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Abstract

Recently, unsupervised adversarial training (AT) has been extensively studied to
attain robustness with the models trained upon unlabeled data. To this end, previous
studies have applied existing supervised adversarial training techniques to self-
supervised learning (SSL) frameworks. However, all have resorted to untargeted
adversarial learning as obtaining targeted adversarial examples is unclear in the
SSL setting lacking of label information. In this paper, we propose a novel targeted
adversarial training method for the SSL frameworks. Specifically, we propose a
target selection algorithm for the adversarial SSL frameworks; it is designed to
select the most confusing sample for each given instance based on similarity and
entropy, and perturb the given instance toward the selected target sample. Our
method is readily applicable to general SSL frameworks that only uses positive pairs.
We validate our method on benchmark datasets, on which it obtains superior robust
accuracies, outperforming existing unsupervised adversarial training methods.

1 Introduction

Recent self-supervised learning (SSL) frameworks [17, 8, 34] mostly resort to maximizing the
consistency across two differently augmented samples of the same instance, using an additional
momentum encoder [17], without any negative pairs or additional networks [8, 34]. Such non-
contrastive SSL frameworks using only positive pairs are shown to obtain representations with
superior generalization performance compared to contrastive counterparts in a more efficient manner.
However, leveraging untargeted adversarial attacks in these SSL frameworks results in a suboptimal
performance. BYORL [15], an adversarial SSL framework using only positive pairs, obtains much
lower robust accuracies than those of adversarial contrastive-learning SSL methods on the benchmark
datasets (Table 3) compare to RoCL [21] and ACL [20] that have proposed adversarial SSL methods
based on contrastive learning frameworks. Then, what is the cause of such suboptimal robustness in a
non-contrastive adversarial SSL framework?

We observe that this limited robustness mainly comes from the suboptimality of untargeted attacks;
adversarial examples generated by the deployed untargeted attacks are ineffective in improving
robustness in non-contrastive adversarial SSL frameworks. As shown in Figure 1, the attack in the
inner loop of the adversarial training loss, designed to minimize the distance between two differently
augmented samples, perturbs a given example to a random position in the latent space. Thus, the
ineffectiveness of the untargeted attacks in non-contrastive SSL frameworks mostly comes from their
inconsideration of other instances.

To tackle this issue, we propose Targeted Attack for RObust Self-Supervised learning (TAROSS).
TAROSS is designed to enhance robustness of a non-contrastive SSL framework with only positive
pairs, such as BYOL [17] and SimSiam [8], by conducting targeted attacks, which perturbs the
given instance toward a target. However, this leads to the question of which direction we want to
perform the targeted attack to, that is unclear in unsupervised adversarial learning without class
labels. To address this point, we propose a simple yet effective target selection algorithm based on
the similarity and entropy between instances.
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Figure 1: Motivation. In supervised AT, perturbation is generated to maximize the cross-entropy loss. In
adversarial contrastive SSL (a), perturbation is generated to minimize the similarity between positive pairs while
maximizing between negative pairs. Then, the adversarial examples may be pushed to the space of other classes
as negative samples may mostly contain samples from other classes. However, in positive-only adversarial SSL
(b), minimizing the similarity between positive pairs have weaker constraints in generating effective adversarial
examples than (a). To overcome such a limitation, we suggest a selective targeted attack that maximizes the
similarity to the most confusing target instance (c).
Our main contributions can be summarized as follows:

• We demonstrate that achieving comparable robustness in the positive-only self-supervised
learning (SSL) with contrastive-based SSL is difficult due to ineffective adversarial inputs
generated by untargeted attacks.

• We propose a novel targeted adversarial attack scheme which perturbs the target sample in
the direction to the most confusing instance to it, based on similarity and entropy.

• We experimentally confirm that the proposed targeted adversarial SSL framework is able to
obtain significantly high robustness, outperforming previous adversarial SSL methods.

