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ABSTRACT

Generating realistic and diverse human–human interactions from text remains a
fundamental but challenging problem in vision, graphics, and robotics. Current
approaches face two main limitations: (i) interaction synthesis requires both high-
quality individual motion and precise spatiotemporal coordination, yet existing
datasets are too small to support such complexity, limiting generalization; and (ii)
complex interactions often demand detailed textual descriptions, but sentence-level
embeddings fail to capture fine-grained semantics. We address these issues with
two contributions. First, we introduce InterCompose, a scalable data synthesis
framework that combines the general knowledge of large language models with
strong single-person motion priors to generate high-quality two-person interac-
tions beyond existing distributions. Second, we propose Text2Interact, which
employs word-level attention for fine-grained text–motion alignment and an adap-
tive supervision signal that dynamically weights body parts based on interaction
context to enhance realism. Extensive experiments demonstrate that our approach
substantially improves motion diversity, semantic alignment, and realism over
state-of-the-art baselines. Our code and models will be released for reproducibility.

1 INTRODUCTION

Modeling realistic and controllable two-person interactions is a fundamental challenge in human
motion generation, with applications in animation, virtual reality, and human–robot collaboration.
Despite rapid progress in single-person motion synthesis (Tevet et al., 2022b; Zhou et al., 2024; Wan
et al., 2024; Cong et al., 2024), extending these capabilities to diverse two-person scenarios remains
difficult due to two key limitations. 1) Limited data. High-quality interaction generation requires
not only plausible individual motions but also precise spatiotemporal coordination and semantic
consistency between agents. Training such models demands large-scale corpora, yet current two-
person datasets are markedly smaller than single-person counterparts (e.g., INTERHUMAN (Liang
et al., 2024) < 8k sequences vs. HUMANML3D (Guo et al., 2022) > 14k), constraining diversity
and generalization. The high cost of capturing interaction data makes scalable synthesis essential. 2)
Insufficient interaction modeling. Two-person interactions are language-rich: INTERHUMAN captions
have a median of 21 words vs. 7 for HUMANML3D. Yet prior methods (Liang et al., 2024; Tanaka
& Fujiwara, 2023; Javed et al., 2024) compress prompts into a single sentence-level embedding,
discarding fine-grained spatial and temporal cues needed for faithful alignment. This bottleneck
limits both diversity and text–motion fidelity.

In this paper, we address the data scarcity challenge by proposing InterCompose, which synthesizes
diverse and plausible paired texts and two-person interactions from language and single-person
motion priors. Our key insight is that a wide range of interaction patterns can be effectively composed
from single-person motions by ensuring the motions’ alignment with interaction semantics and
spatial-temporal consistencies between the interacting motions. To synthesize and compose single-
person motion primitives, we first generate diverse two-person interaction texts paired with accurate
and succinct single-person motion descriptions using an LLM (Liu et al., 2024), utilizing the general
world knowledge encoded in the LLM for semantic richness and variety. Then, we sample single-
person motions from a state-of-the-art generative model (Guo et al., 2024) and trained a conditional
reaction generation model that generates the second party of an interaction given the first party
and the interaction description, leveraging the strong language and motion priors while ensuring
interaction semantics alignment and spatial-temporal consistency. To ensure the motion quality and
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They are dancing Latin, 
stomping their feet and swaying their hips.

One person playfully tosses an object high; The other scrambles 
to catch it, leaping and stumbling but finally grasping it mid-air.

Two people are quarreling, pushing and shoving each other.

One person extends a hand in apology, while 
the other person crosses their arms.

One swings a high kick, while 
the other blocks with their forearm.

Two people are drilling taekwondo technique, 
including front and back kicks.

(a) (b)

Figure 1: (a) Our generative two-person motion composition framework, InterCompose, synthesizes
plausible and diverse interactions from generated textual descriptions and a single-person motion
condition (yellow). (b) Our interaction generation framework Text2Interact generates high-quality
and plausible interactions faithful to text. A deeper color indicates a later time.

diversity of the synthesized motions, we introduce a neural motion evaluator to measure the quality
and text-motion alignment of the synthesized data. As a result, incorporating our synthesized and
filtered dataset enhances the model’s ability to generate unseen interactions (see Tab. 2), improving
generalizability without requiring additional real data.

To faithfully capture the nuanced semantics in text-to-interaction generation, we revisit the language
conditioning mechanism and propose Text2Interact, a new text-to-interaction generation framework
equipped with a novel word-level text conditioning module that injects fine-grained semantic informa-
tion throughout the generation process. This is motivated by the observation that while single person
motions can often be described with abstract phrases or words ("dances", "playing golf", "sidesteps
left"), two-person motions often requires a sequence of consecutive phrases to accurately describe,
with spatial and temporal cues embedded in the language for synchronizing the interaction. In con-
trast to methods that inject a single sentence-level embedding, our approach preserves detailed textual
semantics and avoids information bottlenecks caused by compressing rich interaction descriptions
into a single vector. To take advantage of this rich representation, we leverage the cross-attention
mechanism, in which each motion token dynamically attends to all individual tokens in the textual
prompt, leading to better semantic alignment. To enhance interaction plausibility, we design an
adaptive interaction loss that dynamically weights joint-pair distances based on their spatial relevance,
promoting tighter physical and contextual coupling between agents during training. Unlike existing
diffusion-based methods (Liang et al., 2024; Ruiz-Ponce et al., 2024) that treat all inter-person joint
pairs equally, our loss emphasizes spatially proximate joints, such as hands or arms in handshakes
and sparring, thereby encouraging tighter contextual coupling between the two agents during training.

