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Abstract
Recently Mishchenko et al. [11] proposed and analyzed ProxSkip, a provably efficient method for
minimizing the sum of a smooth (f) and an expensive nonsmooth proximable (R) function (i.e.
minx∈Rd f(x) + R(x)). The main advantage of ProxSkip, is that in the federated learning (FL)
setting, offers provably an effective acceleration of communication complexity.

This work extends this approach to the more general regularized variational inequality problems
(VIP). In particular, we propose ProxSkip-VIP algorithm, which generalizes the original ProxSkip
framework of [11] to VIP, and we provide convergence guarantees for a class of structured non-
monotone problems. In the federated learning setting, we explain how our approach achieves
acceleration in terms of the communication complexity over existing state-of-the-art FL algorithms.

1. Introduction

Minimax optimization and, more generally, variational inequality problems (VIPs) appear in a wide
range of applications in machine learning including Generative Adversarial Networks (GANs) [6],
adversarial training of neural networks [9, 15] and distributionally robust learning [17]. Motivated by
these applications, in this work, we consider the following regularized variational inequality problem
(VIP): find x∗ ∈ Rd, such that

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) ≥ 0, ∀x ∈ Rd, (1)

where F : Rd → Rd and R : Rd → R is the regularizer (a proper lower semicontinuous convex
function). This problem is quite general and covers a wide range of possible problem formulations.
For example, special cases of (1) are the regularized minimization problems [10] and minimax
problems [12]:

min
x∈Rd

f(x) +R(x) and min
x1∈Rd1

max
x2∈Rd2

f(x1, x2) +R(x1, x2). (2)

In this work, we are interested in the situations when operator F is accessible through the calls
of unbiased stochastic oracle. This is natural when F has an expectation form F (x) = Eξ∼D[Fξ(x)]
or a finite-sum form F (x) = 1

n

∑n
i=1 Fi(x). In this scenario, one of the most popular algorithms for

solving (1) is the stochastic proximal method[13]

xt+1 = proxγR(xt − γgt),

where proxγR(x) ≜ argminz∈Rd

{
R(z) + 1

2γ ∥z − x∥2
}

, gt is an unbiased estimator of F (xt) (i.e.
E[gt] = F (xt)) and γ > 0 is the step-size of the method.
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Typically computing the proximal operator is easy and cheap. However, in our work, following
the approach of Mishchenko et al. [11], we are interested in the situation when the evaluation of
the proximity operator is expensive. That is, we assume that the computation of proxγR is costly
relative to the evaluation of the unbiased estimator gt. It is in this scenario that ProxSkip-VIP (Alg. 1)
thrives, as it skips the evaluation of the proximity operator and it requires its computation only once
every few iterations.

In the federated learning setting (see Sec. 4 for more details) ProxSkip-VIP can be interpreted as a
new distributed method performing local steps. In that scenario, ProxSkip-VIP becomes equivalent to
the update rule of Algorithm (2) (ProxSkip-VIP-FL) where the computation of the proximity operator
becomes equivalent to communications between workers. Thus, skipping proximity operator’s
computation means that the algorithm performs local updates (it skips communication). See [11] for
the full exposition of this connection.

Main Contributions Our main contributions are summarized below:

• We generalize the ProxSkip framework proposed in [11] for minimization problems into the
VIP regime, and proposed the ProxSkip-VIP algorithm.

• We prove that ProxSkip-VIP converges linearly to a neighborhood of the optimal set when
problem (1), has µ-quasi-strongly monotone and L-star-cocoercive operator F . This is a class
of structure non-monotone problems. As a corollary of our results, for the deterministic regime
where gt = F (xt), ProxSkip-VIP converges linearly to the exact solution.

• We extend the ProxSkip-VIP method into the federated learning setting, and propose ProxSkip-
VIP-FL; we show that the algorithm enjoys an improved communication complexity over
existing literature of local Stochastic Methods for solving VIPs. Numerical experiment results
shows that our proposed algorithm outperforms over existing algorithms.

2. Preliminaries

First, let us introduce the setting of this work.

