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ABSTRACT

Simulation-free training frameworks have been at the forefront of the generative
modelling revolution in continuous spaces, leading to large-scale diffusion and flow
matching models. However, such modern generative models suffer from expensive
inference, inhibiting their use in numerous scientific applications like Boltzmann
Generators (BGs) for molecular conformations that require fast likelihood
evaluation. In this paper, we revisit classical normalizing flows in the context of
BGs that offer efficient sampling and likelihoods, but whose training via maximum
likelihood is often unstable and computationally challenging. We propose REGRES-
SION TRAINING OF NORMALIZING FLOWS (REGFLOW), a novel and scalable
regression-based training objective that bypasses the numerical instability and
computational challenge of conventional maximum likelihood training in favor of a
simple ℓ2-regression objective. Specifically, REGFLOW maps prior samples under
our flow to targets computed using optimal transport couplings or a pre-trained
continuous normalizing flow (CNF). To enhance numerical stability, REGFLOW
employs effective regularization strategies such as a new forward-backward self-
consistency loss that enjoys painless implementation. Empirically, we demonstrate
that REGFLOW unlocks a broader class of architectures that were previously
intractable to train for BGs with maximum likelihood. We also show REGFLOW
exceeds the performance, computational cost, and stability of maximum likelihood
training in equilibrium sampling in Cartesian coordinates of alanine dipeptide,
tripeptide, and tetrapeptide, showcasing its potential in molecular systems.

1 INTRODUCTION

Table 1: Overview of various generative models and their relative
trade-offs with respect to the number of inference steps, ability to
provide exact likelihoods, and training objective for learning.

Method One-step Exact likelihood Regression training

CNF (MLE) ✗ ✓ ✗
Flow Matching ✗ ✓ ✓
Shortcut (Frans et al., 2024) ✓ ✗ ✓
IMM (Zhou et al., 2025) ✓ ✗ ✓
NF (MLE) ✓ ✓ ✗
REGFLOW (ours) ✓ ✓ ✓

The landscape of modern simulation-
free generative models in continuous
domains, such as diffusion mod-
els and flow matching, has led to
state-of-the-art generative quality
across a spectrum of domains (Betker
et al., 2023; Brooks et al., 2024;
Huguet et al., 2024; Geffner et al.,
2025). Despite the scalability of
simulation-free training, generating
samples and computing model likelihoods from these model families requires computationally
expensive inference—often hundreds of model calls—through the numerical simulation of the
learned dynamical system. The search for efficient inference schemes has led to a new wave of
approaches that seek to learn one-step generative models, either through distillation (Yin et al., 2024;
Lu and Song, 2024; Sauer et al., 2024; Zhou et al., 2024), shortcut training (Frans et al., 2024),
or Inductive Moment Matching (IMM) (Zhou et al., 2025) — methods that are able to retain the
impressive sample quality of full simulation. However, many highly sensitive applications—for
instance, in the natural sciences (Noé et al., 2019; Wirnsberger et al., 2020)—require more than
just high-fidelity samples: they also necessitate accurate estimation of probabilistic quantities, the
computation of which can be facilitated by having access to cheap and exact model likelihoods.
Consequently, for one-step generative models to successfully translate to scientific applications, they
must additionally provide faithful one-step exact likelihoods that can be used to compute scientific
quantities of interest, e.g., free energy differences (Rizzi et al., 2021), using the generated samples.
Given their intrinsic capacity to compute exact likelihoods, classical normalizing flows (NF) have re-
mained the de facto method for generative modelling in scientific domains (Tabak and Vanden-Eijnden,
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2010; Tabak and Turner, 2013; Dinh et al., 2016; Rezende and Mohamed, 2015). For example, in tasks
such as equilibrium sampling of molecules, the seminal framework of Boltzmann Generators (Noé
et al., 2019) pairs a normalizing flow with an importance sampling step. Consequently, rapid and
exact likelihood evaluation is critical both for asymptotically debiasing generated samples in such
high-impact applications and for refining them via annealed importance sampling (Tan et al., 2025a;b).
Historically, NFs employed in conventional generative modelling domains (such as images) are trained
with the maximum likelihood estimation (MLE) objective, which has empirically lagged behind the ex-
pressiveness, scalability, and ease of training of modern continuous normalizing flows (CNFs) trained
with regression-based objectives like flow matching and stochastic interpolants (Peluchetti, 2023; Liu,
2022; Lipman et al., 2023; Albergo and Vanden-Eijnden, 2023). A key driver of the gap between classi-
cal flows and CNFs can be attributed to the MLE training objective itself, which computes the change-
of-variable formula for gradient ascent on the log-likelihood function with invertible architectures. As
a result, architectures have to balance ease of optimization with expressivity, with highly flexible archi-
tectures being highly prone to being numerically unstable (Xu and Campbell, 2023; Andrade, 2024).
For instance, in the context of Boltzmann Generators, this tension between MLE training and invertible
architectures has led to BGs that use classical flows underfitting target molecular systems in compari-
son to BGs that employ flow matching (Klein et al., 2023). However, despite the expressive power of
CNFs, inference still requires expensive numerical simulation—exact likelihood requires simulation
of the divergence, a second-order derivative. This raises the natural motivating research question:

Q. Does there exist a performant training recipe for BGs with classical NFs beyond MLE?

Present work. In this paper, we answer in the affirmative. We investigate how to train an invertible
neural network to directly match a predefined invertible function and build BGs with classical
flows. We introduce REGRESSION TRAINING OF NORMALIZING FLOWS (REGFLOW), a novel
regression-based training objective for classical normalizing flows that marks a significant departure
from the well-established MLE training objective. Our key insight is that access to coupled samples
from any invertible map is sufficient to train a generative model with a regression objective. As a
result, we can train a classical flow by learning to match in ℓ2-regression the pre-computed noise-data
pairings given by existing—both non-parametric or parametric—invertible maps. As a result, training
REGFLOW provides similar benefits to NF training as flow matching does to continuous NFs but
with the new unlocked benefit that inference provides exact likelihoods in a single step—i.e., without
numerical simulation of the probability flow ODE and thus is significantly cheaper than a CNF.
To train BGs using REGFLOW, we propose a variety of couplings to facilitate simple and efficient
training. We propose endpoint targets that are either: (1) outputs of a larger pretrained CNF; or (2) the
solution to a pre-computed OT map done offline as a pre-processing step. To enhance training stability
we also include a series of regularizers, and in particular, a new forward-backward self-consistency
regularizer that completely removes the need for computing the computationally-expensive Jacobian
determinant that is needed in MLE training. In each case, the designed targets are the result of
already invertible mappings, which simplifies the learning problem for NFs and enhances training
stability. Empirically, we deploy BG-based REGFLOW flows on learning equilibrium sampling
for short peptides in alanine di-, tri-, and tetrapeptide, and find even previously discarded NF for
BGs, such as affine coupling (Dinh et al., 2016) or neural spline flows (Durkan et al., 2019), can
outperform their respective MLE-trained counterpart. In particular, we demonstrate that in scientific
applications where MLE training is unsuccessful, the same BG model trained using REGFLOW
provides higher fidelity proposal samples and likelihoods. Finally, we demonstrate a completely new
method of performing Targeted Free Energy Perturbation (Wirnsberger et al., 2020) that avoids costly
energy evaluations with REGFLOW that are not possible with MLE training of normalizing flows.

2 BACKGROUND AND PRELIMINARIES

Generative models. A generative model can be seen as an (approximate) solution to the distribution
matching problem: given two distributions p0 and p1, the distributional matching problem seeks to
find a push-forward map fθ : Rd → Rd that transports the initial distribution to the desired endpoint
p1 = [fθ]#(p0). Without loss of generality, we set pprior := p0 to be a tractable prior (typically
standard normal) and take pdata := p1 the data distribution, from which we have empirical samples.
We now turn our attention to solving the generative modelling problem with modelling families
that admit exact log-likelihood, log pθ(x), where pθ = [fθ]#(p0), with a particular emphasis on
normalizing flows (Tabak and Vanden-Eijnden, 2010; Tabak and Turner, 2013; Dinh et al., 2014;
2016; Rezende and Mohamed, 2015; Papamakarios et al., 2021).
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2.1 CONTINUOUS NORMALIZING FLOWS

A CNF models the generative modelling problem as a (neural) ODE d
dtft,θ(x) = vt,θ (ft,θ(xt)).