Extensive experiments demonstrate that our method achieves state-of-the-art performance in two-
person motion generation, outperforming prior art in terms of motion fidelity, faithfulness, and
generalizability. Moreover, our ablation studies validate the effectiveness of each component in the
proposed framework, especially in scenarios where real interaction data is sparse. In summary, our
contribution is three-fold:

• A scalable synthesis-and-filtering strategy (InterCompose) that constructs high-quality, diverse
two-person interactions from LLM text priors and single-person motion priors.

• A word-level attention conditioning module (Text2Interact) with an adaptive interaction loss for
semantically faithful and spatiotemporally coherent two-person generation.

• State-of-the-art results on standard benchmarks and superior performance in challenging out-of-
distribution settings via a broad user study.
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2 RELATED WORKS

2.1 TEXT-TO-HUMAN MOTION GENERATION

Text-to-motion generation aims to synthesize human motion sequences from natural language de-
scriptions (Fan et al., 2024; Tanke et al., 2023; Jeong et al., 2024; Jiang et al., 2023; Guo et al.,
2022; Zhang et al., 2023a; Wan et al., 2024; Lu et al., 2024; Guo et al., 2024). Early methods such
as Text2Action (Ahn et al., 2018) and Language2Pose (Ahuja & Morency, 2019) utilized GANs
and sequence-to-sequence architectures to map text to motion, laying foundational work in this
area. Subsequent approaches leveraged variational autoencoders (VAEs) for probabilistic generation,
including Guo et al. (Guo et al., 2022) and TEMOS (Petrovich et al., 2022), which improved motion
diversity and fluency. More recent advancements have focused on powerful generative models.
Diffusion-based approaches such as MDM (Tevet et al., 2022b) and latent diffusion via MLD (Chen
et al., 2023) significantly improved motion realism and sample efficiency. T2M-GPT (Zhang et al.,
2023a) employed autoregressive transformers for fine-grained motion synthesis, while MoMask (Guo
et al., 2024) introduced generative masked transformers to enhance fidelity under the autoregressive
paradigm. ReMoDiffuse (Zhang et al., 2023b) further enhanced generation quality by retrieving
reference motions from a motion database. Parallel to improving generation quality, increasing
attention has been given to controllable text-to-motion generation. Techniques have explored condi-
tioning on spatial trajectories (Shafir et al., 2023; Karunratanakul et al., 2023; Wan et al., 2024; Xie
et al., 2023) and linguistic constraints (Wan et al., 2024; Huang et al., 2024) to provide more precise
control over generated outputs. Additionally, MotionCLIP (Tevet et al., 2022a) aligned motion and
language embeddings in a shared space, enabling zero-shot text-to-motion generation. Despite stellar
results in single-person motion generation, extending them to two-person interactions introduces
additional challenges such as modeling inter-agent coordination and handling semantically richer
text descriptions. Our work builds on these foundations by proposing a scalable framework that
composes diverse and semantically aligned two-person interactions from single-person motion priors
and language models.

2.2 HUMAN-HUMAN INTERACTION GENERATION

Although some progress has been achieved in multi-human interaction modeling (Fan et al., 2024;
Tanke et al., 2023; Jeong et al., 2024), prior works on human interaction modeling have been
mostly focused on the two-person interaction problem. A pioneer work, ComMDM (Shafir et al.,
2023), explores two-person motion generation by using a bridge network to compose the outputs
of two single-person motion diffusion models (Tevet et al., 2022b). RIG (Tanaka & Fujiwara,
2023) and InterGen (Liang et al., 2024) first trained dedicated networks to directly model two-
person interaction. in2IN (Ruiz-Ponce et al., 2024) explores the simultaneous use of individual and
interaction descriptions to enhance textual alignment and generation quality. MoMat-MoGen (Cai
et al., 2024) proposes to enhance generation quality by retrieving from a motion database and a
generative framework that models interactive behaviors between agents, considering personality,
motivations, and interpersonal relationships. InterMask (Javed et al., 2024) utilizes the generative
masked transformer architecture and spatial-temporal attention to enhance generation quality and
text-motion alignment. TIMotion (Wang et al., 2024), a contemporaneous work, proposes to model
the human interaction sequence in a causal sequence, leveraging the temporal and causal properties of
human motions. Although these methods have achieved impressive results, there remains significant
possibilities of improvement due to their common flaw of limited training corpus and inadequate
text modeling granularity. In this paper, we aim to tackle these two key issues with our generative
interaction composition framework and fine-grained word-level conditioning module.

3 METHOD

Problem Formulation. Given a text prompt ct, the task of human-human interaction generation
from text involves generating a two-person interaction sequence X = [x1,x2] ∈ R2×T×N×3 that is
both semantically and spatially coherent and faithful to the original text prompt, where xi denotes
the i-th person’s motion sequence, T is the sequence length in frames and N is the number of joints.
Following standard practice in single human and interaction generation (Guo et al., 2022; Liang et al.,
2024; Ponce et al., 2024), we use a extended representation formulated as: x(t)

i = [jpg, j
v
g , j

r, cf ],
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LLM

Theme: Conflict
Tags: Intense, Physical, …
Reference examples: …

① Sample two-person and corresponding 
single-person text descriptions

Single-Person
Model

② Generate single-person
 motion from single prompt

Text: the first person 
kicks violently towards 
the other person, and 
the second one falls 
onto the ground.

