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ABSTRACT

Graphs with heterophily have been regarded as challenging scenarios for Graph
Neural Networks (GNNs), where nodes are connected with dissimilar neighbors
through various patterns. In this paper, we present theoretical understandings of
the impacts of different heterophily patterns for GNNs by incorporating the graph
convolution (GC) operations into fully connected networks via the proposed Het-
erophilous Stochastic Block Models (HSBM), a general random graph model that
can accommodate diverse heterophily patterns. Firstly, we show that by applying
a GC operation, the separability gains are determined by two factors, i.e., the Eu-
clidean distance of the neighborhood distributions and

√
E [deg], where E [deg]

is the averaged node degree. It reveals that the impact of heterophily on classifi-
cation needs to be evaluated alongside the averaged node degree. Secondly, we
show that the topological noise has a detrimental impact on separability, which is
equivalent to degrading E [deg]. Finally, when applying multiple GC operations,
we show that the separability gains are determined by the normalized distance of
the l-powered neighborhood distributions. It indicates that the nodes still possess
separability as l goes to infinity in a wide range of regimes. Extensive experiments
on both synthetic and real-world data verify the effectiveness of our theory.

1 INTRODUCTION

Graph Neural Networks (GNNs) have demonstrated remarkable superiority in processing the graph-
structured data (Kipf & Welling, 2017; Velickovic et al., 2018; Hamilton et al., 2017; Xu et al.,
2019; Gilmer et al., 2017; Wang et al., 2021). Unfortunately, the majority of GNNs are designed
for the homophilous scenario, where the connected nodes usually possess similar features or labels.
When this homophilous assumption is not satisfied, i.e., in the heterophilous scenario, typical GNNs
may fail to handle the graphs and even perform worse than a fully connected network (Pei et al.,
2020; Zhu et al., 2020). To tackle this heterophily problem, several heterophily-specific GNNs
are proposed, by developing adaptive aggregation schemes for the similar/dissimilar neighbors (Pei
et al., 2020; Bo et al., 2021; Suresh et al., 2021; He et al., 2022; Ma et al., 2022a; Li et al., 2023)
or excavating appropriate information from the high-ordered/non-local neighbors (Zhu et al., 2020;
Chien et al., 2021; Liu et al., 2021; Yang et al., 2021; Jin et al., 2021; Song et al., 2023).

Unfortunately, according to the recent studies (Ma et al., 2022b; Luan et al., 2022), which have revis-
ited the impact of heterophily on typical GNNs, heterophily may not be harmful to the classification
results. On the graphs with certain heterophily patterns, a typical GNN, e.g., Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), can achieve competitive or even superior performances
compared to the well-designed heterophily-specific GNNs (Ma et al., 2022b; Platonov et al., 2023).

This observation raises a pivotal question: What types of heterophily patterns in graphs are benefi-
cial or harmful to typical GNNs for their performances on multi-class node classifications? Accord-
ingly, Ma et al. (2022b); Yan et al. (2022) present a preliminary analysis on the binary classification
task.Ma et al. (2022b) empirically observes that GCN can effectively handle the graphs, whose nodes
with the same label possess similar neighborhood distributions. Inspired by the gradient computed
via SGC(Wu et al., 2019), Luan et al. (2022) introduces a post-aggregation node similarity metric to
assess the impact of heterophily. Despite their efforts, the fundamental nature of this issue remains
inadequately explored. Therefore, it is crucial to thoroughly investigate:

How do different heterophily patterns contribute to the multi-class node classifications?
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In this paper, we theoretically investigate this question on the random graph models, which are
widely utilized to analyze the behavior of GNNs for various vital problems (Baranwal et al., 2021;
Keriven et al., 2021; Wei et al., 2022; Baranwal et al., 2023; Wu et al., 2023). Since the conven-
tional Erdős–Rényi Model (Erdős et al., 1960) and Stochastic Block Model (Holland et al., 1983)
sample edges uniformly or only differentiate the inter-/intra-category edges, they lack the capacity
to effectively model various heterophily patterns. To address this limitation, we propose a more
general model, named Heterophilous Stochastic Block Models (HSBM). In HSBM, edges are sam-
pled based on the blocks/classes of the connected nodes. Thus, nodes within the same class exhibit
class-specific neighborhood distributions. This feature allows HSBM to accommodate diverse het-
erophily patterns. Besides, our proposed HSBM incorporates node-wise neighborhood distribution
perturbations, which simulate the topology noises in real-world graphs.

Based on our HSBM, we construct an analytical framework to explore the impacts of GNNs on
graphs with diverse heterophily patterns. We analyze the variations of the separability between each
pair of classes, by applying the graph aggregator operations. Specifically, we utilize GCN (Kipf &
Welling, 2017), one of the most popular GNNs, in our illustrations. Our theoretical results can be
summarized as follows.

1. For the impact of a Graph Convolution (GC) operation, we demonstrate that the separability
gain of each pair of classes is determined by two factors, i.e., the Euclidean distance of their
respective neighborhood distributions and the square root of the averaged degree

√
E [deg].

This result indicates that the effect of the heterophily pattern on classification requires to
be evaluated based on

√
[Edeg], e.g., very similar neighborhood distributions may boost

the classification if the average node degree is large. Based on this analysis, we can form
the categories of good/mixed/bad heterophily patterns.

2. For the impact of the topological noise on separability, we reveal that this impact is detri-
mental. When a Gaussian noise is employed, this impact is equivalent to reducing the
averaged degree by a factor of 1/(1 + rδ2), where r > 0 is a constant and δ2 is the vari-
ance of the topological noise. This result indicates that for a specific heterophily pattern,
enhancing the node-wise neighborhood distribution perturbations will result in a decrement
in separability, similar to reducing the node degrees.

3. For the impact of multiple GC operations along with a stronger density assumption, we
demonstrate that the separability gains are determined by the normalized distance of the
l-powered neighborhood distributions. This result suggests that the nodes still possess sep-
arability in various regimes, even when over-smoothing occurs. However, as l approaches
infinity, though the relative differences between the nodes are still maintained, their abso-
lute values become exponentially smaller. Therefore, the classification accuracy eventually
decreases, due to the precision limitations of the floating-point data formats.

Our theoretical results are verified via extensive experiments on both the synthetic and real-world
data, and they may serve for two practical utilizations. Firstly, when GNNs are integrated into spe-
cific applications, our theoretical insights can offer guidance to the construction of their graphs and
help to understand the performance with their specific heterophily patterns. Secondly, our work
introduces a fresh perspective on heterophily and over-smoothing, coupled with a novel GNN ana-
lytical framework, which may further boost the development of innovative methods.

2 PRELIMINARIES

Notations. Let G = (A,X) be an attributed graph, where A = [aij ] ∈ {0, 1}n×n denotes the
adjacency matrix and X ∈ Rn×d represents the node features. n and d represent the numbers of
nodes and node features, respectively. aij is 1 iff there is an incoming edge from node j to node
i, or 0 otherwise. D represents the diagonal degree matrix corresponding to the adjacency matrix
A, where Dii =

∑
j aij . [n] = {0, 1, 2, · · · , n − 1} is denoted as the set of nodes. For each

node i ∈ [n], Γi = {j|aij = 1} represents the set of its neighbors. For a node classification task,
Y = [yi] ∈ [c]n represents the labels of nodes and c is the number of classes.

Graphs with Heterophily. The metrics the homophily/heterophily measures the fraction of intra-
class edges within different scopes (Pei et al., 2020; Zhu et al., 2020; Lim et al., 2021). Typically, the
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homophily ratio can be defined from the node-level, i.e., H(G) = 1
n

∑
i∈[n]

∑
j∈Γi

(yi=yj)

Dii
, where

H(G) ∈ [0, 1] (Pei et al., 2020). A high homophily ratio indicates that the graph is with strong
homophily, while a graph with strong heterophily has a small homophily ratio. However, the ho-
mophily ratio of a certain heterophily pattern does not align with its impacts on node classifications.
It is crucial to delve deeper into the underlying mechanisms of how heterophily functions.

Graph Convolutional Network. Graph Convolutional Network (GCN) (Kipf & Welling, 2017),
known as one of the most popular GNN, is employed to analyze the impact of different heterophily
patterns in our work. In a graph convolutional layer, nodes updates their representations via

X(l+1) = σ
(
ÃX(l)W (l)

)
, (1)

where W (l) ∈ Rd
(l)
in×d

(l)
out is the parameter matrix of layer l, Ã = D−1A, A is the adjacency matrix

containing self-loops, and X(0) = X . For simplicity, the non-linear function σ(·) is neglected in
our analysis, as is widely adopted (Baranwal et al., 2021; Wu et al., 2023).

Contextual Stochastic Block Models. Contextual Stochastic Block Models (CSBMs) (Deshpande
et al., 2018) are typical random graph models, where nodes are randomly sampled by class-specific
Gaussian distribution and edges are sampled by Bernoulli distribution, with a parameter of p if the
two connected nodes belongs to the same class, or q otherwise. It is extensively employed to analyze
the theoretical performance of Graph Neural Networks (Baranwal et al., 2021; Keriven et al., 2021;
Wei et al., 2022; Baranwal et al., 2023; Wu et al., 2023). Specifically, for the heterophily issue,
Ma et al. (2022b) presents a preliminary result of GCN regarding the impact of different p and q
on the two-block CSBMs, while Luan et al. (2023) analyzes the performance of GNNs with low-
pass/high-pass filters. Mao et al. (2023) analyzes on the graphs containing nodes with homophily
and heterophily patterns simultaneously. However, these efforts only focus on the simple binary
node classifications, which is not general enough to analyze diverse heterophily patterns. The impact
of complicated heterophily patterns in the multi-class classifications has not been analyzed.

3 PROPOSED DATA MODELS

In this section, we propose more general data models compared with CSBM, named Heterophilous
Stochastic Block Models (HSBM), to accommodate diverse heterophily patterns.

In HSBM, each node i ∈ [n] is independently sampled from c blocks/classes, with probability of
η = (η0, · · · , ηc−1), where ηk > 0 and

∑
k ηk = 1. The class of node i is denoted as εi. Each

edge, connecting nodes i and j, is sampled by a Bernoulli distribution, with a parameter mεiεj . The
collected M = [mij ] is the probability matrix which represents the edge generation probabilities
between different classes. For each class k ∈ [c], p̄k =

∑
t∈[c] ηtmkt is denoted as its averaged

edge generation probability. Then, D̄k = np̄k is the averaged node degree within class k. Denoting
m̂kt = ηtmkt/p̄k, m̂k =

(
m̂k0, m̂k1, · · · , m̂k(c−1)

)
is the neighborhood distribution of the nodes

within class k, where m̂kt represents the proportion of nodes within class t in the neighborhood
of a node belonging to class k. The collected matrix M̂ = [m̂ij ] is denoted as the neighborhood
distribution matrix. Then, by choosing different edge generation probability matrix M, we can
generate graphs with different patterns of heterophily, i.e., M̂ = [m̂ij ].

Topological Noise. In real-world networks, the neighborhood distributions of nodes within the same
class are center around a specific distribution as well as possess certain perturbation. Inspired by
this observation, a random node-wise topological noise is introduced in our HSBM. Specifically,
for each node i, its incoming edges are generated according to the distribution m̂(i) = m̂εi +∆i,
where ∆i is the random noise. Note that in practice, the generated distribution should be legal, i.e.,
[m̂(i)]j > 0 and

∑
j [m̂(i)]j = 1.

Gaussian Node Features. Since our intention is to study the effects of topology within different
heterophily patterns, following CSBM, the Gaussian node features are employed. Specifically, in
each block/class k ∈ [c], the features of each node are generated by Gaussian distributions, i.e.,
N
(
x;µk, σ

2I
)
. For simplicity, µk is orthometric to each other and has the same length, i.e., for any

k, t ∈ [c] and k ̸= t, we have µT
kµt = 0 and ||µk||2 = ||µt||2. γ = ||µk−µt||2 is denoted as the dis-

tance between two Gaussian means. Finally, denote (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i})
as the graph data generated by our HSBM.
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3.1 ASSUMPTIONS.

Our analysis is constructed based on the following two gentle assumptions.

Assumption 1. p̄k ≍ p̄t, ∀k, t ∈ [c].

Assumption 2. p̄k = ω
(
log2 n/n

)
, ∀k ∈ [c].

Assumption 1 claims that nodes within different classes possess similar averaged degree. Assump-
tion 2 states that the graph is not too sparse and enable some numerical properties of graphs, e.g.,
the number of nodes within each class and node degree concentrate to their expectations. A detailed
discussion of these two assumptions is provided in Appendix A.1.

