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Abstract

Leveraging auxiliary textual data can help with001
user profiling and item characterization in rec-002
ommender systems (RSs). However, incom-003
plete item descriptions and the subjectivity of004
user-uploaded content limit the potential of tex-005
tual information in RSs. Although large lan-006
guage models (LLMs) emerge as promising007
tools for description enhancement, LLMs may008
suffer from hallucinations without fully explor-009
ing user-item collaborative information. To this010
end, we propose a Graph-aware Convolutional011
LLM method, which captures fine-grained col-012
laborative information behind high-order rela-013
tions in the user-item graph. To bridge the gap014
between graph structures and LLMs, we em-015
ploy the LLM as an aggregator for graph con-016
volution process, eliciting it to infer the graph-017
based knowledge iteratively. To mitigate the in-018
formation overload associated with large-scale019
graphs, we segment the graph processing into020
manageable steps, progressively incorporating021
multi-hop information in a least-to-most man-022
ner. Experiments on three real-world datasets023
demonstrate that our method consistently out-024
performs state-of-the-art approaches.1025

1 Introduction026

Recommender systems (RSs) are pivotal in deliver-027

ing personalized services to users for their satisfac-028

tion and platform profitability. Traditionally, RSs029

heavily rely on user-item interaction records (Ko-030

ren et al., 2009) but face challenges with data spar-031

sity (Sun et al., 2019). Recently, there has been032

a trend towards utilizing auxiliary textual infor-033

mation for recommendation (Torbati et al., 2023).034

However, texts with users and items often suffer035

from incompleteness and bias, with users offering036

vague self-descriptions and providers giving sparse037

or strategically biased item descriptions. Such texts038

1Our code is available at https://anonymous.4open.
science/r/GaCLLM_code-C326.

negatively impact user profiling and item character- 039

ization, hindering accurate recommendations. 040

To enhance the reliability and completeness of 041

textual descriptions, recent approaches have em- 042

ployed large language models (LLMs) to gener- 043

ate LLM-driven descriptions based on raw con- 044

tents and task-specific prompt instructions (Zheng 045

et al., 2023; Wu et al.; Liu et al., 2023; Wang et al., 046

2024b), such as incorporating users’ behaviors as 047

supplemental knowledge for retrieval-augmented 048

generation (Du et al., 2024; Liu et al., 2024b). Nev- 049

ertheless, these methods still suffer from unreliable 050

and inaccurate textual generation due to the limited 051

scope of information observed by LLMs and the 052

lack of collaborative user-item insights. 053

To this end, inspired by the success of graph con- 054

volutional networks (GCNs) (Kipf and Welling, 055

2016), we propose Graph-aware Convolutional 056

LLM (GaCLLM) to integrate collaborative user- 057

item information into LLMs to enhance reasoning 058

and mitigate hallucinations. We focus on two main 059

challenges: the constraints of the context length, 060

and the incompatibility between graph structures 061

and LLMs. First, large-scale user-item graphs pose 062

context length limitations for LLM inputs by sim- 063

ply describing them in a textual format. Specifi- 064

cally, LLMs often struggle to robustly access and 065

utilize information from lengthy contextual inputs, 066

particularly when the critical information (e.g., the 067

key entity in the graph) is located in the middle (Liu 068

et al., 2024a). Second, text-based LLMs are in- 069

herently ill-suited for processing structured graph 070

data. Existing methods convert graph data into 071

textual form using templates and sampling strate- 072

gies (Wang et al., 2023; Wu et al., 2024a). However, 073

these methods limit the LLMs’ ability to maintain 074

a global perspective on graphs, thereby hindering 075

their full potential in utilizing reasoning skills for 076

graph-based knowledge. 077

To tackle these challenges, we develop a convo- 078

lutional inference strategy to integrate high-order 079
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relations from the user-item interaction graph into080