Word-Level 
Conditioning

The first person

…

onto the ground

Word-Level 
Conditioning

…

The first person onto the ground

Self-Attn

×N blocks

…

…

Two-Person Prompt: the 
two guys engage in a 
physical altercation, …
Single Prompt A: The 
person steps forward 
aggressively, thrusts their 
arms out, and plants their 
feet firmly.
Single Prompt B: …

Reaction Gen
Model

③ Generate reaction based on 
single-person condition and text

Person A Tokens

Person B Tokens

Word-level Tokens

Predicted Interaction

Single Motion Condition Synthesized Interaction

Text Condition

CLIP

Motion-Motion Interaction

Cross-Attn

Self-Attn

Motion-Motion Interaction

Cross-Attn

(b) Text2Interact

(a) InterCompose

Figure 2: Overview of the proposed frameworks. (a) InterCompose: sample interaction and single-
person descriptions via an LLM, generate a single-person motion from a motion prior (Guo et al.,
2024), then compose the second agent with a reaction model conditioned on the two-person prompt
and the motion prior. (b) Text2Interact: an N -block generator with word-level conditioning and
motion–motion interaction. Each block cross-attends motion tokens to CLIP word tokens (Radford
et al., 2021), followed by self-attention and inter-agent cross-attention to model individual motion
and interactions.

where motion state of the i-th person at time t, x(t)
i , is defined as a collection of global joint positions

jpg ∈ R3N , velocities jvg ∈ R3N in the world frame, 6D representation of local rotations jr ∈ R6N in
the root frame, and binary foot-ground contact cf ∈ R4.

3.1 GENERATIVE TWO-PERSON MOTION COMPOSITION

3.1.1 DATA GENERATION FROM SINGLE-PERSON MOTION AND LANGUAGE PRIORS

To address the limited diversity of existing two-person motion datasets, we propose a modular
pipeline, InterCompose, that synthesizes realistic two-person interactions by sampling coherent
two-person and single-person motion descriptions and composing individual motion sequences
generated from the descriptions. Specifically, we first use an LLM (Liu et al., 2024) to annotate the
text descriptions in InterHuman (Liang et al., 2024), classifying them into a discrete space of coarse-
grained themes (e.g. greeting, dancing, conflict) and fine-grained tags (e.g. excited, synchronized,
disarm) that further describes the interaction. By systematically combining plausible theme–tag
combinations, we can generate interaction descriptions that remain stylistically consistent with
InterHuman but span a broader range of behaviors by sampling from the LLM in the joint theme-tag
space: ct ∼ TLLM(theme, tags). Then, given a generated interaction text ct, we decompose it into two
role-specific sub-descriptions (c1t , c

2
t ) using an additional LLM prompt. Each cit describes the motion

of person i independent of the other, while taking the context information into account. Please refer
to Fig. 2 (a) for an illustration. We use (c1t , c

2
t ) to generate corresponding single-person motions

(x1,x2) via a pre-trained single-person text-to-motion generator MoMask (Guo et al., 2024) trained
on single-person motion datasets (Guo et al., 2022), enabling it to generate motions beyond the
single-person motion distribution of InterHuman (Liang et al., 2024).

To model dependencies between the interactants, we train a conditional diffusion model Dθ that
synthesizes the second agent’s motion x2 given the first agent’s motion x1 and the shared interaction
description ct. Formally, we model the conditional distribution pθ(x2 | x1, ct) using a denoising
diffusion probabilistic model (DDPM) with an 8-layer Transformer architecture. At training time,
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Dθ aims to recover an interaction sequence (x1,x2) sampled from InterHuman (Liang et al., 2024)
from one ground-truth and one noised interactant (x1,x

′
2). During inference, we sample x1 using

MoMask then generate x2 using Dθ conditioned on x1, producing a complete interaction (x1,x2)
that is semantically aligned with ct and physically coordinated.

This compositional approach significantly enlarges the diversity of two-person interactions compared
to existing datasets, as it decouples single-person motion priors and recombines them under guided
conditions. Unlike direct generation approaches, which must learn joint coordination from sparse
data, our formulation leverages both rich single-person priors and role-specific semantics to scaffold
plausible and varied interactions from structured textual prompts. In addition, the inference-based
nature of our data composition process allows it to be extremely scalable and cost-efficient compared
to the traditional MoCap-based data collection process.

3.1.2 HIGH-QUALITY AND DIVERSE DATA FILTERING.

To ensure the quality and diversity of the synthesized two-person motions, we propose a two-stage
filtering pipeline that considers text-motion alignment and distributional regularization. We first train
a contrastive encoder using the InterHuman (Liang et al., 2024) two-person interaction dataset to
project both text and motion into a shared embedding space. Specifically, we freeze a pretrained
text encoder (CLIP (Radford et al., 2021)) with a trainable Transformer (Vaswani et al., 2017)
feature extractor head fhead, and learn a motion encoder fϕ based on the Transformer architecture.
The training objective is a symmetric cross-entropy (CE) loss over cosine similarities between
normalized embeddings. A held-out subset of the InterHuman dataset is reserved to provide a
reference embedding distribution for diversity filtering.

After training, we apply the encoder to the synthetic dataset Dsyn = {(x, ct)} and compute the cosine
similarity between each motion and its paired text. We discard samples with similarity scores below
a threshold δ = 0.58, empirically chosen based on performance on a validation split. This step
eliminates low-quality or semantically misaligned samples.