Assumption 1 (Main Settings) We assume that problem (1) has a unique1 solution x∗ and that:

1. The operator F is µ-quasi-strongly monotone and ℓ-star-cocoercive with µ,L > 0, i.e.,

⟨F (x)− F (x∗), x− x∗⟩ ≥ µ∥x− x∗∥2, ⟨F (x)− F (x∗), x− x∗⟩ ≥ 1

ℓ
∥F (x)− F (x∗)∥2. (3)

2. The function R is a proper lower semicontinuous convex function.

Note that given that an operator F is L′-Lipschitz continuous and µ′-strongly monotone, it can
be shown that the operator F is (κL′)-star-cocoercive with κ = L′/µ′ [8].

The convergence results in this paper will depend on the following operator noise at x∗ that is
finite for any reasonable sampling: σ2 ≜ Var(g(x∗; ξ)) < +∞. Regarding the inherent stochasticity,
we further use the following expected cocoercivity assumption [4, 8] to characterize the behavior of
the operator estimation

1 This assumption can be relaxed; but for simplicity of exposition we enforce it.

2



PROXSKIP FOR STOCHASTIC VARIATIONAL INEQUALITIES

Assumption 2 (Expected Cocoercivity) We assume that stochastic operator g(x; ξ) is such that
for all x ∈ Rd there is L > 0:

E∥g(x; ξ)− g(x∗; ξ)∥2 ≤ L⟨F (x)− F (x∗), x− x∗⟩.

See [4, 8] for more details on this assumption and why is weaker among other bounds on the noise of
the stochastic operator.

3. Algorithm: ProxSkip-VIP

In this section, we incorporate the ProxSkip algorithm [11] into our problem (1), and propose the
following ProxSkip-VIP algorithm.

Algorithm 1 ProxSkip-VIP
Input: Initial point x0, parameters γ1, γ2, γ3, p, initial control variate h0, number of iterations T

1: for all t = 0, 1, ..., T do
2: x̂t+1 = xt − γ1(g(xt; ξt)− ht)
3: Flip a coin θt, θt = 1 w.p. p, otherwise 0
4: if θt = 1 then
5: xt+1 = proxγ2R(x̂t+1 − γ2ht)
6: else
7: xt+1 = x̂t+1

8: end if
9: ht+1 = ht + γ3(xt+1 − x̂t+1)

10: end for
Output: xT

Here the key step is the randomized prox-skipping and the control variate ht. The proximal
oracle is called very rarely if p is small, which helps to reduce the computational cost if the proximal
oracle is expensive; the introducing of ht helps to stabilize the iterations toward the optimal point.

3.1. Convergence Analysis

The main theorem of this work, on the convergence guarantees of ProxSkip-VIP is presented below.

Theorem 1 (Convergence of ProxSkip-VIP) Let Assumption 1 and 2 hold, and let γ1 = γ ∈(
0,min

{
1
µ ,

1
2L

})
, γ1 = γ2p, γ3 = 1

γ2
. Then the iterates of ProxSkip-VIP (Alg. 1) satisfy

E[VT ] ≤
(
1−min

{
γµ, p2

})T
V0 +

2γ2σ2

min {γµ, p2}
. (4)

where Vt ≜ ∥xt − x∗t ∥
2 + γ22∥ht − F (x∗t )∥

2.

We defer the proof of Theorem 1 to Appendix B. As a corollary of the above theorem, we can obtain
the following corresponding complexity results (proof is deferred to Appendix C).

Corollary 2 Let all assumptions of Theorem 1 be satisfied. If we further set γ ≤ µϵ
2σ2 and p =

√
γµ,

we have E[VT ] ≤ ϵ with iteration complexity and the number of calls of the proximal oracle prox(·)
as

O
(
max

{
L

µ
,
σ2

µ2ϵ

}
ln

(
1

ϵ

))
and O

(√
max

{
L

µ
,
σ2

µ2ϵ

}
ln

(
1

ϵ

))
. (5)
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Deterministic ProxSkip: As a corollary of our results, for the deterministic regime where gt =
F (xt), ProxSkip-VIP converges linearly to the exact solution since σ2 = 0. In this scenario, under
the same assumptions with Theorem 1, the iterates of ProxSkip (Alg. 1) satisfy:

E[VT ] ≤
(
1−min

{
γµ, p2

})T
V0.