4 THEORETICAL RESULTS

Our analysis is established on the multi-class node classifications. Its primary objective is to ac-
curately categorize samples into their respective classes while distinguishing them from samples
belonging to other classes. To achieve this, a classifier is required to establish a total of

(
c
2

)
clas-

sification boundaries to separate samples from different categories. By minimizing the error rate,
the optimal classification boundaries are established based on posterior probabilities. Specifically,
∀k, t ∈ [c] with k < t, the condition P[y = k | x] = P[y = t | x] is established as the optimal
classification boundary, as constructed by the Bayes classifier.

In this section, we develop the analytical framework and present our theoretical results. We begin by
defining the two-class separability for each ideal boundary and then proceed to analyze the variation
of separability when applying GC operations on graphs with different patterns of heterophily. Note
that although our analysis is based on the ideal Bayes classifier, the analyzed results can be achieved
through MLPs, as detailed in Appendix D. All the proofs can be found in Appendix A.

4.1 SETTING UP THE BASELINE

For each node i ∈ [n], ζi(k) is denoted as the event where P[y = εi | Xi] ≥ P[y = k | Xi], which
indicates whether node i is more likely to classified into its ground truth class εi rather than into
class k. Then, the two-classes separability between classes t and k is defined.

Definition 1. ∀t, k ∈ [c] and t ̸= k, the separability between class t and class k is defined as

S(t, k) =
ηt

ηt + ηk
Ei∈Ct

P [ζi(k)] +
ηk

ηt + ηk
Ei∈Ck

P [ζi(t)] , (2)

where Ei∈Ct
P [ζi(k)] represents the fraction of nodes within class t can be successfully classified

regrading to class k.

The two-classes separability S(t, k) can be regarded as the expected accuracy when only considering
the classification among nodes within these two classes. It assesses the effectiveness of the boundary
P[y = k | x] = P[y = t | x] for the corresponding two-classes subtask. Apparently, S(t, k) =
S(k, t) holds for Eq. (2). Besides of its impact on the two-class subtask, we claim that it also holds
significance for the overall classification by setting bounds for the minimum error rate, as illustrated
in Appendix E. Then, we proceed to establish the separability of the raw node features X .

Theorem 1. Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}), we get the following properties
over data X .

1. ∀t, k ∈ [c] and t ̸= k,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ
+

σ

γ
ln

(
ηt
ηk

))
, (3)

where Φ(·) is the cumulative distribution function of the standard Gaussian distribution.

2. Without loss of generality, let ηt ≥ ηk. Then, S(t, k) is an increasing function with respect
to both γ

σ and ηt

ηk
.
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The formula of Ei∈Ct
P [ζi(k)] is presented in Theorem 1, which represents the fraction of nodes

within class t that can be successfully classified with respect to class k. When ηt = ηk, i.e., nodes
within the two classes have the same proportion, we obtain that Ei∈Ct

P [ζi(k)] = Ei∈Ck
P [ζi(t)] =

Φ
(

γ
2σ

)
. Notably, both Ei∈Ct

P [ζi(k)] and Ei∈Ck
P [ζi(t)] are positively correlated with γ

σ . However,
in more general cases, where the number of nodes within two classes are imbalanced, i.e., ηt ̸= ηk,
the situations become more complex. W.l.o.g, let ηt ≥ ηk. According to Eq. (3), as γ

σ increases,
the Ei∈Ct

P [ζi(k)] exhibits a larger increment compared to Ei∈Ck
P [ζi(t)]. Specifically, When γ

σ
increases from a small value, the latter may even decrease. This indicates that as γ

σ increases,
classes with a larger number of samples experience more significant benefits, while classes with
fewer samples derive fewer benefits and may even encounter a decrease in the classification accuracy.
Furthermore, the second part of Theorem 1 claims that the separability S(t, k), which represents the
overall impact of Ei∈CtP [ζi(k)] and Ei∈Ck

P [ζi(t)], consistently increases as γ
σ increases. Hence,

we can assess the impact of GC operations by examining the variation of γ
σ .

4.2 IMPACT OF HETEROPHILY FOR GRAPH CONVOLUTION

Subsequently, we incorporate a Graph Convolution (GC) operation and analyze the separability of
the aggregated features.
Theorem 2. Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {0}), for each categories t, k ∈ [n]
and t ̸= k, with probability at least 1− 1/Ploy (n), we have

Ei∈CtP [ζi(k)] = Φ

(
γ

2σ

Ftk

ςn
+

σ

γ

ςn
Ftk

ln

(
ηt
ηk

))
, (4)

over the aggregated features X̃ = D−1AX , where Ftk = 1√
2
||
√
D̄km̂k −

√
D̄tm̂t||, ςn =

1± on(1), and on(1) is the error term.

Theorem 2 illustrates the impact of the GC operation on the two-classes separability. Compared
with the formula of Ei∈Ct

P [ζi(k)] in Theorem 1, its effect is equivalent to scaling the γ
σ by a factor

of Ftk

ςn
, with high probability. Therefore, according to the monotonicity of S(t, k), when Ftk > ςn,

the GC operation enhances the separability S(t, k); otherwise, it degrades the separability. Here,
on(1) is an error item introduced by sampling, which can be neglected as n goes to sufficient large.
Therefore, Ftk is the separability gains of a GC operation, which is determined by the Euclidean
distance of the class-specific degree times neighborhood distribution. Specifically, according to
Assumption 1, we can assume that nodes within different classes have approximately the same
degree, denoted as D̄ ≈ D̄k. Then, Ftk becomes

√
D̄/2||m̂k − m̂t||, which indicates that the

average node degree and the distance between neighborhood distributions possess complementary
effects on the separability gains. For example, even though nodes within class t and k possess similar
(not the same) neighborhood distributions, this heterophily pattern may also boost the classification
with a large average node degree. Therefore, we can conclude that whether a heterophily pattern has
a positive/negative impact for the classification should be evaluated along with the node degree.

Based on this analysis, we can form the categories of good/mixed/bad heterophily patterns.
Definition 2. Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {0}), a good heterophily pattern is
where

min
k ̸=t

1√
2
||
√
D̄km̂k −

√
D̄tm̂t|| > ςn, (5)

and a bad heterophily pattern is where

max
k ̸=t

1√
2
||
√
D̄km̂k −

√
D̄tm̂t|| < ςn, (6)

where ςn = 1± on(1) and on(1) is the error term. Otherwise, we get a mixed heterophily pattern.

When applying a GC operation, good heterophily patterns improve the separability of every pair of
classes, consequently boosting the overall performance. On the contrary, bad heterophily patterns
decrease the separability of all pairs of classes, resulting in lower performances. Besides, mixed
heterophily patterns possess varying impacts on the separability of class pairs, enhancing it for some
pairs while reducing it for others, leading to a mixed impact on the separability.
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4.3 IMPACT OF TOPOLOGICAL NOISE

In real-world graphs, nodes belonging to the same class typically exhibit similar but slightly different
neighborhood distributions. Intuitively, the greater the magnitude of these differences is, the more
challenging to process the graph becomes. To assess the impact of this perturbation, we introduce
the topological noise ∆i for each node i ∈ [n] within our HSBM.
Theorem 3. Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}), with each topological noise ∆i

independently sampled from N (0, δI), assuming that d = c and ∀k ∈ [c], D̄ = D̄k, with probability
at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F ′
tk

ςn
+

σ

γ

ςn
F ′
tk

ln

(
ηt
ηk

))
(7)

over data X̃ = D−1AX , where F ′
tk = 1√

2
|| 1
ρk
m̂k − 1

ρt
m̂t||, ρt =

√
γ2δ2

2σ2 + 1
D̄t

, and ςn =

1± on(1).

Theorem 3 shows that topological noise has a detrimental impact on separability, which is equivalent
to degrading the average degree by a factor of 1

1+rδ2 , where r = γ2D̄k

2σ2 > 0. It indicates that for the
specific heterophily patterns, a larger δ results in a more significant reduction in separability. Note
that we can directly generalize Definition 2 by utilizing F ′

tk when considering the topological noise.

4.4 IMPACT OF STACKING MULTIPLE GRAPH CONVOLUTIONS

As the number of GC operations increases, the over-smoothing dilemma (Li et al., 2018; Oono &
Suzuki, 2020) indicates that the features of different nodes tend to converge to the same values,
thereby losing their separability. In this subsection, we present the separability gains of stacking
multiple GC operations and introduce a novel and different insight: nodes can still maintain their
separability, even in the presence of over-smoothing.
Theorem 4. Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {0}), assume that ∀k, t ∈ [c], D̄ = D̄t,
ηt = ηk,

∑
t mtk ≍

∑
t mkt, and

∑
t mεitmtεj = ω(log n2/n). When each class possesses exactly

n
c nodes, with probability of at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
, (8)

over data X(l) =
(
D−1A

)l
X , where

F
(l)
tk =

√√√√ c||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

D̄

log n
(9)

for l > 1 and ς
(l)
n = 1± lon(1).

Different from the previous analysis (Wu et al., 2023), Theorem 4 is obtained by fully considering
the correlation of the aggregated node features. It requires a stronger density assumption, i.e., p̄k =
ω (log n/

√
n), obtained according to

∑
t mεitmtεj = ω(log n2/n), while a more general version

of Theorem 4 with less assumptions is provided in Theorem A1.

Theorem 4 claims that when applying l GC operations, the separability gains F
(l)
tk is determined

by the normalized distance of the l-powered neighborhood distributions. Although the distance
||m̂(l)

k − m̂
(l)
t || tends to converge to 0 as l goes to infinity, its normalized version can also possess a

large values through the normalization term.

Proposition 1. When M̂ is non-singular, the approximation of F (l)
tk in Eq. (112) is always larger

than 0 and
∑

t,k F
(l)
tk >

√
cD̄/ log n.

Specifically, Proposition 1 further claims that there exists various regimes that the separability gains
never become 0, i.e., when M̂ is non-singular, F (l)

tk > 0 holds for every l. It reveals that the separa-
bility of each pair of classes is larger than 1

2 , i.e., the nodes exhibit a certain degree of separability.
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(b) Example of mixed heterophily pattern with a = 0.2. The accuracy of GCN is 71.84.
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(c) Example of bad heterophily pattern with a = 0.18. The accuracy of GCN is 59.88.

Figure 1: Examples of different heterophily patterns. The accuracy of MLP is 71.12.

Besides,
∑

t,k F
(l)
tk >

√
cD̄/ log n further depicts the separability of at least one pair of classes

never becomes to 1
2 , which indicates that nodes still possess certain separability as l goes to infinity.

However, although the relative differences between the nodes persist, as l increases, their absolute
values become exponentially smaller (Oono & Suzuki, 2020). Therefore, due to the precision lim-
itations of the floating-point data formats, these differences eventually cannot be captured by the
classifier, leading to the decrement in the classification accuracy.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

Here, we verify our theory on the synthetic data generated from our HSBM model. We set the
number of nodes as n = 1000, the number of classes as c = 5, and the dimension of node features
as d = 5. For each class k ∈ [c], its nodes are sampled by a Gaussian distribution with a mean of ek,
which is a standard basis vector [0, ..., 1, ..., 0] with a 1 at position k, and a standard variance of 0.6.
The averaged node degree for each class is 25. We employ a family of heterophily patterns, where
m̂ij is a when i = j, 2a when j = i+ 1 and 1

3 − a otherwise. Besides, results on more heterophily
patterns and large-scale graphs can be found in Appendix B.2 and Appendix B.3, respectively. A
one-layered MLP is employed as the baseline. One or multiple GC operations are incorporated into
MLP to obtain the corresponding GCN.

Impact of Different Heterophily Patterns. Fig. 2(a) shows the results with different heterophily
patterns as a ∈ [0, 0.33]. As can be observed, the overall change in accuracy aligns with the varia-
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(a) Results with different heterophily patterns.
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(b) Results with different node degrees.
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(c) Results with different topological noises.
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(d) Results with multiple GC operations.

Figure 2: Results on synthetic data. (a)-(c) present the results of MLP incorporated one GC oper-
ation, while (d) displays the results with multiple GC operations. In each figure, the gray region,
enclosed by the minimum gain and maximum gain curves, represents the area of separability gains.
The Pearson Correlation represents the Pearson correlation coefficient between the separability gains
and the differences in the confusion matrix with and without the GC operations.

tion in the region of separability gains, which demonstrates the effectiveness of Theorem 2. Besides,
the Pearson correlation between the separability gains and the differences in the confusion matrix
with and without the GC operations are highly negative. It indicates that different heterophily pat-
terns function by altering the pair-wise classification boundaries. These impacts can be captured
by the proposed separability gains. Specifically, Fig. 1 illustrates three typical examples of differ-
ent heterophily patterns with a = 0.25, 0.20, 0.18, respectively. In the good heterophily pattern
where a = 0.25, the separability gains are relatively high for all cases; hence, GCN performs better
than MLP in all the two-classes subtasks, i.e., all non-diagonal elements of the confusion matrix
(GCN-MLP) are negative. On the contrary, in the bad heterophily pattern shown in Fig. 1(c), the
separability gains are all smaller than ςn, leading to the increment of the number of misclassified
nodes. Besides, Fig. 1(b) shows a example of mixed heterophily pattern, wherein the separability
between two classes improves for some pairs while deteriorates for others. In summary, although
these three examples exhibit similar heterophily patterns, their differences in the distances between
the neighborhood distributions lead to distinct impacts on the separability of nodes.

