.4% but avoid all
robust inaccurate samples by appropriately shifting the decision boundary, rendering them non-robust.

Since our models are trained to be robust only if they are accurate, we leverage robustness as
a principled abstain mechanism. This abstain mechanism then allows us to combine models in
a compositional architecture that significantly boosts overall robustness without sacrificing accuracy.
Concretely, in Figure 1, we would define a selector model that abstains on all non-robust samples.
Then, the abstained (non-robust) samples are evaluated by the standard trained model Lstd, while the
selected samples are evaluated using the robust model LERA. This allows us to achieve the best of
both models – high robust accuracy (98.4%), high natural accuracy (100%), and no robust inaccuracy.

We show the practical effectiveness of our approach by instantiating it over several datasets and
existing robust models for both empirical and certified robustness. Table 1 summarizes the main
results of our approach, showing that we significantly improve the robust accuracy Racc

rob of standard
trained non-compositional models, with minimal loss of standard accuracy Rnat. In fact, in most of
the cases, the compositional architecture even slightly improves the standard accuracy. We release
our code at: https://anonymous.4open.science/r/robust-abstain-09DD.

2 RELATED WORK

There is a growing body of work that extends models with an abstain option. Existing approaches
include selection mechanisms such as entropy selection (Mueller et al., 2020), selection function
(Cortes et al., 2016; Geifman & El-Yaniv, 2019; Mueller et al., 2020), softmax response (Geifman
& El-Yaniv, 2017; Stutz et al., 2020), or explicit abstain class (Laidlaw & Feizi, 2019; Liu et al.,
2019). In our work, we explore an alternative selection mechanism that uses model robustness. The
advantage of this formulation is that the selector provides strong guarantees for each sample and
never produces false-positive selections. The disadvantage is that it introduces a significant runtime
overhead, compared to many other methods that require only a single forward pass.

Other recent works address adversarial examples through model calibration. Stutz et al. (2020)
proposes biasing models towards low confidence predictions on adversarial examples, which allows
rejecting them through a softmax response selector. An alternative approach is taken by Gal &
Ghahramani (2018); Kingma et al. (2015); Molchanov et al. (2017), which train Bayesian neural
networks to estimate prediction uncertainty by approximating the moments of the posterior predictive
distribution, or by Sensoy et al. (2018), which estimates the posterior distribution using a deterministic
neural network from data. Instead of calibrating model confidence, in our work, we calibrate model
robustness, by optimizing the model towards non-robust predictions on misclassified examples.

Simultaneously, several recent works investigate the robustness and accuracy tradeoff both theo-
retically (Dobriban et al., 2020; Yang et al., 2020) and practically by proposing new methods to
mitigate it. Stutz et al. (2019) considers a new method based on on-manifold adversarial examples,
which are more aligned with the true data distribution than the ℓp-norm noise models. Mueller et al.
(2020) focuses on deterministic certification and proposes using compositional models to control the
robustness and accuracy tradeoff. In our work, we also use compositional models, but we focus on
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empirical and probabilistic certified robustness. Our selector formulation is based on a new training
that minimizes robust inaccuracy and can be used to fine-tune any existing robust model. Further, we
provide individual robustness at inference time, rather than distributional robustness considered in
prior works.

Finally, some recent works also consider learning on misclassified examples. For example, MMA (Ding
et al., 2018) maximizes the margins of correctly classified examples while minimizing the classifica-
tion loss on misclassified examples. MART (Wang et al., 2019) combines the standard adversarial risk
with a consistency loss that optimizes misclassified examples towards robust predictions. Note, that
this formulation actively encourages the model toward robust inaccurate predictions, while our work
does the opposite – we minimize robust inaccuracy by penalizing robust misclassified examples.

3 PRELIMINARIES

Let fθ :Rd →Rk be a neural network classifying inputs x∈X ⊆Rd to outputs Rk (e.g., logits or
probabilities). The hard classifier induced by the network is given as Fθ(x) = argmaxi∈Y fθ(x)i,
where fθ(x)i is the output for the i-th class and Y, |Y| = k is the finite set of discrete labels.

Natural Accuracy Given a distribution over input-label pairs D and a classifier Fθ : X → Y , an
input-label pair (x, y) is considered accurate iff the classifier Fθ predicts the correct label y for x:

Rnat(Fθ) = E(x,y)∼D 1{Fθ(x) = y}

Robust Accuracy Given an input-label pair (x, y), we say that the classifier Fθ is robust and
accurate iff it predicts the correct label y for all samples from a predefined region Bp

ε(x), such as a
ℓp-norm ball centered at x with radius ε, i.e., Bp

ε(x)
..= {x′ : ||x′ − x||p ≤ ε}. Formally:

Racc
rob(Fθ) = E(x,y)∼D 1{Fθ(x) = y} ∧ 1{∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x)} (1)

Robust Inaccuracy Similarly to robust accuracy, an input-label pair (x, y) is considered robustly
inaccurate iff the classifier Fθ predicts an incorrect label Fθ(x) ̸= y and Fθ is robust towards that
misprediction for all inputs in Bp

ε(x). Formally, the robust inaccuracy is defined as:

R¬acc
rob (Fθ) = E(x,y)∼D 1{Fθ(x) ̸= y} ∧ 1{∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x)} (2)

4 REDUCING ROBUST INACCURACY

In this section, we present our training method that extends existing robust training approaches by
also considering samples that are robust but inaccurate. We start by describing a high-level problem
statement which we then instantiate for both empirical robustness as well as certified robustness.

Problem Statement Given a distribution over input-label pairs D, our goal is to find model
parameters θ such that the resulting model maximizes robust accuracy, while at the same time
minimizing robust inaccuracy. Concretely, this translates to the following optimization objective:

argmin
θ

E(x,y)∼D β · Lrob(x, y)︸ ︷︷ ︸
optimize robust accuracy

+ 1{Fθ(x) ̸= y} · L¬acc
rob (x, y)︸ ︷︷ ︸

penalize robust inaccuracy

(3)

where β ∈ R+ is a regularization term, 1{Fθ(x) ̸= y} is an indicator function denoting samples
for which the model is inaccurate, and Lrob(x, y) with L¬acc

rob (x, y) are loss functions that optimize
robust accuracy and penalize robust inaccuracy, respectively. Here, the first loss function Lrob(x, y)
is standard and can be directly instantiated using existing approaches. The main challenge comes in
defining the second loss term, as well as ensuring that the resulting formulation is easy to optimize,
e.g., by defining a smooth approximation of the non-differentiable indicator function.

4.1 ADVERSARIAL TRAINING

We instantiate the loss function from Equation 3 when training empirically robust models as follows:

LERA = β · LTRADES(fθ,(x, y)) + (1− fθ(x)y) min
x′∈Bp

ε (x)
ℓCE(fθ(x

′), argmax
c∈Y\{Fθ(x)}

fθ(x
′)c) (4)
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Following, we introduce each term in more detail and discuss the motivation behind our formulation.

Lrob To instantiate Lrob, we can use any existing adversarial training method (Ding et al., 2018;
Goodfellow et al., 2014; Wang et al., 2019; Zhang et al., 2019a). For example, considering
TRADES (Zhang et al., 2019a), Lrob is instantiated as:

LTRADES
..= ℓCE(fθ(x), y) + γmaxx′∈Bp

ε (x) DKL(fθ(x), fθ(x
′)) (5)

where DKL is the Kullback-Leibler divergence (Kullback & Leibler, 1951).

