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ABSTRACT

Object detectors are often trained by first training the backbone in a self-
supervised manner and then fine-tuning the whole model on annotated data. An
unsupervised detector pretraining stage can also be interleaved, further improv-
ing the final performance and facilitating convergence during the supervised fine-
tuning stage. However, existing unsupervised pretraining methods typically rely
on low-level information to create pseudo-proposals that the model is then trained
to localize, and ignore high-level class membership. The absence of class seman-
tics from the pretraining objective causes a task gap between the pretraining and
the downstream scenario, where detection is class-aware (e.g. given an image of
a chair, the detector’s task is to both localize it and assign the “chair” class to the
corresponding bounding box). This gap results in suboptimal detector pretraining.
We propose a framework that better aligns the pretraining and downstream stages.
It consists of three simple yet key ingredients: (i) richer, semantics-based initial
proposals derived from high-level feature maps, (ii) discriminative training using
object pseudo-labels produced via clustering, (iii) self-training to take advantage
of the improved object proposals learned by the detector. We report two main
findings: (1) Our pretraining outperforms previous works on the full and low data
regimes by significant margins across detector architectures. (2) We show we can
pretrain detectors from scratch (including the backbone) directly on complex im-
age datasets like COCO, paving the path for unsupervised representation learning
using object detection directly as a pretext task. Code will be released.

1 INTRODUCTION

Object detection has been a major challenge in computer vision and the focus of extensive research
efforts. Two distinct avenues of research have recently led to several breakthroughs: a) more power-
ful detector architectures, such as the end-to-end single stage DETR (Carion et al., 2020) family of
detectors, and b) unsupervised pretraining, which leverages vast amounts of unlabeled data to im-
prove their performance on downstream tasks where annotations are expensive, ambiguous, and/or
imprecise. Notably, despite the success of unsupervised pretraining, most existing methods focus on
the backbone model and neglect the detector.

Existing detector pretraining methods largely focus on DETR-based detectors due to their sam-
ple inefficiency (i.e. they require large amounts of annotated data) and slow training convergence,
which means they stand to benefit the most from the unsupervised pretraining. Typically, unsu-
pervised detector pretraining methods generate object proposals (bounding boxes or segmentation
masks) randomly (e.g. Dai et al. (2021)), through heuristic-based methods such as Selective Search
(e.g. Bar et al. (2022)), or with unsupervised localization techniques (e.g. Wang et al. (2023)). The
pretraining task is to localize said proposals and distinguish object vs no-object regions. Thus, while
the downstream task (detection) requires both the localization and the classification of the objects,
the latter is neglected during the detector pretraining. In fact, most of the current detector pretraining
methods exhibit large performance degradation when unfreezing the backbone, highlighting the task
misalignment problem and also preventing the joint pretraining of the detector and backbone.

In this work, we propose SEER, a simple framework for self-supervised object detection pretraining
that addresses these limitations and is, to the best of our knowledge, the first truly end-to-end detec-
tion pretraining framework, capable of effectively training the entire detector architecture (backbone
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Figure 1: SEER overview: (i) Object proposals are extracted from images in an unsupervised
manner and assigned pseudo-labels via clustering; (ii) The pseudo-labeled object proposals are used
to train the detector, which learns to localize objects and discriminate their pseudo-class label; (iii)
The detector then generates a new set of proposals and pseudo-labels, which are used for self-
training. Best seen in color.

and detector head) jointly and even from scratch, on scene-centric images (e.g. COCO). Our method,
seen in Fig. 1, has three main components, which we show are all needed for highly effective pre-
training:

(i) Unsupervised proposal extraction from high-level feature maps: We obtain proposals based
on high-level semantic content by clustering the feature maps produced by a self-supervised pre-
trained backbone and processing the clusters to produce proposal masks. We avg-pool the resulting
masks to obtain an embedding for each proposal, capturing high-level semantics.

(ii) Detector pretraining with pseudo-labels: The per-proposal high-level semantic embeddings
are then clustered across the dataset. Cluster membership acts as pseudo-class labels. We then
use the proposals of (i) and pseudo-class labels of (ii) as training data. This effectively combines
localization and discrimination and achieves much better alignment with the downstream task.

(iii) Iterative self-training: We observe that the detector resulting from (ii) can produce better
proposals than the ones it was trained on. We find that detection pretraining can be applied in an
iterative fashion, where the current pretrained model produces the pseudo-labels to train itself further
with improved supervision.

We conduct extensive experiments with several detector architectures and report two main findings:

(1) Improved detection & segmentation accuracy: We show that SEER consistently outperforms
previous works by significant margins, across architectures, and in all standard benchmarks and
settings for unsupervised detector pretraining.

(2) Self-supervised representation learning from complex images: We show that SEER can be
used to train the whole network (detector head and backbone jointly) from scratch directly on com-
plex images, demonstrating impressive performance for unsupervised representation learning.