To further enforce motion diversity and promote high-quality samples that are underrepresented in
the original two-person dataset, we perform a distributional filtering step using the two-person motion
embeddings from the held-out InterHuman subset Ereal = {fϕ(xr)} as reference. For each synthetic
motion embedding fϕ(x), we compute its Euclidean distance to the k nearest neighbors in Ereal, and
retain only those whose average distance falls within a predefined annulus: rmin ≤ d(fϕ(x), Ereal) ≤
rmax. This preserves synthesized motions that are novel (outside the inner radius rmin) but not far
from the real data distribution (inside the outer radius rmax).

This dual-stage filtering framework ensures that the final synthetic dataset exhibits both semantic
fidelity and distributional diversity. Detailed analysis of the effects of δ, rmin, and rmax is in Sec. 4.3.

3.2 FINE-GRAINED INTERACTION MODELING

3.2.1 WORD-LEVEL ATTENTION MODELING OF LANGUAGE AND INTERACTION DYNAMICS

Having diversified our training distribution with synthetic data, we now address the issue of insuffi-
cient granularity in two-person text semantics modeling. To tackle the issue and improve semantic
alignment between natural language and generated motion, we design a cross-attention-based word-
level text-motion conditioning architecture that injects fine-grained text information throughout
the generation process. Unlike prior methods that inject a sentence-level embedding into motion
tokens via AdaLN (Liang et al., 2024; Javed et al., 2024; Ponce et al., 2024) or sentence-level
cross-attention (Tanaka & Fujiwara, 2023), our architecture allows each motion token to dynamically
attend to individual word-level tokens, preserving the nuanced motion semantics and spatial-temporal
alignment cues in semantic-rich interaction prompts.

Formally, given a tokenized interaction description ct = {w1, . . . , wL}, we extract word-level
embeddings T = {t(1), . . . , t(L)} using a frozen CLIP text encoder. The architecture is composed of
alternating processing modules, each consisting of two types: 1) Word-level Conditioning Module
Mw: A Transformer block with cross-attention between a single agent’s motion tokens xi and the full
text embedding sequence T, enabling each motion token to focus on semantically relevant parts of the
prompt. This block preserves temporal resolution and injects lexical cues aligned with event structure.

5
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2) Motion-Motion Interaction Module Mm: A two-stage module where motion tokens xi first
perform self-attention over their own sequence (intra-agent context), followed by cross-attention
over the other agent’s motion tokens xj (j ̸= i), which models inter-agent physical and temporal
dependencies such as push-pull or synchronization. Please see Fig. 2 (b) for an illustration.

Each update step consists of a word-level conditioning module followed by a motion-motion interac-
tion module; these two modules together form a full block that is applied in an alternating fashion:
first to one agent, conditioning on the text and the other agent’s motion, and then to the other agent in
the next step. Leveraging the symmetry of two-person interactions, the blocks Bw and Bm are shared
across agents, ensuring architectural symmetry and parameter efficiency. The alternating structure
allows each agent to respond adaptively to both the linguistic description and the dynamic behavior
of their partner, while preserving causal and temporal coherence.

Overall, the network design enables high-fidelity generation that is both semantically grounded and
interaction-aware, allowing nuanced conditioning through the word-level representation and fostering
motion patterns that are faithful to the described scenario.

3.2.2 ADAPTIVE INTERACTION SUPERVISION

We use the standard velocity loss Lvel, foot contact loss Lfoot, bone-length loss LBL, and relative
orientation loss LRO. For these objective functions, refer to InterGen (Liang et al., 2024) for details.

In addition to the above objective functions, we designed a new objective LAdaInteract to enhance the
generation of plausible interaction semantics, a crucial element of text-to-interaction generation.
Motivated by the insight that joint pairs that are closer to each other carry more importance in the
interaction semantics, we propose a novel adaptive interaction loss that supervises the pairwise
distances between human-human joint pairs with an adaptive weighting:

LAdaInteract =

N∑
i=1

N∑
j=1

1

dij + ϵ
∥dij − d̂ij∥2 (1)

Where dij , d̂ij are the ground-truth and predicted distances between the joints i and j respectively, and
ϵ = 0.1 is an empirically set constant. By putting more emphasis on spatially proximate inter-agent
joint pairs, our adaptive interaction objective function provides strong guidance for the model to
adhere to the interaction semantics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We use the InterHuman (Liang et al., 2024) dataset for training and evaluating our model.
InterHuman contains 6,022 two-person interacting motions and 3 textural descriptions per motion
in the training split, and 1,177 two-person interacting motions in the test split. Additionally, a
synthesized dataset of 25,000 text-motion pairs before filtering and 1,200 text-motion pairs after
filtering is used for fine-tuning. All models are first trained on the InterHuman training split. For
fine-tuning, the model is fine-tuned on the InterHuman training split augmented by the filtered
synthetic dataset. All metrics are calculated using the InterHuman test split.

Metrics. Following standard practice in human-human interaction generation (Liang et al., 2024;
Ruiz-Ponce et al., 2024; Javed et al., 2024; Cai et al., 2024), we use the R-Precision (Top-1, 2, 3),
Frechet Inception Distance (FID), Multimodal Distance (MM Dist), Diversity, and Multimodality
(MModality) for evaluation our models. Please refer to InterGen (Liang et al., 2024) for the detailed
definition of these metrics.