1{Fθ(x) ̸= y} Next, we consider the indicator function, which encourages learning on inaccurate
samples. Since the indicator function is computationally intractable, we replace the hard qualifier
by a soft qualifier 1− fθ(x)y. The soft qualifier will be small for accurate and large for inaccurate
samples, thus providing a smooth approximation of the original indicator function.

L¬acc
rob Third, we define the loss that penalizes robust but inaccurate samples. This can be formulated

similar to the adversarial training objective (Madry et al., 2018), however, instead of optimizing the
prediction of the adversarial example fθ(x

′) towards the correct label y, we optimize towards the
most likely adversarial label argmaxc∈Y\{Fθ(x)} fθ(x

′)c. This leads to the following formulation:

minx′∈Bp
ε (x) ℓCE(fθ(x

′), argmaxc∈Y\{Fθ(x)} fθ(x
′)c) (6)

The purpose of the L¬acc
rob loss is to penalize robustness by making the model non-robust. As a

result, it is sufficient to consider only a single non-robust example, thus the minimization (rather than
maximization) in the loss objective1.

4.2 CERTIFIED TRAINING

Similarly to Section 4.1, we now instantiate the loss function from Equation 3 for probabilistic certified
robustness via randomized smoothing (Cohen et al., 2019). Randomized smoothing constructs
a smoothed classifier Gθ : X → Y from a base classifier Fθ, where Gθ(x) predicts the class which
Fθ is most likely to return when x is perturbed under isotropic Gaussian noise. Our proposed
instantiation of Equation 3 for probabilistic certified robustness is as follows:

LCRA(fθ, (x, y)) = β · Lnoise(fθ, (x, y)) +
1
k

∑k
j=1

(
1− fθ(x+ ηj)y

)
CR(fθ, (x, y)) (7)

where η1, ...,ηk are k i.i.d. samples from N (0, σ2I). Note that, since the robustness guarantees
provided by randomized smoothing hold for the smoothed classifier Gθ, the three loss components
from Equation 3 need to be formulated with respect to the smoothed classifier Gθ.

Lrob To instantiate Lrob, we can use any existing certified training method for randomized smooth-
ing, such as the methods defined by Cohen et al. (2019) or Zhai et al. (2020). Concretely, when using
Cohen et al. (2019), the loss is defined using Gaussian noise augmentation:

Lnoise
..= ℓCE(fθ(x+ η), y), η ∼ N (0, σ2I) (8)

1{Fθ(x) ̸= y} We again replace the computationally intractable hard qualifier by a soft qualifier
Eδ∼N (0,σ2I)[1−fθ(x+δ)y], which encodes the misprediction probability of the smoothed classifier.
In practice, we approximate expectations over Gaussians via Monte Carlo sampling, thus leading to
the approximated soft inaccuracy qualifier 1/k

∑k
j=1 1− fθ(x+ ηj)y .

L¬acc
rob Finally, we instantiate the L¬acc

rob loss term, which encourages the model toward non-robust
predictions on robust but inaccurate samples. We propose to minimize robustness by directly
minimizing the certified radius of the smoothed classifier Gθ. The certified radius formulation by

1Naturally, this assumes that the method used to check robustness can correctly detect the non-robustness,
even if it is caused by a single example. Note that, for a fair evaluation, we use a relatively weak 10-step
PGD (Madry et al., 2018) attack during training and a strong 40-step APGD (Croce & Hein, 2020b) for evaluation.
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Cohen et al. (2019) involves a sum of indicator functions, which is not differentiable. However, Zhai
et al. (2020) have recently proposed the following differentiable certified radius formulation:

CR(fθ, (x, y)) =
σ

2

[
Φ−1

(1
k

k∑
j=1

fθ(x+ ηj ; Γ)y
)
− Φ−1

(
max
y′ ̸=y

1

k

k∑
j=1

fθ(x+ ηj ; Γ)y′
)]

(9)

where Φ−1 is the inverse of the standard Gaussian CDF, Γ is the inverse softmax temperature
multiplied with the logits of fθ, and η1:k are k i.i.d. samples from N (0, σ2I). Note that, by setting
the loss term L¬acc

rob to CR(fθ, (x, y)), we directly penalize robustness of the smoothed classifier Gθ.

5 ROBUST ABSTAIN MODELS

Next, we extend the models trained so far by leveraging robustness as a principled abstain mechanism.

Abstain Model Given input space X ⊆ Rd and label space Y , a model with an abstain option (El-
Yaniv et al., 2010) is a pair of functions (Fθ, S), where Fθ : X → Y is a classifier and S : X → {0, 1}
is a binary selector for Fθ. Let S(x) = 0 indicate that the model abstains on input x ∈ X , while
S(x) = 1 indicates that the model commits to the classifier Fθ for input x and predicts Fθ(x).

Robustness Indicator Selector We instantiate abstain models with a robustness indicator selector,
that abstains on all non-robust samples. For adversarial robustness, the selector is defined as:

SERI(x) = 1{∀x′ ∈ B(x) : Fθ(x
′) = Fθ(x)} (10)

For certified robustness, the selector is defined as:
SCRI(x) = 1{∀x′ ∈ B(x) : Gθ(x

′) = Gθ(x)} (11)

Robustness Guarantees: Robust Selection Similar to robust accuracy, the robustness of an abstain
model needs to be evaluated with respect to a threat model. In our work, we consider the same threat
model as for the underlying model Fθ, namely Bp

ε(x)
..= {x′ : ||x′ − x||p ≤ ε}, a ℓp-norm ball

centered at x with radius ε. Then, we define the robust selection of an abstain model as follows:
Rsel

rob(S) = E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). S(x

′) = 1}
That is, we say that a model robustly selects x if the selector S would select all valid perturbations x′ ∈
Bp
ε(x). Combined with our definition of SERI, we obtain the following criterion (cf. Appendix A.3):

Rsel
rob(SERI) = E(x,y)∼D1{∀x′ ∈ Bp

2·ε(x). Fθ(x
′) = Fθ(x)}

In other words, to guarantee that the selector SERI is robust for all x′ ∈ Bp
ε(x), we in fact need to

check robustness of the model Fθ to double that region x′ ∈ Bp
2·ε(x). This is important in order to

obtain the correct guarantees and is reflected in our evaluation in Section 7.

Note that when evaluating robust selection for certified training, it is sufficient to show that the
smoothed model Gθ can be certified with a radius R ≥ ε. Then, the smoothed model guarantees that
Gθ(x

′) = cA for all x′ ∈ Bp
ε(x), which is equivalent to our condition ∀x′∈B(x) : Gθ(x

′) = Gθ(x).

6 BOOSTING ROBUSTNESS WITHOUT ACCURACY LOSS

Consider an abstain model (Fθ, S) and a dataset D. The selector S partitions D into two disjoint
subsets – the abstained inputs D¬s and the selected inputs Ds for which Fθ makes a prediction. For
some tasks, making a best-effort prediction on all samples Ds ∪ D¬s may be desirable, which leads
to compositional architectures, already used by prior works (Mueller et al., 2020; Wong et al., 2018).

