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ABSTRACT

Recent work has shown that retrieval-augmented generation (RAG) improves the
performance of large language models (LLMs) for question answering on chem-
istry. However, existing chemistry RAG techniques are mainly based on text. It
is challenging for the retriever to align the information about chemical entities
between the query and the underlying corpora, especially if the naming and repre-
sentation formats change. To address this problem, we propose ChemisTRAG, a
RAG system in which information about chemical entities and reactions is stored
explicitly as tables in the knowledge base (KB). Upon a query, ChemisTRAG
first extracts chemical entities from the query and then selects relevant rows from
the tabular KB. This way, the alignment processing is simplified and the accu-
racy is improved regardless of different naming conventions of compounds. To
balance accurate answer retrieval for exact matches and robust reasoning for sim-
ilar matches, we propose an adaptive reasoning process for the LLM: it first gen-
erates a reasoning prototype, then adapts the reasoning path to retrieval results,
and finally infers the final answer contextualized on the example reasoning path.
We have constructed a dataset of more than 38,000 compounds and 23,000 reac-
tions from the recent five years of patents, and generated eight types of question-
answering tasks to evaluate our system. Results show that ChemisTRAG consis-
tently outperforms text-based RAG across all eight tasks, particularly in handling
diverse chemical representations like SMILES and IUPAC.

1 INTRODUCTION

Large Language Models (LLMs) offer a promising avenue to accelerate chemical research by an-
swering technical questions and predicting compounds and reactions (Han et al., 2025; Ramos et al.,
2025). However, their utility is limited by outdated knowledge, which undermines reliability and
hinders practical deployment (Wellawatte et al., 2025). Retrieval-Augmented Generation (RAG) has
emerged as a viable and forward-looking approach to enhance LLMs (Fan et al., 2024; Lee et al.,
2025). It bypasses the need for retraining by using updated knowledge repositories, allowing LLMs
to acquire fresh chemistry knowledge. Nevertheless, general-domain RAG methods struggle with
semantic matching in chemistry due to a lack of domain-specific knowledge, leading to difficulties
in handling chemical terminology and linking synonymous expressions (Zhong et al., 2025).

To address this core challenge of semantic matching in chemistry, we propose ChemisTRAG, a novel
RAG framework built around a tabular paradigm, which comprises a tabular knowledge base (KB),
a table-based retriever, and an adaptive reasoner. This approach centers on structuring chemical
knowledge in tables rather than unstructured text, creating a unified framework where queries can be
accurately matched to knowledge regardless of terminology variations. By consistently applying this
tabular structure across knowledge representation, retrieval, and reasoning, ChemisTRAG provides
an end-to-end solution designed to enhance both the accuracy and robustness of LLMs in chemistry.

The first component of ChemisTRAG is a tabular KB that organizes chemical knowledge in tables,
enabling accurate retrieval through structured representation. To address the limitation of outdated
chemical data in prior work (Schneider et al., 2016; Lowe, 2017; Jin et al., 2017), we construct a
KB from recent USPTO patents (2020-2025). Our construction pipeline involves using two LLMs
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to extract and cross-check reaction information from the patent text, resulting in a reaction table.
The records in this table are then used to query external compound databases to validate compound
existence and gather additional details, forming a compound table. The resulting KB consists of
these two interlinked tables, structuring diverse information about chemical entities and reactions
for subsequent retrieval.

Doc Parser

Query

Documents

Query Parser

Matching

Answer LLM

Reasoning:
Step 1...
Step 2...
...
Answer: 
...

Knowledge Base

Column 1.  Column 2.  ... 

1 ... ...

2 ... ...

... ... ...
Relevant Rows

Column 1.  Column 2.  ... 

2 ... ...

... ... ...

Structural Info
Compound: ...
Aspect: ...
...

Figure 1: Overview of the Chemis-
TRAG framework illustrating the
tabular KB, table-based retriever,
and adaptive reasoner.

A table-based retriever then maps the flexible expressions in
natural language queries to the consistent structure of the KB.
This component operates by parsing a natural language query
into a formal tuple that captures its key elements, such as the
entity type (for example, compound or reaction), the target en-
tity, and the query intent. This structured representation en-
ables a schema-aligned search against the tabular KB. The re-
triever then matches this query tuple against the appropriate
table, either compound or reaction, to retrieve a set of relevant
entries. This process effectively bypasses the ambiguities of
free-text matching by leveraging the consistent schema of the
KB, thus providing precise contextual evidence for answering.