Here, fθ : [0, 1]× Rd → Rd, (t, x0) 7→ xt is the smooth generator and forms the solution pathway
to a (neural) ordinary differential equation (ODE) with initial conditions f0(x0) = x0. Furthermore,
vt,θ : [0, 1] × Rd → Rd is the time-dependent velocity field associated with the (flow) map that
transports particles from p0 to p1. A CNF is an invertible map up to numerical precision, and as
a result, we can compute the exact log-likelihood, log pt,θ(xt), using the instantaneous change of
variable formula for probability densities (Chen et al., 2018). The overall log-likelihood of a data
sample, x0, under the model can be computed as follows:

log p1,θ(x1) = log p0(x0)−
∫ 0

1

∇ · vt,θ(xt)dt. (1)

Maximizing the model log-likelihood in eq. (1) offers one possible method to train CNF’s but incurs
costly simulation. Instead, modern scalable methods to train CNF’s employ flow matching (Lipman
et al., 2023; Albergo and Vanden-Eijnden, 2023; Tong et al., 2023; Liu et al., 2023), which learns
vt,θ by regressing against the (conditional) vector field associated with a designed target conditional
flow everywhere in space and time, e.g., constant speed conditional vector fields.
Numerical simulation. In practice, the simulation of a CNF is conducted using a specific numerical
integration scheme that can impact the likelihood estimate’s fidelity in eq. (1). For instance, an Euler
integrator tends to overestimate the log-likelihood (Tan et al., 2025a), and thus it is often preferable
to utilize integrators with adaptive step size, such as Dormand–Prince(4)5 (Hairer et al., 1993). In
applications where estimates of the log-likelihood suffice, it is possible to employ more efficient
estimators such as Hutchinson’s trace estimator to get an unbiased—yet higher variance—estimate
of the divergence. Unfortunately, as we demonstrate in §3.1, such estimators are too high variance
to be useful for importance sampling even in the simplest settings, and remain too computationally
expensive and unreliable in larger scientific applications considered in this work.
One-step maps: Shortcut models. One way to discretize an ODE is to rely on the self-
consistency property of ODEs, also exploited in consistency models (Song et al., 2023), namely
that jumping ∆t in time can be constructed by following the velocity field for two half steps
(∆t/2). This is the core idea behind shortcut models (Frans et al., 2024) that are trained at
various jumps by conditioning the vector field network on the desired step-size ∆t. Precisely,
f∗short,t,2∆t(xt) = f∗t (xt,∆t)/2 + f∗t (x

′
t+∆t,∆t)/2, where x′t+∆t = xt + f∗t (xt,∆t)∆t. In their

extreme, shortcut models define a one-step mapping which has been shown to generate high-quality
images, but it remains an open question whether these models can reliably estimate likelihoods.

2.2 NORMALIZING FLOWS

The generative modelling problem can also be tackled using time-agnostic generators. One such
prominent example is Normalizing Flows (NFs) (Tabak and Vanden-Eijnden, 2010; Tabak and
Turner, 2013; Dinh et al., 2016; Rezende and Mohamed, 2015), which parameterize diffeomorphisms
(continuously differentiable bijective functions, with a continuously differentiable inverse),
fθ : Rd → Rd. For arbitrary invertible maps fθ, computing the change in log probability is
prohibitively expensive with cost that scales with O(d3). Consequently, it is popular to build fθ
using a composition of M elementary diffeomorphisms, each with an easier to compute Jacobian
determinant: fθ = fM−1 ◦ · · · ◦ f0 (Papamakarios et al., 2021). Through function composition,
simple invertible blocks can lead to flows that are universal density approximators (Teshima et al.,
2020; Ishikawa et al., 2023; Kong and Chaudhuri, 2021; Zhang et al., 2020; Bose et al., 2021), and
the resulting MLE objective for training is simply:

log pθ(x1) = log p0(x0)−
M−1∑
i=0

log det

∣∣∣∣∂fi,θ(xi)∂xi

∣∣∣∣ , p0 := N (0, I). (2)

Boltzmann Generators. A Boltzmann Generator (BG) (Noé et al., 2019) combines a normalizing
flow model, pθ, with an importance-sampling correction to produce i.i.d. samples from a target Boltz-
mann distribution ptarget. The normalizing flow defines a tractable proposal density pθ(x) from which
we draw K independent points x(i) ∼ pθ, i ∈ [K]. For each sample, we evaluate an unnormalized
importance weight, which allow any observable ϕ(x) to be consistently estimated under the target
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measure ptarget using self-normalized importance sampling (SNIS) (Liu, 2001; Agapiou et al., 2017):

Eptarget [ϕ(x)w̄ (x)] ≈
∑K

i=1 w
(
x(i)

)
ϕ
(
x(i)

)∑K
i=1 w

(
x(i)

) , w
(
x(i)

)
=

exp
(
−E(x(i))/kBT

)
pθ

(
x(i)

) , (3)

where E(x) denotes the potential energy and kBT are the Boltzmann constant and temperature re-
spectively. The normalized weights w̄

(
x(i)

)
= w

(
x(i)

) /∑
j w

(
x(j)

)
can also be used to resample

the generated configurations, yielding unbiased i.i.d. draws from the desired Boltzmann distribution.

3 REGRESSION TRAINING OF NORMALIZING FLOWS

We seek to build one-step transport maps that both push forward samples x0 ∼ p0 to x1 ∼ p1,
and also permit exact likelihood evaluation. Such a condition necessitates that this learned map is
a bijective function—i.e. an invertible map—and enables us to compute the likelihood using the
change of variable formula. While using an MLE objective is always a feasible solution to learn this
map, it is often not a scalable solution for both CNFs and classical NFs. Beyond architectural choices
and differentiating through a numerical solver, learning flows using MLE is intuitively harder as
the process of learning must simultaneously learn the forward mapping, fθ, and the inverse mapping,
f−1
θ , without knowledge of pairings (x0, x1) ∼ π(x0, x1) from a coupling.

To appreciate this nuance, consider the set of invertible mappings I and the subset of flows F ⊂ I,
that solve the generative modelling problem. For instance, there may exist multiple ODEs (possibly
infinitely many) that push forward p0 to p1. It is clear then that the MLE objective allows the choice
of multiple equivalent solutions f ∈ F . However, this is precisely what complicates learning fθ,
as certain solutions are harder to optimize since there is no prescribed coupling π(x0, x1) for noise
x0, and data targets x1. That is to say, during MLE optimization of the flow fθ, the coupling π
evolves during training as it is learned in conjunction with the flow, which can often be a significant
challenge to optimize when the pairing between noise and data is suboptimal.
Regression objectives. In order to depart from the MLE objective, we may simplify the learning
problem by first picking a solution f∗ ∈ F and fixing the coupling π∗(x0, x1) induced under
this choice, i.e. p1 = [f∗]#(p0). Given privileged access to f∗, we can form a simple regression
objective that approximates this in continuous time using our choice of learnable flow:

L(θ) = Et,x0,x1,xt

[
∥ft,θ(xt)− f∗t (xt)∥

2
]
, (4)

where (x0, x1) ∼ π∗(x0, x1) and xt ∼ pt(·|x0, x1) is drawn from a known conditional noising
kernel such as a Gaussian distribution. We note that the regression objective in eq. (4) is more general
than just flows in I, and, at optimality, the learned function behaves like f∗t on the support of p0,
under mild regularity conditions. We formalize this intuition more precisely in the next proposition.

Proposition 1. Suppose that f⋆t is invertible for all t, that (f⋆t )
−1 is continuous for all t. Then,

as L(θ)→ 0, it holds that ((f⋆t )
−1 ◦ ft,θ)(x)→ x for almost all (with respect to p0) x.

The proof for proposition 1 can be found in §A, and illuminates that solving the original generative
modelling problem via MLE can be re-cast as a matching problem to a known invertible function
f∗. Indeed, many existing generative models already fit into this general regression objective based
on the choice of f∗, such as conditional flow matching (CFM) (Tong et al., 2023), rectified flow (Liu
et al., 2023), and (perfect) shortcut models (Frans et al., 2024). This proposition also shows why
these models work as generative models: they converge in probability to the prespecified map.