Impact of Node Degrees. Fig. 2(b) shows the results with different averaged node degrees when
a = 0.20. The averaged degree is varied within the range of [5, 350] to assess its impact. It is evident
that as the averaged degree increases, the separability gains also increase, resulting in an overall
improvement of accuracy. During this process, the heterophily pattern with a = 0.2 transforms
from being a bad pattern to becoming a good one, which verifies that the averaged degree possess a
complementary effects alongside heterophily patterns, as claimed Theorem 2.

Impact of Topological Noise. Fig. 2(c) shows the results with different topological noises when
a = 0.20, where the variance of noise, δ, ranging from 0 to 0.01. Note that in practice, the empirical
neighborhood distributions may be influenced by sampling, especially when δ is large. Thus, we
utilize the empirical M̂ to calculate the separability gains. As can be observed, as the variance of
topological noises increases, the separability gains decrease, leading to a reduction of the overall
accuracy, which verifies the results of Theorem 3.

Impact of stacking Multiple GC Operations. Fig. 2(d) shows the results with stacking multiple
GC operations. Here, the precise separability gains in Theorem A1 are utilized. As can be observed,
as l increases, the variations in separability gains closely mirror the fluctuation in accuracy, which
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Table 1: Results on the real-world datasets. Note that A.R, A.Y, and S.P. are the abbreviations of
Amazon-ratings, Arxiv-year and Snap-patents.

Cora Chameleon Workers Actor A.R. Squirrel A.Y. S.P.

Acc(MLP) 77.68 54.29 76.81 35.00 50.58 36.63 36.40 31.50
Acc(GCN) 90.04 70.33 78.66 30.33 48.01 60.67 42.44 34.42

Max Gain 1.7823 1.4220 1.1508 0.0364 0.4504 0.4101 1.6912 1.4820
Min Gain 1.4216 0.2242 1.1508 0.0093 0.0838 0.0846 0.4255 0.2198

Type of Het. Good Good Good Bad Mixed Mixed Mixed Mixed

verifies the effectiveness of our analysis. Both of them increase during the initial several GC op-
erations, and then consistently maintain at high values. However, when l approaches 50, both the
separability gains and accuracy experience a sudden decrease. As in a further investigation in Ap-
pendix B.4, the aggregated node features encounter a precision limitation issue, i.e., the employed
float64 data format cannot accurately represent the node features. Specifically, when the relative
difference among different node features are smaller than the precision of Float64, the difference
cannot be precisely obtained. By increasing the precision of the data format, the point of descent
can be postponed.

5.2 REAL WORLD DATA

Here, we verify our theory on eight real-world node classification datasets, i.e., Cora, Chameleon,
Workers, Actor, Amazon-ratings, Squirrel, as well as two large-scale datasets, i.e., Arxiv-year and
Snap-patents. Their statistics are provided in Appendix C.1. On each dataset, a two-layered MLP
is employed as the baseline. We incorporate one GC operation in the second layer of MLP to
construct the corresponding GCN. Both MLP and GCN run with the same settings, as provided in
Appendix C.2. Note that in the real-world datasets, both the node features and topology are highly
correlated. Intuitively, this correlation can degrade the variance of the features among the aggregated
nodes, like in Appendix A.5.2. Thus, a lower ςn is required to understand real-world data results.

As shown in Tab. 1, Cora, Chameleon, and Workers exhibit significant separability gains, indicat-
ing a good heterophily pattern that enhances the separability among nodes within each class pair.
On the contrary, Actor shows minimal separability gains, resulting in reduced distinguishability
among nodes, which can be characterized as bad heterophily. Besides, Amazon-ratings, Squirrel,
Arxiv-year, and Snap-patents display both substantial and minimal gains, contributing to improved
separability in some class pairs while reducing it in others, illustrating mixed heterophily patterns.
Therefore, the overall performance of GCN on these two datasets may either surpass or fall behind
that of MLP. A more comprehensive discussion can be found in Appendix C.3. These results on
real-world datasets further validate the effectiveness of our theory.

6 CONCLUSION AND FUTURE WORK

This paper presents theoretical understandings of the impacts of different heterophily patterns for
GNNs by incorporating the graph convolution (GC) operations into fully connected networks via
the proposed Heterophilous Stochastic Block Models (HSBM), a general random graph model that
can accommodate diverse heterophily patterns. We present three novel insights. Firstly, we show
that by applying a GC operation, the separability gains are determined by the Euclidean distance
of the neighborhood distributions and

√
E [deg], where E [deg] is the averaged node degree. Sec-

ondly, we show that the topological noise has a detrimental impact on separability. Finally, when
applying multiple GC operations, we show that the separability gains are positively correlated to
the normalized distance of the l-powered neighborhood distributions, which indicates that the nodes
still possess separability as l goes to infinity in various regimes.

However, there are still some limitations that need to be improved in future work. First, our theory is
constructed based on Gaussian node features. It may be beneficial to extend the analysis to features
with more general distributions. Second, our analysis relies on the assumption of the independence
among node features and among edges. Exploring the distribution of nodes and edges with complex
dependency relationships could potentially provide more valuable insights. These limitations are
beyond the scope of our HSBM and are left as the future work.
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A THEORETICAL PROOFS

A.1 ASSUMPTIONS.

Our analysis is constructed based on the following two gentle assumptions.

Assumption 1. p̄k ≍ p̄t, ∀k, t ∈ [c].

Assumption 2. p̄k = ω
(
log2 n/n

)
, ∀k ∈ [c].

Assumption 1 claims that nodes within different classes possess similar averaged degrees. This as-
sumption allows us to approximate D̄ ≈ D̄k, to make our results more clear and easy to understand.
It’s worth noting that many literatures also implicitly or explicitly assume that D̄ = D̄k. For ex-
ample, the averaged degrees of different classes are the same when utilizing the CSBM model to
generate graphs, with each class exhibiting the same number of nodes (Baranwal et al., 2023; Wu
et al., 2023). Our assumption allows the averaged degrees of different classes to possess the same
order of magnitude, which covers a broader regime. Also, we observe this property is frequently
satisfied in many real-world datasets, as confirmed in Appendix C.1. Assumption 2 states that the
graph is not too sparse and enable some numerical properties of graphs, e.g., the number of nodes
within each class and node degree concentrate to their expectations. This assumption is similar to
those in the random graph model literatures, e.g., (Baranwal et al., 2021).

A.2 PROOF OF THEOREM 1

A.2.1 BAYESIAN CLASSIFIER

Lemma A1 (Bayesian Classifier). Given (X,A) = HSBM(n, c, σ, {µk} ,η,M, {∆i}), the
Bayesian optimal classifier over data X is

h∗(x) = argmax
k∈[c]

(
⟨x,µk⟩+ σ2 ln ηk

)
. (10)

Proof. The Bayesian optimal classifier, which is based on the criterion of maximum a posteriori
probability, is defined as

h∗(x) = argmax
k∈[c]

(P[y = k | x = x]) . (11)

Then, according to the Bayes’ theorem, the posteriori probability is

P[y = k | x = x] =
P[y = k]P[x | y = k]∑
t ̸=k P[y = t]P[x | y = t]

=
1

1 +
∑

t ̸=k
ηt·P[x|y=t]
ηk·P[x|y=k]

.
(12)

Denoting φt = ηt · P[x | y = t],

φt

φk
=

ηt · 1√
2πσ

exp
(
− (x−µt)

T (x−µt)
2σ2

)
ηk · 1√

2πσ
exp

(
− (x−µk)

T (x−µk)
2σ2

)
=

ηt
ηk

exp

(
⟨x,µt⟩ − ⟨x,µk⟩

σ2

)
.

(13)
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For any k1, k2 ∈ [c] and k1 ̸= k2, denote ϕ =
∑

t̸=k1,k2
φt. Then,

P[y = k1 | x = x] ≥ P[y = k2 | x = x]

⇐⇒
∑
t ̸=k2

φt

φk2

≥
∑
t ̸=k1

φt

φk1

⇐⇒ ϕ+ φk1

φk2

≥ ϕ+ φk2

φk1

⇐⇒ φ2
k1

+ ϕφk1
≥ φ2

k2
+ ϕφk2

⇐⇒ φk1
≥ φk2

⇐⇒ ηk1

ηk2

exp

(
⟨x,µk1

⟩ − ⟨x,µk2
⟩

σ2

)
≥ 1

⇐⇒ ⟨x,µk1
⟩+ σ2 ln ηk1

≥ ⟨x,µk2
⟩+ σ2 ln ηk2

.

(14)

A.2.2 PROOF OF THE PART ONE OF THEOREM 1

Proof. For any i ∈ [n], its features are generated from Gaussian distributions and can be represented
as

Xi = µεi + σgi, (15)
where gi ∼ N (0, I) is the random Gaussian noise. Then,

P [ζi(k)] = P [P[y = εi | x = Xi] ≥ P[y = k | x = Xi]]

= P
[
⟨Xi,µεi⟩+ σ2 ln ηεi ≥ ⟨Xi,µk⟩+ σ2 ln ηk

]
= P

[
γ′2 + γ′σµ̂T

εigi + σ2 ln ηεi ≥ γ′σµ̂T
k gi + σ2 ln ηk

]
= P

[
µ̂T

k gi − µ̂T
εigi ≤

γ′2 + σ2 ln ηεi − σ2 ln ηk
γ′σ

]
,

(16)

where µ̂k = µk/||µk||. Denote Zεi = µ̂T
εigi and Zk = µ̂T

k gi. Then, Zεi , Zk ∼ N (0, 1) and
E [ZεiZk] = 0. Therefore,

P [ζi(k)] = Φ

(
γ′2 + σ2 ln ηεi − σ2 ln ηk√

2γ′σ

)
= Φ

(
γ

2σ
+

σ ln ηεi − σ ln ηk
γ

)
= Φ

(
γ

2σ
+

σ

γ
ln

ηεi
ηk

)
.

(17)

Thus, for each t, k ∈ [c],

Ei∈CtP [ζi(k)] = Φ

(
γ

2σ
+

σ

γ
ln

(
ηt
ηk

))
. (18)

A.2.3 PROOF OF THE PART TWO OF THEOREM 1

Proof. Denote η̂t = ηt

ηt+ηk
and η̂k = ηk

ηt+ηk
. Then, we have 0 < η̂k < η̂t < 1 and η̂k + η̂t = 1.

S(t, k) can be rewrited as

S(t, k) = η̂tEi∈CtP [ζi(k)] + η̂kEi∈Ck
P [ζi(t)]

= η̂tΦ

(
γ

2σ
+

σ

γ
ln

η̂t
η̂k

)
+ η̂kΦ

(
γ

2σ
− σ

γ
ln

η̂t
η̂k

)
.

(19)

Denote α = γ
σ > 0. Then, the question is converted to prove the function

f (α, η̂t) = η̂tΦ

(
α

2
+

1

α
ln

η̂t
η̂k

)
+ η̂kΦ

(
α

2
− 1

α
ln

η̂t
η̂k

)
(20)

13



Under review as a conference paper at ICLR 2024

is an increasing function with respect to both α and η̂t. W.o.l.g, let η̂t ≥ η̂k.

1. Firstly, we prove that f (α, η̂t) is an increasing function of α, i.e., if α1 > α2 > 0, we have
f (α1, η̂t) > f (α2, η̂t) for any 1

2 < η̂t < 1.

When α1 > α2, we have

Φ

(
α1

2
+

1

α1
ln

η̂t
η̂k

)
> Φ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
(21)

and

Φ

(
α1

2
− 1

α1
ln

η̂t
η̂k

)
> Φ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
. (22)

Thus,

f (α1, η̂t) > η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
. (23)

Then, we need to prove that

η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
> f (α2, η̂t) , (24)

which is equivalent to prove that

η̂k

∫ α2
2 − 1

α1
ln

η̂t
η̂k

α2
2 − 1

α2
ln

η̂t
η̂k

ϕ (y) dy − η̂t

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ (y) dy > 0, (25)

where ϕ (y) = 1√
2π

exp
(
−y2

2

)
. Denote z = y + 1

α2
ln η̂t

η̂k
+ 1

α1
ln η̂t

η̂k
. Then, Eq. (25) is equivalent

to

η̂k

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ

(
z − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
dz − η̂t

∫ α2
2 + 1

α2
ln

η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

ϕ (y) dy > 0

⇐⇒
∫ α2

2 + 1
α2

ln
η̂t
η̂k

α2
2 + 1

α1
ln

η̂t
η̂k

[
η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
− η̂tϕ (y)

]
dy > 0.