2 RELATED WORKS

Unsupervised object detector pretraining: Object detector pretraining methods aim to pretrain
the detector architecture, in addition to the backbone. Previous work in this area has mostly focused
on DETR detectors, which can achieve great performance but exhibit sample inefficiency and slow
convergence relative to other architectures. Thus, detector pretraining (as opposed to backbone-only
pretraining) is an important task for such methods. Among these, UP-DETR (Dai et al., 2021) pro-
posed randomly selecting areas from each image, extracting feature representations, and injecting
them to the DETR detector’s queries. The detector was then trained to localize the areas to which
the injected representations corresponded. DETReg (Bar et al., 2022) subsequently used Selective
Search (Uijlings et al., 2013) to generate object proposals as annotations for the detector. The detec-
tor was trained both to localize the proposals and represent them mimicking a pretrained backbone
encoder. JoinDet (Wang et al., 2022c) improved upon DETReg by replacing Selective Search with
a dynamic object proposal method that inferred the location of objects from the detector’s internal
activations. Siamese DETR (Huang et al., 2023) used instead a student-teacher multi-view archi-
tecture for pretraining where, in addition to class-agnostic localization, the detector is trained to
learn transformation-invariant representations at the global (image) and local (object) level. Finally,
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SeqCo-DETR (Jin et al., 2023) proposed sequence consistency as a pretext task, combined with a
masking strategy. Notably, all of these works freeze the detector’s backbone encoder during pre-
training, as they suffer performance drops otherwise (Dai et al., 2021; Bar et al., 2022). This is a
significant limitation, as it prevents true end-to-end self-supervised training, and makes such frame-
works heavily dependent on the quality of the pretrained backbone. Beyond DETR-based detectors,
CutLER (Wang et al., 2023) leveraged Wang et al. (2022b) to generate object proposals, and multiple
rounds of self-training with copy-pasting (Dwibedi et al., 2017) to pretrain Mask R-CNN detectors
in an unsupervised manner, demonstrating promising performance. Importantly, all of these works
uniformly pretrain detectors in a class-unaware manner, with most relying on auxiliary objectives
to improve the detectors’ discriminative capacity. This creates a misalignment between the pre-
training task and the downstream task of class-aware object detection, which limits the pretraining’s
effectiveness.

Summary of differences with the above works: Our method is the only one which has all 5 following
features: (1) uses both localization and pseudo-class prediction for detector pretraining; (2) extracts
a rich and varied set of object proposals from high-level semantic information to facilitate effective
pretraining; (3) uses self-training to critically improve pretraining; (4) is shown capable of training
both the backbone and the detector head in an end-to-end manner and, more importantly, even from
scratch; and (5) is shown to be applicable to both two-stage (i.e. Cascade Mask R-CNN) and one-
stage architectures (i.e. DETR-based).

Unsupervised backbone pretraining for dense prediction: Most works on unsupervised pretrain-
ing focus on pretraining the network backbone, rather than the full object detection network(Xie
et al., 2021d; Hénaff et al., 2021; Wei et al., 2021; Van Gansbeke et al., 2021b; Wang et al., 2021;
Huang et al., 2022; Gokul et al., 2022; Xie et al., 2021a; Wen et al., 2022; Hénaff et al., 2022; Bai
et al., 2022; Karlsson et al., 2021; Islam et al., 2023; Ding et al., 2022; Li et al., 2022; Xie et al.,
2021b). Specifically, works in this area do not include a localization component (i.e. they do not lo-
calize objects in images) and typically only pretrain the backbone focusing solely on representation
learning. They are, therefore, distinct from unsupervised detector pretraining works, which train the
detector and include a localization task, while often using pretrained backbones as initialization.

Unsupervised object localization: Different from object detector pretraining, this task aims to lo-
calize all objects in an image in an unsupervised manner, without considering any class information.
(Van Gansbeke et al., 2022; Siméoni et al., 2021; Wang et al., 2022b; Siméoni et al., 2022; Melas-
Kyriazi et al., 2022; Wang et al., 2022a). We emphasize that the main goal of these works is object
localization/discovery, not the training of powerful detectors. Accordingly, the detectors trained
by these works typically are not evaluated by finetuning with annotated data. Such methods also
typically restrict their proposals to the most confident few (often just one) to avoid false positives,
which is not well suited for detector pretraining, where training benefits from a rich set of object
proposals covering as many objects (or object parts) as possible, not only the few most prominent
ones. We validate this in our experiments where we outperform the state-of-the-art in unsupervised
object localization Wang et al. (2023).

3 METHOD

Our method aims to simplify and better align the pretraining with respect to the downstream task
(class-aware detection). To this end, we produce object proposals in the form of bounding box
and pseudo-class label pairs in an unsupervised manner and then employ a self-training strategy to
pretrain and iteratively refine the detector.

3.1 IMPROVED OBJECT PROPOSALS

Existing works either generate a very limited initial set of proposals to facilitate high precision,
or use methods like Selective Search (Uijlings et al., 2013) that can generate many proposals by
relying on low-level priors such as color and texture. While the former is sub-optimal due to the
weaker supervisory signal, the latter is also sub-optimal for generating meaningful pseudo-class
labels since it does not capture high-level semantics. Our aim is to address this gap by utilizing
semantic information from self-supervised image encoders to produce rich object proposals and
coherent pseudo-class labels.
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Figure 2: Overview of SEER’s pretraining Stage 1. Pseudo-labeled region proposals are extracted
at the start of training leveraging a self-supervised pretrained backbone. Those proposals are then
used to train the detector to both localize objects within the image, and to discriminate their pseudo-
labels. Best seen in color.

Specifically, we extract feature maps using a pretrained self-supervised encoder and leverage a bi-
level clustering strategy. The first level (termed local clustering) results in bounding box proposals
and associated feature representations. The second level, termed global clustering, uses cluster
membership to assign a pseudo-class label to each proposal. Our method leads to rich and diverse
region proposals and is essential for the state-of-the-art results of SEER, which we discuss in detail
in Appendix D.