An adaptive reasoner then leverages the retrieved evidence to
guide the LLM in generating answers. Its design aims to en-
sure accuracy when the KB contains exact matches, while pre-
serving the LLM’s inherent reasoning capabilities for scenar-
ios requiring inference over similar or related information, via
a three-stage process. First, the reasoner generates a reasoning
prototype, which is a step-by-step plan structured around the
query’s intent. Second, it grounds this prototype by integrat-
ing the specific facts from the retrieved KB entries. Finally,
the LLM produces the final answer within this guided con-
text. This approach ensures the output is constrained by the
retrieved knowledge yet flexible enough to handle cases where
direct answers are not available.

To evaluate our approach and provide in-depth analysis, we construct a benchmark dataset. Fol-
lowing established work (Guo et al., 2023; Zhang et al., 2024; Zhong et al., 2025), we define eight
question-answering tasks encompassing fundamental chemistry types such as reaction prediction
and compound property inquiry. For each task, we use an LLM to generate slot templates. We then
sample records from the KB to populate these templates, creating initial question-answer pairs. To
enhance the linguistic diversity and realism, these initial questions are subsequently paraphrased and
elaborated by an LLM. This process yields an evaluation set of 4,800 QA pairs, in order to evaluate
the effectiveness of ChemisTRAG and measure the impact of retrieval on LLM performance.

We conduct extensive experiments to evaluate our ChemisTRAG for improving LLMs in chemistry
question-answering. We compare ChemisTRAG with text-based RAG across eight tasks and two
input formats, analyze retrieval recall, test impacts of retrievers and inference strategies, and explore
how retrieved entry quantity affects performance. These experiments show ChemisTRAG outper-
forms text-based RAG significantly. Its table-based design boosts retrieval accuracy across inputs
and thus improves LLM performance. Additionally, ChemisTRAG enhances LLMs grounded on
both exact-matched and similar-matched knowledge. The consistent superiority fully supports the
effectiveness of ChemisTRAG. We summarize our contributions as follows:

• We build an up-to-date structural chemistry knowledge base and a corresponding evaluation
dataset for testing RAG systems.

• We propose a tabular RAG paradigm with schema-aligned retrieval and adaptive reasoning
to enhance the accuracy of LLM outputs.

• We conduct an in-depth analysis that demonstrates the effectiveness of ChemisTRAG.

2 RELATED WORK

We categorize relevant LLM systems for chemistry based on their approaches to knowledge organi-
zation, retrieval mechanisms, and reasoning optimization. Table 1 provides a comparative overview.
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Table 1: System comparison of knowledge-centric chemical AI systems. Knowledge Module:
Source (I: internal LLM knowledge, E: external databases) and Form (NL: natural language, SL:
structured language). Retrieval Module: Query transformation form and support to diverse chemi-
cal names. Reasoning Module: Whether specialized inference optimization is employed.

Method Knowledge Module Retrieval Module Reasoning Module
Source Form Query Trans. Diverse Name

StructChem I NL N/A N/A ✓
ChemAgent I SL N/A N/A ✓
ChemRAG E NL × × ×
ChemisTRAG I+E SL SL ✓ ✓

Knowledge Sources and Integration. Methods for equipping LLMs with chemical knowledge can
be divided into those using internal and external knowledge. Internal knowledge methods equip
LLMs with chemical expertise through training on domain-specific data (Zhang et al., 2024; Yu
et al., 2024; Fang et al., 2024). However, updating knowledge in these approaches requires costly
model retraining. External knowledge methods incorporate outside sources through tool augmenta-
tion (Bran et al., 2023; M. Bran et al., 2024) or retrieval augmentation (Zhong et al., 2025).

Retrieval Methods. Focusing on retrieval augmentation, RAG systems like ChemRAG (Zhong
et al., 2025) offer a promising solution for integrating up-to-date external knowledge. However,
they struggle with chemical terminology due to their reliance on natural language retrieval, which is
sensitive to synonym variations and requires domain-specific knowledge to effectively link equiva-
lent chemical expressions. Current retrieval methods for chemistry tasks are primarily text-based.