(26)

Denote

g1 (y) = η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
− η̂tϕ (y) . (27)

Then, we will prove that g1 (y) > 0 for all y ∈
[
α2

2 + 1
α2

ln η̂t

η̂k
, α2

2 + 1
α1

ln η̂t

η̂k

]
.

g1 (y) > 0

⇐⇒ η̂kϕ

(
y − 1

α2
ln

η̂t
η̂k

− 1

α1
ln

η̂t
η̂k

)
> η̂tϕ (y)

⇐⇒ ln η̂k − y2

2
− 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

+

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y > ln η̂t −

y2

2

⇐⇒
(

1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y − 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

− ln
η̂t
η̂k

> 0

(28)
Since y ∈

[
α2

2 + 1
α2

ln η̂t

η̂k
, α2

2 + 1
α1

ln η̂t

η̂k

]
, we have(

1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)
y − 1

2

(
1

α1
ln

η̂t
η̂k

+
1

α2
ln

η̂t
η̂k

)2

− ln
η̂t
η̂k

≥
(

α2

2α1
− 1

2

)
ln

η̂t
η̂k

+

(
1

2α2
1

− 1

2α2
2

)(
ln

η̂t
η̂k

)2

>0.

(29)
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Thus, we have g1 (y) > 0 and

f (α1, η̂t) > η̂tΦ

(
α2

2
+

1

α1
ln

η̂t
η̂k

)
+ η̂kΦ

(
α2

2
− 1

α1
ln

η̂t
η̂k

)
> f (α2, η̂t) , (30)

which means f (α, η̂t) is an increasing function with respect to α.

2. Secondly, we prove that f (α, η̂t) is also an increasing function with respect to η̂t. Denote

f1 (α, η̂t) = η̂t

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (y) dy − η̂k

∫ α
2

α
2 − 1

α ln
η̂t
η̂k

ϕ (y) dy (31)

Then,

f (α, η̂t) = η̂tΦ

(
α

2
+

1

α
ln

η̂t
η̂k

)
+ η̂kΦ

(
α

2
− 1

α
ln

η̂t
η̂k

)
= Φ

(α
2

)
+ f1 (α, η̂t) .

(32)

Thus, the question is converted to prove that f1 (α, η̂t) is an increasing function with respect to η̂t.
Denoting z = α− y and g2 (η̂t, y) = η̂tϕ (y)− η̂kϕ (α− y), we have

f1 (α, η̂t) = η̂t

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (y) dy − η̂k

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

ϕ (α− z) dz

=

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t, y) dy.

(33)

Firstly, we prove that g2 (η̂t, y) ≥ 0.
g2 (η̂t, y) ≥ 0

⇐⇒ η̂tϕ (y)− η̂kϕ (α− y) ≥ 0

⇐⇒ ln η̂t −
y2

2
≥ ln η̂k − (α− y)

2

2

⇐⇒ αy − α2

2
− ln

η̂t
η̂k

≤ 0

(34)

Since for y ∈
[
α
2 ,

α
2 + 1

α ln η̂t

η̂k

]
,

αy − α2

2
− ln

η̂t
η̂k

≤ α(
α

2
+

1

α
ln

η̂t
η̂k

)− α2

2
− ln

η̂t
η̂k

= 0, (35)

we have g2 (η̂t) ≥ 0.

Secondly, we prove that g2 (η̂′t) > g2 (η̂t), if η̂′t > η̂t.
g2 (η̂

′
t) > g2 (η̂t)

⇐⇒ η̂′tϕ (y)− η̂′kϕ (α− y) > η̂tϕ (y)− η̂kϕ (α− y)

⇐⇒ (η̂′t − η̂t)ϕ (y) > (η̂′k − η̂k)ϕ (α− y)

(36)

Since η̂′t > η̂t, we have η̂′t − η̂t > 0 and η̂′k − η̂k < 0. Thus, g2 (η̂′t) > g2 (η̂t) is obtained.

Finally, we go back to the monotonicity of f1 (η̂t).

f1 (η̂
′
t)− f1 (η̂t) =

∫ α
2 + 1

α ln
η̂′
t

η̂′
k

α
2

g2 (η̂
′
t)−

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t) dy

≥
∫ α

2 + 1
α ln

η̂t
η̂k

α
2

g2 (η̂
′
t)−

∫ α
2 + 1

α ln
η̂t
η̂k

α
2

g2 (η̂t) dy

≥
∫ α

2 + 1
α ln

η̂t
η̂k

α
2

[g2 (η̂
′
t)− g2 (η̂t)] dy

> 0

(37)

Thus, f1 (η̂′t) is an increasing function with respect to η̂t.
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A.3 PROOF OF THEOREM 2

A.3.1 CONCENTRATION PROPERTIES

The following lemmas are derived by utilizing the Chernoff bound (Vershynin, 2018) similarly.
These results indicate that, as the number of nodes goes to infinity, the number of nodes within each
class, node degrees, and neighbors in each class tend to concentrate around their respective means.
Lemma A2 (Concentration of the Number of Nodes within Each Class). For each class k ∈ [c],
with probability at least 1− 1/Ploy(n), we have

|Ck| = ηkn±O(
√
n log n). (38)

Proof. In HSBM, ε1, . . . , εn are random variables independently sampled from the set [c], with
probability of η. Thus, 1εi=k are Bernoulli random variables with parameters ηk. Then, |Ck| =∑n

i=1 1εi=k is the sum of independent Bernoulli random variables with the mean of E [|Ck|] = ηkn.
By applying the Chernoff bound (Vershynin, 2018),

P {|Ck − ηkn| ≥ δηkn} ≤ 2 exp
(
−C1ηknδ

2
)
, (39)

for some C1 > 0. Let δ =
√

C2 logn
n , where C2 > 0 is a large constant. Then, we have with a

probability at least 1− 2n−C′
1 ,

|Ck| = ηkn± C ′
2

√
n log n, (40)

where C ′
1 > 0 and C ′

2 > 0.

Lemma A3 (Concentration of the Node Degrees). For each node i ∈ [n], its averaged degree is
defined as

D̄t ≜ E [Dii|εi = t] = np̄t, (41)
where p̄εi =

∑
k mεikηk represents the averaged edge connection probability. Then, with probabil-

ity at least 1− 1/Ploy(n), we have

Dii = np̄εi

(
1±O

(
1√
log n

))
= D̄εi

(
1±O

(
1√
log n

))
(42)

and
1

Dii
=

1

np̄εi

(
1±O

(
1√
log n

))
=

1

D̄εi

(
1±O

(
1√
log n

))
. (43)

Proof. For each node i ∈ [n], its degree Dii =
∑

j∈[n] aij is a sum of n independent Bernoulli ran-
dom variables, with the mean of E [Dii] = np̄εi . Then, by applying the Chernoff bound (Vershynin,
2018), for δ ∈ (0, 1] we have

P {|Dii − np̄εi | ≥ δnp̄εi} ≤ 2 exp
(
−C1np̄εiδ

2
)
, (44)

For some C1 > 0. Note that according to Assumption 1, dεi = ω
(
log2 n/n

)
. Then, denoting

δ = O
(

1√
logn

)
, with a probability at least 1− 2n−C′

1 , we have

Dii = np̄εi

(
1±O

(
1√
log n

))
(45)

and
1

Dii
=

1

np̄εi

(
1±O

(
1√
log n

))
, (46)

where C1 > 0.

Lemma A4 (Concentration of the Number of Neighbors in Each Class). For each node i ∈ [n] and
each class k ∈ [c], with probability at least 1− 1/Ploy(n), we have

|Ck ∩ Γi| = Dii · m̂εik

(
1±O

(
1√
log n

))
. (47)
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Proof. For each k ∈ [c] and i ∈ [n], |Ck ∩ Γi| =
∑

j∈[n] 1εj=kaij is a sum of n independent
Bernoulli random variables, with the mean of nηk ·mεik. By applying the Chernoff bound, we have

P
{
|Ck ∩ Γi| = ηknmεik

(
1± 10√

log n

)}
≥ 1− exp

(
−1

3
· n
C

·mεik · 100

log n

)
(48)

Based on the fact that n > log2 n, we have

1− exp

(
−1

3
· n
C

·mεik · 100

log n

)
≥ 1− n−

100mεik

3C (49)

Then, with a probability at least 1− 1/Ploy(n), we have

|Ck ∩ Γi| = ηknmεik

(
1± 10√

log n

)
(50)

and

|Ck ∩ Γi| = Diim̂εik

(
1±O

(
1√
log n

))
. (51)

A.3.2 FEATURE DISTRIBUTIONS AFTER A GC LAYER

Lemma A5. For any i ∈ [n], by applying a GC operation, its aggregated features are X̃i =(
D−1AX

)
i
. Then, with probability at least 1− 1/Ploy(n) over A and {εi}i∈[n],

X̃i ∼ N
(
µ̃εi(i), σ̃εi(i)

2
)
, (52)

where
µ̃εi(i) = µ̃εi(1± o(1)), µ̃εi =

∑
k∈[c]

m̂εikµk, (53)

σ̃εi(i) = σ̃εi(1± o(1)), σ̃εi =
σ√
D̄εi

, (54)

and o (1) = O
(

1√
logn

)
.

Proof. For each node i ∈ [n], the aggregated node features are

X̃i =
1

Dii

∑
j∈Γi

Xj =
1

Dii

∑
j∈Γi

µεj +
σ

Dii

∑
j∈Γi

gj , (55)

where gj ∼ N (0, I) are random noises. Then, the first item in Eq. (55) can be derived as

1

Dii

∑
j∈Γi

µεj =
1

Dii

∑
k∈[c]

∑
j∈Ck∩Γi

µk


=

1

Dii

∑
k∈[c]

|Ck ∩ Γi|µk

=
1

dεi

∑
k∈[c]

mεikηkµk

(
1±O

(
1√
log n

))

=
∑
k∈[c]

m̂εikµk

(
1±O

(
1√
log n

))
.

(56)

For the second item in Eq. (55), let g′
i =

1√
Dii

∑
j∈Γi

gj . Since gj are sampled independently for
all j ∈ [n], g′

i ∼ N (0, I). Thus,

σ

Dii

∑
j∈Ni

gj =
σ√
Dii

g′
i ∼ N

(
0, σ̃2

εi

(
1±O

(
1√
log n

))
I

)
, (57)
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where σ̃εi =
σ√
D̄εi

. Therefore, the aggregated features can be represented as

X̃i = µ̃εi

(
1±O

(
1√
log n

))
+ σ̃εi

(
1±O

(
1√
log n

))
gi, (58)

where
µ̃εi =

∑
k∈[c]

m̂εikµk (59)

and
σ̃εi =

σ√
D̄εi

. (60)

Recall that the features of each node are sampled from Gaussian distributions in HSBM as stated in
Sec. 3. Lemma A5 indicates that aggregating the Gaussian features according to A and {εi}i∈[n] is
equivalent to sampling the aggregated features from a new Gaussian distribution. Meanwhile, these
new aggregated Gaussian distributions are concentrated within each class. Note that for simplicity,
the correlations among X̃j are neglected due to their sightly impacts. A comprehensive analysis
that takes full consideration of the correlations can be found in Appendix A.5.2.

Lemma A6. For each node i ∈ [n], the Bayesian optimal classifier over the aggregated node
features X̃i is

h̃∗(x̃) = argmax
k∈[c]

(φ̃k) , (61)

as n → ∞, where

φ̃k = ηk
1√
2πσ̃k

exp

(
− (x̃− µ̃k)

T
(x̃− µ̃k)

2σ̃2
k

)
. (62)

Proof. The posteriori probability is

P[y = k | x̃] = P[y = k]P[x̃ | y = k]∑
t ̸=k P[y = t]P[x̃ | y = t]

=
1

1 +
∑

t ̸=k
ηtP[x̃|y=t]
ηkP[x̃|y=k]

.
(63)

Denote φ̃k = ηkP[x̃ | y = k]. For any k1, k2 ∈ [c] and k1 ̸= k2, we have

P[y = k1 | x̃] ≥ P[y = k2 | x̃] ⇐⇒ φ̃k1 ≥ φ̃k2 . (64)

A.3.3 PROOF OF THEOREM 2

Proof. According to Lemma A5, the aggregated node features follow the distribution

X̃i ∼ N
(
µ̃εi(i), σ̃εi(i)

2
)
, ∀i ∈ [n]. (65)

Denote k, t ∈ [c]. Then, we have

µ̃T
k µ̃t =

∑
o∈[c]

m̂koµo

T ∑
o∈[c]

m̂toµo


=
∑
o∈[c]

m̂kom̂toµ
T
o µo

= γ′2 < m̂k, m̂t > .