LLMs. Specifically, we segment the graph process-081

ing into manageable steps in a least-to-most (Zhou082

et al., 2022) manner, iteratively incorporating multi-083

hop neighbor information to refine each node’s (i.e.,084

user or item) description. Therefore, the overload085

of describing the graph can be segmented into sev-086

eral steps, drastically reducing the input’s context087

length for LLMs. It can alleviate the limitations088

of lengthy inputs to capture critical information089

for LLM-driven reasoning. To align LLMs with090

graph structures, we employ the LLM as an ag-091

gregator function and maintain a global perspec-092

tive on graphs. Specifically, the LLM assimilates093

information from neighboring nodes and ensures094

layer-by-layer propagation throughout the graph.095

By leveraging high-order relations in the user-item096

interaction graph, our method enhances reason-097

ing capabilities and mitigates hallucinations in the098

LLM-driven descriptions. Finally, we fuse these099

LLM-driven descriptions into behavioral graph em-100

beddings to bridge the gap between text informa-101

tion and structural data in the user-item graph for102

recommendation. We conduct extensive experi-103

ments on multiple real-world datasets to show that104

our method consistently outperforms state-of-the-105

art approaches, validating the effectiveness of our106

proposed strategy through comprehensive ablation107

studies and in-depth analysis.108

2 RELATED WORK109

2.1 Graph-based Recommendation110

Graph-based recommender systems (Kipf and111

Welling, 2016; Huang et al., 2024; Yan et al., 2024)112

employ deep neural networks to model the com-113

plex user-item interactions within graph structures.114

LightGCN (He et al., 2020) streamlines GCNs for115

collaborative filtering with simplicity and effective-116

ness. Many studies build upon LightGCN using117

techniques like contrastive learning (Yu et al., 2022;118

Chen et al., 2023), transformer (Wei et al., 2023),119

neighborhood-structure (Lin et al., 2022), and self-120

supervised learning (Wu et al., 2021). However,121

they mainly focus on aggregating node embeddings122

and fail to extract insights from textual descriptions123

for recommendation.124

2.2 LLM for Recommendation125

There is increasing interest in leveraging LLMs126

in recommender systems (Wu et al., 2024b; Lyu127

et al., 2024). Non-tuning methods (Kuo and Chen,128

2023; Senel et al., 2024) assume that LLMs al- 129

ready possess recommendation capabilities and use 130

them to produce results directly through specific 131

prompts (Kang et al., 2023; Zhang et al., 2023) and 132

in-context learning (Hou et al., 2024; Wang and 133

Lim, 2024). The tuning paradigm (Lu et al., 2024) 134

employs LLM as feature extractors for downstream 135

tasks, aiming to capture contextual information for 136

a precise understanding of user profiles (Zheng 137

et al., 2023; Du et al., 2024), user attributes (Wang 138

et al., 2024a), and item descriptions (Liu et al., 139

2024b). However, relying only on raw text and ig- 140

noring graph knowledge leads to hallucinations. To 141

alleviate this, we aggregate additional information 142

from graphs into LLMs for more reliable textual 143

data to enhance recommendation results. 144

2.3 LLM with Graph Data 145

Integrating LLMs with graph data (Li et al., 2024; 146

Ye et al., 2023) effectively leverages the rich struc- 147

ture and relationships. Supervised methods use 148

LLMs for graph-aware tasks via encoding text into 149

node embeddings (Chen et al., 2024; Zhang et al., 150

2021) and incorporating graph elements into train- 151

ing (Sun et al., 2021; Yasunaga et al., 2022; Xie 152

et al., 2023; Zhang et al., 2024b). However, they 153

mainly compress graph knowledge into model pa- 154

rameters, overlooking the LLMs’ reasoning mech- 155

anism. Unsupervised methods (Wang et al., 2023; 156

Andrus et al., 2022; Wu et al., 2024a; Zhang et al., 157

2024a) convert graph information into text via tem- 158

plates or sampling strategies for LLMs to process. 159

However, they lack a global view of the graph and 160

still fail to fully exploit LLMs’ reasoning potential. 161

Thus, we propose to incorporate high-order graph 162

information into LLMs by iteratively distilling in- 163

formation from neighbors, enhancing its reasoning 164

while reducing token overhead. 165

3 Methodology 166

3.1 Problem Definition 167

We denote U = {u1, · · · , uN} and I = 168

{i1, · · · , iM} as the sets of users and items, where 169

N and M are sizes. The interaction records be- 170

tween users and items can be denoted as an inter- 171

action matrix R ∈ RN×M where Ru,i = 1 if user 172

u interacted with item i, and 0 otherwise. We also 173

possess the textual information (e.g., user resumes 174

and job descriptions in online recruitment scenar- 175

ios) of both users, denoted as Tu = [w1, · · · , wlu ] 176

with length lu for user u, and items, denoted as 177
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Figure 1: The overall architecture of the proposed method GaCLLM.