Let H = ((Frobust, S), Fcore) be a 2-compositional architecture consisting of a selection mech-
anism S, a robustly trained model Frobust, and a core model Fcore. Given an input x ∈ X , the
selector S decides whether the model is confident on x and commits to the robust model Frobust or
whether the model should abstain and fall back to the core model Fcore. Formally:

H(x) = S(x) · Frobust(x) + (1− S(x)) · Fcore(x) (12)
While Frobust, Fcore can be chosen arbitrarily, we here combine robust trained models (which
have lower natural accuracy), with models trained using standard training (which have high natural
accuracy but low robustness). The performance of H then depends on the quality of the selector S.
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Figure 2: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of existing robust models ( , , ,
), and models fine-tuned with our loss ( , ). Our approach consistently reduces robust inaccuracy

across various datasets, existing models and different regularization levels β.

7 EVALUATION

In this section, we present a thorough evaluation of our approach by instantiating it to four different
datasets, six recent state-of-the-art models, for both adversarial and certified robustness, including
top-trained models from RobustBench (Croce et al., 2020). We show the following key results:

• Fine-tuning models with our proposed loss successfully decreases robust inaccuracy and
provides a Pareto front of models with different robustness tradeoffs.

• Combining our proposed loss and robustness as an abstain mechanism leads to higher robust
selection and accuracy compared to softmax response and selection network baselines.

• Our 2-compositional models significantly improve robustness by up to +61% and slightly
increase the natural accuracy by up to +0.2% (for B∞

1/255 and B∞
2/255).

We perform all experiments on a single GeForce RTX 3090 GPU and use PyTorch (Paszke et al., 2019)
for our implementation. The hyperparameters used for our experiments are provided in Appendix A.2.

Models Our proposed training method requires neither retraining classifiers from scratch nor
modifications to existing classifiers, thus our approach can be applied to fine-tune a wide range of
existing models2. To demonstrate this, we use the following robust pre-trained models:

For empirical robustness, we evaluate existing models from Carmon et al. (2019), Gowal et al. (2020),
Rebuffi et al. (2021), and Zhang et al. (2019a), which were all trained for ε∞=8/255, and all but the
last model are top models in RobustBench (Croce et al., 2020). In our evaluation, we fine-tune each
model for 50 epochs for the considered threat model (ε∞ ∈ {1/255, 2/255, 4/255}), using LTRADES
(Zhang et al., 2019a) and LERA (ours). Further, we also consider models by Ding et al. (2018) and
Wang et al. (2019) as additional baselines.

For certified robustness, we use a σ = 0.12 Gaussian noise augmentation trained model by Cohen
et al. (2019) and a ε2 = 0.5 adversarially trained model by Sehwag et al. (2021). Similar to empirical
robustness, we fine-tune the models for 50 epochs using Lnoise (Cohen et al., 2019) and LCRA (ours).

Datasets We evaluate our approach on two academic datasets – CIFAR-10 and CIFAR-100
(Krizhevsky et al., 2009), and two commercial datasets – Mapillary Traffic Sign Dataset (MTSD)
(Ertler et al., 2020) and a Rail Defect Dataset kindly provided by Swiss Federal Railways (SBB).
Consider Appendix A.1 for full details.

When training on the CIFAR-10 and CIFAR-100 datasets, we use the AutoAugment (AA) policy by
Cubuk et al. (2018) as the image augmentation. For the MTSD and SBB datasets, we use standard image
augmentations (SA) consisting of random cropping, color jitter, and random translation and rotation.
For completeness, our evaluation also includes models trained without any data augmentations.

Metrics We use the natural accuracy, robust accuracy, and robust inaccuracy as our main evaluation
metrics, as defined in Section 3, but evaluated on the corresponding test dataset.

2Our method can also be used to train from scratch, in which case a scheduler for β should be introduced.
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Figure 3: Comparison of different abstain approaches including existing robust classifiers TRADESRI
( , ), MARTRI ( ), MMARI ( ), classifiers fine-tuned with our proposed loss ERARI ( , ), selection
network ( , ), and softmax response ( , ) abstain models. Higher Rsel

rob and Racc
rob is better (top

right corner is optimal). Observe that the Parent front of our approach ( , ) generally dominates the
results of all baselines, significantly improving robust selection and robust accuracy.

When evaluating empirical robustness, we use 40-step APGDCE (Croce & Hein, 2020b) (referred to as
APGD) to evaluate robustness of classifiers Fθ. To evaluate certified robustness, we use the Monte
Carlo algorithm for randomized smoothing from Cohen et al. (2019). We certify 500 test samples
and use the same randomized smoothing hyperparameters as Cohen et al. (2019) (cf. Appendix A.2).

7.1 REDUCING ROBUST INACCURACY

We first summarize the main results obtained by using our proposed loss functions LERA and LCRA.

Empirical Robustness The results in Figure 2 show the robust accuracy (Racc
rob) and robust in-

accuracy (R¬acc
rob ) of different existing robust models fine-tuned via TRADES (Zhang et al., 2019a)

with ( ) and without ( ) data augmentations, and the same models fine-tuned via our LERA with
( ) and without ( ) data augmentations. Further, we show MART (Wang et al., 2019) ( ), and MMA
(Ding et al., 2018) ( ) finetuned models as additional baselines. We can see that our approach
consistently improves over existing models. For example, for CIFAR-10 and B∞

2/255, the Carmon et al.
(2019) model achieves 86.5% robust accuracy, but also 1.34% robust inaccuracy. In contrast, using
LERA, we obtain a number of models that reduce robust inaccuracy to 0.29%, while still achieving
83.8% robustness. Similar results are obtained for other models, perturbation regions, and datasets
(cf. Appendix A.7). We observe that our approach achieves consistently lower robust inaccuracy
compared to adversarial training. Further, by varying the regularization term β, we obtain a Pareto
front of optimal solutions.

Certified Robustness Similarly, we evaluate the robust accuracy (Racc
rob) and robust inaccuracy

(R¬acc
rob ) for certifiably robust models fine-tuned using Lnoise and LCRA (ours). In Table 2a, we

show results on CIFAR-10 for B2
0.12 and B2

0.25. We observe that our approach achieves lower robust
inaccuracy compared to existing models. For example, on CIFAR-10 and B2

0.25, the Cohen et al.
(2019) model achieves 62% robust accuracy, but also 1% robust inaccuracy. In contrast, our approach
reduces robust inaccuracy to 0.4% while still achieving 53.8% robust accuracy. For the Sehwag et al.
(2021) model, our approach even improves both robust accuracy and robust inaccuracy. For B2

0.25,
our approach improves the robust accuracy by +4.8% and reduces the robust inaccuracy by −0.6%.

7.2 USING ROBUSTNESS TO ABSTAIN

Next, we evaluate using robustness as an abstain mechanism (Section 5) and how it benefits from the
training proposed in our work. We compare the following abstain mechanisms:

Softmax Response (SR) (Geifman & El-Yaniv, 2017), which abstains if the maximum softmax output
of the model fθ is below a threshold τ for some input x′ ∈ Bp

ε(x), that is:

SSR(x) = 1{∀x′ ∈ Bp
ε(x) : maxc∈Y fθ(x

′)c ≥ τ} (13)

7
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Similar to SRI, to guarantee robustness of SSR, we need to check the maximum softmax output of fθ
on double the region Bp

2·ε(x). To evaluate robustness of SSR, we use a modified version of APGD called
APGDconf (Appendix A.5). For each considered model (e.g., Carmon et al. (2019)), we evaluate its
corresponding abstain selector: ( , ) CARMONSR, GOWALSR, etc. (all fine-tuned using TRADES).