Reasoning Optimization. Additionally, reasoning-optimized frameworks like StructChem
(Ouyang et al., 2024) and ChemAgent (Tang et al., 2025) are designed to fully leverage LLMs’
internal knowledge by structuring the reasoning steps or dynamically building knowledge bases.
While they improve reasoning, they do not integrate external knowledge augmentation.

ChemisTRAG integrates innovations across all three aspects: (1) a tabular knowledge base lever-
aging external knowledge; (2) a table-based retriever transforming queries into structured tuples
for precise retrieval, supporting diverse chemical names; and (3) an adaptive reasoner grounding
generation on evidence while utilizing LLMs’ internal knowledge for step-by-step inference.

3 DATA CONSTRUCTION

Figure 2 illustrates the data construction workflow, with the left side depicting KB development and
the right side showing benchmark data preparation.

Structural Knowledge Base. We construct a table KB as the foundation for our RAG system. Fol-
lowing the paradigm of established chemical datasets (Lowe, 2017), we begin by collecting chemical
patents from the official website of the USPTO. To ensure data freshness and mitigate leakage risks,
we use patents granted between 2020 and 2025. This process yields 85,650 patents, which are
further divided into 431,634 text snippets based on line breaks.

To balance efficiency with accuracy, we employ a two-stage LLM pipeline for automatic extraction
and verification of reaction information. In the first stage, we use Qwen-3-8B to extract key reaction
information (e.g., reactants, products, solvents, catalysts, conditions) from patent snippets. These
attributes are organized into a tabular format, with each row representing a single reaction and each
column an attribute, yielding an initial set of 205,773 reactions. Subsequently, we employ a more
powerful LLM, GPT-OSS-20B, to validate the chemical feasibility of each extracted reaction. This
verification step maintains the tabular structure while ensuring data reliability, reducing the dataset
to 80,663 validated reactions.

Finally, we query three public compound databases (PubChem, ChEBI, and OPSIN) to enrich each
compound with detailed metadata, including IUPAC names, SMILES strings, descriptions, and
molecular weights. These metadata are stored in a complementary compound table, where each
row represents a unique compound with its attributes. Reactions containing compounds not found
in these databases are flagged as invalid and filtered out. Ultimately, this pipeline results in a struc-
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Figure 2: The construction of knowledge base and evaluation data.

tured KB containing 23,105 valid reactions and 38,495 unique compounds. Appendix A shows the
statistics of this data.

Evaluation Data. Existing reaction evaluation datasets (Guo et al., 2023; Zhang et al., 2024; Yu
et al., 2024) are often constructed based on chemical patent data (USPTO) prior to 2016 (Schneider
et al., 2016; Lowe, 2017; Jin et al., 2017; Liu et al., 2017). Such data is not timely and risks data
leakage, compromising the fairness and reliability of LLM evaluation. To address this, we build our
benchmark data using the aforementioned KB. This approach leverages the KB’s up-to-date data
and enables explicit mapping between benchmark samples and KB entries, supporting quantitative
analysis of how retrieval enhances LLM performance on chemical tasks.

We first define eight task types for chemistry question-answering, with references to task designs
from existing evaluation datasets (Guo et al., 2023; Zhang et al., 2024; Fang et al., 2024) to en-
sure comprehensive assessment of LLM capabilities. Among these, five are reaction-centric tasks:
product prediction, reactant prediction, solvent prediction, catalyst prediction, and reaction condi-
tion prediction. These tasks collectively cover key aspects of reaction analysis. The remaining
three are compound-centric tasks: molecular weight calculation, name conversion, and compound
description. Appendix A presents the justification of these task choices.

Given the widespread adoption and strong performance of LLMs in question generation (Guo et al.,
2024), we use an LLM to generate questions. We use GPT-OSS-20B for template creation instead
of direct question generation to ensure accuracy and minimize hallucinations. Specifically, we input
each task type to GPT-OSS-20B and prompt it to generate 20 natural language question templates per
task. Each template includes slots for task-specific information (e.g., ”What is the catalyst required
for the reaction involving [reactant 1] and [reactant 2]?”).