(66)
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For each node i ∈ [n], the probability of the node being misclassified regarding class k is

P [ζi(k)] = P [φ̃εi > φ̃k] . (67)

Denote B =
√

D̄k

D̄εi

. Since dk ≍ dt, B = 1± o(1). Then, we have

φ̃εi > φ̃k

⇐⇒ ηεi

√
D̄εi exp

(
−||x̃− µ̃εi ||2

2σ̃2
εi

)
> ηk

√
D̄k exp

(
−||x̃− µ̃k||2

2σ̃2
k

)
⇐⇒ ln

(
ηεi

√
D̄εi

)
− ||x̃− µ̃εi ||2

2σ̃2
εi

> ln
(
ηk
√
D̄k

)
− ||x̃− µ̃k||2

2σ̃2
k

⇐⇒ ln

(
ηεi

√
D̄εi

)
− D̄εi ||x̃− µ̃εi ||2

2σ2
> ln

(
ηk

√
D̄εiB

)
− D̄εiB

2||x̃− µ̃k||2

2σ2

⇐⇒ 2σ2

D̄εi

ln

(
ηεi
ηkB

)
− ||x̃||2

(
1−B2

)
+ 2x̃T µ̃εi − 2x̃T µ̃kB

2 − ||µ̃εi ||2 + ||µ̃k||2B2 > 0

⇐⇒ 2σ̃2
εi ln

(
ηεi
ηk

)
± o(1) + ||µ̃εi ||2ςn + 2σ̃εiµ̃

T
εigiςn − 2µ̃T

εiµ̃kB
2ςn − 2σ̃εiµ̃

T
k giςn + ||µ̃k||2B2 > 0

⇐⇒ 2σ̃2
εi ln

(
ηεi
ηk

)
ςn + γ′2||Bm̂k − m̂εi ||2ςn > 2σ̃εiγ

′
∑
o∈[c]

(Bm̂ko − m̂εio)
µT

o

||µo||
gi

⇐⇒ σ̃εi

γ′||Bm̂k − m̂εi ||
ln

(
ηεi
ηk

)
ςn +

γ′

2σ̃εi

||Bm̂k − m̂εi ||ςn >
∑
o∈[c]

Bm̂ko − m̂εio

||Bm̂k − m̂εi ||
µT

o

||µo||
gi,

(68)
where ςn = 1± on(1) and on(1) is an error term. In the second line, we take the logarithm of both
sides of the inequality. In the third line, we replace D̄k as BD̄εi . In the fifth line, we utilize the fact
that (1−B) = ±o(1) and ln(B) = ±o(1).

Then, for each o ∈ [c], denoting Zo =
µT

o

||µo||gi, Zo ∼ N (0, 1). For all o1 ̸= o2, E [Zo1Zo2 ] = 0.
Thus, we have ∑

o∈[c]

Bm̂ko − m̂εio

||Bm̂k − m̂εi ||
µT

o

||µo||
gi ∼ N (0, 1) . (69)

Then, the probability

P [ζi(k)] = Φ

(
γ′

2σ̃εi

||Bm̂k − m̂εi ||
ςn

+
σ̃εiςn

γ′||Bm̂k − m̂εi ||
ln

(
ηεi
ηk

))
= Φ

(
γ

2σ

Fεik

ςn
+

σςn
γFεik

ln

(
ηεi
ηk

))
,

(70)

where Fεik = 1√
2
||
√

D̄km̂k −
√

D̄εim̂εi || and ςn = (1± o (1)). Thus,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

Ftk

ςn
+

σ

γ

ςn
Ftk

ln

(
ηt
ηk

))
. (71)

A.4 PROOF OF THEOREM 3

Proof. For each node i ∈ [n], the aggregated node features are

X̃i =
1

Dii

∑
j∈Γi

Xj =
1

Dii

∑
j∈Γi

µεj +
σ

Dii

∑
j∈Γi

gj , (72)
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where gj ∼ N (0, I) are random noises. Then, the first term in Eq. (72) can be derived as

1

Dii

∑
j∈Γi

µεj =
1

Dii

∑
k∈[c]

∑
j∈Ck∩Γi

µk


=

1

Dii

∑
k∈[c]

|Ck ∩ Γi|µk

=
∑
k∈[c]

(m̂εik +∆ik)µkςn

= µ̃εiςn +
∑
k∈[c]

∆ikµkςn

= µ̃εiςn + γ′∆iQςn,

(73)

where

µ̃εi =
∑
k∈[c]

m̂εikµk, ςn =

(
1±O

(
1√
log n

))
, Q =


µ̂0

µ̂1

...
µ̂c−1

 . (74)

Since ∆i ∼ N
(
0, δ2I

)
and Q is an orthogonal matrix, we have

γ′∆iQ ∼ N
(
0,

γ2δ2

2
I

)
. (75)

For the second term in Eq. (72), let g′
i =

1√
Dii

∑
j∈Γi

gj . Since gj are sampled independently for
all j ∈ [n], g′

i ∼ N (0, I). Thus,
σ

Dii

∑
j∈Ni

gj =
σ√
Dii

g′
i = σ̃εiςng

′
i (76)

where σ̃εi =
σ√
D̄εi

. Therefore, the aggregated features can be represented as

X̃i =

(
µ̃εi +

γδ√
2
g′′
i +

σ√
D̄εi

g′
i

)
ςn

=

(
µ̃εi +

√
γ2δ2

2σ2
+

1

D̄εi

σg′′′
i

)
ςn,

(77)

where g′′
i ,g

′′′
i ∼ N (0, I). Denote σ̃′

εi = ρεiσ, ρεi =
√

γ2δ2

2 + 1
D̄εi

, and ϱ =
ρεi

ρk
. Then,

φ̃εi > φ̃k

⇐⇒ ηεi
σ̃′
εi

exp

(
−||x̃− µ̃εi ||2

2σ̃′2
εi

)
>

ηk
σ̃′
k

exp

(
−||x̃− µ̃k||2

2σ̃′2
k

)
⇐⇒ ln

(
ηεi
ρεi

)
− ||x̃− µ̃εi ||2

2ρ2εiσ
2

> ln

(
ηk
ρk

)
− ||x̃− µ̃k||2

2ρ2kσ
2

⇐⇒ 2σ̃′2
εi ln

(
ηεi
ηk

)
± o(1) + ||µ̃εi ||2ςn + 2σ̃′

εiµ̃
T
εigiςn − 2µ̃T

εiµ̃kϱςn − 2σ̃′
εiµ̃

T
k giςn + ||µ̃k||2ϱ > 0

⇐⇒ 2σ̃′2
εi ln

(
ηεi
ηk

)
ςn + γ′2||ϱm̂k − m̂εi ||2ςn > 2σ̃′

εiγ
′
∑
o∈[c]

(ϱm̂ko − m̂εio)
µT

o

||µo||
gi

⇐⇒
σ̃′
εi

γ′||ϱm̂k − m̂εi ||
ln

(
ηεi
ηk

)
ςn +

γ′

2σ̃′
εi

||ϱm̂k − m̂εi ||ςn >
∑
o∈[c]

ϱm̂ko − m̂εio

||ϱm̂k − m̂εi ||
µT

o

||µo||
gi.

(78)
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Similar to Eq. (69), we have ∑
o∈[c]

ϱm̂ko − m̂εio

||ϱm̂k − m̂εi ||
µT

o

||µo||
gi ∼ N (0, 1) . (79)

Then, the probability

P [ζi(k)] = Φ

(
γ′

2σ̃′
εi

||ϱm̂k − m̂εi ||
ςn

+
σ̃′
εi

γ′
ςn

||ϱm̂k − m̂εi ||
ln

(
ηεi
ηk

))
= Φ

(
γ

2σ

F ′
εik

ςn
+

σ

γ

ςn
F ′
εik

ln

(
ηεi
ηk

))
,

(80)

where F ′
εik

= 1√
2
|| 1
ρk
m̂k − 1

ρεi
m̂εi || and ςn = (1± o (1)). Thus,

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F ′
tk

ςn
+

σ

γ

ςn
F ′
tk

ln

(
ηεi
ηk

))
. (81)

A.5 PROOF OF THEOREM 4

A.5.1 SINGLE NODE FEATURE DISTRIBUTIONS AFTER STACKING l GC LAYERS

Lemma A7. For any node i ∈ [n], by applying l GC operations, its aggregated features are obtained

as X(l)
i =

((
D−1A

)l
X
)
i
. Then, with probability at least 1− 1/Ploy(n) over A and {εi}i∈[n],

X
(l)
i = µ(l)

εi (i) + σ
(l)
i g(l), (82)

where
µ(l)

εi (i) = µ(l)
εi (1± lon(1)), µ(l)

εi =
∑
k∈[c]

m̂
(l)
εik

µk, (83)

1√
n
σ ≤ σ(l)

εi ≤ σ, (84)

on (1) = O
(

1√
logn

)
, and g(l) ∼ N (0, I).

Proof. By applying l GC operations, the aggregated features of node i are

X
(l)
i =

(
D−1A

)l
i
X =

∑
j∈[n]

(
D−1A

)l
ij
µεj +

(
D−1A

)l
ij
gj , (85)

where gj ∼ N (0, I) are random noises. Then, we now prove that the first term in Eq. (85) can be
derived as ∑

j∈[n]

(
D−1A

)l
ij
µεj = µ(l)

εi (1± lon(1)), where µ(l)
εi =

∑
k∈[c]

m̂
(l)
εik

µk. (86)

When l = 1, Eq. (86) holds, as is claimed in Lemma A5.

When l > 1, assuming that Eq. (86) holds for l − 1, we have∑
j∈[n]

(
D−1A

)l
ij
µεj =

∑
j,k∈[n]

(
D−1A

)
ik

(
D−1A

)l−1

kj
µεj

=
∑
k∈[n]

(
D−1A

)
ik

∑
t∈[c]

m̂
(l−1)
εkt

µt(1± (l − 1)on(1))

=
∑
k∈[c]

D−1
ii |Ck ∩ Γi|

∑
t∈[c]

m̂
(l−1)
kt µt(1± (l − 1)on(1))

=
∑
k∈[c]

m̂εik(1± on(1))
∑
t∈[c]

m̂
(l−1)
kt µt(1± (l − 1)on(1))

=
∑
t∈[c]

m̂
(l)
εitµt(1± lon(1)).

(87)
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For the second term, since gj are sampled independently for all j ∈ [n],(
D−1A

)l
ij
gj ∼ N

(
0,
(
σ
′(l)
i

)2
I

)
, (88)

where
(
σ
′(l)
i

)2
=
∑

j

((
D−1A

)l
ij

)2
. Therefore, similar to the lemma 3 in Wu et al. (2023),

1

n
≤
(
σ
′(l)
i

)2
≤ 1 (89)

Denote σ
(l)
i = σ

′(l)
i σ. Then, the second term can be represented as(

D−1A
)l
ij
gj = σ

(l)
i g

(l)
i , (90)

where g
(l)
i ∼ N (0, I), which completes the proof.

Lemma A7 presents the feature distributions of a single node. However, it is not feasible to in-
dependently sample nodes from their feature distributions due to the high correlation among the
g
(l)
i values for all nodes i ∈ [n]. In the following subsection, we will explore the analysis of this

correlation and transform the correlated distribution into an independent one.

A.5.2 CORRELATION OF THE NODE FEATURES

For convenience, we introduce the matrix G defined as

G =


g0

g1

...
gc−1

 , (91)

which represents the aggregated matrix containing Gaussian noise from all nodes.
Lemma A8. For any i ∈ [n], by applying GC operation l times, its aggregated noisy features are

obtained as G(l)
i =

((
D−1A

)l
G
)
i
. With probability at least 1−1/Ploy(n) over A and {εi}i∈[n],

we have
E
[
Var

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
=

1

2n2
||Q(l)||2F , (92)

where Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
and Q

(l)
ij = ||

(
D−1A

)l
i
−
(
D−1A

)l
j
||2.

Proof. Denoting S =
(
D−1A

)l
, the covariance of random variable G

(l)
i and G

(l)
j is

Cov
(
G

(l)
i ,G

(l)
j

)
=Cov

∑
k∈[n]

SikGk,
∑
t∈[n]

SjtGt


=
∑
k∈[n]

∑
t∈[n]

SikSjt Cov (Gk,Gt)

=
∑
k∈[n]

SikSjk Cov (Gk,Gk)

=ST
i Sj .

(93)

Then, the expectation of the variance of these node features is

E
[
Var

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
=

1

n2

∑
i<j

E
[
G

(l)T
i G

(l)
i

]
− 2E

[
G

(l)T
i G

(l)
j

]
+ E

[
G

(l)T
j G

(l)
j

]
.