Unsupervised proposal extraction: Given an input image X ∈ R3×H×W , we use a self-supervised
pretrained encoder to extract feature maps Fl ∈ Rdl×Hl×Wl from each of the encoder’s levels l.
Given a feature map F, we employ pixel-wise clustering to group semantically similar features
(local clustering). This results in a set of masks M = {mk}k=1∶K , where K represents the number
of clusters, which is a user-defined parameter. In order to provide good coverage for all objects in
the image, we apply clustering with different values K ∈ K and use feature maps from different
layers l ∈ L, leading to a set of masks M = ⋃{Ml,K}K∈K,l∈L.

Next, the different connected components of each mask are computed, leading to a set of regions R.
Each region r ∈ R is then used to extract a bounding box (proposal) b and a corresponding feature
vector f , where f is computed by average-pooling the last layer feature map FL over r.

Proposal filtering: Due to the clustering at multiple levels of the encoder, the process leads to noisy
and overlapping proposals. We employ a number of filters to refine them, such as merging proposals
that have a high IoU and proposals with highly related semantic content. This results in a set of
N(i) bounding box-feature vector pairs for image i, {bn, fn}

N(i)
n=1 .

Pseudo-class label generation: We then cluster proposals across the whole dataset (global clus-
tering) based on the feature vectors, i.e. we perform a single clustering round on {f i

n}i=1∶In=1∶N(i),
obtaining clusters Sc for c ∈ {1, .., C}. This results in a training set T0 = {Xi, {(bin, cin)}}, where
c
i
n is defined by cluster membership, i.e. f i

n ∈ Scin .

We used Spectral Clustering (Ng et al., 2001) for the local clustering and K-Means for global clus-
tering. While Spectral Clustering usually performs better, it cannot handle the millions of data points
involved in the global clustering step, since the memory requirements are quadratic with respect to
the number of data points. However, any clustering algorithm may be used in either case.

3.2 PRETRAINING AND SELF-TRAINING

We can now use the training set T0 to train an object detector. In particular, given an input image and
its corresponding extracted object proposals y, the network predicts a set ŷ = {ŷq}Qq=1, where ŷq =

(b̂q, ĉq) comprises the predicted bounding box and predicted category. We note that the extracted
proposals y are padded to size Q with ∅ (no object). We emphasize that SEER is compatible with
any detector architecture, as we train the detector on simple class-aware detection. Here, for ease
of notation and without loss of generality, we assume a DETR-based detector. The ground truth and
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the predictions are put in correspondence via bipartite matching, formally defined in Eq. (1), where
SQ is the space of permutations of Q elements. The loss between y and ŷ is computed in Eq. (2),
as a combination of a bounding box matching loss and a class matching loss:

σ̂ = argmin
σ∈SQ

Q

∑
q

L(yq, ŷσ(q)) (1)

Q

∑
q=1

(−logp̂σ̂(q)(cq) + 1{cq≠∅}Lbox(bq, b̂σ̂(q))) , (2)

where p̂ indicates the predicted per-class probabilities. The indicator function 1ci≠∅ represents that
the box loss only applies to predictions that have been matched to object proposals y. Minimizing
this loss results in weights Θ0.

Upon training the detector in this way, we observe that it can identify more objects than those in
our original proposals. Critically, this includes smaller and more challenging objects, which can
contribute to a stronger supervisory signal. We thus generate a new set of pseudo-labels for image i
as {g(Xi; Θ0)}, where g = (gb, gh) are the detection network, backbone and head respectively. It is
typical during self-training that object proposals are filtered through a confidence threshold (Wang
et al., 2022a; 2023). We find, however, that in our case this leads to the removal of small or challeng-
ing instances such as partially occluded or uncommon objects. Thus, we instead filter the top-100
proposals of the detector for overlap only, so that any two boxes have an IOU lower than 0.55 (fol-
lowing (Solovyev et al., 2021)), with only the most confident box being kept when such conflicts
exist. This leads to a training set T1.

A new set of weights Θi can be obtained by using training set Ti and using Θi−1 to initialize the
weights. Simultaneously, Θi can be used to generate a new training set Ti+1. While this process can
be iterated indefinitely, we notice optimal performance involves just two rounds of training, which
we refer to as Stages 1 & 2. Stage 1 training, including the proposal extraction process for T0 is
shown in Fig. 2.

We highlight that, importantly, the proposed pretraining is very well-aligned with the downstream
task, i.e. supervised class-aware object detection, and it allows the pretraining of both the backbone
and the detection head simultaneously. This is unlike other detector pretraining methods (Dai et al.,
2021; Bar et al., 2022; Wang et al., 2022c) that require freezing the backbone to avoid performance
degradation.

The whole method is summarized in Algorithm 1 of Appendix E.

4 EXPERIMENTAL SETTING

We apply SEER to two DETR-based architectures (Deformable DETR (Zhu et al., 2021) and ViDT+
(Song et al., 2022)) and an R-CNN architecture (Cascade Mask R-CNN (Cai & Vasconcelos, 2018)),
focusing on the former, as DETR’s end-to-end single-stage architecture typically performs better and
is better suited for representation learning. In order to compare with prior work on object detection
pretraining, we follow Bar et al. (2022) for Def. DETR and ViDT+, and Wang et al. (2023) for
Cascade Mask R-CNN in terms of datasets, hyperparameters and experiments. For unsupervised
representation learning, in the absence of a predefined protocol, we use the ViDT+ detector and
experiment with the most well-established datasets in object detection. The hyperparameters for
each experiment are provided in detail in Appendix A. Unless stated otherwise, for methods other
than SEER we report results from the respective papers, except where ViDT+ is used.