2 Related Work
Adversarial Self-Supervised Learning The first adversarial SSL method employed contrastive
learning to achieve a high level of robustness [21, 20] without any class labels. Adversarial self-
supervised contrastive learning [21, 20] generated an instance-wise adversarial example that max-
imizes the contrastive loss against their positive and negative samples by conducting untargeted
attacks. Both methods achieved robustness with the cost of requiring large computation power due
to a large batch size for contrastive learning. On the other hand, Gowal et al. [15] utilized only
positive samples to obtain adversarial examples by maximizing the similarity loss between the latent
vectors from the online and target networks, enabling this method free for batch size. However, it
exhibited relatively poorer robustness than that of self-supervised contrastive learning, even with an
advanced SSL framework. Despite this advanced framework, i.e., non-contrastive SSL, that employs
only positive pairs, robustness is not guaranteed with a simple combination of untargeted adversarial
learning and advanced SSL. To overcome such vulnerability in non-contrastive SSL, we propose a
targeted attack leveraging a novel score function designed to improve robustness.

3 Targeted Adversarial Self-supervised Learning
Targeted adversarial self-supervised learning We argue that leveraging untargeted adversarial
attacks in an SSL framework using positive-only pairs still leaves large room for better robustness.
We can simply improve robustness in non-contrastive SSL by changing the inner loop to a randomly
targeted attack as follows:

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δtLtarget

(
f(θ, x+ δt), f(θ, x′))

)))
, (1)

where Ltarget = −Lloss, x′ is a randomly selected target within the batch. To precisely elaborate our
observation in the latter section, we introduce a score function (S(x, batch)) to select the target (x′)
within the batch. The score function (S) can be a random-sampling function or a designed function
as Eq. 3. In other words, the score function outputs the target (x′) corresponding to the base image
(x), then the targeted attack generates perturbation that maximizes the similarity to target x′.

In Table 1, an untargeted attack makes the model more vulnerable when the non-contrastive SSL
frameworks utilize only positive pairs, such as in BYOL [17], and SimSiam [8]. However, when we
modify the inner loop of the untargeted attack to the targeted attack with the simple random sampling
score function as Eq. 1., non-contrastive SSL achieves better robustness.
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Figure 2: Overview of TAROSS. Our approach consists of three parts: target selection, targeted
attack, and adversarial self-supervised learning (SSL). We propose a simple similarity- and entropy-
based target selection algorithm that selects the maximum score target based on score function (S)
(left). When we select the target image (xt) for each instances, we conduct a targeted attack (middle).
Then, we train the model with targeted adversarial examples and clean images as SSL (right).

Table 1: Experimental results against PGD ℓ∞ at-
tacks on ResNet18 trained on the CIFAR-5. The
CIFAR-5 consists of airplane, automobile, bird, cat,
and deer from CIFAR-10.

Method Attack Clean PGD ℓ∞

BYOL Untargeted 75.40 21.00
BYOL Randomly targeted 83.50 36.50
SimSiam Untargeted 66.36 36.53
SimSiam Randomly targeted 77.08 47.58

Positive-paired self-supervised learning.
We first describe an SSL method, Sim-
Siam [8], that learns visual representations
with only positive pairs using a stop-gradient.
Let us denote the dataset D = {X}, and trans-
formation set T that augments the images
x ∈ X . SimSiam consists of the encoder f ,
followed by the projector g, and the predictor
h; each of g and h is a multi-layer percep-
tron (MLPs). To learn visual representations,
SimSiam maximizes the cosine similarity between the positive pairs as follows:

LSimSiam(T1(x),T2(x)) = −1

2

p1
||p1||2

· z2
||z2||2

− 1

2

p2
||p2||2

· z1
||z1||2

, (2)

where p1 = h(g(f(T1(x)))) and z2 = g(f(T2(x))) are output vectors of the predictor h and the
projector g, respectively. Before calculating the loss, SimSiam detaches the gradient on the z which
called stop-gradient. Stop-gradient helps the model to form proper visual representations without any
momentum network but makes the single model acts like a momentum network.

Entropy and similarity based target selection. From the observation in the previous paragraph,
we argue that selecting target instances that are most confused and are adequately close to the base
instance is effective for targeted attacks. For this, we design the score function based on the similarity
and entropy values; it does not need any class information, as follows:

S(T1(x)i,T2(x)j) =
ei

||ei||2
· ej
||ej ||2

+ (pj/τ) log
(
pj/τ), (3)

where pi = h(g(f(T1(x)i))) and ei = f(T1(x)i) are output vectors of predictor h and encoder
f , respectively. Overall, the score function S consists of a cosine similarity term, and an entropy
term. The cosine similarity is calculated between features of base images and candidate images in the
differently augmented batch (T2). The entropy is calculated with the assumption that the vector p is
an instance’s logit as Caron et al. [6]. We design the score function to naturally selects the target that
is mostly confused with base images without any class labels (Figure 1). We also verify our score
function selects targets as our intention in the experiment section (Figure 3b).