Implementation Details. Our model consists of 12 attention blocks and 12 word-level conditioning
blocks, positioned in an interleaved manner. We utilize a frozen CLIP-ViT-L/14 (Radford et al.,
2021) model for extracting as the text encoder. We set the number of diffusion (Ho et al., 2020)
steps to 1,000 and use a cosine noise schedule (Nichol & Dhariwal, 2021). The model is trained
with 8 NVIDIA A100 GPUs for 200,000 steps, with a 5e-5 learning rate and a batch size of 16 with
the AdamW (Loshchilov & Hutter, 2017) optimizer, cosine learning rate scheduling, and 1000-step
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Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Ground Truth 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -

T2M (Guo et al., 2022) 0.238±.012 0.325±.010 0.464±.014 13.769±.072 5.731±.013 7.046±.022 1.387±.076

MDM (Tevet et al., 2022b) 0.153±.012 0.260±.009 0.339±.012 9.167±.056 7.125±.018 7.602±.045 2.350±.080

ComMDM (Shafir et al., 2023) 0.223±.009 0.334±.008 0.466±.010 7.069±.054 6.212±.021 7.244±.038 1.822±.052

RIG (Tanaka & Fujiwara, 2023) 0.285±.010 0.409±.014 0.521±.013 6.775±.069 5.876±.002 7.311±.043 2.096±.065

InterGen (Liang et al., 2024) 0.371±.010 0.515±.012 0.624±.010 5.918±.079 5.108±.014 7.387±.029 2.141±.063

MoMat-MoGen (Cai et al., 2024) 0.449±.004 0.591±.003 0.666±.004 5.674±.085 3.790±.001 8.021±.350 1.295±.023

in2IN (Ruiz-Ponce et al., 2024) 0.425±.008 0.576±.008 0.662±.009 5.535±.120 3.803±.002 7.953±.047 1.215±.023

InterMask (Javed et al., 2024) 0.449±.004 0.599±.005 0.683±.004 5.154±.061 3.790±.002 7.944±.033 1.737±.020

Ours 0.483±.005 0.638±.005 0.717±.005 5.191±.055 3.778±.001 7.900±.030 1.051±.031

Table 1: Performance on the InterHuman (Liang et al., 2024) test sets. ± indicates a 95% confidence
interval and → means the closer to ground truth the better. Boldface indicates the best result.

warm-up. During sampling, we use the DDIM (Song et al., 2020) sampling with 50 timesteps, with a
classifier-free guidance (Ho & Salimans, 2022) weight of 3.5.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Quantitative Comparison. Tab. 1 contains the quantitative comparison between Text2Interact
and state-of-the-art methods. Each experiment is repeated 20 times, after which the mean and
95% confidence interval of each metric is recorded. Text2Interact achieves state-of-the-art results
on all three R-precision metrics, surpassing the previous state-of-the-art, InterMask (Javed et al.,
2024), by a significant margin, highlighting the effectiveness of the word-level conditioning design
choice in text-motion alignment. In terms of motion quality, our Text2Interact also achieves the best
MM Distance and the second-best FID, with a small FID margin (0.037) from the state-of-the-art,
InterMask, and surpassing all other prior arts. Notably, our FID is within the 95% confidence interval
of InterMask’s FID, highlighting an equal level of generation quality from a statistical perspective.

Ours InterMask

One person pulls the rope towards oneself while the other person is being pulled by it towards one person. 
Eventually, one person emerges as the winner of the tug of war.

Two people are training taekwondo by performing forward leg strikes while moving forward. 
Once the training session is over, both participants pay respect to one another by bowing.

The first one holds their face with both hands, while the 
second one kneels down with their right knee and reaches out both hands to the first one.

Figure 3: Qualitative comparisons of interaction generation results from Text2Interact and Inter-
Mask (Javed et al., 2024). Our method produces results with better text-motion alignment and is
more robust to implausible poses. A deeper color indicates a later time.

Qualitative Comparison. We provide a qualitative comparison between our method and the current
state-of-the-art, InterMask (Javed et al., 2024). As shown in Fig. 3, our model exhibits stronger
adherence to text, higher robustness, and more plausible interaction semantics.

Specifically, in the first generation result of our method, the agent marked in red successfully pulls
the agent marked in green, and the red agent emerges as the winner (frame 5). In contrast, the motion
generated by InterMask only exhibits pulling, and does not reflect this final part of the motion. In the
second row, the InterMask result exhibits implausible human pose outputs in frames 1 and 2, and
does not reflect the final bowing action, while our model generates plausible results faithful to the
complete semantic meanings of the text. In the third row, the kneeling human generated by InterMask
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The first person waves their arms wildly, 
while the other crosses theirs in frustration.

Two people sweep in unison. One pushing debris toward 
the other, who gathers it neatly into a dustpan. 

One jumps onto a chair, startling the other person who rushes to catch them. One backs away slowly, guiding the other 
who carries a tray of drinks, their arms tense.

Figure 4: Qualitative samples of InterCompose. Prompts are synthesized by an LLM (Liu et al.,
2024). The yellow is synthesized by the single-person motion generator, while the blue is generated
by the reaction model with the yellow as the condition. A deeper color indicates a later time.

again exhibits an implausible human pose in frames 2, 3, 4, and 5. These results highlight our
Text2Interact’s pose robustness over InterMask, an aspect not adequately measured by the evaluator
and the FID metric, while confirming Text2Interact’s lead in text to motion alignment.

4.3 FURTHER EVALUATION

Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Before Fine-tuning 0.485±.010 0.644±.007 0.721±.009 5.701±.065 3.777±.001 7.904±.033 1.081±.019

Finetune (0.25 < d < 0.6) 0.485±.004 0.641±.004 0.717±.004 5.981±.056 3.778±.001 7.946±.028 1.080±.026

Finetune (0.3 < d < 0.6) 0.480±.007 0.635±.004 0.715±.004 5.682±.100 3.779±.002 7.909±.030 1.058±.030

Finetune (0.35 < d < 0.6) 0.483±.005 0.638±.005 0.717±.005 5.191±.055 3.778±.001 7.900±.030 1.051±.031

Table 2: Quantitative Results of Text2Interact after fine-tuning on synthetic data generated by
InterCompose. d denotes the Euclidean distance between a synthetic data sample point and its closest
held-out data point in the embedding space of the neural evaluator.