Datasets: We use the training sets of ImageNet (Russakovsky et al., 2015), Open Images (Krasin
et al., 2017) and MS COCO (Lin et al., 2014) for unsupervised pretraining. For finetuning (with
annotations) we use the training sets of MS COCO and PASCAL VOC (Everingham et al., 2010).
Results are reported for the corresponding validation sets, using the Average Precision (AP) and
Average Recall (AR). Details on the datasets are provided in Appendix B.
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Table 1: Object detection results on COCO. Methods are pretrained on ImageNet, finetuned on
MS COCO train2017 and evaluated on val2017. 1: Backbone initialized with MoBY and
pretrained with SEER (pretrained detection head was discarded).

Detector Backbone Detector Frozen APPretraining Pretraining Backbone

Cascade Mask R-CNN
(Cai & Vasconcelos, 2018) DINO

- ✗ 44.4
CutLER Wang et al. (2023) ✗ 44.7

SEER ✗ 45.0

Def. DETR
(Zhu et al., 2021) SwAV

- - 45.2
UP-DETR (Dai et al., 2021) ✓ 44.7
DETReg (Bar et al., 2022) ✓ 45.5

JoinDet (Wang et al., 2022c) ✓ 45.6
SeqCo-DETR (Jin et al., 2023) ✓ 45.8

Siamese DETR (Huang et al., 2023) ✓ 46.3
SEER ✗ 46.7

ViDT+
(Song et al., 2022)

MoBY - - 48.3
SEER1 - - 48.8
MoBY DETReg ✓ 49.1
MoBY DETReg ✗ 47.8
MoBY SEER ✗ 49.6

Architectures: For our experiments we use Def. DETR, ViDT+ and Cascade Mask R-CNN. Def.
DETR and Cascade Mask R-CNN are primarily used to compare with prior work for detector pre-
training. ViDT+ is currently one of the best-performing DETR-based object detection methods,
with a highly efficient architecture that unifies the backbone and encoder components of the DETR
framework. It is, therefore, further used to compare against unsupervised representation learning
methods. Following Bar et al. (2022); Wang et al. (2023), Def. DETR Cascade and Mask R-CNN
detectors use ResNet-50 (He et al., 2016) backbones initialized with SwAV (Caron et al., 2020) and
DINO (Caron et al., 2021) respectively. ViDT+ uses a Swin-T (Liu et al., 2021) backbone initialized
with MoBY (Xie et al., 2021c), unless stated otherwise. In all cases, the backbones were trained in
a fully unsupervised manner on ImageNet.

5 EXPERIMENTS

We highlight two main results, namely state-of-the-art results for detection pretraining and com-
petitive results for self-supervised representation learning for detection, including pretraining on
scene-centric data such as COCO and OpenImages from scratch. We complement these results
with a comprehensive set of ablation studies.

5.1 OBJECT DETECTION PRETRAINING

We evaluate SEER following the standard protocol for object detection pretraining, as defined by Bar
et al. (2022) for DETR-based architectures and Wang et al. (2023) for Cascade Mask R-CNN, which
include experiments in the full-data, semi-supervised and few-shot settings.

Full data setting: We provide a comprehensive set of comparisons with competing detector pre-
training methods in Tab. 1, where we pretrain 3 detector architectures on ImageNet, finetune on
COCO train2017 and evaluate on val2017. We also report results for ImageNet pretraining
and PASCAL VOC finetuning with Def. DETR in Tab. 2. As Tables 1 and 2 show, our method signif-
icantly outperforms competing detector pretraining methods across datasets and with all 3 detector
architectures. Interestingly, all prior work on DETR pretraining requires freezing the backbone.
We quantitatively assess the impact of this requirement by making the DETReg backbone trainable,
and observe steep performance degradation. Contrary to all these works, SEER supports a trainable
backbone due to its better alignment of the pretraining and downstream tasks.
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Table 2: Object detection results on PASCAL VOC. Methods were pretrained on ImageNet, fine-
tuned on PASCAL VOC trainval07+2012 and evaluated on test07.

Method AP AP50 AP75

SwAV 61.0 83.0 68.1
DETReg 63.5 83.3 70.3
JoinDet 63.7 83.8 70.7

SeqCo-DETR 64.1 83.3 70.3
SEER 64.8 84.6 72.7

Table 3: Semi-supervised results against detector pretraining methods. Following Bar et al.
(2022), Def. DETR detectors were pretrained on MS COCO train2017, finetuned on k% labeled
samples, and evaluated on val2017.

Method AP
1% 2% 5% 10%

SwAV 11.79±0.3 16.02±0.4 22.81±0.3 27.79±0.2
DETReg 14.58±0.3 18.69±0.2 24.80±0.2 29.12±0.2
JoinDet 15.89±0.2 - - 30.87±0.1
SEER 18.19±0.1 21.80±0.2 26.90±0.2 30.97±0.2

Semi-supervised setting: We present results in Tab. 3 for Def. DETR, pretrained on COCO
train2017 and fine-tuned on k% labeled samples, following Bar et al. (2022). In Tab. 4 we
compare with works focusing on unsupervised localization following Wang et al. (2023), where we
pretrained a Cascade Mask R-CNN on ImageNet and fine-tuned on COCO train2017 with k%
samples, including instance segmentation results. In both cases, SEER outperforms previous works
by large margins, particularly in the more challenging settings with fewer labeled samples. Notably,
despite our pretraining being focused on detection, our method outperforms FreeSOLO and CutLER
in segmentation performance as well, which highlights its effectiveness.