Robust self-supervised learning with target attack (TAROSS). In non-contrastive SSL, we
make a positive pair, i.e., T1(x),T2(x), with differently transformed augmentation. As shown
in Figure 2, to generate adversarial examples, we first select the target images T1(x)

′,T2(x)
′ for

each base image T1(x),T2(x), respectively, which have the maximum score from score function
(S). Here, we employ score function (S) in Eq. 3. Then, we generate adversarial examples, i.e.,
T1(x)

adv,T2(x)
adv, for each transformed input with our suggested targeted attack (Eq. 1) where

Ltarget = −LSimSiam. Finally, we maximize the agreement between adversarial images T1(x)
adv,
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and T2(x)
adv with clean image T1(x) as follows:

LTAROSS = L(T1(x),T1(x)
adv) + w · L(T1(x)

adv,T2(x)
adv) (4)

where L is Eq. 2. Since all three instances have the same identity, we maximize the similarity between
the clean image and adversarial examples.

4 Experiment
4.1 Evaluating Robustness

Table 2: Experimental results against white box attacks on
ResNet18 trained on the CIFAR10. We evaluate adversar-
ial SSL with linear evaluation and robust linear evaluation.

SSL framework Method Clean PGD ℓ∞ AutoAttack

SimCLR RoCL [21] 78.14 42.89 27.19
SimCLR ACL [20] 79.96 39.37 35.97
BYOL Untargeted attack 72.65 16.20 0.01
BYOL TAROSS 84.52 31.19 21.01

SimSiam Untargeted attack 71.78 37.28 32.41
SimSiam TAROSS 74.06 44.71 36.39

Robustness with targeted/untargeted
attack. In Table 3, as we observed in
the previous section, when replacing un-
targeted attacks with targeted attacks in
positive-only SSL (BYOL, SimSiam), it
obtains robustness comparable to con-
trastive adversarial SSL (RoCL, ACL),
which verifies our motivation. Therefore,
it is feasible to improve robustness even
in positive-only SSL while attaining the
pros of positive-only SSL frameworks. Interestingly, the targeted attacks helped improve the clean
accuracy in SSL when compared with those using untargeted attacks in positive-only SSL. We
conjecture that untargeted attacks are not only inadequate to learn robust features but also hinder to
learn good visual representation of natural images.

Robustness compared to contrastive-based approaches. We compare our TAROSS to contrastive
adversarial SSL methods to show that our approach could make positive-only SSL to achieve
robustness comparable to previous works. Notably, as shown in Table 3, the targeted attacks allow
the positive-only SSL model to have better robustness than that of contrastive adversarial SSL (RoCL,
ACL) in linear evaluation. Specifically, when we train the fc layer, our model achieves 36.39% of
robustness against strong AutoAttack which shows the effectiveness of our proposed method.

4.2 Analysis of Targeted Attacks
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Figure 3: Analysis of target from score function (S)

Analyze the distribution of the target class.
We examine which class is selected as a target
by the score function (S). We test the selected
target of the single class (airplane) to the adversar-
ial supervised trained models [25] to obtain the
probability and prediction for analyzing the class
distribution. As shown in Figure 3b, half of the
target images are the same class as the base image.
And the next most frequently selected class was
the class with the second highest probability that the images of the corresponding class were most
confused (Figure 3a). The score function we proposed selects images of the same class when the
image in the center of the cluster, and images near the decision boundary that have a high probability
to predict to a wrong class select images of a different class.