(94)
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Since E
[
G

(l)
i

]
= 0, the above equation becomes

1

n2

∑
i<j

Cov
(
G

(l)
i ,G

(l)
i

)
− 2Cov

(
G

(l)
i ,G

(l)
j

)
+Cov

(
G

(l)
j ,G

(l)
j

)
=

1

n2

∑
i<j

||Si − Sj ||22 =
1

2n2

∑
i,j

||Si − Sj ||22 =
1

2n2
||Q||2F ,

(95)

where each Qij = ||Si − Sj ||2.

Lemma A8 shows the expected variance of features among different nodes. By denoting ḡ(l) =

E
[
Mean

(
G

(l)
0 ,G

(l)
1 , ...,G

(l)
n−1

)]
, we can dismantle G

(l)
i as

G
(l)
i = ḡ(l) +

||Q(l)||F√
2n

g
(l)
i , (96)

where g(l)
i ∼ N (0, I) and ∀i ̸= j,E

[
g
(l)T
i g

(l)
j

]
= 0. Therefore, for each node i ∈ [n], it aggregated

features can be approximately represented as

X
(l)
i = µ(l)

εi (i) + σ

(
ḡ(l) +

||Q(l)||F√
2n

g
(l)
i

)
. (97)

Subsequently, by employing a stronger density assumption, i.e.,
∑

t mεitmtεj = ω(log n2/n), we
obtain the approximate formula to ||Q(l)||22.

Lemma A9. Denote Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
and Q

(l)
ij = ||

(
D−1A

)l
i
−(

D−1A
)l
j
||2. Assume that each class possesses exactly n

c nodes and
∑

t mεitmtεj = ω(log n2/n).
Then, with probability at least 1− 1/Ploy(n), we have

||Q(l)||2F =
n

c

∑
k1,k2∈[c]

||m̂(l)
k1

− m̂
(l)
k2
||22 (1± lon (1)) , (98)

for l > 1.

Proof. In HSBM, edges are constructed from the probability matrix M ∈ Rc×c. Each edge, con-
necting nodes i and j, is sampled from a Bernoulli distribution, with a parameter mεiεj . We general-
ize M to the edge-wise edge generation matrix, i.e., M ∈ Rn×n, where Mij = mεiεj . Similarly,
we also generalize the neighborhood distribution matrix M̂ ∈ Rc×c to a edge-wise matrix, i.e.,
M̂ ∈ Rn×n, where M̂ij = m̂εiεj . Then, the expectations of adjacency matrix and the normalized
adjacency matrix are

E [A] = M, E
[
D−1A

]
=

c

n
M̂, (99)

respectively. Consider the adjacency matrix A drawn from HSBM, where exactly n/c nodes are in
each class. Denote A = E

[
D−1A

]
. Then,

A =
c

n

 m̂00En
c

· · · m̂0(c−1)En
c

...
. . .

...
m̂(c−1)0En

c
· · · m̂(c−1)(c−1)En

c

 , (100)

where En
c

is the all-ones matrix. Following l iterations of multiplication, it yields

Al =
c

n


m̂

(l)
00En

c
· · · m̂

(l)
0(c−1)En

c

...
. . .

...
m̂

(l)
(c−1)0En

c
· · · m̂

(l)
(c−1)(c−1)En

c

 . (101)
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We now prove the concentration of the element of l-powered normalized adjacency matrix when
l > 1, i.e., with a probability at least 1− 1/Ploy(n),(

D−1A
)l
ij
= Al

ij (1± lon (1)) . (102)

When l = 2, by utilizing the average node degree D̄ to approximate the degree of each nodes, i.e.,
D̄ii ≈ D̄, the two-powered normalized adjacency matrix satisfies(

D−1A
)2
ij
=

1

D̄2

∑
k∈[n]

aikakj . (103)

Here,
∑

k∈[n] aikakj is the sum of independent Bernoulli random variables with a mean of vij =

E
[∑

k∈[n] aikakj

]
. Then, vij = n

c

∑
t∈[c] mεitmtεj . By applying the Chernoff bound (Vershynin,

2018), we have

P


∣∣∣∣∣∣
∑
k∈[n]

aikakj − vij

∣∣∣∣∣∣ ≥ δvij

 ≤ 2 exp
(
−C1vijδ

2
)
, (104)

where C1 > 0 is an absolute constant. We choose δ =
√

C2 logn
vij

, for a large constant C2 > 0. Note

that since
∑

t mεitmtεj = ω(log n2/n), we have vij = ω(log n2) and δ = O
(

1√
logn

)
= on(1).

Then, with probability at least 1− 1/Ploy(n), we have∑
k∈[n]

aikakj =
n

c

∑
t∈[c]

mεitmtεj (1± on(1)) . (105)

Therefore, (
D−1A

)2
ij
=

c

n

∑
t∈[c]

m̂εitm̂tεj (1± on (1))

=
c

n
m̂(2)

εiεj (1± on (1))

= A2
ij (1± on (1)) .

(106)

When l > 2, if (
D−1A

)l−1

ij
= Al−1

ij (1± (l − 1)o (1)) (107)

exists, with a probability at least 1− 1/Ploy(n), we have(
D−1A

)l
ij
=
∑
k∈[n]

(
D−1A

)
ik
Al−1

kj (1± (l − 1)on (1))

=
∑
t∈[c]

D̄−1|Ct ∩ Γi|
c

n
m̂

(l−1)
tεj (1± (l − 1)on (1))

=
c

n

∑
t∈[c]

m̂εitm̂
(l−1)
tεj (1± lo (1))

=
c

n
m̂(l)

εiεj (1± lon (1))

= Al
ij (1± lon (1)) .

(108)

Note that, here, the error term l · on(1) increases linearly as l increases. By a assumption that
for each nodes, its neighborhood distribution is exactly the sampled one, i.e., ∀i ∈ [n], t ∈ [c],
D̄−1|Ct ∩ Γi| = m̂εit, this error term decreases to on(1), which is not correlated the l.

Then,
||Q||2F =

∑
i,j∈[n]

||
(
D−1A

)l
i
−
(
D−1A

)l
j
||22

=
∑

i,j∈[n]

c

n
||m̂(l)

εi − m̂(l)
εj ||

2
2 (1± lon (1))

=
n

c

∑
k,t∈[c]

||m̂(l)
k − m̂

(l)
t ||22 (1± lon (1)) .

(109)
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A.5.3 PROOF OF THEOREM 4

Theorem A1 (A general version of Theorem 4). Given (X,A) =
HSBM(n, c, σ, {µk} ,η,M, {0}), by assuming that ∀k, t ∈ [c], D̄k = D̄t, with probability
of at least 1− 1/Ploy (n), we have

Ei∈Ct
P [ζi(k)] = Φ

(
γ

2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
, (110)

over data X(l) =
(
D−1A

)l
X ,where

F
(l)
tk =

n

||Q(l)||F
||m̂(l)

k − m̂
(l)
t ||2, (111)

Q(l) ∈ Rn×n is the distance matrix of
(
D−1A

)l
, Q(l)

ij = ||
(
D−1A

)l
i
−
(
D−1A

)l
j
||2, and ς

(l)
n =

(1± lon (1)).

Then, by assuming that each class possesses exactly n
c nodes, ∀k, t ∈ [c], ηt = ηk,

∑
t mtk ≍∑

t mkt, and
∑

t mεitmtεj = ω(log n2/n), for l > 1, Eq. (111) can be further represented as

F
(l)
tk =

√√√√ c||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

D̄

log n
. (112)

Proof. According to Appendix A.5.2, the aggregated features can be reformulated as

X
(l)
i = µ(l)

εi (i) + σḡ(l) + σ̄g
(l)
i , (113)

where σ̄ = ||Q(l)||F√
2n

σ, g(l)
i ∼ N (0, I), and ∀i ̸= j,E

[
g
(l)T
i g

(l)
j

]
= 0. For each node i ∈ [n], the

probability of node is misclassified into category k is

P [ζi(k)] = P
[
φ(l)
εi > φ

(l)
k

]
, (114)

where φ
(l)
k = ηt · P[X(l)

i | y = k]. Then,

φ(l)
εi > φ

(l)
k

⇐⇒ ηεi exp

(
−||X(l)

i − σḡ(l) − µ
(l)
εi ||2

2σ̄2

)
> ηk exp

(
−
||X(l)

i − σḡ(l) − µ
(l)
k ||2

2σ̄2

)

⇐⇒ ln ηεi −
||X(l)

i − σḡ(l) − µ
(l)
εi ||2

2σ̄2
> ln ηk −

||X(l) − σḡ(l) − µ
(l)
k ||2

2σ̄2

⇐⇒ 2σ̄2 ln

(
ηεi
ηk

)
+ ||µ(l)

εi ||
2ς(l)n + 2σ̄µ(l)T

εi ḡ
(l)
i ς(l)n − 2µ(l)T

εi µ
(l)
k ς(l)n − 2σ̄2µ

(l)T
k ḡ

(l)
i ς(l)n + ||µ(l)

k ||2 > 0

⇐⇒ 2σ̄2 ln

(
ηεi
ηk

)
ς(l)n + γ′2||m̂(l)

k − m̂(l)
εi ||

2ς(l)n > 2σ̄γ′
∑
o∈[c]

(
m̂

(l)
ko − m̂(l)

εio

) µT
o

||µo||
ḡ
(l)
i

⇐⇒ σ̄

γ′||m̂(l)
k − m̂

(l)
εi ||

ln

(
ηεi
ηk

)
ς(l)n +

γ′

2σ̄
||m̂(l)

k − m̂(l)
εi ||ς

(l)
n >

∑
o∈[c]

m̂
(l)
ko − m̂

(l)
εio

||m̂(l)
k − m̂

(l)
εi ||

µT
o

||µo||
gi.

(115)
Similar to Eq. (69), we have ∑

o∈[c]

m̂
(l)
ko − m̂

(l)
εio

||m̂(l)
k − m̂

(l)
εi ||

µT
o

||µo||
gi ∼ N (0, 1) . (116)
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Then, the probability

P [ζi(k)] = Φ

(
γ′

2σ̄
||m̂(l)

k − m̂(l)
εi ||ς

(l)
n +

σ̄

γ′||m̂(l)
k − m̂

(l)
εi ||

ln

(
ηεi
ηk

)
ς(l)n

)

= Φ

(
γ

2σ

F
(l)
εik

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
εik

ln

(
ηεi
ηk

))
,

(117)

where
F

(l)
tk =

n

||Q(l)||F
||m̂(l)

k − m̂
(l)
t ||2 (118)

and ς
(l)
n = (1± lon (1)).

By assuming that each class possesses exactly n
c nodes and

∑
t mεitmtεj = ω(log n2/n), the above

formula can be further represented as

F
(l)
tk =

√√√√ nc||m̂(l)
k − m̂

(l)
t ||22∑

k1,k2∈[c] ||m̂
(l)
k1

− m̂
(l)
k2
||22

, (119)

for l > 1, according to Lemma A9. Since
∑

t mtk ≍
∑

t mkt, for each k1, k2 ∈ [c],
1
c2 (
∑

t mtk2)(
∑

t mk1t) ≥
∑

t mk1tmtk2
= ω

(
log n2/n

)
. Then, we have p̄k = ω (log n/

√
n)

and D̄ = ω (log n
√
n). Then, Eq. (120) can be represented as
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log n
, (120)

Note that the On(1) error term can be combined with ςn. Then, we have

Ei∈Ct
P [ζi(k)] = Φ

(
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2σ

F
(l)
tk

ς
(l)
n

+
σ

γ

ς
(l)
n

F
(l)
tk

ln

(
ηt
ηk

))
. (121)

A.6 PROOF OF PROPOSITION 1

Proof. When M̂ is non-singular, denote M̂M̂−1 = I . Then, according to the compatibility of
matrix norms, we have

||M̂−1||F ≥ c/||M̂||F > 0 (122)

and
||m̂(l)

k − m̂
(l)
t ||2 ≥ ||m̂k − m̂t||2||M̂−1||1−l

F > 0. (123)

Thus, we obtain that each separability satisfies

0 < F
(l)
tk . (124)

Then, since
log n√
cD̄

∑
t,k∈[c]

F
(l)
tk ≥

∑
t,k∈[c]

(
log n√
cD̄

F
(l)
tk

)2

= 1, (125)

we have ∑
t,k∈[c]

F
(l)
tk ≥

√
cD̄/ log n. (126)
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B ADDITIONAL RESULTS FOR SYNTHETIC DATA

B.1 MORE VISUALIZATIONS WITH DIFFERENT a

Here, we present additional results for different values of a. Reminding that the family of heterophily
patterns is constructed based on the parameter a, where M̂ij is a when j = i, 2a when j =
i + i, and 1

3 − a otherwise. Thus, a is chosen from the range of [0, 1
3 ]. Specifically, we select

six representative heterophily patterns to elaborate the effect of different heterophily patterns, where
a ∈ [0.04, 0.05, 0.1, 0.12, 0.26, 0.3]. Note that ςn ≈ 1.2 in these heterophily patterns.
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Figure 3: Example of mixed heterophily with a = 0.04. The accuracy of GCN is 74.24.