Few-shot setting: We follow protocol defined in Bar et al. (2022) and pretrain Def. DETR on Im-
ageNet and report results for two settings: a) further pre-training on COCO train2014 with 60
base classes, and then fine-tuning in a few-shot setting with k ∈ {10, 30} instances from all classes,
b) we skip further training on the base classes. Results are reported in Tab. 5 on the novel classes
of val2014, and demonstrate that SEER not only outperforms DETReg by significant margins.
Furthermore, SEER’s performance without base class finetuning is very close to its performance
with it. These results support that a) our method drastically reduces detector architectures’ depen-
dency on annotated data, and b) SEER’s learned representations are already class-aware, and the
pseudo-labels produced by our method are good enough that SEER can align with COCO’s classes
with minimal (10-shot) supervision. We conduct a more in-depth analysis of the few-shot setting
outcomes in Appendix C.

5.2 SELF-SUPERVISED REPRESENTATION LEARNING ON SCENE-CENTRIC IMAGES

In this section we examine SEER’s performance on scene-centric data, and its ability to learn self-
supervised representations (i.e., train a backbone) suitable for detection. We begin by validating
that SEER, when trained on scene-centric data (e.g. COCO), can perform competitively compared
to ImageNet pretraining. Then we use SEER directly for self-supervised representation learning on
scene-centric data (i.e., training from scratch on COCO/Open Images), showing promising results.
Finally, we show that pretraining on COCO leads to representations that transfer to ImageNet under
the linear-probe setting.

Object vs Scene-centric pretraining: In the full data experiments in Sec. 5.1 we followed prior
literature: we initialized our method with a backbone pretrained on object-centric data (ImageNet)
and pretrained the detector again on object-centric data. In Tab. 6, we present results for SEER when
the detector is pretrained on scene-centric data instead. Specifically, we now pretrain ViDT+ on
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Table 4: Semi-supervised results against unsupervised localization methods. FreeSOLO uses
SOLOv2 (Wang et al., 2020b) and is pretrained on MS COCO train2017+unlabeled2017.
CutLER and SEER use Cascade Mask R-CNN and are pretrained on ImageNet. All methods are
finetuned on MS COCO train2017 and evaluated on val2017.

Method AP (Box / Mask)
1% 2% 5% 10% 100%

FreeSOLO - / - - / - - / 22.0 - / 25.6 - / -
CutLER 16.8 / 14.6 21.6 / 18.9 27.8 / 24.3 32.2 / 28.1 44.7 / 38.5
SEER 20.8 / 17.5 25.2 / 21.2 30.0 / 25.5 33.8 / 29.0 45.0 / 38.8

Table 5: Few-shot results. Def. DETR detectors were pretrained on ImageNet and finetuned on
k ∈ {10, 30} instances from each class of MS COCO train2014. Results reported on the novel
classes of val2014. DETReg results reproduced in our codebase using the official checkpoint.

Method Base Class Novel Class AP Novel Class AP75

Finetuning 10 30 10 30

DETReg
✗

5.6 10.3 6.0 10.9
SEER 10.3 14.5 10.9 15.1

DETReg
✓

9.9 15.3 10.9 16.4
SEER 12.4 18.9 13.1 20.4

COCO and Open Images (keeping the initialization settings described in Sec. 4), finetune on COCO
train2017 and present results on its validation set. We further report the class-unaware object
detection performance in terms of average recall (AR) as it hints at different behaviors between the
two settings in this regard.

We observe that, in all cases, our method improves over the baseline, including when we pretrain and
finetune on the same set of data (COCO). Furthermore, we find that SEER performs similarly when
trained on MS COCO relative to Open Images, despite the latter being a much larger dataset. Finally,
while ImageNet leads to the best outcomes, Open Images pretraining is very close. Combined,
these findings show that SEER is: a) sample efficient, achieving similar performance pretraining on
COCO and on the larger ImageNet and Open Images datasets, and b) flexible, being able to handle
both object-centric and scene-centric data. Tab. 6 also provides an insight as to why ImageNet
pretraining performs best. As seen by contrasting AR scores, ImageNet’s detector localizes more
objects correctly. This indicates that the proposals generated for ImageNet are relatively better,
which likely leads to better supervision, especially when self-training. Overall, these results indicate
that SEER does not require carefully curated object-centric data to achieve competitive results.

Self-supervised representation learning on scene-centric data: Experiments conducted in previ-
ous sections initialize the backbone with weights obtained by self-supervised training on ImageNet.
In this section, we evaluate the representation learning capacity of SEER by pretraining a ViDT+
detector from an untrained backbone (from scratch) to examine whether independent backbone pre-

Table 6: Object-centric vs Scene-centric pretraining. SEER is pretrained on MS COCO
train2017, ImageNet and Open Images, finetuned on train2017 and evaluated on val2017.
1: We finetune an untrained detector, initialized with a MoBY backbone.

Detector Pretraining AP AP50 AP75 AR100

-1 48.3 66.9 52.4 -
COCO 49.1 67.8 53.1 25.1

ImageNet 49.6 68.2 53.8 27.1
Open Images 49.4 67.9 53.9 25.5
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Table 7: Pretraining from scratch. We pretrain SEER without backbone initialization, finetune on
MS COCO train2017 and evaluate on val2017. For comparison, we finetune ViDT+ without
any pretraining and with a MoBY-pretrained backbone.