5 Conclusion
In this paper, we showed that a simple combination of supervised adversarial training with SSL is
highly suboptimal due to the ineffectiveness of adversarial examples generated by the untargeted
adversarial attacks perturbed to random places without the consideration of decision boundaries.
Based on this observation, we propose an instance-wise targeted attack scheme for an adversarial
SSL framework. This scheme selects the target instance based on the similarity and entropy, such that
the given instance is perturbed to be confused with the selected target. Our targeted adversarial SSL
framework obtains representation that achieves better robustness than the state-of-the-art adversarial
SSL frameworks, including contrastive ones, without using any negative pairs or additional networks.
We believe that our work opens a door to future research on the search for more effective targeted
attacks, for adversarial SSL.
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Supplementary Material
Targeted Adversarial Self-Supervised Learning

A Related works

Adversarial Training Szegedy et al. [30] showed that imperceptible perturbation to an input image
may lead a DNN model to misclassify a given input into a false label, demonstrating the vulnerabilities
of DNN models against adversarial attacks. Goodfellow et al. [14] proposed the Fast Gradient Sign
Method (FGSM), which perturbs a given input to add imperceptible noise in the gradient direction
of decreasing the loss of a target model. They also demonstrated that training a DNN model over
perturbed as well as clean samples improves the robustness of the model against FGSM attacks.
Follow-up works [23, 4] proposed diverse gradient-based strong attacks, and Madry et al. [25]
proposed a projected gradient descent (PGD) attack and a robust training algorithm leveraging a
minimax formulation; it finds an adversarial example that achieves a high loss while minimizing the
adversarial loss over given data points. Due to a surge of interest in achieving robustness, various
defense mechanisms [29, 3, 11] have been proposed.

However, Athalye et al. [2] showed that many of the previous studies depend on gradient masking,
which results in obfuscated gradients in the representation space. At the same time, this renders a tar-
get model highly vulnerable to stronger attacks that circumvent obfuscated gradients. TRADES [35]
proposed to minimize the Kullback-Leibler divergence (KLD) over clean examples and their ad-
versarial counterparts, thus enforcing consistency between their predictions. They further showed
that there is a theoretical trade-off relationship in achieving both clean accuracy and robustness.
Recently, leveraging additional unlabeled data [5] and conducting additional attacks [33] have been
proposed. Carmon et al. [5] proposed using Tiny ImageNet [24] as pseudo labels, and Gowal et al.
[16] proposed using generated images from generative models to learn richer representations with
additional data.

Self-Supervised Learning Due to the high annotation cost of labeling data, SSL has recently
gained a large attention [12, 36, 31, 32, 34]. Previously, SSL focused on solving a pre-task problem
of collaterally obtaining visual representation, such as solving the jigsaw puzzle [26], predicting the
relative position of two regions [12], or impainting the masked area [27]. Contrastive SSL coined
with data augmentation [7, 19] has achieved impressive performance in SSL. On the other hand, other
previous studies employed a momentum network to learn visual differences between two augmented
images [17] or to mimic the momentum network with stop-gradient [8].

B Baselines.

• RoCL [21]. RoCL is SimCLR [7] based adversarial self-supervised learning methods. We
experiment with the official code1. To make a fair comparison, we set the attack step to
10 as other baselines. We train the model with 1,000 epochs under the LARS optimizer
with weight decay 2e− 6 and momentum with 0.9. For the learning rate schedule, we also
followed linear warmup with cosine decay scheduling. We set a batch size of 512 for all
datasets (CIFAR10, CIFAR100, STL10). For data augmentation, we use a random crop with
0.08 to 1.0 size, horizontal flip with a probability of 0.5, color jitter with a probability of 0.8,
and grayscale with a probability of 0.2 for RoCL training.

• ACL [20] ACL is SimCLR [7] based adversarial self-supervised learning methods. We
conduct the experiment with the official code2. To make a fair comparison, we set the attack
step to 10 as other baselines. We train the model with 1,000 epochs. We set a batch size
of 512 for STL10 dataset. For CIFAR10, and CIFAR100, we use the official pretrained
checkpoints. For data augmentation, we use a random crop with 0.08 to 1.0 size, horizontal
flip with a probability of 0.5, color jitter with a probability of 0.8, and grayscale with a
probability of 0.2 for ACL training. We set PGD dual mode which calculates both clean and
adversarial during the training.