Quantitative Evaluation of Fine-Tuning and Filtering. We present the results of fine-tuning the
model on a combined dataset consisting of InterHuman (Liang et al., 2024) training split and filtered
synthetic data for 50k steps, with a learning rate of 5e-6. As shown in Tab. 2, the model exhibits a
similar level of text-to-motion matching (R-Precision) after fine-tuning and a significantly improved
FID in the best case, highlighting the improvement in generalizability. Notably, the FID exhibits a
clear increasing trend when the minimum Euclidean distance d of the filtering process is increased
within a reasonable range, confirming the effectiveness of the proposed filtering pipeline in achieving
synthetic data quality and diversity at the same time. The results also indicates that the increased
dataset diversity by synthetic data improves the model’s generalizability.

Qualitative Visualization of Synthetic Data. In Fig. 4, we present exemplar results of our data
synthesis pipeline, InterCompose. The agent marked yellow is generated by the single-person motion
generator (Guo et al., 2024) while the agent marked blue is generated by the reaction generation
model. As shown in the figure, our pipeline synthesizes high-quality and diverse motions from
single-person motion and text descriptions, with close adherence to the text. Moreover, the textual
descriptions resemble real-life human-human interaction situations with emotional interactions or
inter-person collaboration instilled into the text prompts.

User Study Results on Fine-Tuning. We present the user preference study results conducted with 51
participants on 10 samples generated with out-of-distribution texts using our data generation pipeline.
Fig. 5 shows the users’ strong preference for the model after fine-tuning, in terms of both motion
quality and text-motion matching. This result confirms our model’s improved generalizability to
out-of-distribution samples after fine-tuning.

User Study Results on InterCompose vs Text2Interact. Fig. 6 presents a user preference study
between motions synthesized with InterCompose and generated by Text2Interact. Two studies are
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conducted for InterCompose (a) without and (b) with distributional filtering, where only high-quality
and novel motions are retained after the filtering process. The results show that: (a) Text2Interact
shows stronger consistency in motion quality compared to InterCompose, rendering the former
suitable for general text-to-interaction tasks; (b) with the distributional filtering step, motions from
InterCompose have higher quality compared to motions generated by Text2Interact, confirming the
quality of the synthesized and filtered motion dataset used for fine-tuning.
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Figure 5: User preference study re-
sults of Text2Interact with and with-
out fine-tuning on synthetic data.
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s

Ablation Study. After thoroughly investigating the effectiveness of the data synthesis and fine-
tuning pipeline, we now analyze the effectiveness of the proposed sub-components: the word-level
conditioning module (WLC), the adaptive interaction loss (AIL), and the synthetic data fine-tuning
process (FT). When removing the word-level conditioning module, we replace it with sentence-
level condition injection by AdaLN; for ablation of adaptive interaction loss, we replace it with the
flat-weight distance map function LDM proposed by InterGen (Liang et al., 2024); for ablation of
fine-tuning, the model was trained only on InterHuman (Liang et al., 2024) without the fine-tuning
process. Tab. 3 shows significant improvement of our model after adding each proposed component,
in terms of text-motion matching (R-Precision), FID, Multimodal Distance, and diversity.

Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

w.o. All Proposed Components 0.441±.006 0.608±.005 0.681±.005 6.237±.071 3.781±.001 7.959±.035 1.068±.022

w.o. AIL, FT 0.484±.005 0.632±.005 0.710±.005 6.192±.069 3.779±.001 7.853±.033 1.081±.019

w.o. WLC, FT 0.484±.005 0.629±.005 0.711±.005 5.877±.061 3.779±.001 7.851±.034 0.996±.027

w.o. FT 0.485±.010 0.644±.007 0.721±.009 5.701±.065 3.777±.001 7.904±.033 1.046±.022

Ours 0.483±.005 0.638±.005 0.717±.005 5.191±.055 3.778±.001 7.900±.030 1.051±.031

Table 3: Ablation Study: Effect of removing one or more of the proposed components: Adaptive
Interaction Loss (AIL), Synthetic Data Fine-Tuning (FT), Word-Level Conditioning (WLC).

5 CONCLUSION

In this paper, we presented InterCompose, a novel and effective framework that composes single-
person motions into two-person interaction from LLM-generated text descriptions, and Text2Interact,
a high-quality and fine-grained two-person interaction generation framework equipped with word-
level conditioning. The effectiveness of InterCompose has been confirmed by an ablation study,
user study, qualitative results, and latent visualizations. Utilizing data generated by InterCompose,
Text2Interact achieves a significant FID boost, achieving SoTA-level R-precision and FID, setting a
new state-of-the-art for the two-person motion generation task.

Limitations and Future Work. While Text2Interact demonstrates strong motion fidelity and
faithfulness, it does not account for physical plausibility during generation, which can result in
artifacts such as floating motions and ground penetration. Incorporating physics priors offers a
promising avenue for future work. Additionally, although InterCompose provides an effective
synthesis framework, extending it to learn motions directly from video remains an interesting and
relatively unexplored direction.
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SUPPLEMENTARY MATERIALS

A TEXT2INTERACT IMPLEMENTATION DETAILS

A.1 WORD-LEVEL TOKENIZATION

We use the CLIP (Radford et al., 2021) ViT-L/14 encoder for encoding the text. The text is tokenized
by the CLIP tokenizer into word-level tokens for short words and sub-word-level tokens for long
words, with <SOT> and <EOT> tokens inserted at the start and end of the text. The maximum number
of text tokens is 75. If the number of tokens after tokenization is longer than 75, the text tokens are
truncated and additional tokens are discarded.