Ti = [w1, · · · , wli ] with length li for item i, and178

wk represents the k-th word.179

In this paper, our goal is to learn a matching180

function g(u, i) using the interaction records R and181

the textual descriptions. Our task is to recommend182

K items that a user is most likely to prefer, as183

known as top-K recommendation.184

3.2 Overview185

The overall architecture of GaCLLM is shown in186

Figure 1. First, we perform supervised fine-tuning187

(SFT) for LLM to strengthen its effectiveness in188

the task-related domain. Second, we propose an189

LLM-based graph-aware convolutional inference190

strategy to enhance user and item descriptions pro-191

gressively. Third, we align and integrate the gen-192

erated text with behavioral information captured193

through graph-based embeddings. Last, we present194

the objective function and model learning process.195

3.3 Supervised Fine-tuning196

To fully exploit the potential of the LLM in un-197

derstanding the task-related domain, we begin198

with fine-tuning it on domain-specific data. This199

involves the training of the LLM using descrip-200

tions from matched user-item pairs, enabling it to201

learn the alignment between user and item descrip-202

tions. Specifically, we employ the prompt template:203

"Query: Given an item’s description, generate a204

user’s description that fits it. The item’s descrip-205

tion is [Item Desc]. Answer: ", where [Item Desc]206

represents the actual description of the item. The207

prompt for inferring item descriptions with the pro-208

vided user description is designed symmetrically.209

The optimization process involves minimizing the210

negative log-likelihood loss for these templates: 211

Lsft = −
|TAnswer|∑
k=1

log Pr(wk | w<k, TQuery), (1) 212

where wk denotes the k-th word in Answer sen- 213

tence TAnswer, and Pr(TAnswer|TQuery) denotes the 214

generation probability for the produced answer 215

with a given query. This process uses parameter- 216

efficient fine-tuning techniques. 217

3.4 Convolutional Inference Strategy 218

Graph Construction. To explore the structured 219

graph with high-order descriptive texts for LLMs, 220

we organize the descriptions of users and items into 221

a unified graph G = (V, E) using the collaborative 222

information among users and items. Specifically, 223

the nodes V in the graph represent users and items, 224

i.e., V = {u|u ∈ U} ∪ {i|i ∈ I}. The edges E are 225

constructed by the interactions between users and 226

items R ∈ RN×M , i.e., E = {(u, i)|Ru,i = 1}. 227

Each node in the graph has a textual description, 228

such as a user profile in a social network or a re- 229

sume of a job seeker. 230

Least-to-Most Text Enhancement. Recognizing 231

the extensive knowledge, advanced text comprehen- 232

sion, and reasoning capabilities of LLMs, we pro- 233

pose an LLM-based convolutional inference strat- 234

egy to explore high-order relations among textual 235

contents in the user-item interaction graph. To 236

make user descriptions more representative, we 237

leverage the LLM to rewrite a user’s raw descrip- 238

tion Tu by the descriptions of items that the user 239

has interacted with: 240

T ′
u = LLM(Puser(Tu, {Ti : (u, i) ∈ E})), (2) 241

where Puser denotes the prompt template for gen- 242

erating user descriptions. Similarly, to enhance 243
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Figure 2: The prompt design for job recommendation
(top) and social recommendation (bottom).