3.1 WARMUP: ONE-STEP GENERATIVE MODELS WITHOUT LIKELIHOOD

As there exist powerful one-step generative models in image applications, it is tempting to consider
whether they can be used for BG applications requiring likelihoods. As a warmup, we investigate the
use of current state-of-the-art one-step generative models in shortcut models (Frans et al., 2024) and In-
ductive Moment Matching (IMM) (Zhou et al., 2024) through a simple experiment (see §B for details).
Synthetic experiments. We instantiate both model classes on a simple generative modelling problem,
where the data is a checkerboard density. In fig. 1, we plot the results and observe, that non-invertible
shortcuts and IMM models are imperfect at learning the target and are unable to be corrected to
psynth after resampling. However, when IMM is used to train an NF (Durkan et al., 2019), we see
samples that almost perfectly match psynth—but such an approach is not scalable (§B.2).
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(a) Non-invertible shortcut. (b) Non-invertible IMM. (c) IMM with an NF. (d) Ground truth.
Figure 1: Evaluation of IMM and shortcut models with exact likelihood on the synthetic checkerboard experiment.
Depictions are provided of the 2D histograms after self-normalizing importance sampling is used.

This puts spotlight on a counter-intuitive question given proposition 1: Why do shortcut models have
incorrect likelihoods? While proposition 1 implies pointwise convergence of fθ to f∗, this does
not imply convergence or regularity of the gradients of fθ, and thus shortcut models can still achieve
high quality generations without the need to provide faithful likelihoods.
Insufficiency of uniform convergence. One-step maps are trained to converge pointwise to fθ → f⋆

on a sub-domain D ⊆ Rd. However, this does not imply pointwise convergence of gradients
∇fθ → ∇f⋆. For instance, consider the following toy example: fm(x) = 1

m sin(mx) + x and
f⋆(x) = x. As m→∞, fm converges uniformly to f⋆; however, the gradient∇fm(x) = cos(mx)
does not converge. Importantly, this means that while fθ would produce increasingly accurate
generations, its likelihoods derived through eq. (2) may not converge to those of the base model.

3.2 TRAINING NORMALIZING FLOWS USING REGRESSION

We now outline our REGFLOW framework to train a one-step map for a classical NF. To remedy
the issue found in shortcut models and IMM in section 3.1, we judiciously choose fθ to be an already
exactly invertible mapping—i.e., a classical NF. Since NFs are one-step maps by construction, eq. (4)
is instantiated using a simple regression objective follows:

L(θ) = Ex0,x1

[
∥f1,θ(x0)− f∗1 (x0)∥

2
]
+ λrR = Ex0,x1

[
∥x̂1 − x1∥2

]
+ λrR, (5)

whereR is a regularization strategy and λr ∈ R+ is the strength of regularization. Explicit in eq. (5) is
the need to procure one-step targets x1 = f∗1 (x0) from a known invertible mapping f∗1 . We outline the
choice of such functions in §3.3. We also highlight that the one-step targets in eq. (5) differ from the
typical flow matching objective where the continuous targets f∗t,cfm = ∂

∂ pt(xt|x0, x1) (see §A.3 for
a discussion). Consequently, for NFs that are universal density approximators (Teshima et al., 2020;
Kong and Chaudhuri, 2021; Zhang et al., 2020), the learning problem includes a feasible solution.
Training recipe. We provide the full training pseudocode in algorithm 1. In practice, we find that
f⋆ is often ill-conditioned, with the target distribution often centered around some lower-dimensional
subspace of Rd similar to prior work (Zhai et al., 2024). This may cause fθ to become numerically
ill-conditioned. To combat this, we use three tricks to maintain numerical stability. Specifically,
we regularize the loss function, add small amounts of Gaussian noise to the target distribution similar
to Hui et al. (2025); Zhai et al. (2024), and, finally, add weight decay to our optimizer.
Speedup from uni-directional flow training and inference. For some flow types these are roughly
equivalent (RealNVP or Jet) in computation time. However, for some flows such as autoregressive
flows (e.g. NSF), the network f(x) is substantially faster to evaluate than its inverse f−1(x). In
standard maximum likelihood training of normalizing flows, the model is trained with passes from
data to noise. This is then reversed during generation with passes from noise to data. In REGFLOW
, inference and training can be done from noise to data. This means substantially faster inference can
be achieved by training autoregressive flows where the fast direction is oriented from noise to data.
Regularization Strategies. In principle, classical normalizing flows can be trained using a standalone
regression objective that directly maps latents to data. In practice, we observe that regression training
alone can impact numerical invertibility—a similar phenomenon to that observed in MLE-trained
normalizing flows (Xu and Campbell, 2023; Andrade, 2024). This adversely impacts re-weighted
samples as the NF becomes increasingly numerically unstable. To remedy this, we introduce two
regularization strategies, one using the log-determinant of the Jacobian (see eq. 6), while the other

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

does not, resembling a cycle-consistency loss using forward-backward regularization (see eq. 7):

Llog-det = ∥fθ(x0)− x1∥22 + λr (log |det (Jθ(x))|)2 (6)

Lfwd-bwd ≜ ||fθ(x0)− x1||22 + λr||f−1
θ (fθ(x0))− x0||22. (7)

The first regularization strategy uses the same log determinant that is needed in the change of variable
formula, which comes at no additional computational cost for the architectures we experiment with.
Intuitively, this penalizes the flow map from collapsing to a point as it regularizes against sharp mass
placements, which is what a determinant geometrically computes. The second regularizer is a new
forward-backward self-consistency regularizer that ensures invertibility at the output level, but at
double the computational cost. However, interestingly, since it does not require the Jacobian, it opens
up potential directions for less constrained architectures. For our purposes, we find both of these
regularizers accomplish our aim of avoiding collapse and maintaining invertibility.

Algorithm 1 REGRESSION TRAINING OF NORMALIZING FLOWS

Input: Prior p0, empirical samples from p1, regularization weight λr, noise scale λn, network fθ
1: while training do
2: (x0, x1) ∼ π(x0, x1) ▷ Sample batches of size b i.i.d. from the dataset
3: x1 ← x1 + λn · ε, with ε ∼ N (0, I) ▷ Add scaled noise to targets
4: L(θ)← ∥fθ(x0)− x1∥22 + λrR ▷ Loss with regularization
5: θ ← Update(θ,∇θL(θ))
6: return fθ

3.3 REGFLOW TARGETS

To construct useful one-step targets in REGFLOW, we must find a discretization of an invertible
function—e.g., an ODE solution—at longer time horizons. More precisely, we seek a discretization
of an ODE such that each time point t+∆t where the regression objective evaluated corresponds
to a true invertible function f∗t+∆t. Consequently, if we have access to an invertible map such that
t + ∆t = 1, we can directly regress our parametrized function as a one-step map, f0,θ(x0) = x̂1.
This motivates the search and design of other invertible mappings that give us invertibility at longer
time horizons, for which we give two examples next.
Optimal transport targets. Optimal transport in continuous space between two distributions
defines a continuous and invertible transformation expressible as the gradient of some convex
function (Villani, 2021; Peyré and Cuturi, 2019). This allows us to consider the invertible OT plan:

f∗ot = arg minT

∫
T (x)c(x, T (x))dp0(x) s.t. T#(p0) = p1, (8)

where c : Rd × Rd → R is the OT cost and T : Rd → Rd is a transport map. We note that this
map is interesting as it requires no training; however, exact OT runs in O(n3) time and O(n2) space,
which makes it challenging to scale to large datasets. Furthermore, we highlight that this differs from
OT-CFM (Tong et al., 2023), which uses mini-batches to approximate the OT-plan. Nevertheless,
in applicable settings, full batch OT acts as a one-time offline pre-processing step for training fθ.
Reflow targets. Another strategy to obtain samples from an invertible map is to use a pretrained
CNF, also known as reflow (Liu, 2022). Specifically, we have that:

f∗reflow(x0) = x0 +

∫ 1

0

v⋆t (xt)dt = x1. (9)

In other words, the one-step invertible map is obtained from a pre-trained CNF v⋆t , from which we
collect a dataset of noise-target pairs, effectively forming π∗(x0, x1). We now prove that training
on reflow targets with REGFLOW reduces the Wasserstein distance to the p1.