1https://github.com/Kim-Minseon/RoCL
2https://github.com/VITA-Group/Adversarial-Contrastive-Learning

8

https://github.com/Kim-Minseon/RoCL
https://github.com/VITA-Group/Adversarial-Contrastive-Learning


• BYORL [15] BYORL is BYOL [17] based adversarial self-supervised learning methods
for low label regime. Since there is no official code for BYORL we implement the BYORL
by ourselves. Though we mentioned as BYOL with untargeted attack in the Table 1, 3, 4
and 5, please note that BYOL with untargeted approach stands for Gowal et al. [15]. We
implement based on BYOL from a self-supervised learning library3. We use the same
CIFAR-10 setting in the library except for normalization. We exclude normalization in
the data augmentation. To make a fair comparison, we implement on the ResNet18 with
attack step 10 of PGD. As shown in supplementary materials in Gowal et al. [15], when the
model is trained with 10 steps in ResNet34 it shows 37.88% of robustness. We conjecture
that we have a different performance from the original paper because the original paper
employs 40 steps of PGD in WideResNet34 to obtain the reported robustness which requires
extraordinary computation power.

• AdvCL [13] AdvCL is SimCLR [7] based adversarial self-supervised learning which employ
pseudo labels from the model that is pretrained on ImageNet [22] data. Even though the
outstanding performance of AdvCL, we exclude this model as our baseline because the
proposed methods require the model that is trained with the labels of ImageNet which we
assume to have no label information for pretraining the model.

C Detailed description of experimental setups

C.1 Resource description.

All experiments are conducted with a two NVIDIA RTX 2080 Ti, except for the experiments
with CIFAR100 experiments. For CIFAR100 experiments, two NVIDIA RTX 3080 are used. All
experiments are processed in Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz.

C.2 Dataset description.

For experiments, we use CIFAR 10, CIFAR 100, CIFAR 5, and STL10. CIFAR 10 and CIFAR 1004

consist of 50,000 training images and 10,000 test images with 10 and 100 classes, respectively. All
CIFAR images are 32×32×3 resolution (width, height, and channel). CIFAR 5 is a subset of CIFAR
10 which contains all images from 5 classes: airplane, automobile, bird, cat, and deer. We also test
with determined classes. The STL105 consists of 5,000 training images and 8,00 test images with 10
classes. All STL10 images are 96×96×3 resolution (width, height, and channel.) However, for our
experiment in Table 4, 5, we resize the images into 32×32×3 resolution (width, height, and channel).

C.3 Training detail.

For all methods, we train on the ResNet18 [18] with ℓ∞ attacks with the attack strength of ϵ = 8/255
and the step size of α = 2/255, with the number of inner maximization iteration set to K = 10. For
the optimization, we train every model for 800 epochs using the SGD optimizer with the learning rate
of 0.05, weight decay of 5e−4, and the momentum of 0.9. For data augmentation, we use a random
crop with 0.08 to 1.0 size, horizontal flip with a probability of 0.5, color jitter with a probability of
0.8, and grayscale with a probability of 0.2. We exclude normalization for adversarial training. We
set the weight of adversarial similarity loss w as 2.0. We use batch size 512 with two GPUs.

In the score function, we calculate the similarity score term and entropy term as shown in Equation 3.
First, to exclude the positive pairs’ similarity score we set the similarity score between positive pairs
to −1. Then, to calculate the overall score, after obtaining the similarity score and entropy of each
sample, we normalize each component with Euclidean normalization to balance each component to
score function.

3https://github.com/vturrisi/solo-learn
4http://www.cs.toronto.edu/~kriz/cifar.html.
5https://ai.stanford.edu/~acoates/stl10/
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Table 3: Experimental results against white box attacks on ResNet18 trained on the CIFAR10. We evaluate
adversarial SSL with linear evaluation and robust linear evaluation. Clean is the accuracy of clean images.
All models are evaluated with PGD ℓ∞ with 20 steps of ϵ = 0.0314 and AutoAttack [9]. Untargeted attack
maximizes the training loss between the differently augmented but the same instances to generate adversaries. To
see the effectiveness of our methods, we test TAROSS on positive-only SSL, i.e., BYOL, SimSiam (grey box).