item description Ti, we use the LLM to produce244

the enhanced version considering the descriptions245

of users by interaction:246

T ′
i = LLM(Pitem(Ti, {Tu : (u, i) ∈ E})), (3)247

where Pitem denotes the prompt template for gen-248

erating item descriptions. The design of a prompt249

template varies with the tasks. In this paper, we250

focus on job and social recommendation tasks. The251

details of the prompts are shown in Figure 2.252

To enable LLMs to effectively explore the struc-253

tured graph, we iteratively use them to refine the254

descriptions of nodes (users and items) step by step.255

Specifically, we set the first-layer descriptions of256

users {L(1)
u |u ∈ U} by raw texts provided by users,257

i.e., L(1)
u = Tu, and we set the first-layer descrip-258

tions of items {L(1)
i |i ∈ I} by raw texts given by259

item providers, i.e., L(1)
i = Ti. We employ the260

LLM as an "aggregator" in the graph convolutional261

process, enhancing its ability to infer graph-based262

knowledge through iterative steps. The updated263

user and item descriptions after each iteration are264

generated as follows:265

L(l+1)
u = LLM(Puser(L(l)

u , {L(l)
i : (u, i) ∈ E})),

(4)266267

L(l+1)
i = LLM(Pitem(L(l)

i , {L(l)
u : (u, i) ∈ E})),

(5)268

where L(l+1)
u and L(l+1)

i denote the descriptions of269

users and items at (l+1)-th layer after l iterations of270

generation, capturing l-hop descriptive information271

within the graph. After L iterations of this LLM-272

based convolutional inference strategy, we obtain273

Figure 3: The comparison of token usage of convo-
lutional inference strategy (left) and plain description
strategy (right) in text enhancement.

progressively refined descriptions across multiple 274

layers for both users and items. 275

Token Effectiveness and Efficiency. Compared 276

with organizing all hierarchical node descriptions 277

in the graph structure into a single, plain paragraph 278

of prompt (e.g., listing each node and its multi-hop 279

neighbors along with their descriptions), the pro- 280

posed convolutional inference strategy improves 281

both effectiveness and efficiency in token usage. 282

First, it optimizes the capture of graph-related 283

information within the limited context length of 284

LLMs. Specifically, the proposed strategy decom- 285

poses the ultimate task of description enhancement 286

into multiple steps, where each step (layer) only in- 287

tegrates the descriptions of direct (one-hop) neigh- 288

bors for the target node. This step-by-step approach 289

effectively alleviates the issues of hallucination and 290

distraction with long inputs, significantly reducing 291

the number of tokens required for each inference. 292

Second, our convolutional inference strategy ef- 293

ficiently reduces the redundancy in describing the 294

graph for target nodes. Specifically, when com- 295

paring the number of nodes required to capture L- 296

hop graph-based information for each node, the 297

proposed method incorporates O(|G| · |N | · L) 298

nodes into LLMs, where |G| denotes the number 299

of nodes in the graph and |N | denotes the average 300

number of neighbors of each node. In contrast, 301

the plain description strategy needs to incorporate 302

O(|G| · (1 + · · ·+ |N |L)) nodes into LLMs, lead- 303

ing to a significant increase in token usage. There- 304

fore, by minimizing the overlap in node descrip- 305

tions (such as the redundant description of common 306

neighbors shown in Figure 3), our method enhances 307

token efficiency. 308

3.5 Text-graph Alignment 309

To bridge the gap between LLM-driven text infor- 310

mation and behavioral-based structural data in the 311

user-item graph for recommendation, we propose 312

to align the user and item descriptions with their 313

corresponding graph embeddings in a unified man- 314
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ner. Specifically, the GCN-based embeddings for315

users and items at the l-th layer, denoted as e(l)u and316

e
(l)
i . They can be iteratively updated as follows:317

e(l+1)
u = Wl · [

∑
(u,i)∈E

e
(l)
i√

|Nu||Ni|
⊕ f(L(l)

u )],

(6)

318

e
(l+1)
i = Wl · [

∑
(u,i)∈E

e
(l)
u√

|Nu||Ni|
⊕ f(L(l)

i )].