A.2 WORD-LEVEL CONDITIONING

AdaLN

Query

timestep

Single Motion Features

Key Value

Attention
Q K V

Out Project

AdaLN

Word-Level Tokens

timestep

Figure 7: Illustration of the Word-Level Conditioning Block

Fig. 7 illustrates the details of the proposed Word-Level Conditioning block. One of the interacting
agents’ motion features (Single Motion Features) is passed through an Adaptive Layer Norm (AdaLN)
for the injection of timestep information. The word-level tokens are passed through a separate AdaLN
of the same structure but with different parameters. Then, the normalized and modulated features are
passed through the linear layers to yield the query, key, and value tensors, where the query comes
from the single motion features and the key and value come from the word-level tokens. Then,
an attention output embedding is obtained using query Q, key K, and value V with the attention
mechanism (Vaswani et al., 2017):

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (2)

Finally, the output of the attention layer is passed through a linear layer for the reprojection and
mixing of the attention head outputs.

A.3 MOTION-MOTION INTERACTION

A.3.1 SELF-ATTENTION

The Self-Attention module in the Motion-Motion Interaction block is responsible for the processing
of one of the interacting agents’ motion features. Fig. 8 is an illustration of this. The motion features
are first modulated by an Adaptive Layer Norm (AdaLN) block, which injects timestep information
by scaling the features with mean and variance determined by the timestep. Then, projection layers
calculate the query, key, and value tensors separately, which are used to calculate the attention output
using the attention mechanism (Vaswani et al., 2017). Finally, the attention output is projected with a
linear output projection layer to give the final output.
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AdaLN
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Figure 8: Illustration of the Self-Attention mod-
ule in the Motion-Motion Interaction Block.
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Figure 9: Illustration of the Cross-Attention
module in the Motion-Motion Interaction Block.

A.3.2 CROSS-ATTENTION

The Cross-Attention module in the Motion-Motion Interaction block is responsible for modeling the
inter-agent interaction. Fig. 9 provides an illustration. In the Cross-Attention module, the motion
features of agent A and agent B (vice versa) are used to calculate features using separate AdaLN
blocks for the timestep information. Then, the motion features of agent A are passed through the
query projection layer to give the query features. The motion features of agent B are passed through
the key and value projection layer to calculate the key and value features. The query, key, and value
features undergo an attention mechanism to obtain the attention output feature, which is subsequently
projected by an linear output layer to form the final output.

B INTERCOMPOSE IMPLEMENTATION DETAILS

B.1 TWO PERSON PROMPT SYNTHESIS

We use a prompt template for synthesizing diverse and plausible two-person interaction descriptions
from an LLM (Liu et al., 2024) based on coarse-grained themes and fine-grained tags, along with
real examples from the InterHuman (Liang et al., 2024) dataset for styling reference. The complete
template is provided below in Fig. 10.

B.2 SINGLE PERSON PROMPT SYNTHESIS

After obtaining two-person descriptions, we use a separate prompt template to synthesize pairs of
single-person descriptions that are self-contained, coherent, and consistent with the given two-person
descriptions. The LLM infers the corresponding single-person motion according to the provided two-
person interaction information, while reasoning the plausible single-person motion if the two-person
prompt does not provide complete information. The complete prompt template is given in Fig. 11.
Examples of two-person prompts and corresponding single-person prompts are given in Fig. 12.

B.3 SINGLE PERSON MOTION GENERATION

We use MoMask (Guo et al., 2024) to generate the single-person motion conditions for the subsequent
reaction generation. In addition, we trained a length estimator on the InterHuman (Liang et al., 2024)
text-motion pairs to estimate the correct length of the corresponding motion given a two-person
motion prompt, and used the predicted length by the estimator to guide the single-person motion
generation.

For each two-person prompt, we use the LLM (Liu et al., 2024) to provide two prompts for the two
interactants and generate two single-person motions, one with each prompt.
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You write compact, vivid descriptions of **two-person interactions**.

Each output sentence MUST:
• mention exactly two unnamed people (“one person. . . the other person. . . ”),
• focus on body / arms / legs (ignore faces / fingers / appearance),
• be <=25 words,
• clearly match the given *Theme* and *Tags*,
• be entirely different from the examples.

Theme: {theme}
Tags : {tags}
Reference examples (k):
{example1}
{example2}
. . .
{examplek}

Now craft {m} brand-new descriptions. Return **only** a JSON array of
strings.

Figure 10: Prompt template for generating two-person interaction descriptions.

Given the following description of a two-person interaction:

{two-person text}

Independently describe the motion of each person involved, using only
information implied by the full interaction. Do not mention or refer to the
other person in either description. Focus only on body, arms, and legs —
ignore facial expressions, fingers, or appearance.

Use "the person" to refer to each. Assume shared context (e.g., dancing,
greeting, arguing), but isolate each description.

Output JSON in this exact format:
{{"1": {{"person1": "{description1}", "person2": "{description2}"}}}}

Each description must be one sentence, <=15 words, specific, and motion-focused
with relevant context.

Figure 11: Prompt template for generating single-person interaction descriptions.