Proposition 2. Let preflow be a pretrained CNF generated by the vector field v∗t , real numbers
(Lt)t∈[0,1] such that v∗t is Lt-Lipschitz for all t ∈ [0, 1], and a NF f nf

θ trained using Eq. 5 by
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regressing against f⋆reflow(x0), where x0 ∼ N (0, I). Then, writing pnf
θ := Law(f nf

θ (x0)), we have:

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ ϵ, K ≥

∫ 1

0

E
([
∥v∗t (xt)− vt,true(xt)∥22

]) 1
2 dt, (10)

where K is the ℓ2 approximation error between the velocity field of the CNF and the ground
truth generating field v∗t , ϵ2 = Ex0,x1

[
∥f⋆reflow(x0)− f

nf
θ (x0)∥22

]
.

The proof for proposition 2 is provided in §A. Intuitively, the first term captures the approximation
error of the pretrained CNF to the actual data distribution p1, and the second term captures the
approximation gap between the flow trained using REGFLOW to the reflow targets obtained via preflow.
While these two cases represent interesting instantiations of f∗, there exist many other possible
procedures for obtaining f∗. We investigate the theoretical properties for f∗ in appendix A.4 to
provide guidance for those who wish to investigate other targets.

Table 2: Quantitative results on alanine dipeptide (ALDP), tripeptide (AL3), and tetrapeptide (AL4) reported as
mean ± standard deviation over three seeds.

Datasets→ Dipeptide (ALDP) Tripeptide (AL3) Tetrapeptide (AL4)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1 ↓ T-W2 ↓ ESS ↑ E-W1 ↓ T-W2 ↓
NSF (MLE) 0.055 ± 0.012 13.797 ± 2.713 1.243 ± 0.103 0.024 ± 0.004 17.596 ± 1.21 1.665 ± 0.180 0.016 ± 0.003 20.886 ± 1.930 3.885 ± 0.410
NSF (REGFLOW) 0.035 ± 0.004 0.501 ± 0.011 0.951 ± 0.054 0.031 ± 0.018 0.853 ± 0.105 1.577 ± 0.140 0.011± 0.003 3.277 ± 0.546 2.342 ± 0.102
Res–NVP (MLE) <1e-4 >1e3 >30 <1e-4 >1e3 >30 <1e-4 >1e3 >30
Res–NVP (REGFLOW) 0.035 ± 0.008 2.104 ± 0.586 0.812 ± 0.121 0.025 ± 0.006 3.241 ± 0.301 1.881 ± 0.205 0.013 ± 0.004 2.705 ± 0.306 2.117 ± 0.331
Jet (MLE) <1e-4 >1e3 >30 <1e-4 >1e3 >30 <1e-4 >1e3 >30
Jet (REGFLOW) 0.055 ± 0.006 4.193 ± 1.016 0.801 ± 0.076 <1e-4 >1e3 3.644 ± 0.358 <1e-4 >1e3 >30

4 EXPERIMENTS

We evaluate NFs trained with REGFLOW on three molecular systems: alanine dipeptide (ALDP),
alanine tripeptide (AL3), and alanine tetrapeptide (AL4). These peptides are a standard benchmark
for tesing generative models in computational chemistry. We asses the models on two key tasks:
equilibrium conformation sampling and targeted free energy prediction (TFEP) (Wirnsberger et al.,
2020). Through these experiments, we show that REGFLOW outperforms the conventional maximum
likelihood estimation (MLE) training for NFs in these scientific applications.
Setup. We test three different architectures: RealNVP with a residual network parametrization (Dinh
et al., 2016), neural spline flows (NSF) (Durkan et al., 2019), and Jet (Kolesnikov et al., 2024),
across three different molecular systems (ALDP, AL3, and AL4) of increasing size and compare
the performance of the same invertible architecture trained using MLE, and using REGFLOW. We
report: Effective Sample Size (ESS); the 1-Wasserstein distance on the energy distribution; and the
2-Wasserstein distance on the main dihedral angles as described in §C with additional results in §D.
Main results. We report our main quantitative results in table 2 and observe that REGFLOW with
reflow targets consistently outperforms MLE training of NFs across all architectures on both E-W1

and T-W2 metrics, and slightly underperforms MLE training on ESS. However, this can be justified
by the mode collapse that happens in MLE training as illustrated in the Ramachandran plots for
alanine dipeptide fig. 2, which artificially increases ESS. Examining the energy histogram plots
in fig. 2 we observe that NFs trained using REGFLOW more closely match the true energy distribution.
We also illustrate these improvements across metrics when using OT targets over reflow, as shown
Appendix fig. 9. Our results clearly demonstrate that REGFLOW is often a compelling alternative to
MLE training in BGs for all analyzed NF architectures, and allows training of architectures that were
previously untrainable with MLE training.

Table 3: Inference efficiency comparisons.
Time to compute likelihoods for 200k samples.

Models→ Dipeptide (ALDP)

Algorithm ↓ MLE REGFLOW CFM Speed Up

NSF 277.00 8.18 N/A 33.8×
Res–NVP 3.64 3.51 N/A 1.03×
Jet 67.63 60.43 N/A 1.11×
CNF DiT N/A N/A 26969.80 N/A

REGFLOW leads to faster training and inference. We
note that NFs trained with REGFLOW are substantially
faster at computing likelihoods compared to their MLE-
trained counterparts, except for cases where the NF has
an analytical inverse (Res–NVP, Jet) due to the reversal
of the flow. For autoregressive flows like NSF, where
the reverse pass is far slower to compute than the for-
ward pass, we observe the maximum benefit: REGFLOW
enables nearly a 34× speedup in inference compared to the equivalent MLE-trained NF, as seen in
Tab. 3. We also compare performance relative to continuous normalizing flows (CNFs), which require
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Table 4: Training time comparison between MLE and REGFLOW for alanine dipeptide.

Metric ↓ MLE REGFLOW

OT CNF

E-W1 = 7.090 10h10 6h54 7h23
T-W2 = 1.368 12h17 7h32 7h56

Table 5: ALDP with various regularization strategies.
Models→ Dipeptide (ALDP)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓
NSF (MLE) 0.055 ± 0.012 13.797 ± 2.713 1.243 ± 0.103
NSF (REGFLOW w/o reg) 0.032 ± 0.008 0.604 ± 0.045 1.083 ± 0.109
NSF (REGFLOW w/ logdets) 0.036 ± 0.007 0.519 ± 0.021 0.958 ± 0.074
NSF (REGFLOW w/ fwd-bwd) 0.035 ± 0.004 0.501 ± 0.011 0.951 ± 0.054

Res–NVP (MLE) < 10−4 > 103 > 30
Res–NVP (REGFLOW w/o reg) 0.033 ± 0.010 2.948 ± 0.457 1.179 ± 0.218
Res–NVP (REGFLOW w/ logdets) 0.032 ± 0.008 2.310 ± 0.411 0.796 ± 0.109
Res–NVP (REGFLOW w/ fwd-bwd) 0.035 ± 0.008 2.104 ± 0.586 0.812 ± 0.121

Jet (MLE) < 10−4 > 103 > 30
Jet (REGFLOW w/o reg) 0.053 ± 0.007 9.707 ± 1.843 1.224 ± 0.181
Jet (REGFLOW w/ logdets) 0.051 ± 0.004 6.349 ± 1.412 0.872 ± 0.065
Jet (REGFLOW w/ fwd-bwd) 0.055 ± 0.006 4.193 ± 1.016 0.801 ± 0.076

integrating the divergence of the vector field—this makes likelihood evaluation extremely expensive
compared to discrete NFs. We observe that CNF inference with likelihoods is approximately 450×
more expensive than our slowest NF (Jet) and 7700× more expensive than our fastest NF (Res–NVP).

50 0 50 100
E(x)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d 
De

ns
ity

MLE (Best)
True data
Proposal
Proposal (reweighted)

50 0 50 100
E(x)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

RegFlow (Best)
True data
Proposal
Proposal (reweighted)

−π −π
2

π
2 πϕ

−π

−π
2

π
2

π

ψ

Ground Truth MD

−π −π
2

π
2 πϕ

−π

−π
2

π
2

π
ψ

MLE (Best)

−π −π
2

π
2 πϕ

−π

−π
2

π
2

π

ψ

RegFlow (Best)

4.0

2.0

0.0

Fr
ee

 e
ne

rg
y 

/ k
B
T

Figure 2: Energy distributions and resampled Ramachandran plots for alanine dipeptide. (left to right): Energy
distribution of most best MLE-trained NF; energy distribution of best REGFLOW; ground truth MD data torsion
angle distribution, best MLE-trained model Ramachandran plot; best REGFLOW Ramachandran plot.