In this setting, we get E[VT ] ≤ ϵ with iteration complexity and number of calls of the proximal oracle
prox(·) as

O
(
L

µ
ln

(
1

ϵ

))
and O

(√
L

µ
ln

(
1

ϵ

))
(6)

4. Connection with Federated Learning

Let us now explain how ProxSkip-VIP works in the federated learning setting, i.e., find x∗ ∈ Rd

such that
⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ Rd, (7)

where F (x) ≜ 1
n

∑n
i=1 fi(x) and fi(x) ≜ Eξi∼Di

[fi(x; ξi)], the data ξi follows an unknown
distribution Di (i = 1, 2, · · · , n). We highlight that following a similar approach as in section 1, the
federated learning minimization and federated minimax problems [11, 14] can easily obtained as
special cases of (7). As mentioned in [13], the problem (7) can be recast into the problem (1) while

F (x) ≜
1

n

n∑
i=1

fi(xi), fi(x) ≜ Eξi∼Di
[fi(x; ξi)] (8)

where xi ∈ Rd, x = (x1, x2, · · · , xn) ∈ Rnd, and

R(x) = R((x1, x2, · · · , xn)) ≜

{
0 if x1 = x2 = · · · = xn

+∞ otherwise.
(9)

Note that proxγR(x) = (x̄, x̄, · · · , x̄) and x̄ = 1
n

∑n
i=1 xi, which is easy to compute [13].

4.1. Algorithm: ProxSkip-VIP-FL

With the above reformulation (8), we propose the following ProxSkip-VIP-FL algorithm based on
Algorithm 1 for the federated learning problem 7, which is presented below.

Different from the centralized setting we discussed in Section 3, the federated learning framework
(8) often characterized by a heterogeneous environment, i.e., the distributions {Di}i are not identical.

4.2. Convergence Analysis

Let us now present the convergence guarantees of ProxSkip-VIP-FL (Alg. 2).

Theorem 3 (Complexity of ProxSkip-VIP-FL) Lets assume the same setting as in Corollary 2.
Then ProxSkip-VIP-FL achieves E[VT ] ≤ ϵ (where VT is defined in Theorem 1),

• with iteration complexity

O
(
max

{
L

µ
,
σ2

µ2ϵ

}
ln

(
1

ϵ

))
4
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Algorithm 2 ProxSkip-VIP-FL
Input: Initial point x1,0 = x2,0 = · · · = xn,0 ∈ Rd, parameters γ1, γ2, γ3, p ∈ R, initial control

variate for each client h1,0, h2,0, · · · , hn,0 ∈ Rd , number of iterations T
1: for all t = 0, 1, ..., T do
2: Server: Flip a coin θt, θt = 1 w.p. p, otherwise 0. Send θt to all workers
3: for each workers i ∈ [n] in parallel do
4: x̂i,t+1 = xi,t − γ1(gi(xi,t; ξi,t)− hi,t) // Local update with control variate
5: if θt = 1 then
6: Worker: x′i,t+1 = x̂i,t+1 − γ2hi,t, sends x′i,t+1 to the server
7: Server: computes xi,t+1 =

1
n

∑n
i=1 x

′
i,t+1 and send to workers // Communication

8: else
9: xi,t+1 = x̂i,t+1 // Otherwise skip the communication step

10: end if
11: hi,t+1 = hi,t + γ3(xi,t+1 − x̂i,t+1)
12: end for
13: end for
Output: xT

• and communication complexity as

O

(√
max

{
L

µ
,
σ2

µ2ϵ

}
ln

(
1

ϵ

))
.

Comparison with Existing Literature The above theorem provides the complexity results of
Algorithm 2 in the federated learning setting. We note that our approach is quite general as we do
not make strong assumptions on the choice of the unbiased estimator gi(xi,t; ξi,t). For example, in
federated minimax problems, a recently proposed method is the Local SGDA algorithm [5]. With
our framework, one is able to use the same (mini-batch) gradient estimator gi(xi,t; ξi,t) from [5] in
our Algorithm 2. The benefit of this is that our result will avoid the dependence on the condition
number κ (when ϵ is small enough), and we can attain an improved communication and iteration
complexity for solving (7) (see comparison in Table 1).