0 1 2 3 4

0
1

2
3

4

0.05 0.10 0.28 0.28 0.28

0.28 0.05 0.10 0.28 0.28

0.28 0.28 0.05 0.10 0.28

0.28 0.28 0.28 0.05 0.10

0.10 0.28 0.28 0.28 0.05

Neighborhood Distribution

0 1 2 3 4
Predicted Labels

0
1

2
3

4
Tr

ue
 L

ab
el

s

- 1.06 1.48 1.48 1.06

1.06 - 1.06 1.48 1.48

1.48 1.06 - 1.06 1.48

1.48 1.48 1.06 - 1.06

1.06 1.48 1.48 1.06 -

Separability Gains

0 1 2 3 4
Predicted Labels

0
1

2
3

4
Tr

ue
 L

ab
el

s

717 88 30 36 129

105 719 122 26 28

30 122 707 104 37

38 30 97 703 132

113 39 29 149 670

Confusion Matrix: GCN

0 1 2 3 4
Predicted Labels

0
1

2
3

4
Tr

ue
 L

ab
el

s

3 16 -51 -31 63

27 6 62 -49 -46

-32 55 -22 35 -36

-32 -39 30 -11 52

33 -36 -42 61 -16

Confusion Matrix: (GCN-MLP)

0

200

400

600

800

1000

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

100

75

50

25

0

25

50

75

100

Figure 4: Example of mixed heterophily with a = 0.05. The accuracy of GCN is 70.32.

Figs. 3 and 4 depict two instances of mixed heterophily with values of a equal to 0.04 and 0.05,
respectively. It is evident that these two patterns exhibit very similar neighborhood distributions, re-
sulting in similar separability gains. When a = 0.04, nodes within classes 1 and 2 possess a smaller
gain, i.e., 1.18, while nodes within classes 1 and 3 possess a larger gain, i.e., 1.66. By considering
the ςn ≈ 1.2, this implies that nodes within class 1 and 2 are more indistinguishable, while nodes
within class 1 and 3 are more distinguishable. This presumption can be verified from the differences
in the confusion matrices of GCN and MLP. As can be observed, when a GC operation is applied,
the number of nodes belonging to class 1 but misclassified into class 2 increases by 27, while the
number of nodes misclassified into class 3 decreases by 49. When a = 0.05, the separability gains
are slightly smaller than those when a = 0.04. This results in the overall non-diagonal elements of
the differences in the confusion matrices having relatively larger values compared to the situation
when a = 0.04.

Figs. 5 and 6 show two examples of bad heterophily with a = 0.1 and a = 0.12, where the neigh-
borhood distributions are similar across different classes. Their separability gains are all smaller
than ςn. Therefore, after applying a GC operation, the separability of each class pair degrades. The
graph with a = 0.12 possesses smaller separability gains than the graph with a = 0.1, leading to a
larger damage to the separability. For example, when applying a GC operation, the number of nodes
belonging to class 0 that are misclassified to class 1 increases 79 and 87 when a = 0.1 and a = 0.12,
respectively.

Figs. 7 and 8 present two examples of good heterophily with a = 0.26 and a = 0.3, where the
neighborhood distributions differ significantly across different classes. In both cases, their sepa-
rability gains exceed ςn. Consequently, by applying a GC operation, the separability between all
pairs of classes increases, resulting in an overall accuracy improvement. The graph generated with
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Figure 5: Example of bad heterophily with a = 0.1. The accuracy of GCN is 45.10.
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Figure 6: Example of bad heterophily with a = 0.12. The accuracy of GCN is 37.94.
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Figure 7: Example of good heterophily with a = 0.26. The accuracy of GCN is 91.86.
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Figure 8: Example of good heterophily with a = 0.3. The accuracy of GCN is 97.80.

a = 0.3 exhibits an even more distinct neighborhood distribution. As a result, the gains from the
GC operation are more substantial, as evidenced by the differences in the confusion matrix.

In summary, the above observations further verify the effectiveness of Theorem 1 and shed light on
the underlying mechanism driving the influence of heterophily.

B.2 MORE HETEROPHILY PATTERNS

The synthetic graphs in Sec. 5.1 are all generated from a family of heterophily patterns with param-
eter a. Here, we validate our theory on two more families of heterophily patterns.
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Homophilous Family is a family of homophily patterns, where the diagonal elements possess dif-
ferent values from the other elements. It neighborhood distributions are

M̂ =


a1 b1 b1 b1 b1
b1 a1 b1 b1 b1
b1 b1 a1 b1 b1
b1 b1 b1 a1 b1
b1 b1 b1 b1 a1

 , (127)

where a1 ∈ [0, 1] and b1 = (1− a1) /4.

Group Family is a family of group heterophily patterns. There are two groups of classes, i.e., group
(0, 1) and group (2, 3, 4). The intra-group classes group possess similar neighborhood distribution,
while inter-group classes possess different neighborhood distribution. It neighborhood distributions
are

M̂ =


a2 b2 c2 c2 c2
b2 a2 c2 c2 c2
d1 d1 a1 b1 b1
d1 d1 b1 a1 b1
d1 d1 b1 b1 a1

 , (128)

where a2 ∈ [0, 0.2], b = a+ 0.2, c = (0.8− 2 ∗ a)/3, and d = (0.6− 3 ∗ a)/2.
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(a) Results with homophilous family.
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Figure 9: Results of additional heterophily patterns.

Fig. 9 show the results of the above two families of heterophily patterns, with different a1 and a2.
In Fig. 9(a), curves of maximum gain and minimum gain coincide, which indicates the separability
gains are all the same. Therefore, the Pearson correlation between separability gains and confusion
matrix gains is meaningless under such circumstance. Similarly, a same situation occurs in Fig. 9(b),
when a2 = 0.12. Overall, the separability gains are positively correlated with the accuracy. The
separability gains and confusion matrix gains are highly negative correlated when the separability
gains are not with one value.

B.3 LARGE-SCALE SYNTHETIC GRAPHS

Here, we verify our theory on the large-scale synthetic graphs generated from our HSBM model.
Similarly, we adopt the settings in Sec. 5.1 with the exception of assigning the number of nodes
as n = 100, 000. Since the averaged node degree for each class is still 25, the expected number
of edges in these large-scale graphs is 2, 500, 000. As can be observed in Fig. 10, the results of
the large-scale synthetic graphs are similar to those in Fig. 2(a), where the number of nodes is only
1000. This observation further validates the effectiveness of our theory.
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Figure 10: Results on large-scale synthetic data with the number of nodes as n = 100, 000.

B.4 PRECISION PROBLEM WITH STACKING MULTIPLE GC OPERATIONS

To verify the precision limitation issue, we introduce two additional data formats: float32 and
float128. Note that in our development environment, float32, float64, and float128 can accurately
represent the numbers up to 7, 16, and 19 digits, respectively. 1
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(a) Results on the implementation of float32.
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(b) Results on the implementation of float128.

Figure 11: Results with stacking multiple GC operations, implemented on different data formats.

As can be observed in Figs. 2(d), 11(a) and 11(b), both of their accuracy curves and separability gain
regions exhibit similar behavior. They maintain the similar high values during an initial period and
then suddenly drop at some point. However, they experience this sudden drop at different numbers
of GC operations: 22 for float32, 50 for float64, and 60 for float128. This observation suggests that
the suddenly decrement of accuracy is caused by the precision limitation of the corresponding data
format.

For a deeper investigation, Fig. 12 visualizes the variations in three variables under the implementa-
tion of different data formats. In Fig. 12, averaged STD represents the standard variance calculated
among different dimension of features, i.e., σ̃(l); average Mean Distance represents the average of
the distance of the feature within different classes γ̃(l) ≈ Mean

(
||µ̃(l)

i − µ̃
(l)
i ||
)

. Reminding that

for Gaussian node features, γ̃(l)

2σ̃(l) can represents the separability when stacking l GC operations as
stated in Theorem 1).

Under the implementations of different data formats, the σ̃(l) and γ̃(l) are decreasing with approx-
imate the same rate during an initial period. Then, for the results of float64, both the standard
variance does not decline when their value approach approximately 10−15, i.e., when the number of
GC operations grows to 50, both of them cannot be precisely represented. Therefore, as is expected,
the accuracy of GCN decreases suddenly. When we increase the precision of floating-point data

1This part of the code is implemented in NumPy (https://numpy.org/doc/stable/index.html), where
np.float128 provides only as much precision as np.longdouble, 64 bits in our development environment.
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(a) Precision problem of Float32 data format.
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(b) Precision problem of Float64 data format.
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(c) Precision problem of Float128 data format.

Figure 12: Precision bounds for different data formats.

format to float128, the difference of the node features can be obtained until they degrade to 10−18.
Then, the point of descent can be postponed. On the contrary, when utilizing float32, the difference
cannot be obtained when they degrade to 10−7.

Therefore, this observation demonstrates that as the number of GC operations increases, although
the nodes remain distinguishable, there will be a sudden decrease in accuracy, due to the precision
problem associated with the data format.

C ADDITIONAL RESULTS FOR REAL-WORLD DATA

C.1 DATASET STATISTICS

We employ eight node classification datasets to verify the effectiveness of our theory, including two
citation network (i.e. Cora (Yang et al., 2016) and Arxiv-year (Lim et al., 2021)), two Wikipedia net-
works (i.e. Chameleon and Squirrel) (Pei et al., 2020), a co-occurrence network (i.e. Actor (Pei et al.,
2020)), a co-purchasing network (i.e., Amazon-ratings (Platonov et al., 2023)), a crowdsourcing co-
working network(i.e., Workers (Platonov et al., 2023)), and a patent network(i.e., Snap-patents)
(Platonov et al., 2023). Their statistics are provided in Tabs. 2 and 3. Their homophily ratios are
calculated following Pei et al. (2020). For each dataset, we randomly selected 60%/20%/20% nodes
to construct the training/validation/testing sets.
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Table 2: Dataset Statistics (Part One).
Nodes Edges node features classes avg degree homophily ratio

Cora 2708 10556 1433 7 3.90 0.83
Chameleon 2277 62792 2325 5 27.55 0.25

Actor 7600 30019 932 5 3.93 0.16
Amazon-ratings 24492 93050 300 5 7.60 0.32

Squirrel 5201 396846 2089 5 76.27 0.22
Workers 11758 519000 10 2 44.14 0.59

Arxiv-year 169343 1166243 128 5 6.89 0.26
Snap-patents 2923922 13975791 269 5 4.78 0.22

Table 3: Dataset Statistics (Part Two).
avg degree (class) nodes (class)

Cora [4.35, 4.74, 4.36, 3.46, 3.73, 3.64, 3.66] [351, 217, 418, 818, 426, 298, 180]
Chameleon [21.94, 24.76, 27.32, 26.50, 39.17] [456, 460, 453, 521, 387]

Actor [4.13, 3.90, 3.95, 3.77, 4.01] [ 853, 1337, 1630, 1815, 1965]
Amazon-ratings [3.72, 3.97, 3.82, 3.56, 3.15] [6560, 9010, 5678, 2183, 1061]

Squirrel [46.38, 61.86, 73.97, 88.06, 111.13] [1042, 1040, 1039, 1040, 1040]
Workers [40.45, 74.27] [9192, 2566]

Arxiv-year [9.71, 18.95, 14.21, 7.64, 3.63] [31971, 21189, 37781, 29799, 48603]
Snap-patents [4.80, 7.15, 7.84, 6.48, 3.13] [559377, 609501, 551116, 579876, 624052]

C.2 DETAILED SETTINGS

We employ a two-layered MLP for the baseline network and incorporate one GC operation to the
last layer to construct the corresponding GCN. The cross-entropy loss is utilized as the loss function,
and Adam Kingma & Ba (2015) optimizer is employed. We conduct the same grid search to find
the best group of hyperparameters. The number of hidden neurons, learning rate, weight decay rate,
and dropout rate are obtained by the grid-search strategy. These hyperparameters are search in:

• number of hidden neurons: hidden ∈ [16, 32, 64, 128, 256];
• learning rate: lr ∈ [0.001, 0.005, 0.01];
• weight decay rate: wd ∈ [0, 1e− 5, 5e− 4, 1e− 4];
• dropout rate: dropout ∈ [0, 0.2, 0.5].

C.3 VISUALIZATIONS OF THE RESULTS ON REAL-WORLD DATA

Here, we present detailed visualizations of the neighborhood distribution, topological noise, separa-
bility gains, and the learned confusion matrices on these five real-world datasets for a comprehensive
understanding.