For question instantiation, we sample 600 entries from the reaction table to populate templates for
reaction-centric tasks, and 600 entries from the compound table for compound-centric tasks. This
process generates 4,800 initial QA pairs. To enhance linguistic diversity and realism, we use GPT-
OSS-20B to paraphrase these questions under strict constraints to preserve their original meaning
and factual content. Finally, we standardize answers into concise formats such as short names,
lists, or numbers, which are directly extracted from the KB tables. This standardization facilitates
quantitative evaluation. This process yields 4,800 high-quality, diverse, multi-task QA pairs with
traceable origins, as each pair can be linked to a specific entry in the KB.

We conduct a human evaluation with two chemistry PhD students on 240 samples. Each annotator
independently judge whether (1) Naturalness: the question is natural and aligned with typical human
user query style, and (2) Correctness: the answer correctly and completely addresses the question.
An item is accepted only if both criteria are satisfied. The sampled data shows a pass rate of 95.8%
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Figure 3: The pipeline of query parsing and knowledge retrieval.

with a high agreement (97.5% of cases receiving matching judgments) between the two experts,
demonstrating a high reliability of our constructed evaluation data.

4 METHODOLOGY

Building on our structured KB, we now present ChemisTRAG’s retrieval and reasoning parts, de-
signed to overcome the dual challenges of semantic matching in chemical queries and the accuracy-
generalization trade-off in RAG. The framework integrates a table-based retriever for precise infor-
mation access and an adaptive reasoner for robust inference.

4.1 TABLE-BASED RETRIEVER: STRUCTURED PROJECTION PARADIGM

The unstructured nature of natural language queries, often containing redundant or varied terminol-
ogy, poses a direct challenge for precise alignment with our tabular KB. To bridge this semantic
gap, we introduce a structured projection paradigm that transforms queries into schema-aligned
representations, as illustrated in Figure 3.

We first map natural language queries to a structured tuple representation:

Tq = fparse(q) = ⟨etype, etarget, aquery⟩ (1)

Here, Tq denotes the structured query tuple, and fparse is an LLM instructed by a parsing
prompt Pparse that extracts the tuple components from query q. The tuple consists of: etype ∈
{compound, reaction} indicating the entity type; etarget representing the target entity (e.g., SMILES
or IUPAC string); and aquery denoting the query intent (e.g., reaction product inquiry).

Based on etype, we perform schema-aligned retrieval against our KB K = (C,R), where C =
{ci}mi=1 is the compound table and R = {rj}nj=1 is the reaction table.

For compound-focused queries, we define a matching function matchcomp : etarget × C → R that
computes relevance scores using ROUGE-L similarity for string overlap measurement. The retrieval
selects the top-k most relevant entries:

SC = argmax
S⊆C,|S|=k

∑
ci∈S

matchcomp(etarget, ci) (2)

Notably, the tabular structure of our KB ensures that different representations of the same compound
(e.g., common name, IUPAC name, SMILES) are consolidated within a single entry. The matching
function compares the query’s etarget against the appropriate structured fields in the table, mitigating
the synonym problem at the retrieval stage.

For reaction-focused queries, retrieval proceeds through relational mapping by first identifying the
top-k most relevant compounds Crel as above. Let Rlinked = {rj ∈ R | ∃ci ∈ Crel : link(ci, rj)} be
the set of reactions associated with these compounds, where link represents the compound-reaction
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relationship in our KB. We then select the top-k reactions from Rlinked based on the maximum
matching score of their constituent compounds:

Crel = argmax
S⊆C,|S|=k

∑
ci∈S

matchcomp(etarget, ci) (3)

SR = top-krj∈Rlinked

(
max

ci∈Crel s.t. link(ci,rj)
matchcomp(etarget, ci)

)
(4)

The retrieved set S (either SC or SR) serves as the foundational context for subsequent reasoning,
converted to structured string format for compatibility.

4.2 ADAPTIVE REASONER: DECOUPLED INFERENCE FRAMEWORK

A real-world challenge for RAG systems is balancing faithful extraction from retrieved evidence
with the LLM’s inherent reasoning capability (Dai et al., 2024; Yan et al., 2024). An over-reliance
on retrieval can lead to errors when evidence is incomplete, noisy, or irrelevant, whereas exces-
sive dependence on intrinsic reasoning may ignore relevant context (Chen et al., 2024; Wang et al.,
2024a). Our method addresses this through a decoupled inference framework (Figure 4) that sep-
arates logical planning from factual grounding. This maintains coherent reasoning by integrating
retrieved entries with the LLM’s capabilities.