In Table 1 we provide a more detailed comparison of our theoretical convergence guarantees of
Algorithm 2 (Theorem 3) with existing literature in federated learning. It is clear that the proposed
approach outperforms the other algorithms (Local SGDA, Local SEG, FedAvg-S) in terms of iteration
and communication complexities (when ϵ is small enough). Finally let us highlight that in our analysis
of ProxSkip algorithm we do not require an assumption on bounded heterogeneity.

5. Numerical Experiment

In this section we conduct a numerical experiment on a toy example to test the efficiency of our
proposed algorithm. Following the setting in [16], we consider the problem (7) with x = (x1, x2) ∈
Rd1×d2 and

fi(x) = −
[
1

2
∥x2∥2 − b⊤i x2 + x⊤2 Aix1

]
+

λ

2
∥x1∥2, (10)
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Algorithm Setting1 # Communication2 # Iteration

Local SEG [2, 3] SM, LS O
(
max

(
κ ln 1

ϵ ,
pσ2

µ2nϵ
, κξ
µ
√
ϵ
,
√
pκσ

µ
√
ϵ

))
O
(
max

(
κ
p ln

1
ϵ ,

σ2

µ2nϵ
, κξ
pµ

√
ϵ
, κσ
µ
√
pϵ

))
Local SGDA [5] SM, LS O

(√
κ2(ξ2+σ2)

µϵ

)
O
(
κ2(ξ2+σ2)

µϵ

)
FedAvg-S [7] SM, LS Õ

(
pσ2

nµ2ϵ
+

√
pκσ

µ
√
ϵ
+ κξ

µ
√
ϵ

)
Õ
(

σ2

nµ2ϵ
+ κσ

µ
√
pϵ +

κξ
pµ

√
ϵ

)
Ours (Theorem 3) SM, LS3 Õ

(√
max

{
κ2, σ2

µ2ϵ

})
Õ
(
max

{
κ2, σ2

µ2ϵ

})
1 SM: strongly monotone, LS: (Lipschitz) smooth. κ ≜ L/µ, L and µ are the modulus of SM and LS. σ2 ≜

Var(g(x∗; ξ)) < +∞ (or uniform bound on Var(g(·; ξ))). ξ2 represents the bounded heterogeneity, i.e., gi(x; ξi) is
an unbiased estimator of fi(x) for any i ∈ {1, 2, · · · , n}, and ξ2i (x) ≜ supx∈Rd ∥fi(x)− F (x)∥2 ≤ ξ2 ≤ +∞.

2 p is the probability of synchronization, by setting ϵ is small enough, we can take p = O(
√
ϵ), which recovers

O(1/
√
ϵ) communication complexity dependence on ϵ in our result. Õ(·) hides the logarithmic terms.

3 Our algorithm works for quasi-strongly monotone and star-cocoercive, which is more general than the SM and LS
setting, note that an L-LS and µ-SM operator can be shown to be (κL)-star-cocoercive [8].

Table 1: Comparison of federated learning algorithms for solving VIPs with strongly monotone and
Lipscitz operator. Comparison is in terms of both iteration and communication complexities.

here we set the number of clients n = 100, and d1 = d2 = 20, λ = 0.1, bi ∼ N (0, s2i Id2) where
si ∼ Unif(0, 20), Ai = tiId1×d2 and ti ∼ Unif(0, 1). It is easy to show that the quadratic objective
function satisfies Assumption 1. Our goal is to have a fair comparison between the Local SGDA
[5] and the proposed ProxSkip-VIP-FL (Alg. 2). We fine-tuned the stepsizes for both algorithms
using grid-search in [0.1, 0.5], and plot the comparison in terms of communication rounds of the two
methods in Fig. 1. As it shows in Fig. 1, ProxSkip has better performance in terms of communication
rounds compared to Local SGDA [5].
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* |
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Figure 1: Comparison between Local SGDA [5] and ProxSkip-VIP-FL. The parameters are fine-
tuned with grid-search for both algorithms.
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Supplementary Material
Appendix A. Useful Lemmas

Lemma 4 For any optimal solution x∗ ∈ X∗ of (1), we have

x∗ = proxγ2R(x
∗ − γ2F (x∗)). (11)