Discussion on Cora. Fig. 13 presents the visualization of results for Cora, a typical homophilous
dataset. As can be observed, its neighborhood distribution matrix is a diagonally dominant matrix,
where the diagonal elements consistently possess large values. Besides, Cora exhibits relatively low
topological noise. Therefore, the separability gain for each class pair is significant. According to
the difference in the confusion matrix of GCN and MLP, we can observe that it effectively reduces
the number of misclassified nodes across nearly all class pairs.
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Figure 13: Results for Cora.
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Figure 14: Results for Chameleon.
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Discussion on Chameleon. Fig. 14 presents the results for Chameleon, a typical heterophilous
dataset. Based on its neighborhood distribution matrix, it exhibits similarities to the group het-
erophily patterns shown in Appendix B.2. Chameleon is divided into two class groups, namely
(0, 1) and (2, 3, 4), where intra-group classes share similar neighborhood distributions, while inter-
group classes have distinct ones. This characteristic is reflected in its separability gains matrix.

As claimed in Theorem 1, when nodes within different class possess varying proportions, the class
with a larger number of samples experience more significant benefits, while the class with fewer
samples derive fewer benefits and may even encounter a decrease in the classification accuracy.
However, their collective impact consistently aligns with the corresponding separability gain. There-
fore, when examining the difference matrix as shown in Fig. 14(f), it is essential to consider the
symmetric elements (i, j) and (j, i) together to assess the separability gain effect between classes i
and j.

As observed, the classification results for all class pairs possess positive gains. Even in the case of
the pair (2, 3), which has a separability gain of 0.22, there is a positive classification gain (2 more
samples are successfully classified). Thus, Chameleon can be regarded as exhibiting a favorable
heterophily pattern with the ςn ≈ 0.2.
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Figure 15: Results for Workers.

Discussion on Workers. Fig. 15 illustrates the results for Workers, a heterophilous dataset with only
two node categories. As can be observed, in Workers, nodes within the two classes exhibit similar
neighborhood distribution. However, due to the large averaged degree (approximately 44.14), the
separability gain for the two classes is still significant.

As shown in Fig. 15(f), the differences in the confusion matrix between GCN and MLP align with
the corresponding separability gains shown in Fig. 17(c). Note that, as shown in Tab. 3, the number
of nodes within class 0 (9192) is larger than the number of nodes within class 1 (2566). Therefore,
both the MLP and GCN tend to classify nodes into class 0. According to our Theorems 1 and 2, the
class with a larger number of samples, i.e., class 0, experience more significant benefits. Thus, the
elements (1, 0) exhibits a larger decrease, while (0, 1) possesses a smaller one.
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Figure 16: Results for Actor.

Discussion on Actor. Fig. 16 illustrates the results for Actor, a heterophilous dataset. As can be
observed, in Actor, different classes possess similar neighborhood distributions, and its topological
noise is significant. Therefore, its separability gains are minimal, as shown in Fig. 16(c), leading
to a deterioration in classification performance when utilizing GCN. Thus, Actor exhibits a bad
heterophily pattern.

Eq. (4) in Theorem 2 suggests that when the separability gains are less than ςn, classes with more
nodes experience a more significant decrease in separability. In contrast, classes with fewer nodes
may experience a slight decline or even an increase in separability. As observed in Fig. 16(f),
although GCN exhibits worse overall results compared to MLP, it misclassifies more nodes into
classes 3 and 4, while misclassifying fewer nodes into the other three classes. This observation is
consistent with the results of Theorem 2.
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Figure 17: Results for Amazon-ratings.

Discussion on Amazon-ratings. Fig. 17 visualizes the results of Amazon-ratings, a heterophilous
dataset. As can be observed from Fig. 17(c), by assuming that ςn ≈ 0.25, the topological information
should boost the classification between class pairs (0, 3), (0, 4), (0, 2), (0, 1), (1, 4), and (1, 3), while
damage the others. Therefore, Amazon-ratings possesses a mixed heterophily pattern.

As shown in Fig. 17(f), the differences in the confusion matrix between GCN and MLP largely
align with the corresponding separability gains shown in Fig. 17(c). The only exception is the class
pair (0, 1), whose separability should increase but experiences a decrease. This discrepancy may be
attributed to the distribution of node features. As evident in Fig. 17(d), samples within classes 0 and
1 appear to possess similar node features. In general, the results of Amazon-ratings are consistent
with our theoretical findings in Theorem 2.
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Figure 18: Results for Squirrel.

Discussion on Squirrel. Fig. 18 illustrates the results of Squirrel, a heterophilous dataset. As
can be observed from Fig. 18(a), Squirrel possess very similar neighborhood distributions across
different classes. However, as indicated in Tab. 3, Squirrel has a notably high average degree of
76.27. Therefore, it achieves relatively significant separability gains. By considering the ςn ≈ 0.12,
Squirrel exhibits a mixed heterophily pattern.

Based on the differences in the confusion matrix between GCN and MLP, as presented in Fig. 18(f),
when using GCN, it enhances the classification between every pair of classes except for pair (0, 1).
This is because pair (0, 1) has a very small separability gain of 0.08, which is smaller than ςn. This
observation aligns with our theoretical results in Theorem 2.
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Figure 19: Results for Arxiv-year.

Discussion on Arxiv-year. Fig. 19 visualizes the results of Arxiv-year, a large-scale heterophilous
dataset, which possesses 169,343 nodes and 1,166,243 edges. As can be observed from Fig. 19(c),
by assuming that ςn ≈ 0.5, the topological information should damage the classification between
class pair (3, 4), while boost the others. Therefore, Arxiv-year exhibits a mixed heterophily pattern.

In Fig. 19(f), we jointly consider the symmetric elements (i, j) and (j, i) together to assess the
separability gain effect between classes i and j, according to Theorem 1. As can be observed, the
differences in the confusion matrix between GCN and MLP align with the corresponding separabil-
ity gains shown in Fig. 19(c), i.e., only the class pair (3, 4) exhibits an increment of the misclassified
nodes. This observation in the large-scale real-world dataset validates the effectiveness of our theory.

Discussion on Snap-patents. Fig. 20 visualizes the results of Snap-patents, a large-scale het-
erophilous dataset with 2,923,922 nodes and 13,975,791 edges. As can be observed from Fig. 20(c),
by assuming that ςn ≈ 0.9, the topological information should damage the classification between
class pairs (0, 1), (1, 2), (2, 3), and (3, 4), while boost the others. Therefore, Snap-patents possesses
a mixed heterophily pattern.

As shown in Fig. 20(f), the differences in the confusion matrix between GCN and MLP largely
align with the corresponding separability gains shown in Fig. 20(c). The only exception is the class
pair (0, 1), whose separability should decrease but experiences an increase. This discrepancy may
be attributed to the distribution of node features. As evident in Fig. 20(d), MLP tends to classify
nodes into class 0, 1, and 3, which indicates that the distribution of nodes features (learned node
embeddings) are not similar to Gaussian features, leading to this sightly inconsistency. In general,
the results of Snap-patents are largely consistent with our theoretical findings in Theorem 2.
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Figure 20: Results for Snap-Patents.

D NEURAL NETWORK INSTANCE OF BAYES CLASSIFIER

Here, we show that there exists a one-layered fully connected network, which can model the Bayes
classifier for the raw node features X or the aggregated node features X̃ . Therefore, our theoretical
results can be achievable through MLPs.

Proposition A1 (Instance for the Raw Features). Given (X,A) =
HSBM(n, c, σ, {µk} ,η,M, {∆i}), the Fully Connected Network Y = softmax(XW1 + b1) is
an instance of the Bayes classifier over X , which stated in Lemma A1, where the parameter matrix

W1 = (µT
0 µT

1 · · · µT
c−1) (129)

and
b1 = σ2(ln η0, ln η1, · · · , ln ηc−1). (130)

Proof. Given W1 in Eq. (129), we have

XW1 + b1 =


⟨X1,µ0⟩+ σ2 ln η0 ⟨X1,µ1⟩+ σ2 ln η1 · · · ⟨X1,µc−1⟩+ σ2 ln ηc−1

⟨X2,µ0⟩+ σ2 ln η0 ⟨X2,µ1⟩+ σ2 ln η1 · · · ⟨X2,µc−1⟩+ σ2 ln ηc−1

...
...

...
⟨Xn,µ0⟩+ σ2 ln η0 ⟨Xn,µ1⟩+ σ2 ln η1 · · · ⟨Xn,µc−1⟩+ σ2 ln ηc−1


(131)

For each node i ∈ [n], for any k1, k2 ∈ [c] and k1 ̸= k2, if

⟨Xi,µk1
⟩+ σ2 ln ηk1

≥ ⟨Xi,µk2
⟩+ σ2 ln ηk2

, (132)

we have
Yik1 ≥ Yik2 . (133)
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Therefore, the prediction of this fully connected network is

pred (Xi) = argmax
k

(Yik) = argmax
k

(
⟨Xi,µk⟩+ σ2 ln ηk

)
, (134)

which completed the proof.

Proposition A2 (Instance for the Aggregated Features). Given (X,A) =
HSBM(n, c, σ, {µk} ,η,M, {0}), when ∀k, t ∈ [c], D̄k = D̄t, the Fully Connected Net-
work Y = softmax(X̃W2 + b2) is an instance of the Bayes classifier over X̃ = D−1AX , which
is stated in Lemma A6, where the parameter matrix

W2 = (µ̃T
0 µ̃T

1 · · · µ̃c−1) (135)

and
b1 = σ̃2(ln η0, ln η1, · · · , ln ηc−1). (136)

Proof. When D̄k = D̄t, we have σ̃ = σ̃k, for all k ∈ [c]. Then,

φ̃k1
≥ φ̃k2

⇐⇒ ⟨x, µ̃k1
⟩+ σ̃2 ln ηk1

≥ ⟨x, µ̃k2
⟩+ σ̃2 ln ηk2

. (137)

Similarly, by replacing µ and σ in the proof of Proposition A1 to µ̃ and σ̃, we can complete the
proof.

E SIGNIFICANCE OF THE TWO-CLASSES SEPARABILITIES

Proposition A3 (Upper Bound of the Overall Error Rate). The overall error rate is bounded as

Ei∈[n]P [Xi is misclassified] ≤
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) , (138)

where 1 − S(t, k) ∈ [0, 1] can be viewed as the error rate when only considering the classification
of classes t and k.

Proof.

Ei∈[n]P [Xi is misclassified] =
∑
k∈[c]

ηkEi∈Ck
P [Xi is misclassified|εi = k]

=
∑
k∈[c]

ηkEi∈Ck
P [∪t̸=kζ

c
i (t)]

≤
∑
k∈[c]

ηk
∑
t ̸=k

Ei∈Ck
P [∪tζ

c
i (t)]

=
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) ,

(139)

where ζci (t) is the complement of ζi(t).

Proposition A3 illustrates that the overall error rate of the node classification is bounded by the
weighted sum of the error rates of the two-class subtasks. Increasing the separability degrades the
upper bound of the overall error rate, while decreasing the separability increases its upper bound.
Thus, we can get the following corollary for the good/bad heterophily patterns.
Corollary A1. When applying a GC operation, good heterophily patterns degrade the upper bound
of overall error rate, while bad heterophily patterns increase it.

Proof. According to Proposition A3,

Ei∈[n]P [Xi is misclassified] =
∑
t∈[c]

∑
k∈[c],k<t

(ηt + ηk) (1− S (t, k)) . (140)

Good heterophily patterns increase each S(t, k), thereby reducing this upper bound; whereas bad
heterophily patterns decrease each S(t, k), thereby increasing this upper bound.
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F SUGGESTIONS ON LEARNING HETEROPHILIOUS GRAPHS

Our work introduces a fresh perspective on heterophily and over-smoothing, coupled with a novel
GNN analytical framework, which may further boost the development of innovative methods. For
example, several possible insights are as follows.

Firstly, according to Theorem 2, different GNN aggregators may successfully classify different sub-
sets of nodes. Therefore, when learning on graphs with heterophily, it may be beneficial to adap-
tively select specific aggregators for individual nodes, e.g. Luan et al. (2022); Javaloy et al. (2023).
Furthermore, this result can also explain why the combination of ego- and neighbor-embeddings
can establish a stable and competitive baseline across diverse heterophily patterns Zhu et al. (2020);
Platonov et al. (2023).

Secondly, according to Theorem 3, the inconsistency in neighborhood distribution poses a potential
challenge when handling heterophilious graphs. Therefore, it may be beneficial to mitigate the
influence of topological noise within each class, probably through the design of an attention scheme.

Thirdly, according to Theorem 4, GNN with varying numbers of layers may successfully classify
different subsets of nodes. Therefore, it may be beneficial to explore information from high-order
neighborhoods, e.g., Zhu et al. (2020).

Besides, we believe that our theoretical results may provide additional inspiration to the community
for designing heterophily-specific GNNs, enabling them to successfully handle graphs with diverse
heterophily patterns.
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