Next, we contrast the training times between MLE and REGFLOW, accounting for: (1) CNF training
or OT map pre-computation; (2) sample generation from the CNF; and (3) REGFLOW training
until its performance exceeds MLE. Across all settings, REGFLOW consistently outperforms MLE.
Specifically, we observe that achieving superior performance on E-W1 requires ∼27% less time with
REGFLOW, while on T-W2, the speedup is closer to ∼35%. We also compare the training times
between MLE and REGFLOW across all peptide systems. In fig. 3, we illustrate how the energy varies
during training using REGFLOW ; the dotted lines symbolize the best energy using the MLE-trained
NSF on the validation set. Here, we see that the crossover between REGFLOW and MLE occurs after
∼1h20, ∼1h20, and ∼2h40, for REGFLOW to outperform MLE on the dipeptide, tripeptide, and
tetrapeptide, respectively. Conversely, MLE training took ∼10h10, ∼11h20, and ∼11h40 using the
dipeptide, tripeptide, and tetrapeptide, respectively. These studies further validate the potential for
REGFLOW to serve as an efficient and effective alternative to MLE.
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Figure 3: Training time required for REGFLOW to
outperform the most performant MLE model (NSF).

Alternative regularization strategies. We investi-
gate the impact of different regularization strategies
to prevent numerical collapse for REGFLOW in ta-
ble 5. We consider no regularization (w/o reg), regu-
larization of the magnitude of the log determinant of
the Jacobian (w/ logdets), and a direct invertibility
penalization (forward-backward). For our usecase,
the Jacobian comes at no extra cost and is therefore
the most efficient. The forward-backward regular-
izer enforces cycle consistency by performing a
forward pass of the NF, followed by a reverse pass
on the same generated samples, and computing the
ℓ2 distance between the reconstructed priors. This
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is at least twice as expensive as the logdet regularization for our use case, however it does perform
quite well, and interestingly opens up the possibility for more flexible architectures. All regulariza-
tions outperform MLE, and the logdet regularization offers the best tradeoff between performance
and speed for our usecase, so we use that regularization for the remainder of our experiments.

Table 6: Ablations on target types and amount of reflow
targets on ALDP.

Datasets→ Dipeptide (ALDP)

Algorithm ↓ ESS ↑ E-W1 ↓ T-W2 ↓
NSF (MLE) 0.055 13.80 1.243
NSF (REGFLOW @ 100k CNF) 0.016 17.39 1.232
NSF (REGFLOW @ 10.4M CNF) 0.035 0.501 0.951
NSF (REGFLOW @ OT) 0.003 0.604 2.019

Res–NVP (MLE) < 10−4 > 103 > 30
Res–NVP (REGFLOW @ 100k CNF) 0.009 46.93 1.155
Res–NVP (REGFLOW @ 10.4M CNF) 0.035 2.104 0.812
Res–NVP (REGFLOW @ OT) 0.006 0.699 1.969

Jet (MLE) < 10−4 > 103 > 30
Jet (REGFLOW @ 100k CNF) 0.017 31.42 1.081
Jet (REGFLOW @ 10.4M CNF) 0.051 4.193 0.801
Jet (REGFLOW @ OT) 0.003 2.534 1.913

Ablations. In table 6, we report REGFLOW using
OT targets and various amounts of generated re-
flow targets—a unique advantage of using reflow
as the invertible map. As observed, each target
choice improves over MLE, outside of ESS for
NSF. Importantly, we find that using more sam-
ples in reflow consistently improves performance
metrics for all architectures. In fig. 4, we show
how performance increases with the number re-
flow samples and we ablate the impact of regular-
ization. We find performance improvements with
increasing regularization, up to around 10−6 ≤
λr ≤ 10−5. Regularizing beyond this is suffi-
cient to ensure empirical invertibility based on
validation loss of Lfwd−bck < 10−4, but ham-
pers generation performance.
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Figure 4: Left and center: Ablations demonstrating performance improvements with an increasing number of
reflow samples. Right: Increasing regularization improves T-W2 up to a certain point, beyond which numerical
invertibility is guaranteed but the regression objective, and subsequently, sample quality, is adversely impacted.
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Figure 5: Left: The βplanar and αR conformation states;
Right: REGFLOW’s ability to learn free energy differences.

Targeted Free Energy Perturbation. Ac-
curate calculations of the free energy dif-
ference between two metastable states of a
physical system is both ubiquitous and of
profound importance in the natural sciences.
One approach to tackling this problem is Free
Energy Perturbation (FEP) which exploits
Zwanzig’s identity: EA

[
e−β∆U

]
= e−β∆F ,

where ∆F = FB − FA is the Helmholtz free
energy difference between two metastable
states A and B (Zwanzig, 1954). Targeted
Free Energy Perturbation (TFEP) improves
over FEP by using NFs to learn an invertible
map using MLE to increase the distributional overlap between states A and B (Wirnsberger et al.,
2020; Moqvist et al., 2025); however, this can be challenging for several reasons. NFs are difficult to
learn, especially when the energy function is expensive to compute, or the states occupy small areas.
We propose a new TFEP method that does not require energy function evaluations during training.
By using REGFLOW, we can train the NF solely based on samples from states A and B. This enables
TFEP, where energy evaluations may be costly—a new possibility that is distinct from NFs trained
using MLE. To demonstrate this application of REGFLOW, we train an NF solely from samples from
two modes of ALDP (see fig. 5) and use OT targets which avoid any energy function evaluation.
We include a reference using the DiT CNF—trained to map between meta-stable states—which also

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

achieves similar predictions, albeit taking nearly three orders of magnitude longer to compute. We
find we can achieve high-quality free energy estimation in comparison to ground truth Molecular
Dynamics (MD) using only samples during training, as illustrated in fig. 5. We believe this is a
promising direction for future applications of free energy prediction.

5 RELATED WORK

Exact likelihood generative models. NFs are generative models with invertible architec-
tures (Rezende and Mohamed, 2015; Dinh et al., 2016) that produce exact likelihoods for any given
points. Common models include RealNVP (Dinh et al., 2016), neural spline flows (Durkan et al.,
2019), and Glow (Kingma and Dhariwal, 2018). Jet (Kolesnikov et al., 2024) and TarFlow (Zhai
et al., 2024) are examples of transformer-based normalizing flows. Aside from Jet and Tarflow, NFs
have generally underperformed compared to diffusion models and flow matching methods (Ho et al.,
2020; Lipman et al., 2023; Albergo et al., 2023; Liu, 2022), partly due to the high computational
cost of evaluating the log-determinants of Jacobians at each training step.
Few-step generative models. To avoid costly inference, few-step generative models were introduced
as methods to accelerate the simulation of diffusion and CNFs. Common examples include DDIM
(Song et al., 2022) and consistency models (Song et al., 2023), which introduced a new training
procedure that ensured the model’s endpoint prediction remained consistent. Recently, flow
maps (Boffi et al., 2024; 2025; Song and Dhariwal, 2023; Lu and Song, 2024; Geng et al., 2024;
2025; Sabour et al., 2025) have improved upon this paradigm. Other lines of work proposed related
but different training objectives, generalizing consistency training (Frans et al., 2024; Zhou et al.,
2025; Kim et al., 2024; Heek et al., 2024). Beyond diffusion and FM, residual networks (He et al.,
2015) are a class of neural networks that are invertible if the Lipschitz constant of fθ is at most
one (Behrmann et al., 2019). The log-determinant of the Jacobian is then approximated by truncating
a series of traces (Behrmann et al., 2019)—an approximation improved in Chen et al. (2020).

6 CONCLUSION

In this work, we present REGFLOW, a method for generating high-quality samples alongside exact
likelihoods in a single step. Using a base coupling between the dataset samples and the prior, provided
by either pre-computed optimal transport or a base CNF, we can train a classical NF using a simple
regression objective that avoids computing Jacobians at training time, as opposed to typical MLE
training. In theory and practice, we have shown that the learned model produces faithful samples,
the likelihoods of which empirically allow us to produce state-of-the-art results on several molecular
datasets, using importance-sampling resampling. Limitations include the quality of the proposal
samples, which substantially improve on MLE-trained NFs, but are not on par with state-of-the-art
CNFs or variants thereof. Moreover, while producing accurate and high-quality likelihoods, they do
not, in theory, match those of the base coupling, which can be a desirable property.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

We first recall proposition 1 below.