Proof Note that
⟨F (x∗), x− x∗⟩+R(x)−R(x∗) ≥ 0, (12)

next for any x ∈ Rd,

R(x∗) +
1

2γ2
∥x∗ − x∗ + γ2F (x∗)∥2 ≤ R(x) +

1

2γ2
∥x− x∗ + γ2F (x∗)∥2

⇐⇒ R(x∗) +
1

2γ2
∥γ2F (x∗)∥2 ≤ R(x) +

1

2γ2
∥x− x∗∥2 + 1

2γ2
∥γ2F (x∗)∥2 + ⟨F (x∗), x− x∗⟩

⇐⇒ R(x∗) ≤ R(x) +
1

2γ2
∥x− x∗∥2 + ⟨F (x∗), x− x∗⟩

⇐= R(x∗) ≤ R(x) + ⟨F (x∗), x− x∗⟩,

which concludes the proof, note that this conclusion indicates that the two parameters in the RHS
above should be identical.

Lemma 5 (Firm Nonexpansivity of the Proximal Operator [1]) Let f be a proper closed and
convex function, then for any x, y ∈ Rd we have〈

x− y,proxf (x)− proxf (y)
〉
≥
∥∥proxf (x)− proxf (y)

∥∥2, (13)

or equivalently,∥∥(x− proxf (x)
)
−
(
y − proxf (y)

)∥∥2 + ∥∥proxf (x)− proxf (y)
∥∥2 ≤ ∥x− y∥2. (14)

The following result is helpful in the proof.

Lemma 6 With Assumption 1 and 2, we have

E∥g(x; ξ)− F (x∗)∥2 ≤ 2L⟨F (x)− F (x∗), x− x∗⟩+ 2σ2. (15)

Proof

E∥g(x; ξ)− F (x∗)∥2 ≤ 2E
[
∥g(x; ξ)− g(x∗; ξ)∥2 + ∥g(x∗; ξ)− F (x∗)∥2

]
≤ 2L⟨F (x)− F (x∗), x− x∗⟩+ 2σ2,

(16)

which concludes the proof.
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Appendix B. Proof of Theorem 1

Proof Note that

xt+1 =

{
proxγ2R(x̂t+1 − γ2ht) with probability p

x̂t+1 with probability 1− p,
(17)

and

ht+1 = ht+γ3(xt+1−x̂t+1) =

{
ht + γ3

(
proxγ2R(x̂t+1 − γ2ht)− x̂t+1

)
with probability p

ht with probability 1− p.
(18)

For simplicity, we denote P (xt) ≜ proxγ2R(x̂t+1 − γ2ht), so we have

Eξt [Vt+1]

= p
(∥∥P (xt)− x∗t+1

∥∥2 + γ22
∥∥ht + γ3(P (xt)− x̂t+1)− F (x∗t+1)

∥∥2)
+ (1− p)

(∥∥x̂t+1 − x∗t+1

∥∥2 + γ22
∥∥ht − F (x∗t+1)

∥∥2)
= p
(∥∥P (xt)− x∗t+1

∥∥2 + ∥∥P (xt)− (x̂t+1 − γ2ht)− γ2F (x∗t+1)
∥∥2)

+ (1− p)
(∥∥x̂t+1 − x∗t+1

∥∥2 + γ22
∥∥ht − F (x∗t+1)

∥∥2)
(19)

next note that x∗t = proxγ2R(x
∗
t − γ2F (x∗t )), we have∥∥P (xt)− (x̂t+1 − γ2ht)− γ2F (x∗t+1)

∥∥2
=
∥∥P (xt)− (x̂t+1 − γ2ht)−

(
proxγ2R

(
x∗t+1 − γ2F (x∗t+1)

)
− (x∗t+1 − γ2F (x∗t+1))

)∥∥2 (20)

so by Lemma 5, we have

Eξt [Vt+1]

≤ p
∥∥x̂t+1 − γ2ht − x∗t+1 + γ2F (x∗t+1)

∥∥2 + (1− p)
(∥∥x̂t+1 − x∗t+1

∥∥2 + γ22
∥∥ht − F (x∗t+1)

∥∥2)
=
∥∥x̂t+1 − x∗t+1

∥∥2 + γ22
∥∥ht − F (x∗t+1)

∥∥2 − 2γ2p
〈
x̂t+1 − x∗t+1, ht − F (x∗t+1)