Robustness Indicator (RI) (our work), which abstains if the model Fθ is non-robust:

SRI(x) = 1{∀x′ ∈ Bp
ε(x) : Fθ(x

′) = Fθ(x)} (14)

Note that, unlike other selectors, our robustness indicator is by design robust against an adversary
using the same threat model. For each base model, we consider two instantiations ( , ) TRADESRI,
and ( , ) ERARI (Equation 4). Further, for CIFAR-10, we also instantiate models from Ding et al.
(2018); Wang et al. (2019) with robustness indicator abstain: MARTRI ( ), and MMARI ( ).

Selection Network (SN), which trains a separate neural network sθ : X → R and selects if:

SSN(x) = 1{sθ(x) ≥ τ} (15)

When evaluating the robustness of an abstain model (Fθ, SSN), the robustness of both the classifier
and the selection network have to be considered. We compare against two instantiations of this
approach, both trained using certified training: ( ) ACE-COLTSN (Balunovic & Vechev, 2019; Mueller
et al., 2020), and ( ) ACE-IBPSN (Gowal et al., 2018; Mueller et al., 2020).

Empirical Robustness In Figure 3, we compare different abstain approaches using two metrics –
robust selection (Rsel

rob), and the ratio of non-abstained samples that are robust and accurate (Racc
rob).

We would like to maximize both, but typically there is a tradeoff between the two. This is evident in
Figure 3, where both our approach and softmax response produce a Pareto front of optimal solutions.

Overall, the main results in Figure 3 show that, as designed, our approach consistently improves
robust accuracy. For example, on CIFAR-10, B∞

1/255 and Carmon et al. (2019) model, we successfully
improve robust accuracy by +1.18% at the cost of -3.78% decreased robust selection. This is close to
optimal since increasing robust accuracy is typically achieved by correctly abstaining on misclassified
samples. Interestingly, in some cases, we strictly improve over baseline models by increasing robust
accuracy and robust selection. For CIFAR-10, B∞

1/255, and Gowal et al. (2020) model, we increase
robust accuracy by +1.06% and robust selection by +1.61% (training without data augmentations).

Compared to the other abstain methods, our approach generally improves both metrics while also
providing much stronger guarantees. Concretely, our approach guarantees that selected samples are
robust in the considered threat model. Softmax response only guarantees that all samples in the
considered threat model have high confidence and is thus vulnerable to high confidence adversarial
examples, and the selection network provides no guarantees with regards to the selector’s robustness.

Certified Robustness Applying our training for certified robustness LCRA with β = 1.0 consis-
tently improves robust accuracy Racc

rob of robustness indicator abstain models. In Table 2b, we show
our results on CIFAR-10 for B2

0.12 and B2
0.25. For instance, for the Cohen et al. (2019) model trained

at σ = 0.12, we are able to improve the robust accuracy by +0.85% for B2
0.25, at the expense of

−8.8% decrease in robust selection. For the Sehwag et al. (2021) model, our approach improves on
both metrics. For B2

0.25, we increase robust accuracy by +0.82% and robust selection by +4.2%.

Table 2: Comparison of existing robust models fine-tuned with Lnoise and LCRA (ours). Table 2a
shows robust accuracy (Racc

rob) and robust inaccuracy (R¬acc
rob ) of fine-tuned models Fθ. Table 2b shows

robust selection (Rsel
rob) and robust accuracy (Racc

rob) of corresponding RI abstain models (Fθ, SCRI).

(a) Finetuned models Fθ .
CIFAR-10 B2

0.12(σ=0.6) B2
0.25(σ=0.12)

Model Finetuning Racc
rob R¬acc

rob Racc
rob R¬acc

rob

Cohen et al. Lnoise 74.0 2.8 62.0 1.0
LCRA 71.6 2.6 53.8 0.4

Sehwag et al. Lnoise 87.0 1.8 77.4 1.4
LCRA 90.8 1.6 82.2 0.8

(b) Finetuned abstain models (Fθ , SCRI).
B2

0.12(σ=0.6) B2
0.25(σ=0.12)

Rsel
rob Racc

rob Rsel
rob Racc

rob

76.8 96.35 63.0 98.41
74.2 96.50 54.2 99.26
88.8 97.97 78.8 98.22
92.4 98.27 83.0 99.04
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Figure 4: 2-compositional natural (Rnat) and robust accuracy (Racc
rob) for ERARI ( , ), TRADESRI

( , ), MARTRI ( ), MMARI ( ), ACE-COLTSN, ACE-IBPSN ( , ), and TRADESSR ( , ) models. The
core models used in the compositional architectures are listed in Appendix A.10. We can see that
the Parent front of our method strictly improves over the prior work in the most important region –
significantly improving model robustness while the model accuracy does not decrease.

7.3 BOOSTING ROBUSTNESS WITHOUT ACCURACY LOSS

Finally, we present the results of combining the abstain models trained so far with state-of-the-art
models trained to achieve high accuracy. Note that, as discussed in Section 5, when evaluating
adversarial robustness for Bp

ε , we in fact need to consider Bp
2·ε robustness of the abstain model.

A summary of the results is shown in Figure 4. Similar to the results shown so far, the 2-compositional
architectures that use models trained by our method ( , ) improve over existing methods that
optimize robust accuracy ( , , , ), as well as over models using softmax response ( , ) or
selection network ( , ) to abstain. For example, for CIFAR-10 with ε∞=1/255 and the Carmon et al.
(2019) model, we improve natural accuracy by +0.58% and +0.62%, while decreasing the robustness
only by -2.75% and -2.82%, when training with and without data augmentations respectively.

More importantly, our approach significantly improves robustness of highly accurate non-
compositional models, with minimal loss of accuracy, which we have summarized in Table 1.
We provide full results, including additional models and perturbation bounds in Appendix A.9, and
an evaluation of the considered highly accurate non-compositional models in Appendix A.10.

8 CONCLUSION

In this work, we address the robustness vs accuracy tradeoff by avoiding robust inaccuracy and
leveraging model robustness as a selection mechanism. We present a new training method that jointly
minimizes robust inaccuracy and maximizes robust accuracy. The key concept was extending an
existing robust training loss with a term that minimizes robust inaccuracy, making our method widely
applicable since it can be instantiated using various existing robust training methods. We show
the practical benefits of our approach by both, using robustness as an abstain mechanism, and by
leveraging compositional architectures to improve robustness without sacrificing accuracy.

However, there are also limitations and extensions to consider in future. First, while there are cases
where our training improves robust accuracy and reduces robust inaccuracy, it does typically result
in a trade-off between the two – reduced robust inaccuracy also leads to reduced robust accuracy.
To address this issue, we compute a Pareto front of optimal solutions, all of which can be used to
instantiate the compositional model. An interesting future work is exploring this trade-off further
and develop new techniques to mitigate it. Second, given that we compute a Pareto front of optimal
solutions, another extension is to consider model cascades that consist of different models along
this Pareto front, and progressively fall back to models with higher robust accuracy but also higher
robust inaccuracy. Third, we observed that the training becomes much harder as robust inaccuracy
approaches zero (i.e., the best case). This is because these remaining robust inaccurate examples are
the hardest to fix, and because there are only a few. In our work, we explored using data augmentation
to address this issue, but more work is needed to make the training efficient in such a low data regime.
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A APPENDIX

A.1 DATASETS

We ran our evaluations on four different datasets, namely on CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009), the Mapillary Traffic Sign Dataset (MTSD) (Ertler et al., 2020), and a rail defect dataset
provided by Swiss Federal Railways (SBB). Additionally, we used a synthetic dataset consisting of
two-dimensional data points. In the following, we explain the necessary preprocessing steps to create
the publicly available MTSD dataset.