Train type Self-supervised framework Method Clean PGD ℓ∞ AutoAttack

- LCE 92.82 0.00 0.00
Supervised - AT [25] 83.07 53.78 49.23

Self-supervised
linear evaluation

SimCLR RoCL [21] 78.14 42.89 27.19
SimCLR ACL [20] 79.96 39.37 35.97
BYOL Untargeted attack 72.65 16.20 0.01
BYOL TAROSS 84.52 31.19 21.01

SimSiam Untargeted attack 71.78 37.28 32.41
SimSiam TAROSS 74.06 44.71 36.39

Self-supervised
robust linear evaluation

SimCLR RoCL [21] 76.53 47.51 30.22
SimCLR ACL [20] 77.17 40.67 39.13
BYOL Untargeted attack 54.01 27.24 4.49
BYOL TAROSS 74.33 40.84 29.91

SimSiam Untargeted attack 68.88 37.84 31.44
SimSiam TAROSS 76.19 45.57 37.25

C.4 Evaluation details.

PGD ℓ∞ attack. For all PGD ℓ∞ attacks used in the test time, we use the projected gradient descent
(PGD) attack with the strength of ϵ = 8/255, with the step size of α = 8/2550, and with the number
of inner maximization iteration set to K = 20 with the random start.

AutoAttack. We further test against strong gradient based attack, i.e., AutoAttack (AA) [9]. Au-
toAttack is an ensemble attack of four different attacks (APGD-CE, APGD-T, FAB-T [10], and
Square [1]). AGPD-CE is an untargeted attack, APGD-T and FAB-T are targeted attacks. The Square
is a black box attack. We use official code to test models6.

Self-supervised learning. For self-supervised learning, we denote linear evaluation when we use only
clean images to train the fully connected (fc) layer after the pretraining phase. When we denote robust
linear evaluation, we train the fc layer with adversarial examples. While ACL uses partial fine-tuning
to obtain their reported accuracy and robustness, to make a fair comparison we freeze the encoder
and train only the fc layer. Robust fine-tuning is training all parameters including parameters of the
encoder with adversarial examples. For linear evaluation, we followed baselines hyperparameters
for each model. We train the baseline models with 150 epochs, 25 epochs, and 50 epochs for RoCL,
ACL, and BYORL, respectively. We also followed their learning rate 0.1, 0.1, and 2 × 10−3 for
RoCL, ACL, and BYORL, respectively. On the other hand, we train our model with 100 epochs with
a learning rate of 0.5 for linear evaluation. We use AT loss for robust linear evaluation except for
ACL. For ACL, we use TRADES loss as the official code.

D Additional Experiment of Our Targeted Attack

Robustness compared to contrastive-based approaches. We compare our TAROSS to contrastive
adversarial SSL methods to show that our approach could make positive-only SSL to achieve
robustness comparable to previous works. To this end, we evaluate adversarial SSL with linear
evaluation and robust linear evaluation against AutoAttack [9] and PGD [25] ℓ∞ attacks. Notably, as
shown in Table 3, the targeted attacks allow the positive-only SSL model to have better robustness
than that of contrastive adversarial SSL (RoCL, ACL) in linear evaluation. Specifically, when we train
the fc layer, our model achieves 36.39% of robustness against strong AutoAttack which shows the
effectiveness of our proposed method. Interestingly, the SimSiam-based model has already obtained
good robustness in the linear evaluation compared to the robust linear evaluation which takes ×4 times
to train. We conjecture that SimSiam-based TAROSS already has a robust well-cluster after the robust
pretraining which does not need to find robust decision boundaries with the adversarial examples.

6https://github.com/fra31/auto-attack
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Table 4: Results of self-supervised adversarial
learning evaluated with linear evaluation in STL10
and CIFAR10. Rob. stands for robust accuracy
against PGD ℓ∞ attack with 20 steps and ϵ =
0.0314.

STL10 CIFAR100
Method Attack Clean Rob. Clean Rob.

RoCL Untarget 52.63 19.19 45.99 17.17
ACL Untarget 54.14 19.69 41.09 15.31

BYOL Untarget 61.02 12.14 53.43 14.81
SimSiam Untarget 43.88 12.70 27.53 14.20
SimSiam TAROSS 46.38 21.32 36.02 22.18

Table 5: Results of adversarial transfer learning to
CIFAR10 and STL10 from CIFAR100 pretrained
models followed the experimental setting of Shafahi
et al. [28]. Rob. stands for robust accuracy against
PGD ℓ∞ 20 attack with ϵ =0.0314.