Backbone Detector Detector Pretraining APPretraining Pretraining Dataset

MoBY -
FCOS*

ImageNet 47.6
DetCon (Hénaff et al., 2021) - ImageNet 48.4

Odin (Hénaff et al., 2022) - ImageNet 48.5

- -

ViDT+

ImageNet 38.5
MoBY - ImageNet 48.3

- SEER COCO 48.3
- SEER Open Images 48.8
- SEER ImageNet 49.2

Table 8: Linear probing. We pretrain SEER with ViDT+ on MS COCO train2017, and apply
the backbone to linear evaluation on ImageNet. Results reported on ImageNet’s validation set.
Results for other methods are taken from Van Gansbeke et al. (2021a).

Backbone Pretraining Acc

DenseCL (Wang et al., 2021) 49.9
VirTex (Desai & Johnson, 2021) 53.8

MoCo (He et al., 2020) 49.8
Van Gansbeke et al. (Van Gansbeke et al., 2021a) 56.1

SEER 56.4

training is indeed necessary. We pretrain on object-centric (ImageNet) and scene-centric (COCO
& Open Images) datasets and present results in Tab. 7. For completeness, we also provide results
for other methods that focus on self-supervised backbone-only pretraining, noting that they use a
different detector architecture during finetuning.

Results again show that SEER performs best with a well-curated, object-centric pretraining dataset,
but is competitive even when trained on complex, scene-centric images. Specifically, SEER per-
forms on par with backbone-only ImageNet pretraining (MoBY) when pretrained on COCO, and
outperforms it when pretrained on Open Images. This outcome supports our thesis that unsupervised
pretraining directly on scene-centric data with an object detection task is feasible and effective.

We further evaluate the quality of the COCO-pretrained backbone by performing a linear probe
experiment on ImageNet. Tab. 8 shows SEER’s performance as well as that of prior work. We note
that prior work use a ResNet50 encoder, and thus a direct comparison is hard. It is however clear
that our method is competitive, despite being pretrained for object detection, highlighting the natural
fit of SEER for general-purpose representation learning from scene-centric images.

6 CONCLUSION

We have proposed SEER, a novel method for self-supervised end-to-end object detector pretraining.
Compared to prior work, our method aligns pretraining and downstream tasks through the careful
construction of object proposals and pseudo-labels and the use of self-training. We extensively
evaluate SEER in typical object detector pretraining benchmarks and demonstrate that it consistently
outperforms previous methods across detector architectures. However, unlike prior work, we show
that SEER is also capable of effectively pretraining the backbone. This brings our method in line
with the wider literature on self-supervised representation learning for detection. We again show
competitive performance in this area and explore novel settings, specifically pretraining with scene-
centric datasets and even pretraining from scratch. Overall, we believe our framework not only
outperforms existing detector pretraining methods but also represents a promising step toward self-
supervised, fully end-to-end object detection pretraining on uncurated images.
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Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick
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Appendix

A TRAINING HYPERPARAMETERS

In this section we provide detailed hyperparameters for each training setting included in the main
paper. We use three detectors, Def. DETR Zhu et al. (2021), ViDT+ Song et al. (2022) and Cascade
Mask R-CNN (Cai & Vasconcelos, 2018). For Def. DETR and ViDT+ we typically follow the
training settings proposed in their respective papers for finetuning and DETReg Bar et al. (2022)
for pretraining. For Cascade Mask R-CNN we follow Wang et al. (2023). More specifically, unless
stated otherwise, the following hyperparameters apply:

For Def. DETR, we train SEER following Bar et al. (2022). Specifically, we pretrain for 5 epochs
per stage on ImageNet with a batch size of 192 and a fixed learning rate of 0.0002. For finetuning,
we train on COCO for 50 epochs and PASCAL VOC for 100 epochs, with a batch size of 32. The
learning rate is set to 0.0002, and is decreased by a factor of 10 at epoch 40 and 100 for COCO and
PASCAL VOC respectively.

For ViDT+, we use the training hyperparameters proposed in Song et al. (2022). Specifically, unless
stated otherwise, ViDT+ is pretrained for 10 epochs per stage on ImageNet and Open Images, and
for 50 epochs per stage on COCO, with batch size 128. In all cases, the learning rate is set to 0.0001
and follows a cosine decay schedule.

Cascade Mask R-CNN, we use the pretraining and fine-tuning hyperparameters proposed in Wang
et al. (2023). Specifically, unless stated otherwise, Cascade Mask R-CNN is pretrained for 160,000
steps per stage on ImageNet with batch size 16. The learning rate is set to 0.01 and decreased by a
factor of 10 at after 80,000 training steps.

Unless stated otherwise, we pretrain with 2048 pseudo-classes (i.e. we set the number of clusters
for the global clustering step to 2048), and apply one round of self-training, following our findings
in Tab. 13. Finally, during pretraining, we use the mosaic augmentation Bochkovskiy et al. (2020).

For specific experiments conducted in the paper, we note changes relative to the settings described
above:

Full data regime: Same as above.

Semi-supervised: For Def. DETR we follow DETReg Bar et al. (2022), we finetune on COCO for
2,000 epochs for 1% of samples annotated, 1,000 epochs for 2% of samples, 500 epochs for 5%
of samples, and 400 epochs for 10% of samples. The learning rate is kept fixed at 0.0002. Results
in Table 3 are measured over 5 runs, with different, randomly sampled annotated samples. For
Cascade Mask R-CNN, we closely follow the training setting and evaluation protocol used in Wang
et al. (2023).