Mapillary Traffic Sign Dataset (MTSD) The Mapillary traffic sign dataset (Ertler et al., 2020) is a
large-scale vision dataset that includes 52’000 fully annotated street-level images from all around the
world. The dataset covers 400 known and other unknown traffic signs, resulting in over 255’000 traffic
signs in total. Each street-level image is manually annotated and includes ground truth bounding
boxes that locate each traffic sign in the image, as shown in Figure 5a. Further, each ground truth
traffic sign annotation includes additional attributes such as ambiguousness or occlusion. Since the
focus of this work is on classification, we convert the base MTSD dataset to a classification dataset
(described below) by cropping to each ground truth bounding box. We show samples from the
resulting cropped MTSD dataset in Figure 5b.

(a) Base Mapillary Traffic Sign Dataset (MTSD). The ground truth bounding boxes are visualized in green.
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(b) Preprocessed Mapillary Traffic Sign Dataset (MTSD).

Figure 5: Illustration of Mapillary Traffic Sign Dataset (MTSD) samples. The base dataset consists of
street-level images that include annotated ground truth bounding boxes locating the traffic signs (a).
We convert the dataset to a classification task by cropping to the ground truth bounding boxes (b).

We convert the MTSD objection detection dataset into a classification dataset as follows:

1. Ignore all bounding boxes that are annotated as occluded (sign partly occluded), out-of-
frame (sign cut off by image border), exterior (sign includes other signs), ambiguous (sign
is not classifiable at all), included (sign is part of another bigger sign), dummy (looks like a
sign but is not) (Ertler et al., 2020). Further, we ignore signs of class other-sign, since this is
a general class that includes any traffic sign with a label not within the MTSD taxonomy.

2. Crop to all remaining bounding boxes and produce a labeled image classification dataset.
Cropping is done with slack, i.e. we crop to a randomly upsized version of the original bound-
ing box. Given a bounding box BB = ([xmin, xmax], [ymin, ymax]), the corresponding
upsized bounding box is given as

UBB =
(
[xmin − λαx(xmax − xmin), xmax + λ(1− αx)(xmax − xmin)],

[ymin − λαy(ymax − ymin), ymax + λ(1− αy)(ymax − ymin)]
) (16)

where αx, αy ∼ U[0,1]
3 and λ is the slack parameter, which we set to λ = 1.0.

3. Resize cropped traffic signs to (64, 64).
3U[a,b] is the uniform distribution over the interval [a, b].
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Rail Defect Dataset (SBB) The rail defect dataset (SBB) is a proprietary vision dataset collected
and annotated by Swiss Federal Railways. It includes images of rails, each of which is annotated
with ground truth bounding boxes for various types of rail defects. We note that all the models
used in our work for this dataset are trained by the authors and not provided by SBB. In fact, for
our work, we even consider a different type of task – classification instead of the original object
detection. As a consequence, the accuracy and robustness results presented in our work are by no
means representative of the actual models used by SBB.

A.2 HYPERPARAMETERS

TRADES We use LTRADES (Zhang et al., 2019a) to both train models from scratch and fine-tune
existing models. When training models from scratch, we train for 100 epochs using LTRADES, with
an initial learning rate 1e-1, which we reduce to 1e-2 and 1e-3, once 75% and 90% of the total
epochs are completed. When fine-tuning models, we train for 50 epochs using LTRADES, with an
initial learning rate 1e-3, which we reduce to 1e-4 once 75% of the total epochs are completed. We
use batch size 200, use 10-step PGD (Madry et al., 2018) to generate adversarial examples during
training, and set the β parameter in LTRADES to βTRADES = 6.0.

Empirical Robustness Abstain Training We fine-tune for 50 epochs using LERA (Equation 4),
with an initial learning rate 1e-3, which we reduce to 1e-4 once 75% of the total epochs are completed.
We use batch size 200, use 10-step PGD (Madry et al., 2018) to generate adversarial examples during
training, and set βTRADES = 6.0 for the loss term Lrob = LTRADES.

MMA We use MMA (Ding et al., 2018) as an additional baseline to compare our models against.
In our evaluations, we use the dmax = 12/255 trained WideResNet-28-10 published by Ding et al.
(2018), and fine-tune it using MMA with dmax = 4/255 for 50 epochs. We decided to fine-tune with
dmax = 4/255, since we typically evaluate smaller perturbation regions (ε∞ ∈ {1/255, 2/255, 4/255}),
and since Ding et al. (2018) claim that dmax should usually be set larger than ε∞ in standard
adversarial training. We fine-tune for 50 epochs, using the same hyperparameters as Ding et al.
(2018), and without using data augmentations.

MART We use MART (Wang et al., 2019) as an additional baseline to compare our models against. In
our evaluations, we use the ε∞=8/255 trained WideResNet-28-10 (trained with 500K unlabeled data)
published by Wang et al. (2019), and fine-tune it using MART for the respective smaller perturbation
region (ε∞ ∈ {1/255, 2/255, 4/255}). We fine-tune for 50 epochs, using the same hyperparameters as
Wang et al. (2019), and without using data augmentations.

Certified Robustness Abstain Training We fine-tune for 50 epochs using LCRA (Equation 7), with
an initial learning rate 1e-3, which we reduce to 1e-4 once 75% of the total epochs are completed.
We use batch size 50, k = 16 i.i.d. samples from N (0, σ2I), and set the inverse softmax temperature
to Γ = 4.0 (cf. Section 4.2).

Probabilistic Certification via Randomized Smoothing We use the practical Monte Carlo al-
gorithm by Cohen et al. (2019) for randomized smoothing, using the same certification hyperpa-
rameters as them. We use N0 = 100 Monte Carlo samples to identify the most probable class cA,
N = 100, 000 Monte Carlo samples to estimate a lower bound on the probability pA, and set the
failure probability to α = 0.001.

Synthetic Dataset In Figure 1, we illustrate the effect of our training on a synthetic three-class
dataset, where each class follows a Gaussian distribution. We then use a simple four-layer neural
network with 64 neurons per layer, and train it on N = 1000 synthetic samples, using Lstd, LTRADES
(Zhang et al., 2019a), and LERA (Equation 4). For each loss variant, we train for 20 epochs, use a
fixed learning rate 1e-1, and batch size 10. For LTRADES and LERA, we use 10-step PGD (Madry
et al., 2018) to generate adversarial examples during training, and set βTRADES = 6.0.
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Table 3: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of the B∞
2/255 LERA (β = 1.0)

finetuned Gowal et al. (2020) model, evaluated using both 40-step APGD (Croce & Hein, 2020b) and
AutoAttack (Croce & Hein, 2020b).