B.4 TWO PERSON MOTION COMPOSITION

We trained a reaction generation network that uses a given sequence of joints as condition xcond ∈
RT×22×3 to generate the reaction x ∈ RT×262, consisting of the full interaction in the complete
InterGen (Liang et al., 2024) joint representation.

The network is trained on the InterHuman (Liang et al., 2024) training dataset with one person’s
joints not noised and all other terms noised to simulate the reaction generation tasks. At test time, the
condition joints are provided at each time step of denoising and after the final denoising step.
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Example 1.
two-person text: One person leans back, arms outstretched, while the other
steps forward, pressing their chest lightly against the first’s, hands
resting on their hips.
single-person text A: The person leans back with arms outstretched.
single-person text B: The person steps forward, chest pressed lightly, hands
on hips.

Example 2.
two-person text: One person claps twice, and the other responds by jumping
in place, their legs kicking out wildly with excitement.
single-person text A: The person raises both arms and brings hands together
sharply twice.
single-person text B: The person leaps upward, legs swinging outward
vigorously.

Example 3.
two-person text: One person lunges with a punch, the other person blocks with
crossed arms and counters with a swift kick to the thigh.
single-person text A: The person steps forward, extending one arm sharply in
a punching motion.
single-person text B: The person raises both arms to cross in front, then
swings one leg outward quickly.

Example 4.
two-person text: one person steps forward aggressively, arms raised, while
the other person backs away, hands outstretched to resist the advancing
confrontation.
single-person text A: The person steps forward aggressively with arms raised.
single-person text B: The person backs away with hands outstretched to resist.

Example 5.
two-person text: One person stumbles backward from alcohol, and the other
person swiftly wraps an arm around their waist to steady them.
single-person text A: The person stumbles backward, legs unsteady from
alcohol.
single-person text B: The person moves an arm quickly to wrap around a waist.

Example 6.
two-person text: One person shoves the other’s shoulder, causing them to
stagger, then crosses their arms in defiance as the other retreats.
single-person text A: The person extends their arm sharply, then pulls it
back and crosses both arms tightly.
single-person text B: The person stumbles backward from a sudden force, then
turns away while stepping back.

Figure 12: Examples of generated and two-person interaction descriptions with corresponding single-
person descriptions.

B.5 MOTION FILTERING

Before filtering, we first use the trained neural motion evaluator to project all generated motions
to the 512-dimensional motion latent space, to compare with the latents of a 500-sample held-out
motion dataset. The motion filtering step consists of a k-nearest neighbors filtering with a maximum
20 nearest neighbors for each sample in the held-out set. We also calculate the distances between
each of the nearest neighbors with the held-out motion sample to make sure the distance is in the
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Figure 13: UMAP (McInnes et al., 2018) visualizations of evaluator and CLIP (Radford et al., 2021)
embeddings of (a) text and (b) two-person motions from the InterHuman (Liang et al., 2024) held-out
subset and filtered synthesized dataset.

predefined annulus dmin < r < dmax. Finally, we use the neural motion evaluator to filter out all the
remaining motions with text-motion cosine similarity less than 0.58, an empirically set threshold.

C MOTION EMBEDDING SPACE VISUALIZATIONS

Fig. 13 demonstrates a dimensionality-reduced visualization of the text and two-person motion
embeddings of the InterHuman (Liang et al., 2024) held-out dataset, extracted from CLIP (Radford
et al., 2021) and trained motion evaluator. We utilize UMAP (McInnes et al., 2018) (Uniform
Manifold Approximation and Projection), a popular dimension reduction technique that preserves
the local and global structure of high-dimensional data in a low-dimensional space. As shown
in the figure, both the generated text (Fig. 13 (a)) and motion (Fig. 13 (b)) descriptions from our
pipeline have good coverage in most high-density areas of the held-out dataset, while covering many
underrepresented areas that lacks held-out data samples, highlighting our pipeline’s capability in
enhancing data diversity.

D USER STUDY DETAILS

We conducted a user study to evaluate our Text2Interact model with and without fine-tuning. Human
evaluators are asked to choose between 10 pairs of two-person interaction videos and determine the
one out of each pair that is more faithful to the text prompt or more natural as an interaction. Fig. 14
is an illustration of how the user study is conducted.

E SOCIETAL IMPACTS

Our work on Text2Interact introduces a scalable framework for high-fidelity and diverse text-to-two-
person interaction generation. While the technology has the potential to significantly benefit domains
such as animation, virtual reality, assistive robotics, and embodied AI, it also raises several ethical
and societal considerations.

Positive Impacts. The proposed method can facilitate content creation in media, education, and
human-computer interaction by automating the generation of complex, realistic human interactions.
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Figure 14: A screenshot of the user study
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It may lower the barrier for creating high-quality motion data, particularly for under-resourced
languages or motion types, and help simulate social interactions for training embodied agents or
improving accessibility tools for individuals with disabilities.

Risks and Limitations. As with many generative models, there is a potential risk of misuse, such
as generating deceptive or misleading content (e.g., synthetic surveillance or manipulated footage).
Although our method focuses solely on body motion and excludes facial expressions or identity
features, generated motion could still be used out of context or embedded in misleading visual
narratives. Additionally, there is a risk of dataset bias being amplified if the single-person priors or
LLM-generated text reflect culturally specific or stereotyped behaviors. We recommend future users
apply careful evaluation and transparency practices when deploying this technology.

Mitigations. Our dataset curation and filtering process emphasizes diversity and alignment with
real-world motion distributions to reduce representation biases. Furthermore, our model does not
generate personally identifiable information or faces, and we encourage its use only in applications
that respect human dignity, consent, and privacy.
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