Proposition 1. Suppose that f⋆t is invertible for all t, that (f⋆t )
−1 is continuous for all t. Then,

as L(θ)→ 0, it holds that ((f⋆t )
−1 ◦ ft,θ)(x)→ x for almost all (with respect to p0) x.

To prove proposition 1, we first prove the following lemma, which is essentially the same as the
proposition, but it abstracts out the distribution of xt, which depends on x0, x1, and t.

Lemma 1. For functions (fn)n≥1 and g, where g is invertible and has a continuous inverse,
x0 ∼ p0, if MSE(fn, g) := Ex0 ∥fn(x0)− g(x0)∥

2
2 → 0, then limn→∞ g−1(fn(x)) = x for

almost all (with respect to p0) x.

Proof. Let Yn = ∥fn(x0) − g(x0)∥2. We know that limn→∞ E[Y 2
n ] = 0 (as it corresponds to the

MSE), which implies that limn→∞ Var(Yn) = 0. Consequently, Yn −→ c for some constant c ∈ R.
Moreover, by Jensen’s inequality and the convexity of x 7→ x2, we find that (E[Yn])2 ≤ E[Y 2

n ],
meaning that c = 0. This implies that limn→∞∥fn(x)− g(x)∥22 = 0 almost everywhere, and thus
that limn→∞ fn(x) = g(x). Finally, since g−1 is continuous, we can apply the function to both sides
of the limit to find that limn→∞ g−1(fn(x)) = x, almost everywhere.

It suffices to apply the above lemma to xt ∼ pt( · | x0, x1)p1(x1 | x0)p0(x0).

A.2 PROOF OF PROPOSITION 2

We now prove proposition 2. The proposition reuses the following regularity assumptions, as
introduced in Benton et al. (2023), which we recall verbatim below for convenience:
(Assumption 1) Let vtrue be the true generating velocity field for the CNF with field v∗ trained using

flow matching. Then the true and learned velocity v∗ are close in ℓ2 and satisfy:∫ 1

0
Et,xt [∥vt,true(xt)− v∗t (xt)∥2]dt ≤ K2.

(Assumption 2) For each x ∈ Rd and s ∈ [0, 1], there exists unique flows (f∗s,t)t∈[s,1] and
(f(s,t),true)t∈[s,1], starting at f∗(s,s) = x and f(s,s),true = x with velocity fields
v∗t (xt) and vt,true(xt), respectively. Additionally, f∗ and ftrue are continuously
differentiable in x, s and t.

(Assumption 3) The velocity field v∗t (xt) is differentiable in both x and t, and also for each t ∈ [0, 1]
there exists a constant Lt such that v∗t (xt) is Lt-Lipschitz in x.

Proposition 2. Let preflow be a pretrained CNF generated by the vector field v∗t , real numbers
(Lt)t∈[0,1] such that v∗t is Lt-Lipschitz for all t ∈ [0, 1], and a NF f nf

θ trained using Eq. 5 by
regressing against f⋆reflow(x0), where x0 ∼ N (0, I). Then, writing pnf

θ := Law(f nf
θ (x0)), we have:

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ ϵ, K ≥

∫ 1

0

E
([
∥v∗t (xt)− vt,true(xt)∥22

]) 1
2 dt, (10)

where K is the ℓ2 approximation error between the velocity field of the CNF and the ground
truth generating field v∗t , ϵ2 = Ex0,x1

[
∥f⋆reflow(x0)− f

nf
θ (x0)∥22

]
.

Proof. We begin by first applying the triangle inequality toW2(p1, pθ) and obtain:

W2(p1, pθ) ≤ W2(p1, preflow) +W2(preflow, p
nf
θ ). (11)

The first term is an error in Wasserstein-2 distance between the true data distribution and our reflow
targets, which is still a CNF. A straightforward application of Theorem 1 in Benton et al. (2023)
gives a bound on this first Wasserstein-2 distance1:

W2(p1, preflow) ≤ K exp

(∫ 1

0

Ltdt

)
. (12)

1A sharper bound can be obtained with additional assumptions, as demonstrated in Benton et al. (2023), but
it is not critically important in our context.
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To bound W2(preflow, pθ), recall that the following inequality holds W2(Law(X),Law(Y )) ≤
E
[
∥X − Y ∥22

] 1
2 , for any two random variables X and Y . In our case, these random variables are

p∗reflow = Law(f∗reflow(x0)) and pnf
θ = Law(f nf

θ (x0)). This gives:

W2(preflow, p
nf
θ ) ≤ Ex0,x1

[∥∥f∗reflow(x0)− f nf
θ (x0)

∥∥2
2

] 1
2

. (13)

Combining eq. (12) and eq. (13) achieves the desired result and completes the proof.

W2(p1, pθ) ≤ K exp

(∫ 1

0

Ltdt

)
+ Ex0,x1

[∥∥f∗reflow(x0)− f nf
θ (x0)

∥∥2
2

] 1
2

. (14)

Note that the bound onW2(preflow, p
nf
θ ) is effectively the square-root of the REGFLOW objective and

thus optimization of the NF using this loss directly minimizes the upper bound toW2(p1, p
nf
θ ).

A.3 REGFLOW IN CONTINUOUS TIME

Current state-of-the-art CNFs are trained using “flow matching” (Lipman et al., 2023; Albergo and
Vanden-Eijnden, 2023; Liu et al., 2023), which attempts to match the vector field associated with
the flow to a target vector field that solves for mass transportation everywhere in space and time.
Specifically, we can cast conditional flow matching (CFM) (Tong et al., 2023) from the perspective
of REGFLOW. To see this explicitly, consider a pre-specified probability path, pt(xt), and the
following f∗t,fm = ∂

∂tpt(xt). However, since it is generally computationally challenging to sample
from pt directly, the marginalization trick is used to derive an equivalent objective with a conditional
f∗t,cfm. We note that REGFLOW requires f∗t,cfm to be invertible therefore this assumes regularity on
∂
∂tpt(xt). This is generally satisfied by adding a small amount of noise to the following. We present
this simplified form for clarity.

pt(xt) :=

∫
pt(xt|x0, x1)dπ(x0, x1), pt(xt|x0, x1) = δ(xt; (1− t)x0 + tx1). (15)

Then setting f∗t,cfm = ∂
∂tpt(xt|x0, x1) it is easy to show that:

L(θ) = Et,x0,x1,xt

[∥∥∥∥vt,θ(xt)− ∂

∂t
pt(xt|x0, x1)

∥∥∥∥2
]
= Et,xt

[∥∥∥∥vt,θ(xt)− ∂

∂t
pt(xt)

∥∥∥∥2
]
+ C,

= Et,x0,x1,xt

[
λt

∥∥ft,θ(xt)− f∗t,cfm(xt)
∥∥2] ,

with C independent of θ (Lipman et al., 2023), and λt is a loss weighting, which fits within the
REGFLOW framework in the continuous-time setting with the last equality known as target/end-point
prediction.

A.4 REQUIREMENTS FOR REGFLOW TARGETS

In practice, REGFLOW deals with discrete couplings. Any discrete coupling is usable for training
RegFlow as long as there exists an invertible function on the continuous domain which agrees with
it. This leaves us with easily verifiable necessary and sufficient properties for the base coupling.
Specifically, let π(x0, x1) denote the coupling between empirical point sets x0, x1 in Rd.

Proposition 3. If π is a permutation and there does not exist i ̸= j such that xi0 = xj0 or xi1 = xj1.
Then there exists invertible function f : Rd → Rd such that for all xi0 ∈ x0, f(xi0) = xi1 and for all
xi1 ∈ x1, f−1(xi1) = xi0.

Proof. We proceed by constructing an example f which satisfies the necessary properties. First we
denote f∗ : x0 → x1 as the discrete invertible function mapping the point set x0 to the point set x1.
Let

f(x) =


f∗(x) if x ∈ x0
f∗−1(x) if x ∈ x1
x else

This function is invertible on Rd and satisfies the necessary properties in the proposition on the
domains of x0 and x1.
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(a) 1-step. (b) 2-step. (c) 4-step. (d) 8-step. (e) 16-step.

Figure 6: Generations of IMM trained with an iUNet with a variable number of steps.