B∞
1/255 B∞

2/255 B∞
4/255 B∞

8/255

Racc
rob R¬acc

rob Racc
rob R¬acc

rob Racc
rob R¬acc

rob Racc
rob R¬acc

rob

40-step APGD 92.93 1.01 86.45 0.33 64.09 0.06 17.20 0.0
AutoAttack 92.93 1.01 86.45 0.33 63.87 0.06 16.67 0.0

A.3 ROBUSTNESS GUARANTEES FOR ROBUST SELECTION

Recall from Section 5 that, given an abstain model (Fθ, S) and a threat model Bp
ε(x)

..= {x′ : ||x′ −
x||p ≤ ε}, (Fθ, S) is robustly selecting an input x if the selector S selects all valid perturbations
x′ ∈ Bp

ε(x):
Rsel

rob(S) = E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). S(x

′) = 1}

Further, recall that when evaluating the robustness of an empirical robustness indicator selector SERI

(Equation 10), we in fact need to check robustness of the model Fθ to double the perturbation region
x′ ∈ Bp

2·ε(x), which can be see from the following derivation:

Rsel
rob(SERI) = E(x,y)∼D 1{∀x′ ∈ Bp

ε(x). SERI(x
′) = 1}

= E(x,y)∼D 1{∀x′ ∈ Bp
ε(x). 1{∀x′′ ∈ Bp

ε(x
′). Fθ(x

′′) = Fθ(x
′)}}

= E(x,y)∼D 1{∀x′ ∈ Bp
2·ε(x). Fθ(x

′) = Fθ(x)}

A.4 COMPARING APGD AND AUTOATTACK ROBUSTNESS

Recall from Section 7 that we use 40-step APGDCE (Croce & Hein, 2020b) (referred to as APGD) to
evaluate the empirical robustness of classifiers Fθ. APGD is one of the adversarial attacks that constitute
AutoAttack (Croce & Hein, 2020b), which is an ensemble of adversarial attacks. Concretely,
AutoAttack consists of APGDCE (Croce & Hein, 2020b), APGDT

DLR (Croce & Hein, 2020b), FABT

(Croce & Hein, 2020a), and SquareAttack (Andriushchenko et al., 2020).

In the following, we conduct an ablation study over 40-step APGD and AutoAttack by comparing the
robustness of an LERA trained model. Concretely, we consider the Gowal et al. (2020) WideResNet-
28-10 model, which was finetuned for B∞

2/255 using our LERA loss (with β = 1.0) on CIFAR-10(cf.
Section 7.1). We then evaluate its robust accuracy Racc

rob and robust inaccuracy R¬acc
rob for the threat

models ε∞ ∈ {1/255, 2/255, 4/255, 8/255}, using both 40-step APGD and AutoAttack, and show the
results in Table 3. Observe that for small perturbation regions ε∞ ∈ {1/255, 2/255}, the robust
accuracy and robust inaccuracy are equivalent for 40-step APGD and AutoAttack, whereas for larger
perturbation regions ε∞ ∈ {4/255, 8/255}, AutoAttack robust accuracy is marginally lower than
40-step APGD robust accuracy.

A.5 COMPARING ADVERSARIES FOR SOFTMAX RESPONSE (SR)

Recall from Section 7.2 that we evaluated the robustness of softmax response (SR) abstain models
using APGDconf, which is a modified version of APGD (Croce & Hein, 2020b) using the alternative
adversarial attack objective by Stutz et al. (2020). This modified objective optimizes for an adversarial
example x′ that maximizes the confidence in any label c ̸= Fθ(x), instead of minimizing the
confidence in the predicted label:

x′ = argmax
x̂∈Bp

ε (x)

max
c̸=Fθ(x)

fθ(x̂)c (17)

The resulting adversarial attack finds high confidence adversarial examples, and thus represents an
effective attack against a softmax response selector SSR.
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Figure 6: Robust selection (Rsel
rob) and robust accuracy (Racc

rob) for CIFAR-10 softmax response (SR)
abstain models (F, SSR), for varying threshold τ ∈ [0, 1) and using the WideResNet-28-10 classifier
F by Carmon et al. (2019). Each SR abstain model is evaluated via APGD (Croce & Hein, 2020b) and
APGDconf (Equation 17).

Table 4: Robust selection (Rsel
rob) and robust accuracy (Racc

rob) of empirical robustness indicator abstain
models (F, SERI), trained using LERA (Equation 4) and LDGA (Equation 18).

CIFAR-10 B∞
1/255 B∞

2/255

Pre-trained Model Finetuning Rsel
rob Racc

rob Rsel
rob Racc

rob

Zhang et al. (2019a)
(ResNet-50)

LERA 86.31 96.63 78.24 97.33
LDGA 84.98 94.92 75.73 96.22

LERA +AA 83.44 97.47 74.63 98.31
LDGA +AA 80.72 96.56 73.59 97.88

In the following, we conduct an ablation study over APGD and APGDconf by evaluating the robust
selection Rsel

rob and robust accuracy Racc
rob of an SR abstain model (Fθ, SSR) using both APGD and

APGDconf. We use the adversarially trained WideResNet-28-10 model by Carmon et al. (2019) (taken
from RobustBench (Croce et al., 2020)), trained on CIFAR-10 for ε∞=8/255 perturbations. We then
evaluate the classifier as an SR abstain model (Fθ, SSR) with varying threshold τ ∈ [0, 1), and report
the robust selection and robust accuracy for varying ℓ∞ perturbations in Figure 6. Observe that for
small perturbations such as ε∞=1/255, APGD and APGDconf are mostly equivalent concerning robust
selection and robust accuracy. However, for larger perturbations such as ε∞=4/255, the SR abstain
model is significantly less robust to APGDconf than to standard APGD, showing the importance of
choosing a suitable adversarial attack. High confidence adversarial examples are generally more
likely to be found for larger perturbations, thus an SR selector is significantly less robust to APGDconf
than to APGD for larger perturbations.

A.6 LOSS FUNCTION ABLATION STUDY

Additionally to the LERA loss from Equation 4, we consider an alternative loss formulation for
training an empirical robustness indicator abstain model. The formulation is based on the Deep
Gamblers loss (Liu et al., 2019), which considers an abstain model (Fθ, S) with an explicit abstain
class a as a selection mechanism. Since we consider robustness indicator selection, we replace the
output probability of the abstain class fθ(x)a with the output probability of the most likely adversarial
label. This corresponds to the probability of a sample being non-robust and thus the probability
of abstaining under a robustness indicator selector. Similar to LERA, we also add the TRADES loss
(Zhang et al., 2019a) to optimize robust accuracy. The resulting loss is then defined as:

LDGA(fθ, (x, y)) = β · LTRADES(fθ, (x, y))− log
(
fθ(x)y +maxc∈Y\{Fθ(x)} fθ(x

′)c
)

(18)

We conduct an ablation study over the two loss functions, LERA and LDGA, for CIFAR-10 and a
ε∞=8/255 TRADES (Zhang et al., 2019a) trained ResNet-50 model. We fine-tune the model for ℓ∞
perturbations of radii 1/255 and 2/255, using both LERA and LDGA, training for 50 epochs each and
setting the regularization parameter β = 1.0. For each loss variant, we train the base model once
without data augmentations and once using the AutoAugment (AA) policy (Cubuk et al., 2018).
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Figure 7: Robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob ) of existing robust models ( , )
fine-tuned with our proposed loss ( , ). Further, we also show models finetuned via MART (Wang
et al., 2019) ( ) and MMA (Ding et al., 2018) ( ). Our approach consistently reduces the number of
robust inaccurate samples across various datasets, existing models and at different regularization
levels β.