(7)

319

Here, Nu denotes the set of items that are inter-320

acted by user u, and Ni denotes the set of users that321

interact with item i. |·| indicates their sizes. We use322

d to represent the dimension of latent embedding323

space and ⊕ for the fusing function such as con-324

catenation. The matrix Wl ∈ R2d×d denotes the325

transformation mapping matrix for the l-th layer.326

In the first layer, each user and item is initialized327

with a graph embedding based on its ID, repre-328

sented as e(1)u ∈ Rd and e
(1)
i ∈ Rd. To incorporate329

the textual descriptions associated with users and330

items, we encode these descriptions into constant331

text-based embeddings by f(·). In practice, we add332

a unique token [CLS] before the original text and333

feed the combined sequence into the simbert-base-334

chinese model. The output of the [CLS] token is335

used as the semantic embedding for alignment.336

To leverage the descriptions of users and items337

across all layers, we further combine their embed-338

dings from each layer to produce the final embed-339

dings of users and items through mean-pooling:340

ẽu =
1

L

∑L

l=1
e(l)u ; ẽi =

1

L

∑L

l=1
e
(l)
i . (8)341

3.6 Objective Function342

To measure the matching scores between users and343

items for final predictions, we propose to compute344

the inner product of their representations for recom-345

mendation prediction scores by R̂u,i =< ẽu, ẽi >,346

where < ·, · > denotes the inner product operation347

for similarity. It produces a score or probability348

of item i that user u will engage. For the model349

training process, we use the pairwise loss to define350

the recommendation objective function as follows:351

max
Θ

∑
(u,i,j)∈D

log σ(R̂u,i − R̂u,j)− λ||Θ||2, (9)352

where the train set D = {(u, i, j)} consists of353

triplets with a user u, an item i with positive feed-354

back from user u, and an item j with negative feed- 355

back from user u. Θ denotes all trainable param- 356

eters, and λ is the regularization coefficient of L2 357

norm || · ||2. 358

3.7 Complexity and Applicability 359

The model parameter of GaCLLM is approximately 360

O((M +N) · d+2 ·L · d2) = O((M +N · d) as 361

(M + N) ≫ 2 · L · d. The complexity is similar 362

to the efficient LightGCN (He et al., 2020). As for 363

model training, the time cost (3.76s per update) is 364

slightly higher than LightGCN (2.27s per update) 365

due to the additional text embeddings. The text 366

enhancement in Equation 4, 5 can be done offline 367

in parallel to speed up the generation phase, thus, 368

GaCLLM is scalable in real-world applications. 369

4 Experiment 370

4.1 Experimental Setup 371

Datasets. We investigate two scenarios: job rec- 372

ommendation and social recommendation. For job 373

recommendation, we use two real-world datasets 374

sourced from an online recruiting platform within 375

the Design and Sales professions with extensive 376

user-job interactions. The user resumes and job 377

descriptions are available as textual document in- 378

formation. For social recommendation, we use 379

a public dataset Pokec Slovakian Social Network 380

(Pokec) collected from an online social platform. It 381

contains the friendship relations among users and 382

their self-descriptions. We aim to suggest connec- 383

tions between users based on diverse preferences 384

and attributes. The dataset is divided into subsets 385

Pokec-A and Pokec-B by different user groups. The 386

statistics of datasets are in Table 1. 387

Evaluation. We randomly split the dataset equally 388

into training, validation, and test sets. We utilize 389

two well-recognized top-K recommendation met- 390

rics, mean average precision (MAP@K) and nor- 391

malized discounted cumulative gain (NDCG@K), 392

where K is set to 5 empirically. We run five times 393

and take the average performance as experimental 394

results with different random initializations. 395

Job # User Resumes # Job Descriptions # Interactions

Designs 12,290 9,143 166,270

Sales 15,854 12,772 145,066

Social # Group A # Group B # Connections

Pokec 6,240 6,213 104,152

Table 1: Statistics of datasets.
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Models

Job Recommendation Social Recommendation

Design Sales Pokec-A Pokec-B

MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5

SGPT-BE 0.0651 0.1042 0.0491 0.0861 0.0724 0.1013 0.0710 0.0980
MF 0.2081 0.3182 0.0957 0.1751 0.2639 0.3838 0.2616 0.3876
NCF 0.2100 0.3258 0.1468 0.2678 0.2969 0.4270 0.2930 0.4273

LightGCN 0.2940 0.4697 0.1658 0.3001 0.3293 0.4664 0.3294 0.4676
SimGCL 0.1471 0.2277 0.0921 0.1658 0.2940 0.4235 0.3093 0.4459