This proposition establishes necessary and sufficient conditions for training a valid REGFLOW
between x0 and x1. This property is quite simple to obtain in practice. For both OT-couplings and
CNF-couplings π is almost by definition a permutation. The only trouble is if there exist duplicate
points. This is a measure-zero event in continuous space, and therefore is not an issue.
In fact, any random permutation matrix satisfies these conditions. Which leads to the perhaps more
interesting question of what are the properties of a “good” coupling π. In some sense we are looking
for π that are “good” couplings that are somehow “easy” to learn and generalizes well when trained
with the REGFLOW procedure in a given setting.
In this work we used REGFLOW to improve the training speed and convergence of the same normal-
izing flow architectures that are normally trained using maximum likelihood (MLE).
We believe the classic MLE objective would help when it is difficult to find a good coupling for the
given architecture, dataset, and REGFLOW learning framework. In this work we established that there
exist settings where OT and CNF-couplings outperform the MLE objective. We leave it to future
work to study the optimal couplings in a given setting.

B ADDITIONAL BACKGROUND

B.1 INDUCTIVE MOMENT MATCHING

Introduced in Zhou et al. (2025), Inductive Moment Matching (IMM) defines a training procedure for
one-step generative models, based on diffusion/flow matching. Specifically, IMM trains models to
minimize the difference in distribution between different points in time induced by the model. As a
result, this avoids direct optimization for the predicted endpoint, in contrast to conventional diffusion.
More precisely, let fθ : Rd × [0, 1]2 → Rd, (x, s, t) 7→ fθ(x, s, t) be a function parameterized by θ.
IMM minimizes the following maximum mean discrepancy (MMD) loss:

L(θn) = Es,t,x0,x1

[
w(s, t)MMD2

(
pθn−1,(s|r)(xs), pθn,(s|t)(xs)

)]
, (16)

where 0 ≤ r ≤ r(s, t) := r ≤ s ≤ 1, with s, t ∼ U(0, 1) iid, w ≥ 0 is a weighting function, x1 is a
sample from the target distribution, x0 ∼ N (0, I), xs is some interpolation between x0 and x1 at
time s (typically, using the DDIM interpolation (Song et al., 2022)), the subscript n ∈ N of parameter
θ refers to its training step, and MMD is some MMD function based on a chosen kernel (typically,
Laplace).2 Essentially, the method uses as a target the learned distribution of the previous step at a
higher time to train the current distribution at lower times. With a skip parameterization, the higher
time distribution is by construction close to the true solution, as pθ(xs | xr) ≈ p(xs | xr) when
r ≈ s, and xs is known. (Or, in other terms, fθ(x, s, r ≈ s) ≈ x with the skip parameterization.)
When the distributions match (when the loss is zero), MMD2(p1,θ, p1) = 0, and so the generative
model’s and the target distribution’s respective moments all match.
This training procedure allows for variable-step sampling. For chosen timesteps, (ti)ni=1, one can
sample from p1,θ by sampling x0 ∼ N (0, I) and performing the steps:

xti+1 ← DDIM(fθ(xti , ti+1, ti), xti , ti, ti+1), (17)
where DDIM is the DDIM interpolant.
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(a) Using the ResFlow architecture
proposed in Chen et al. (2020).

(b) Using the TarFlow architec-
ture (Zhai et al., 2024), m = 4.

(c) Using the TarFlow architec-
ture (Zhai et al., 2024), m = 16.

Figure 7: One-step generation results with a Lipschitz-constrained (ResFlow) model and an invertible model
(TarFlow) for IMM. The m parameter is the group size in IMM used to approximate the MMD.

B.2 INDUCTIVE MOMENT MATCHING NEGATIVE RESULTS

We detail in appendix B.1 the Inductive Moment Matching (IMM) framework (Zhou et al., 2025).
Observing the sampling procedure, which we give in eq. (17), one can make this procedure invertible
by constraining the Lipschitz constant of the model, or by using an invertible model. For the first
case, if we use the “Euler” (skip) parameterization alongside the DDIM interpolation, it is shown that
the reparameterized model gθ can be written as:

∀x, s, t, gθ(x, s, t) = x− (s− t)fθ(x, s, t). (18)
Moreover, 0 ≤ s − t ≤ 1, and so if the Lipschitz constant of fθ is strictly less than one, then the
overall model is invertible, using the argument of residual flows (Behrmann et al., 2019); so the
change of variables formula applies as follows (using the time notation of IMM/diffusion):

log pθ1(x) = log p0(x0)−
∑
i

log
[
(ti+1 − ti) det(Jfθ(·,ti+1,ti)(xti))

]
, (19)

The difficulty of evaluating the log-determinant of the Jacobian remains. Note, however, that we do
not need to find the inverse of the function to evaluate the likelihood of generated samples, since we
know each (xti)i. The second path (of using an invertible model) is viable only for one-step sampling
with no skip parameterization (which, according to Zhou et al. (2025), tends to under-perform,
empirically), since the sampling procedure then boils down to x1 = f(x0, 1, 0) for x0 ∼ N (0, I).
While both approaches succeeded in synthetic experiments, they fail to scale to datasets such as
MNIST, the results of which we include here in fig. 6 and in fig. 7. We have tried iUNet (Etmann
et al., 2020) and TarFlow (Zhai et al., 2024), an invertible UNet and a Transformer-based normalizing
flow, respectively, for invertible one-step models; and we have tried the ResFlow architecture
in (Chen et al., 2020) for the Lipschitz-constrained approach. As observed, TarFlow fails to produce
images of high quality; iUNets produced significantly better results, albeit still not sufficient,
especially for the one-step sampling, which is the only configuration that guarantees invertibility; the
Lipschitz-constrained ResFlow entirely failed to produce satisfactory results, although the loss did
diminish during training. In general, an even more important limitation is the difficulty of designing
invertible or Lipschitz-constrained models for other data types, for instance, 3D coordinates. Perhaps
further research on the architectural side could allow for higher performance with invertible sampling.

C EXPERIMENTAL DETAILS

C.1 METRICS

The performance metrics considered across the investigated flows were the effective sample size, ESS,
Wasserstein-1 energy distance, E-W1, and the Wasserstein-2 distance on dihedral angles, T-W2.

2Note that we have adapted IMM’s notation to our time notation, with noise at time zero, and clean data at
time one.
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Effective Sample Size (ESS). We compute the effective sample size (ESS) using Kish’s formula,
normalized by the number of samples generated:

ESS
(
{wi}Ni=1

)
=

1

N

(∑N
i=1 wi

)2

∑N
i=1 w

2
i

. (20)

where wi is the unnormalized weight of each particle indexed by i over N particles. Effective sample
size measures the variance of the weights and approximately how many more samples would be
needed compared to an unbiased sample. For us, this captures the local quality of the proposal relative
to the ground truth energy. It does not rely on a ground truth test set; however, it is quite sensitive
and may be misleading in the case of dropped modes or incomplete coverage, as it only measures
agreement on the support of the generated distribution.
Wasserstein-1 Energy Distance (E-W1). The Wasserstein-1 energy distance measures how well
the generated distribution matches some ground truth sample (often generated using MD data) by
calculating the Wasserstein-1 distance between the energy histograms. Specifically:

E-W1(x, y) = min
π

∫
x,y

|x− y|dπ(x, y), (21)

where π is a valid coupling of p(x) and p(y). For discrete distributions of equal size, π can be thought
of as a permutation matrix. This measures the model’s ability to generate very accurate structures
as the energy function we use requires extremely accurate bond lengths to obtain reasonable energy
values. When the bond lengths have minor inaccuracies, the energy can blow up extremely quickly.
Torus Wasserstein (T-W2). The torus Wasserstein distance measures the Wasserstein-2 dis-
tance on the torus defined by the main torsion angles of the peptide. That is for a peptide of
length l, there are 2(l − 1) torsion angles defining the dihedrals along the backbone of interest
((ϕ1, ψ1), (ϕ2, ψ2), . . . (ϕl, ψl)). We define the torus Wasserstein distance over these backbone
angles as:

T-W2(p, q)
2 = min

π

∫
x,y

cT (x, y)
2dπ(x, y), (22)

where π is a valid coupling between p and q, and cT (x, y)2 is the shortest distance on the torus
defined by the dihedral angles:

cT (x, y)
2 =

2(L−1)∑
i=0

[(Dihedrals(x)i −Dihedrals(y)i + π) mod 2π − π]2 . (23)

The torus Wasserstein distance measures large scale changes and is quite important for understanding
mode coverage and overall macro distribution. We find REGFLOW does quite well in this regard.