〉
,

(21)

let
wt ≜ xt − γ1g(xt; ξt), w∗

t ≜ x∗t − γ1F (x∗t ), (22)

recall that γ = γ1 = γ2p, so we have∥∥x̂t+1 − x∗t+1

∥∥2 − 2γ2p
〈
x̂t+1 − x∗t+1, ht − F (x∗t+1)

〉
=
∥∥wt − w∗

t+1 + γ
(
ht − F (x∗t+1)

)∥∥2 − 2γ
〈
wt − w∗

t+1 + γ
(
ht − F (x∗t+1)

)
, ht − F (x∗t+1)

〉
=
∥∥wt − w∗

t+1

∥∥2 − γ2
∥∥ht − F (x∗t+1)

∥∥2, (23)

so we have
Eξt [Vt+1] ≤

∥∥wt − w∗
t+1

∥∥2 + (1− p2
)
γ22
∥∥ht − F (x∗t+1)

∥∥2, (24)

10
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so we also have w∗
t ≡ x∗ − γF (x∗) ≜ w∗.

Then by the standard analysis on GDA, we have∥∥wt − w∗
t+1

∥∥2 = ∥wt − w∗∥2 = ∥xt − x∗ − γ(g(xt; ξt)− F (x∗))∥2

= ∥xt − x∗∥2 − 2γ⟨g(xt; ξt)− F (x∗), xt − x∗⟩+ γ2∥g(xt; ξt)− F (x∗)∥2,
(25)

take the expectation, we have

Eξt

[
∥wt − w∗∥2

]
= ∥xt − x∗∥2 − 2γ⟨F (xt)− F (x∗), xt − x∗⟩+ γ2Eξt

[
∥g(xt; ξt)− F (x∗)∥2

]
≤ ∥xt − x∗∥2 − 2γ(1− γL)⟨F (xt)− F (x∗), xt − x∗⟩+ 2γ2σ2,

(26)

so we have

Eξt [Vt+1]

≤ Eξt

[
∥wt − w∗∥2 +

(
1− p2

)
γ22∥ht − F (x∗)∥2

]
≤ Eξt

[
∥xt − x∗∥2 − 2γ(1− γL)⟨F (xt)− F (x∗), xt − x∗⟩+ 2γ2σ2 +

(
1− p2

)
γ22∥ht − F (x∗)∥2

]

≤ Eξt

[
(1− 2γµ(1− γL))∥xt − x∗∥2 +

(
1− p2

)
γ22∥ht − F (x∗)∥2 + 2γ2σ2

]
,

(27)

recall that γ ≤ 1
2L , we have

Eξt [Vt+1] ≤ Eξt

[
(1− γµ)∥xt − x∗∥2 +

(
1− p2

)
γ22∥ht − F (x∗)∥2 + 2γ2σ2

]
≤ Eξt

[(
1−min

{
γµ, p2

})
Vt

]
+ 2γ2σ2,

(28)

by taking the full expectation, we have

E[VT ] ≤
(
1−min

{
γµ, p2

})
E[VT−1] + 2γ2σ2

≤
(
1−min

{
γµ, p2

})T
V0 + 2γ2σ2

T−1∑
i=0

(
1−min

{
γµ, p2

})i
≤
(
1−min

{
γµ, p2

})T
V0 +

2γ2σ2

min {γµ, p2}
,

(29)

which concludes the proof.

Appendix C. Proof of Corollary 2

Proof With the above setting, we know that

min
{
γµ, p2

}
= γµ, (30)

11
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and

E[VT ] ≤ (1− γµ)TV0 +
2γσ2

µ
, (31)

so it is easy to see that by setting

T ≥ 1

γµ
ln

(
2V0

ϵ

)
, γ ≤ µϵ

4σ2
, (32)

we have
E[VT ] ≤ ϵ, (33)

which induces the iteration complexity to be

T ≥ max

{
2L

µ
,
4σ2

µ2ϵ

}
ln

(
2V0

ϵ

)
(34)

and the corresponding number of calls to the proximal oracle is

pT ≥

√
max

{
2L

µ
,
4σ2

µ2ϵ

}
ln

(
2V0

ϵ

)
(35)

which concludes the proof.
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