Few-shot: We finetune on COCO’s base classes, using the splits proposed in Wang et al. (2020a).
For the standard few-shot setting we a) finetune on the base classes following the COCO finetuning
settings outlined above, and b) finetune on the 10- and 30-shot sets for 30 and 50 epochs respectively,
with a fixed learning rate of 0.0002 and 0.00004. For the extreme setting, we directly finetune on
the 10- and 30-shot sets for 400 epochs with a learning rate of 0.0002 that is decreased by a factor
of 10 after 320 epochs. Results in Table 4 correspond to the best validation score of each run
during training, averaged over 5 runs, with k-shot samples corresponding to seeds 1-5 of Wang et al.
(2020a). When finetuning on the k-shot instances, the backbone is kept frozen in both settings.

Object vs Scene-centric pretraining: Same as above.

Self-supervised representation learning on scene-centric data: For these experiments, where the
entire architecture is initialized from scratch (backbone & detector), we train for 1,000 epochs on
COCO, 100 epochs on ImageNet, and 70 epochs on Open Images. This allows for a fair comparison,
with approximately the same number of training steps across datasets.
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B DATASETS

In our paper, we use the training sets of ImageNet Russakovsky et al. (2015), Open Images Krasin
et al. (2017) and MS COCO (COCO) Lin et al. (2014) for unsupervised pretraining. We use the
training sets of MS COCO and PASCAL VOC Everingham et al. (2010) for supervised finetuning
and their validation sets for evaluation. ImageNet includes 1.2M object-centric images, classified
with 1,000 labels and without object-level annotations. Open Images includes 1.7M scene-centric
images, and a total of 14.6M bounding boxes with 600 object classes. COCO is a scene-centric
dataset with 120K training images and 5K validation images containing 80 classes. PASCAL VOC
is scene-centric and contains 20K images with object annotations covering 21 classes.

C CONVERGENCE & ALIGNMENT ANALYSIS

In this section we discuss the convergence and alignment properties of SEER by analyzing the
results of the ”extreme” few-shot experiments. As discussed in Sec. 5, in this setting we pretrain
Def. DETR on ImageNet, and then finetune directly on COCO train2014, using k ∈ {10, 30}
instances from all classes.

Table 9: Results of ”extreme” few-shot training for 50 epochs and 400 epochs.

Method Epochs Novel Class AP Novel Class AP75

10 30 10 30

DETReg 50 1.9 3.4 1.8 3.52
SEER 8.32 13.9 8.06 14.4

DETReg 400 5.6 10.3 6.0 10.9
SEER 10.3 14.5 10.9 15.1

In Figures 3 and 4 we present the AP scores for SEER and DETReg during training, averaged over 5
runs and measured over the validation set’s novel classes. As was noted in Sec. 5, SEER outperforms
DETReg by large margins. Notably, however, it is also shown to converge much faster. More
specifically, in Tab. 9 we present results for 50 epochs of k-shot finetuning against the performance
reached after 400 epochs. In both cases, we average the best validation score across 5 runs. We see
that, at 50 epochs, SEER has already reached near-peak performance, while DETReg converges at
a much slower rate.

This means SEER effectively alleviates the sample inefficiency and slow convergence of DETR
architectures, and makes our method particularly useful when annotations and/or computational re-
sources are extremely scarce. These results provide further support for our conclusions in Sec. 5,
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Figure 3: AP scores on COCO’s val2014 novel classes during finetuning with k=10 instances per
class. Results averaged over 5 runs.
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Figure 4: AP scores on COCO’s val2014 novel classes during finetuning with k=30 instances per
class. Results averaged over 5 runs.

namely that SEER is much better aligned with the downstream task, with learned object representa-
tions that are well suited for class-aware object detection, so that minimal training and supervision
can lead to strong performance.

D ANALYSIS AND ABLATIONS

Throughout this section we use ViDT+ and, unless stated otherwise, pretrain on ImageNet for 10
epochs per stage.

Impact of object proposals: We evaluate our object proposal method in two ways: a) we examine
how well it localizes objects by computing the Average Recall (AR) score on COCO val2017
(see Tab. 10), and b) we investigate its impact on SEER by replacing it with Selective Search, and
present the outcomes (see Tab. 11).

Table 10: Quality of proposals: AR results on COCO val2017. The first section presents re-
sults for the initial extraction of object proposals, while the lower two sections present results for
proposals generated by detection/segmentation architectures trained on the initial proposals.

Object proposals Detection Architecture AR100

Sel. Search - 10.9
SEER-St. 0 - 13.4

DETReg
ViDT+

21.5
SEER-St. 1 25.9
SEER-St. 2 27.1

CutLER
Cascade Mask R-CNN

32.7
SEER-St. 1 24.5
SEER-St. 2 24.6

Tab. 10 includes results both for our initial proposals (noted as SEER-St. 0), and the proposals
generated by pretrained detectors. Results show that our approach is superior to Selective Search and
that detector pretraining significantly improves over our initial proposals, supporting our decision
to self-train. We observe also that our framework leads to better localization results than DETReg.
Most interestingly, we observe that CutLER performs better in terms of localization than SEER,
even though SEER consistently outperforms CutLER in terms of object detection pretraining. This
reinforces our claim in Sec. 2, that unsupervised localization methods generate annotations and
follow training processes that are not necessarily good for detector pretraining.

In Tab. 11 we find that, using Selective Search proposals, SEER still outperforms the MoBY base-
line, but we observe a performance drop relative to our object proposal method. We attribute this
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Table 11: Impact of initial proposals: AP results on COCO val2017, using different initial object
proposal methods.