C.2 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

To accurately compute the previously defined metrics, 250k proposal samples were drawn and
re-weighted for alanine dipeptide, tripeptide, and tetrapeptide.
Data normalization. We adopt the same data normalization strategy proposed in (Tan et al., 2025a),
in which the center of mass of each atom is first subtracted from the data, followed by scaling using
the standard deviation of the training set.
Exponential moving average. We apply an exponential moving average (EMA) on the weights of all
models, with a decay of 0.999, as commonly done in flow-based approaches to improve performance.
Training details and hardware. All models were trained on
NVIDIA L40S 48GB GPUs for 5000 epochs, except those using
OT targets, which were trained for 2000 epochs. Convergence was
noted earlier in the OT experiments, leading to early stopping. The
total training time for all models is summarized in table 7. The time
taken to compute the OT map is also provided; since computing the
OT map is independent of the feature dimension, but only on the
number of data points used, the compute time was relatively consis-
tent across all datasets. A total of 100k points was used for training
the CNF, performing MLE training, and computing the OT map.

Table 7: REGFLOW training time
(in hours) on ALDP, AL3, and
AL4.

Model ALDP AL3 AL4

OT map 3.6 3.8 3.8
DiT CNF 27.6 40.7 48.6
NSF 21.0 23.8 26.8
Res–NVP 15.7 15.6 15.0
Jet 19.1 19.2 20.1
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Reflow targets. Ablations were done to investigate the influence of synthetic data quantity on all
metrics. For all benchmarking performed against MLE training, the largest amount of synthetic data
was used. For ALDP, AL3, and AL4, this constituted 10.4M, 10.4M, and 10M samples, respectively.
Determinant regularization. During REGFLOW, it was initially ob-
served that as proposal sample quality improved, the re-weighted sam-
ples progressively deteriorated across all metrics due to the models
becoming numerically non-invertible. This was partially addressed
by adding regularization to the loss in the form of a log determi-
nant penalty. Sweeps were conducted using multiple regularization
weights ranging between 10−7 and 10−4 to prevent hampering sam-
ple performance. The amount of regularization added was a function
of the flow and dataset. The final weights are summarized in table 8.

Table 8: Regularization weights
used across datasets and flows.

Model ALDP AL3 AL4

NSF 10−6 10−5 10−5

Res–NVP 10−5 10−5 10−6

Jet 10−5 10−6 10−5

Target noise. To discourage numerical non-invertibility of the trained flows, Guassian noise was
also introduced to the target samples. Experiments were conducted with noise magnitudes of 0.01,
0.05, 0.1, and 0.25, with a final value of 0.05 being selected for use across models and datasets.
REGFLOW implementation details. A summary of all trained model configurations is provided
in table 9. To maintain a fair comparison, the configurations reported below were unchanged for
MLE training and REGFLOW. Adam was used as the optimizer with a learning rate of 5 × 10−4

and a weight decay of 0.01. We also included a varying cosine schedule with warmup in line with
the approach suggested in (Tan et al., 2025a).

Table 9: Model configurations for the DiT CNF, NSF, Res–NVP, and Jet across all datasets (ALDP, AL3, AL4).
A dash (–) indicates the parameter is not applicable to the respective model.

Model hidden features transforms layers blocks per layer conditioning dim. heads dropout # parameters (M)
DiT CNF 768 – 6 – 128 12 0.1 46.3
NSF 256 24 – 5 – – – 76.8
Res–NVP 512 – 8 6 – – 0.1 80.6
Jet 432 – 4 12 128 12 0.1 77.6

Quality of CNF targets. To maximize the likelihood that models trained with REGFLOW have the
potential to outperform MLE, securing high-quality targets is essential. In line with this pursuit,
a CNF with a diffusion transformer backbone was used. In fig. 8, the true data and the CNF proposal
are shown, where it can be seen that the learned energy distributions across all three peptides
are nearly perfect. Re-weighted samples are not included as obtaining likelihoods from the CNF
requires estimating the trace of the divergence, which is often an expensive operation with a large
time and memory cost. Although many unbiased approaches for approximating the likelihood
exist (Hutchinson, 1989), these methods are typically unusable for Boltzmann Generators due to
their variance, which can introduce bias into the weights needed for importance sampling.
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Figure 8: True energy distribution and learned proposal using the DiT-based CNF. ∗The re-weighted proposal is
not present because it was too computationally expensive to compute for a sufficient number of points.
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Figure 9: Energy distribution of the original and re-weighted samples, as well as the true data, when using
100,000 OT targets on ALDP (left: NSF (REGFLOW); center: Res−NVP (REGFLOW); right: Jet (REGFLOW)).

D ADDITIONAL RESULTS

D.1 REGFLOW PERFORMANCE USING OT TARGETS

Optimal transport targets. In addition to using reflow targets from a pre-trained CNF, we pre-
compute an OT map to obtain an invertible pairing between source and target samples. We combine
this map with REGFLOW training, and report results in fig. 9 for alanine dipeptide. Here, we
demonstrate an example of where REGFLOW training goes beyond distillation and can serve as an
effective approach at training classical normalizing flows on diverse invertible maps.

D.2 PERFORMANCE ON LARGER PEPTIDES

Alanine tripeptide and alanine tetrapeptide We demonstrate the learned distributions of the
two pairs of dihedral angles that parameterize alanine tripeptide and tetrapeptide using our best
MLE-trained and REGFLOW flows in fig. 11 and fig. 12. The inability to capture the modes using
MLE is elucidated, where multiple modes appear to blend together in both sets of dihedral angles
in fig. 11. Conversely, using REGFLOW, most modes are accurately captured and the general form of
the Ramachandran plots conforms well to that of the true distribution obtained from MD. The findings
observed with alanine tripeptide are even more pronounced with alanine tetrapeptide, where certain
modes are entirely missed when MLE-trained flows are used, as seen in fig. 12. With REGFLOW,
however, most modes are accurately captured, and the density distribution is in strong agreement with
the ground truth data. These findings clearly demonstrate the utility of a regression-based training
objective over conventional MLE for applications to equilibrium conformation sampling of peptides.
In fig. 10, we demonstrate that the energy distribution of the re-weighted samples using REGFLOW,
which yields a more favourable energy distribution over MLE-trained flows. For the tripeptide, the
results are in strong agreement with MD. For the tetrapeptide, the re-weighted samples are superior
than their MLE counterparts, but have room for improvement in matching the true energy distribution.
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Figure 10: Energy distribution of original and re-weighted samples generated for the most performant MLE and
REGFLOW models on alanine tripeptide (left and center left) and alanine tetrapeptide (center right and right).

D.3 GENERATED SAMPLES OF PEPTIDE CONFORMATIONS

Samples of generated peptides. Below we provide sample conformations of alanine dipeptide
generated using both MLE training and REGFLOW in fig. 13. In addition, we include sample
molecules of the larger peptides, obtained through REGFLOW training as well in fig. 14.
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Figure 11: Ramachandran plots for alanine tripeptide (left: ground truth, middle: best MLE-trained flow, right:
best REGFLOW flow). REGFLOW captures most modes, while MLE-trained flows struggle.
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Figure 12: Ramachandran plots for alanine tetrapeptide (left: ground truth, middle: best MLE-trained flow,
right: best REGFLOW flow). REGFLOW captures most modes, while MLE-trained flows struggle.

D.4 TARGETED FREE ENERGY PERTURBATION

Generating regression targets. Using the available MD data, two conformations of alanine dipeptide
were selected: βplanar and αR (Ghamari et al., 2022). The (ϕ, ψ) ranges for the βplanar conforma-

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: Generated conformations of alanine dipeptide across various flow-based methods (left: NSF w/ MLE;
center left: NSF w/ REGFLOW; center right: Res–NVP w/ REGFLOW; right: Jet w/ REGFLOW.

Figure 14: Generated samples of larger peptides using NSF (REGFLOW) (left: ALDP; center: AL3; right: AL4).

tion were chosen as (−2.5,−2.2) and (2.3, 2.6), and for the αR conformation as (−1.45,−1.2) and
(−0.7,−0.4), respectively. The dataset was then truncated to 82,024 source-target conformation pairs,
which were used to compute the OT pairing and generate an invertible map. These pairs were subse-
quently trained using REGFLOW, with the same model configurations and settings outlined in table 9.
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