UltraGCN 0.2639 0.4258 0.1469 0.2725 0.3263 0.4691 0.3204 0.4623
SGL 0.2769 0.4418 0.1431 0.2567 0.3047 0.4385 0.3012 0.4394

LLM-CS 0.2669 0.2190 0.1530 0.2803 0.2569 0.3478 0.2527 0.3468
LLM-TES 0.2208 0.3478 0.1520 0.2797 0.2593 0.3517 0.2571 0.3512

LGIR 0.2898 0.4616 0.1694 0.3103 0.3245 0.4390 0.3081 0.4183

GaCLLM 0.3060* 0.4925* 0.1750* 0.3234* 0.3461* 0.4798* 0.3446* 0.4797*
Improvement 4.06% 4.85% 3.32% 4.21% 5.10% 2.28% 4.60% 2.60%

Table 2: Performance of GaCLLM and baseline methods. The best results are in bold and the runner-up results are
underscored. ∗ indicates significant improvements at the level of 0.05 with a paired t-test.

Baselines. We compare our GaCLLM with396

the following baselines using various approaches.397

Content-based and collaborative filtering RS:398

SGPT-BE (Muennighoff, 2022) applies GPT mod-399

els as Bi-Encoders for asymmetric search. MF (Ko-400

ren et al., 2009) learns low-dimensional representa-401

tions of users and items by reconstructing their in-402

teraction matrix based on the point loss. NCF (He403

et al., 2017) enhances collaborative filtering with404

deep neural networks to explore the non-linear in-405

teraction between user and item.406

Graph-based RS: For a fair comparison, we en-407

hance all graph-based methods with text informa-408

tion to incorporate an equal amount of utilized in-409

formation. LightGCN (He et al., 2020) simplifies410

the vanilla GCN’s implementation to improve ef-411

ficiency for recommendation. SimGCL (Yu et al.,412

2022) adds uniform noises to graph embeddings413

and conducts contrastive learning for recommenda-414

tion. UltraGCN (Mao et al., 2021) skips infinite415

layers of message passing of GCN for efficient rec-416

ommendation. SGL (Wu et al., 2021) conducts the417

self-supervised learning on the user-item graph to418

improve accuracy and robustness.419

LLM-based RS: LLM-CS (Chen et al., 2024)420

directly encodes text attributes into initial node421

features by LLMs for graph models in a cascad-422

ing structure. LLM-TES (Chen et al., 2024), as423

another variant, conducts text-level enhancement424

structure using LLMs and then encodes them as425

initial node embeddings. LGIR (Du et al., 2024)426

designs a GAN-based model and infers users’ im-427

plicit characteristics from their behaviors for re-428

sume completion.429

Implementation Details. For the LLM backbone,430

we use ChatGLM2-6B (Du et al., 2022) for its pro- 431

ficiency in handling multilingual tasks including 432

Chinese, as datasets Design and Sales are in Chi- 433

nese. For the SFT stage, we use LoRA (Hu et al., 434

2022) with a learning rate of 10−5, LoRA dimen- 435

sion of 128, batch size of 2, 104 training steps, and 436

gradient accumulation of 1. To ensure a fair com- 437

parison, we fix the embedding size of all methods 438

to 768, batch size to 1024, and regularization coeffi- 439

cient to 10−4 with AdamW (Loshchilov and Hutter, 440

2019) optimizer. Following (Yang et al., 2022; Du 441

et al., 2024), we use 20 negative instances for every 442

target item during evaluation. 443

4.2 Comparison with Baselines 444

Table 2 shows the overall comparison between 445

GaCLLM and baselines. From the experimental 446

results, we demonstrate that GaCLLM consistently 447

outperforms all baseline methods across all job rec- 448

ommendation and social recommendation scenar- 449

ios, with average improvements of 4.46%, 3.77%, 450

3.69%, and 3.60%. Besides, interaction-only (i.e., 451

MF and NCF) and text-only (SGPT-BE) methods 452

show inferior performance compared to the other 453

hybrid approaches, indicating the necessity of uti- 454

lizing both text and interaction information. In ad- 455

dition, the improvements in GCN-based methods 456

prove the value of extracting both graph and text 457

information for better recommendation outcomes. 458

This supports our motivation to combine LLMs 459

with graph structural information to improve the 460

quality of textual descriptions in recommendation 461

systems. SimGCL shows underwhelming results, 462

likely due to the graphical framework’s incompati- 463

bility with incorporating text-aware information ef- 464
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Models
Design Sales