We show the robust accuracy and the robust selection of the resulting robustness indicator abstain
models in Table 4. Observe that for all experiments, LERA trained models achieve consistently
higher robust accuracy and higher robust selection, compared to LDGA trained models. For instance,
when training for ε∞ = 1/255 perturbations without data augmentations, LERA achieves +1.71%
higher robust accuracy and +1.33% higher robust selection, compared to LDGA. Similarly, when
training with AutoAugment, LERA achieves +0.91% higher robust accuracy and +2.72% higher
robust selection. Similar results hold for ε∞=2/255 perturbations.

A.7 ADDITIONAL EXPERIMENTS ON REDUCING ROBUST INACCURACY

In this section, we present additional experiments on reducing robust inaccuracy for empirical
robustness.

Similar to the results in Figure 2, we show the robust accuracy (Racc
rob) and robust inaccuracy (R¬acc

rob )
of different existing models fine-tuned with ( ) and without ( ) data augmentations, in Figure 7. At
the same time, Figure 7 also shows the same models fine-tuned with our proposed loss with ( ) and
without ( ) data augmentations. We again observe that our approach achieves consistently lower
robust robust inaccuracy, compared to existing robust models. For example, on CIFAR-10 and for
B∞
1/255, the model from Carmon et al. (2019) achieves 91.7% robust accuracy but also 1.8% robust

inaccuracy. Using our loss LERA and varying the regularization term β, we can obtain a number of
models that reduce robust inaccuracy to 0.14% while still achieving robust accuracy of 75.8%.

A.8 ADDITIONAL EXPERIMENTS ON USING ROBUSTNESS TO ABSTAIN

In this section, we present additional experiments on comparing different abstain approaches for
empirical robustness.

We compare robustness indicator abstain models (F, SRI) using existing robust classifiers TRADESRI
and classifiers fine-tuned with our proposed loss ERARI. Further, we again consider softmax response
and selection network abstain models, as described in Section 7.2. Equivalent to Section 7.2, we
use the robust selection (Rsel

rob), and the ratio of non-abstained samples that are robust and accurate
(Racc

rob) as our evaluation metrics.

We show the comparison of the different abstain models in Figure 8. Similar to the results in
Section 7.2, we again show that, as designed, our approach consistently improves robust accuracy.
For instance, consider the CIFAR-10 Zhang et al. (2019a) model at ε∞ = 1/255, trained without
data augmentations ( ). The ERARI model with the highest robust selection Rsel

rob improves robust
accuracy by +2.39% at the expense of -3.44% decrease in robust selection. This tradeoff is close
to optimal since our approach increases robust accuracy by correctly abstaining from mispredicted
samples, thus an increase in robust accuracy results in a corresponding decrease in robust selection.
Further, we again observe that by varying the regularization parameter β, we can obtain a Pareto
front of optimal solutions. Considering the CIFAR-10 Zhang et al. (2019a) model at ε∞ = 1/255,
trained with data augmentations ( ), we can improve the robust accuracy up to 99.75%, an increase
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Figure 8: Comparison of different abstain approaches including existing robust classifiers TRADESRI
( , ), MARTRI ( ), MMARI ( ), classifiers fine-tuned with our proposed loss ERARI ( , ), selection
network ( , ), and softmax response ( , ) abstain models. The higher Rsel

rob and Racc
rob, the better

(top right corner is optimal).

of +4.38% compared to the corresponding TRADESRI model ( ). However, this comes at the expense
of a disproportionally large decrease of -42.27% lower robust selection. We observe similar results
for other models, datasets, and perturbations regions, shown in Figure 8.

Further, we again note that our approach mostly improves both robust selection and robust accuracy
when compared to softmax response and selection network abstain models.

A.9 ADDITIONAL EXPERIMENTS ON BOOSTING ROBUSTNESS WITHOUT ACCURACY LOSS

In this section, we present additional results on combining abstain models with state-of-the-art models
trained to achieve high natural accuracy.

Equivalent to Section 7.3, we put the abstain models trained so far in 2-composition (Section 6)
with the standard trained core models discussed in Appendix A.10. We show the natural (Rnat) and
adversarial accuracy (Racc

rob) of the resulting 2-compositional architectures in Figure 9.

We again observe that 2-compositional architectures using models trained by our method ( , )
improve over existing methods that solely optimize for robust accuracy ( , ). Further, our method
mostly improves both the natural and robust accuracy, compared to 2-compositional architectures
using softmax response ( , ) or selection network ( , ) to abstain. For example, on SBB and the
Zhang et al. (2019a) model at ε∞ = 1/255, our approach ( ) improves natural accuracy by +0.68%,
while decreasing the robust accuracy by only -1.54%.

Further, we show that 2-compositional architectures using models trained by our method achieve
significantly higher robustness and mostly equivalent overall accuracy, compared to state-of-the-
art non-compositional models trained for high natural accuracy. In Table 5, we show the natural
(Rnat) and adversarial accuracy (Racc

rob) of our 2-compositional models and illustrate the accuracy
improvement over the standard trained models discussed in Appendix A.10. For instance, consider
CIFAR-10 at ε∞ = 2/255 and the 2-compositional architecture using the Gowal et al. (2020) model as
robust model Frobust. Our model improves the robust accuracy by +75.3% and the natural accuracy
by +0.1%, compared to the standard trained model by Zhao et al. (2020). Similar results hold for
other models, datasets, and perturbation regions.

A.10 CORE MODELS

Recall from Section 6 that an abstain model (F, S) can be enhanced by a core model Fcore, which
makes a prediction on all abstained samples, resulting in 2-compositional architectures. In Section 7.3,
we presented an evaluation of 2-compositional architectures, where we used state-of-the-art standard
trained models as core models. In Table 6, we show the natural and adversarial accuracy of core
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Table 5: Improvements of 2-compositional architectures using models Frobust trained with our
method over non-compositional models trained to optimize natural accuracy only (Appendix A.10).

CIFAR-10 CIFAR-100 MTSD SBB

Fcore Zhao et al. (2020) (WideResNet-28-10) (ResNet-50) (ResNet-50)
Frobust Carmon et al. Gowal et al. Rebuffi et al. Zhang et al. Zhang et al.

B∞
1/255

Racc
rob 86.5 (+60.3%) 87.8 (+61.6%) 44.0 (+24.1%) 84.5 (+9.8%) 88.4 (+12.7%)

Rnat 97.6 (-0.2%) 98.0 (+0.2%) 80.5 (+0.3%) 94.1 (+0.3%) 92.3 (+0.9%)

B∞
2/255

Racc
rob 73.4 (+70.5%) 78.2 (+75.3%) 41.9 (+38.8%) 69.9 (+29.2%) 82.4 (+37.7%)

Rnat 97.8 (+0.0%) 97.9 (+0.1%) 80.18 (+0.01%) 94.0 (+0.2%) 91.3 (-0.1%)

models used in Section 7.3, for varying ℓ∞ perturbation regions, where we use 40-step APGD (Croce
& Hein, 2020b) to evaluate robustness.

Table 6: Natural (Rnat) and adversarial accuracy (Racc
rob) of standard trained core models, used in

2-compositional architectures in Section 7.3 and Appendix A.9.