CIFAR100 → CIFAR10 STL10
Method Attack Clean Rob. Clean Rob.

RoCL Untarget 73.93 18.62 74.06 19.06
ACL Untarget 61.68 15.66 59.56 13.53

BYOL Untarget 71.06 16.57 63.53 12.93
SimSiam Untarget 50.05 25.43 34.54 24.82
SimSiam TAROSS 50.50 25.44 43.13 22.46

Since the SimSiam directly maximizes the similarity between adversary and clean images only
between the positive pairs with the single models, the gap between the representation of adversaries
and clean examples may reduce.

E Evaluating the Quality of Robust Representation

Robustness on multiple benchmarks datasets. We validate our method on multiple benchmark
datasets, such as CIFAR100 and STL10. In Table 4, our TAROSS consistently shows good robust-
ness across different benchmark datasets when comparing with adversarial SSL frameworks using
untargeted attacks. Especially, when the dataset becomes larger, such as CIFAR100, our method
achieves even better robustness than contrastive learning-based approaches, e.g., RoCL, and ACL,
where these approaches are sensitive to the number of same class samples in the single batch size.
From this result, we argue that our targeted adversarial SSL contributes to learning better robustness
in the larger dataset than contrastive-based SSL.

Transfer to different data. SSL is effective to utilize in several downstream tasks with a pretrained
encoder. Therefore, we also evaluate how our robust pretrained features help in the different datasets
in transfer tasks, which demonstrates the quality of our robust pretrained features in a different dataset.
We followed the experimental setting as supervised adversarial transfer learning tasks [28] which
freeze the encoder and train only the fc layer. We pretrained the model on CIFAR100 and evaluate
the robust transferability to STL10, and CIFAR10. Once our model is trained, we transfer the robust
features to different kinds of datasets with fewer epochs and parameters, which is efficient in that we
do not need to conduct adversarial training from scratch. In Table 5, our model also shows impressive
transferability both in CIFAR10 and STL10 compare to untargeted adversarial SSL. Moreover, while
our model shows relatively low clean accuracy, TAROSS could obtain about 10% gain in robustness
compared to contrastive-based adversarial SSL. From these results, we confirm that our methods
generate robust representations that can be transferred to several downstream tasks, which previous
adversarial SSL studies addressed.

F Experimental Details of Analysis

Analysis the distribution of target class To analyze the target from the score function (S), we
employ an adversarially supervised trained model. We calculate the score function that is trained
with our TAROSS on SimSiam. We use a train set. For each class, we calculate the mean predict
probability which is the average of all softmax outputs of target images from the supervised trained
model. Further, we also count the number of samples that are predicted for each class. In Figure 3,
the results are target images of the airplane as a base image. There is a similar tendency even though
we change the base class to other classes as shown in the following Figure 4.
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(c) Distribution of class of
target of deer.
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Figure 4: Analysis of target distribution in different class
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Visualization of embedding space To visualize the embedding of our targeted attack and untargeted
attack, we use our TAROSS model that is trained on CIFAR10 as a feature extractor. We sample a
few examples and conduct two types of attacks, untargeted attack, and targeted attack. To visualize
more effectively we ignore the other seven classes in CIFAR10. We visualize clean examples from
three classes and then visualize adversaries that are generated with our targeted attack and untargeted
attack, respectively with dark blue.

G Additional Analysis of Targeted Attacks

(a) Untargeted attack (b) Targeted attack
Figure 5: Visualize embedding

Visualization of embedding space. To observe the
differences between images that are generated with tar-
geted versus untargeted attacks, we visualize the embed-
ding space of targeted attack examples and untargeted
attack examples. In Figure 5, adversarial examples are
denoted with dark blue, and clean examples are denoted
with light blue; both are instances of the same class. As
shown in Figure 5a, untargeted adversarial examples are
located near clean examples. On the other hand, targeted adversarial examples are located near
the boundary of the cluster (Figure 5b). This visualization shows that our targeted attack generates
relatively more effective adversarial examples than untargeted attacks, which is likely to push the
decision boundary to have a better robust representation.
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