MAP@5 NDCG@5 MAP@5 NDCG@5

RAW 0.2951 0.4717 0.1692 0.3082
PLAIN 0.2908 0.4655 0.1677 0.3080

w/o-ALIGN 0.2901 0.4654 0.1753 0.3212
GaCLLM 0.3060 0.4925 0.1750 0.3234

Models
Pokec-A Pokec-B

MAP@5 NDCG@5 MAP@5 NDCG@5

RAW 0.3402 0.4678 0.3326 0.4655
PLAIN 0.3362 0.4672 0.3287 0.4612

w/o-ALIGN 0.3435 0.4780 0.3331 0.4687
GaCLLM 0.3461 0.4798 0.3446 0.4797

Table 3: Performance of ablation variants.

fectively. Finally, simply adopting the LLM as the465

encoder (LLM-CS) or zero-shot reasoner (LLM-466

TES) produces suboptimal performance. LGIR467

shows stronger performance by inferring from di-468

rect neighbors but still overlooks the more com-469

plex, high-order relationships within the graph. As470

a result, by aligning LLM and high-order graph471

relations, GaCLLM achieves the best performance,472

validating its effectiveness.473

4.3 Ablation Study474

To verify the efficacy of the key components of475

GaCLLM, we test the following variants. RAW476

adopts raw descriptions instead of LLM-driven de-477

scriptions by the user-item graph. PLAIN removes478

the convolutional inference strategy, adopting a479

template to describe all node descriptions related480

to the target node in a plain way as the inputs of481

LLMs. w/o-ALIGN excludes the alignment with482

graph embeddings and simply adopts the enhanced483

descriptions by L-hop neighbors for node embed-484

dings of the L-th layer. Table 3 shows the per-485

formance of variants and original GaCLLM. First,486

the proposed GaCLLM consistently outperforms487

RAW across all scenarios, indicating that utiliz-488

ing high-order relations in the interaction graph489

can improve the textual content and thus lead to490

more accurate recommendation predictions. Sec-491

ond, GaCLLM significantly outperforms PLAIN.492

While PLAIN struggles to effectively capture the493

structured graph by describing high-order relations494

in a single prompt, GaCLLM elicits the reason-495

ing capacity of LLMs more effectively through a496

step-by-step, graph-based convolutional inference497

process. This allows GaCLLM to better utilize498

the graph structure for improved recommendations499

and avoids context length limits. Third, GaCLLM500

outperforms w/o-ALIGN as the alignment of tex-501

tual and graphical representations bridges the gap502

between LLM-driven information and behavioral503

Figure 4: GaCLLM with varying numbers of layers.

Figure 5: Performance of the proposed method with
varying LLM backbones in Designs dataset.

patterns. Thus, we can fully leverage the layered 504

descriptions generated by the LLM for recommen- 505

dation. As such, the ablation study supports the 506

efficacy of GaCLLM and the underlying motiva- 507

tions presented in this paper. 508

4.4 In-depth Analysis 509

In this subsection, we further conduct experiments 510

to analyze the impact of hyper-parameters, the su- 511

pervised fine-tuning step, and the LLM model se- 512

lection. We also illustrate the effectiveness of our 513

GaCLLM by both quantitative subgroup analysis 514

and qualitative case study. 515

Number of Layers. As shown in Figure 4, we 516

observe that the best performance is produced 517

by (4, 3, 2, 2) layers for Design, Sales, and Pokec 518

datasets, respectively. The layered structure need 519

not be deep. For real-world applications, we sug- 520

gest using the grid search on optimal layer numbers 521

for GaCLLM implementation empirically. Super- 522

vised Fine-tuning Study. In Figure 5 (left), we 523

evaluate the variant without supervised fine-tuning 524

in Section 3.3. Using Designs dataset as an ex- 525

ample, we notice a limited improvement, which 526

indicates that the overall performance boost by 527

GaCLLM is not obtained directly from the SFT, 528

but from the LLM-based convolutional inference 529

strategy and embedding alignment. Though the 530

impact of SFT is not significant, some recommen- 531
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Encoder MAP@5 NDCG@5

simbert-base-chinese 0.3060 0.4925

ChatGLM2-transformer 0.2722 0.4291

Table 4: Performance of the proposed method with
varying text encoders in Designs dataset.