Method Proposals AP AP50 AP75

MoBY - 48.3 66.9 52.4

SEER-St. 1 Sel. Search 48.7 67.3 52.7
SEER-St. 2 48.6 67.1 52.2

SEER-St. 1 Our Anns. 48.9 67.4 52.9
SEER-St. 2 49.6 68.2 53.8

Table 12: Number of classes. Pretraining and finetuning on COCO, evaluation in terms of training
accuracy, AR of the pretrained detector, and AP of the finetuned model. 1 class implies class-
unaware pretraining.

Classes ACC AR AP

1 - 25.2 41.2
256 80.01 23.9 43.8
512 75.13 24.0 43.9

2048 53.75 23.9 44.1

to two reasons: a) out method likely produces more discriminative descriptors f by aggregating
representations over a mask of semantically related pixels, rather than over a box, which is the case
for Selective Search. This, in turn, leads to better pseudo-labels. b) Our proposals are more robust
(see Tab. 10), and therefore provide better supervision. In summary, we conclude that SEER is
robust to different object proposal methods, but greatly benefits from an appropriate method choice.

Number of classes: We ablate the number of pseudo-classes produced by the global clustering of
object proposals. For this set of experiments, we pretrain and finetune on COCO train2017 for
25 epochs each. Note this is a simplified (and cheaper) setting for the purpose of ablating. We
find that, during pretraining, increasing the number of classes leads to decreased training accuracy
(ACC) and class-unaware AR (measured on the validation set), which is expected, since increasing
the number of classes makes the task harder. However, the AP score after finetuning increases,
indicating that the pretrained detector is more powerful. Overall, results indicate that our method is
fairly robust to the number of clusters chosen.

Self-training stages: We examine the impact of self-training in Tab. 13, and find that it produces
meaningful gains. We explore additional self-training with ViDT+ (Song et al., 2022), but observe
no benefits, and therefore limit self-training to one round throughout the paper.

Schedule length: In Tab. 14 we examine the impact of a longer training schedule on our method
for both training stages by extending training from 10 to 25 epochs per stage. The results show
that a longer training schedule can have some beneficial, yet marginal, effect. Interestingly, Tab. 14
highlights the importance of self-training, as two training stages totaling a combined 20 epochs (10
per stage) clearly outperform a single training round of 25 epochs.

Table 13: Self-training rounds. AP results for ViDT+ pretrained with SEER on ImageNet and
finetuned on COCO. Avg. proposals per image are measured during training.

Detector Stage AP AP50 AP75

ViDT+ (Song et al., 2022)
1 48.9 67.4 52.9
2 49.6 68.2 53.8
3 49.6 68.0 53.9

Def. DETR (Zhu et al., 2021) 1 46.1 64.6 50.3
2 46.7 65.4 50.9
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Table 14: Scheduler length. AP results for varying training epochs. 10 and 25 epoch Stage 2
models are initialized from 10 and 25 epoch Stage 1 models respectively.

Stage Epochs AP AP50 AP75

1 10 48.9 67.4 52.9
1 25 49.2 67.7 53.6

2 10 49.6 68.2 53.8
2 25 49.7 68.1 54.2

E ALGORITHM

We present SEER as an algorithm in Algorithm 1.

Algorithm 1 Pretraining

Require: {Xi}Ii=1, Net g = (gb, gh), initial params. Θ0

1: ▷ Unsup. train set gen., Sec. 3.1
2: for i = 1 ∶ N do
3: Fl ← gb(Xi)
4: Mi ← ⋃Cluster(Fl,K) ▷ K ∈ K, l ∈ L
5: Ri ← Connected Components(Mi)
6: {bin, f i

n}N(i) ← Filter(Ri)
7: end for
8: {cin} ← K-Means({f i

n},K = C) ▷ Pseudo-classes

9: T0 ← {Xi, {(bn, cn)}N(i)
n=1 }

I

i=1
10: ▷ Self-training (Sec. 3.2)
11: for j stages do
12: g(−; Θj+1) ← Train (Tj , g) ▷ Using Eq. (2)
13: Tj+1 ← Filter( {g(Xi; Θj)}Ii=1 )
14: end for

F VISUALIZATION

In Fig. 5 we provide examples visual examples of bounding boxes produced by Selective Search,
our pseudo-labeled object proposal method, and SEER, specifically a ViDT+ detector trained for
two stages on ImageNet. To avoid clutter, for all three methods we only include objects whose
predicted bounding boxes have an IOU higher than 0.5 with an object in the ground truth set.

The images illustrate that self-training significantly improves the object discovery performance of
SEER over the original region proposals. Notably, those include much smaller items, and much bet-
ter performance in cluttered scenes. As stated in the main paper, this contributes to the performance
of our framework and specifically the performance gains between stages.
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Figure 5: Examples of object proposals extracted from SEER, contrasted with the ground truth,
Selective Search and our initial pseudo-labeled object proposals, extracted as described in paper
Sec. 3.1. The images belong to COCO train2017. To avoid clutter, we only show predicted
objects whose bounding boxes have an IOU greater than 0.5 with at least one ground truth object.
Best seen in color.

19


	Introduction
	Related Works
	Method
	Improved object proposals
	Pretraining and Self-Training

	Experimental Setting
	Experiments
	Object detection pretraining
	Self-supervised representation learning on scene-centric images

	Conclusion
	Training Hyperparameters
	Datasets
	Convergence & Alignment Analysis
	Analysis and ablations
	Algorithm
	Visualization