Dataset Model Fcore Rnat [%] Racc
rob [%]

B∞
1/255 B∞

2/255 B∞
4/255

CIFAR-10 Zhao et al. (2020) (WideResNet-40-10) 97.81 26.18 2.92 0.06
CIFAR-100 (WideResNet-28-10) 80.17 19.9 3.06 0.15
MTSD (ResNet-50) 93.79 74.66 40.71 7.51
SBB (ResNet-50) 91.37 75.65 44.69 8.76

A.11 ROBUSTNESS/ACCURACY DATASET SPLITS

Consider a robustness indicator abstain model (Fθ, SRI) and a labeled dataset D = {(xi, yi)
N
i=1} on

which we evaluate the classifier Fθ : X → Y . Based on the robustness and accuracy of the classifier
Fθ, we can partition D into four disjoint subsets D = {Dr∧a

Fθ
, D¬r∧a

Fθ
, Dr∧¬a

Fθ
, D¬r∧¬a

Fθ
}, where:

Dr∧a
Fθ

= {(x, y) ∈ D : ∀x′ ∈ Bp
ε(x). Fθ(x

′) = Fθ(x) ∧ Fθ(x) = y}
Dr∧¬a

Fθ
= {(x, y) ∈ D : ∀x′ ∈ Bp

ε(x). Fθ(x
′) = Fθ(x) ∧ Fθ(x) ̸= y}

D¬r∧a
Fθ

= {(x, y) ∈ D : ∃x′ ∈ Bp
ε(x). Fθ(x

′) ̸= Fθ(x) ∧ Fθ(x) = y}
D¬r∧¬a

Fθ
= {(x, y) ∈ D : ∃x′ ∈ Bp

ε(x). Fθ(x
′) ̸= Fθ(x) ∧ Fθ(x) ̸= y}

We illustrate this dataset partitioning on the CIFAR-10 (Krizhevsky et al., 2009) dataset. We consider
a TRADES (Zhang et al., 2019b) trained ResNet-50 and the WideResNet-28-10 models by Carmon
et al. (2019); Gowal et al. (2020) (taken from Robustbench (Croce et al., 2020)), where each model is
adversarially pretrained for ε∞= 8/255 and then fine-tuned via TRADES to the respective ℓ∞ threat
model illustrated Table 7. Further, we also consider a standard trained ResNet-50. We then evaluate
the robustness and accuracy of each model using 40-step APGD (Croce & Hein, 2020b). Considering
Table 7, note that standard adversarial training methods do not necessarily eliminate the occurrence
of robust inaccurate samples (x, y) ∈ Dr∧¬a

Fθ
, and that the robust inaccuracy generally increases for

smaller perturbation regions. Further, we note that while standard trained models have low robust
inaccuracy, they also have low overall robustness, resulting in low overall robust accuracy.

Further, we also illustrate the robustness-accuracy dataset partitioning on CIFAR-100 (Krizhevsky
et al., 2009). We consider a standard trained WideResNet-28-10 and the adversarially trained
WideResNet-28-10 by Rebuffi et al. (2021). Again, the model by Rebuffi et al. (2021) was pretrained
for ε∞=8/255 perturbations and then TRADES fine-tuned for the respective threat model indicated in
Table 8. We again evaluate the robustness-accuracy dataset partitioning for varying ℓ∞ perturbations
using 40-step APGD (Croce & Hein, 2020b), and list the exact size of each data split in Table 8.

Notably, we observe that on the model by Rebuffi et al. (2021), 15.24% of all test samples are robust
but inaccurate for ε∞ = 1/255 perturbations, which is a significantly larger fraction compared to
similar models on CIFAR-10.
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Figure 9: Natural (Rnat) and robust accuracy (Racc
rob) for 2-compositional ERARI models ( , ), and

2-compositional TRADESRI ( , ), MARTRI ( ), and MMARI ( ) models. Further, we also consider
2-compositional ACE-COLTSN, ACE-IBPSN ( , ), and 2-compositional TRADESSR ( , ) models. The
core models used in the compositional architectures are listed in Appendix A.10.

Table 7: CIFAR-10 robustness-accuracy dataset partitioning. We consider a TRADES (Zhang et al.,
2019a) trained ResNet-50, adversarially trained WideResNet-28-10 models (Carmon et al., 2019;
Gowal et al., 2020), and a standard trained ResNet-50. Adversarially trained models are trained for
the respective perturbation region. Each model is evaluated for the indicated ℓ∞ threat model, using
40-step APGD (Croce & Hein, 2020b).

Threat
Model Data Split

Relative Split Size [%]

Zhang et al.
(ResNet-50)

Carmon et al.
(WRN-28-10)

Gowal et al.
(WRN-28-10)

Lstd

(ResNet-50)

B∞
1/255

|D¬r∧¬a
Fθ

| 5.17 3.33 2.85 6.97
|Dr∧¬a

Fθ
| 4.64 3.61 2.88 0.0

|D¬r∧a
Fθ

| 6.18 3.32 3.87 74.89
|Dr∧a

Fθ
| 84.01 89.74 90.40 18.14

B∞
2/255

|D¬r∧¬a
Fθ

| 7.94 7.38 4.86 6.97
|Dr∧¬a

Fθ
| 4.13 2.40 2.25 0.0

|D¬r∧a
Fθ

| 10.38 3.20 6.74 91.80
|Dr∧a

Fθ
| 77.55 87.02 86.15 1.23

B∞
4/255

|D¬r∧¬a
Fθ

| 13.42 8.23 6.64 6.97
|Dr∧¬a

Fθ
| 3.31 1.05 0.87 0.0

|D¬r∧a
Fθ

| 17.19 16.87 15.96 93.03
|Dr∧a

Fθ
| 66.08 73.85 76.53 0.0

B∞
8/255

|D¬r∧¬a
Fθ

| 18.17 9.55 9.21 6.97
|Dr∧¬a

Fθ
| 2.64 0.76 1.31 0.0

|D¬r∧a
Fθ

| 29.79 27.82 23.78 93.03
|Dr∧a

Fθ
| 49.40 61.87 65.70 0.0
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Table 8: CIFAR-100 robustness-accuracy dataset partitioning. We consider a standard trained
WideResNet-28-10 and the adversarially trained WideResNet-28-10 by Rebuffi et al. (2021), trained
for the respective perturbation region considered in each evaluation. Each model is evaluated for the
indicated ℓ∞ threat model, using 40-step APGD (Croce & Hein, 2020b).

Threat
Model Data Split

Relative Split Size [%]

Rebuffi et al.
(WRN-28-10)

Lstd

(WRN-28-10)

B∞
1/255

|D¬r∧¬a
Fθ

| 15.20 19.80
|Dr∧¬a

Fθ
| 15.24 0.03

|D¬r∧a
Fθ

| 7.75 60.27
|Dr∧a

Fθ
| 61.81 19.9

B∞
2/255

|D¬r∧¬a
Fθ

| 32.75 19.82
|Dr∧¬a

Fθ
| 8.71 0.01

|D¬r∧a
Fθ

| 5.11 77.11
|Dr∧a

Fθ
| 53.43 3.06

B∞
4/255

|D¬r∧¬a
Fθ

| 30.57 19.83
|Dr∧¬a

Fθ
| 4.34 0.0

|D¬r∧a
Fθ

| 23.16 80.02
|Dr∧a

Fθ
| 41.93 0.15

B∞
8/255

|D¬r∧¬a
Fθ

| 33.70 19.83
|Dr∧¬a

Fθ
| 3.91 0.0

|D¬r∧a
Fθ

| 26.66 80.17
|Dr∧a

Fθ
| 35.73 0.0
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