dation scenarios may contain extra domain-specific532

information beyond LLMs’ pre-trained knowledge.533

Therefore, the SFT step contributes to the adapt-534

ability of GaCLLM.535

LLM Backbone. In Figure 5 (right), we assess536

GaCLLM using Llama-2-7B as the backbone re-537

placement of the original ChatGLM2-6B with a538

similar scale. The result shows comparable perfor-539

mance, validating the robustness of our method and540

the stability of our convolutional inference strategy541

in description enhancement for recommendation.542

Text Encoder. To bridge the gap between LLM-543

driven text information and behavioral-based graph544

embeddings, we employ simbert-base-chinese to545

encode user and item text information into latent546

space. In Table 4, we also explore using other547

LLM’s backbone as text encoder. The results show548

that ChatGLM2 yields suboptimal results as a text549

encoder, likely due to its decoder-only structure550

optimized for text generation rather than under-551

standing. For better performance and parameter552

efficiency, the encoder-only simbert-base-chinese553

is a more suitable choice.554

Subgroup Analysis. We also investigate in the555

recommendation performance across user groups556

by the description length ascendingly from G1 to557

G5, the difference between GaCLLM and RAW in558

Figure 6 shows the significance of refining descrip-559

tions for all raw text. Notably, GaCLLM achieves560

more substantial improvements in groups with less561

comprehensive descriptions, highlighting the ef-562

fectiveness of LLM-based convolutional inference563

strategy by leveraging the graph structure.564

Figure 6: Performance across user subgroups for de-
scription improvement analysis.

Figure 7: Case study in Design dataset.

Case study. We qualitatively show the efficacy 565

of the convolutional inference strategy by the case 566

study in Figure 7, where we highlight contents rel- 567

evant to the target job from a user’s resume across 568

layers. The raw resume contains some relevant 569

information and some irrelevant words. As layers 570

increase, our method progressively refines the re- 571

sume, removing irrelevant content and focusing on 572

job-specific details. The text similarity between the 573

user’s resume and the job description significantly 574

improves by the third layer, showcasing the LLM’s 575

success in reasoning over graph structure. By re- 576

vising vague information and inferring potential 577

requirements for job matching, we achieve better 578

recommendation outcomes. 579

5 Conclusion 580

In this paper, we propose GaCLLM to enhance aux- 581

iliary textual information through user-item inter- 582

actions for recommendation. Our approach bridges 583

the gap between text-based LLMs and graph-based 584

multi-hop relations that contain collaborative infor- 585

mation. By employing an iterative convolutional 586

inference strategy, GaCLLM enables efficient prop- 587

agation of textual information across the graph 588

within constrained token limits to achieve quality 589

improvement. We further align the LLM-driven 590

texts and the behavioral graph embeddings to en- 591

hance recommendation performance. Extensive 592

experiments show that GaCLLM consistently out- 593

performs various baseline methods, with ablation 594

studies and in-depth analysis further validating our 595

model design. In future work, we aim to explore 596

using LLMs to handle multi-modality information 597

beyond text for more fine-grained RSs. 598
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6 Limitation599

The primary constraints of this paper are as fol-600

lows: (1) The training phase requires substantial601

computational resources for LLM inference. Since602

some users and items may share similar collab-603

orative information, it may not be necessary to604

make exact inferences for all nodes in the graph.605

(2) In real-world scenarios, users often exhibit dy-606

namic preferences for items. However, GaCLLM607

relies on a static graph, which fails to capture the608

dynamic preferences underlying users’ sequential609

behaviors. To this end, we leave the exploration of610

more efficient and dynamic solutions for sequential611

recommendation as future work.612
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