We formalize the reasoning process as a composition of three specialized functions: planning (con-
structing the reasoning structure), grounding (integrating retrieved evidence), and execution (syn-
thesizing the final answer).

Query LLM

Reasoning
Steps

LLMFew-shot Examples
with Reasoning Steps

LLM Answer

Retrieved Rows

Column 1.  Column 2.  ... 

2 ... ...

... ... ...

Figure 4: Our adaptive reasoning method.

Reasoning Prototype Generation (Plan). The plan-
ning function fplan constructs a reasoning prototype that
captures the problem-solving logic independent of spe-
cific evidence:

Rprototype = fplan(q) (5)

This function is implemented as an LLM guided by a
planning prompt Pplan that generates candidate reason-
ing chains structured as sequential steps, forming a log-
ical skeleton for subsequent grounding.

Evidence Grounding. The grounding function fground
integrates retrieved entries into the reasoning prototype:

Rgrounded = fground(Rprototype, S) (6)

Analogously, this function employs an LLM with a
grounding prompt Pground to adapt the generic reason-
ing plan to the specific evidence contained in retrieval
set S to ensure factual accuracy.

Answer Synthesis (Execute). Finally, the execution
function fexecute synthesizes the grounded reasoning
with query intent to produce the final answer:

A = fexecute(q,Rgrounded) (7)

Similarly, fexecute leverages an execution prompt Pexecute to generate the final output based on the
grounded reasoning chain.

5 EXPERIMENTS

Evaluation Setup. We evaluate model performance on eight chemical tasks: Product Prediction
(PP), Reactant Prediction (RP), Condition Prediction (CoP), Solvent Prediction (SP), Catalyst Pre-
diction (CaP), Weight Computation (WC), Name Conversion (NC), and Molecule Description (MD).
We use the most common chemical naming systems, IUPAC and SMILES, as inputs. The same set
of questions is retained across tests, with only the compound naming format varied. For string

6
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Table 2: Performance comparison of RAG methods across different tasks and input types.
Reaction Compound Overall Impr.

PP RP CoP SP CaP WC NC MD
Overall

w/o RAG 21.04 34.25 27.52 18.39 17.52 28.50 24.46 28.57 25.02 -
w/ TextRAG 28.86 36.27 44.42 43.15 29.51 51.17 42.46 45.24 40.14 15.11
w/ ChemisTRAG 50.54 52.55 57.98 66.48 57.80 91.17 82.11 78.89 67.19 42.16

IUPAC
w/o RAG 34.03 40.64 28.86 26.83 24.20 34.67 32.31 33.50 31.88 -
w/ TextRAG 39.83 41.84 50.93 57.62 35.39 78.67 63.77 67.10 54.39 22.51
w/ ChemisTRAG 55.19 56.53 62.64 74.07 64.37 94.01 78.34 87.82 71.62 39.74

SMILES
w/o RAG 8.05 27.86 26.17 9.95 10.84 22.33 16.61 23.63 18.18 -
w/ TextRAG 17.89 30.70 37.91 28.68 23.63 23.67 21.15 23.37 25.89 7.71
w/ ChemisTRAG 45.89 48.57 53.32 58.89 51.23 88.33 85.88 69.96 62.76 44.58

outputs (e.g., molecule prediction, description, NC to IUPAC), we use ROUGE-L to compare with
ground truth. For NC to SMILES, we calculate molecular similarity via RDKit. For numerical out-
puts (e.g., CoP, WC), we compare extracted values with ground truth (allowing decimal tolerance)
and count correctness. Final results are presented as averages.

Implementation Details. Appendix D presents the implementation details of our experiments.

5.1 COMPARISON TO TEXT-BASED RAG

We compare ChemisTRAG against text-based RAG (as in ChemRAG (Zhong et al., 2025)) for
chemistry QA, using Qwen-3-8B as the base LLM. TextRAG uses source text paragraphs of our
tabular KB as the knowledge source with Qwen-3-8B-Embedding retriever. We evaluate at the
reaction-level with five tasks and at the molecule-level with three tasks. We split experiments by
two input formats for chemical entities: IUPAC names and SMILES strings. This split helps assess
how each RAG method adapts to different chemical naming and representation conventions.

Table 2 presents the comparison results. Direct inference performs poorly across all eight tasks with
an overall score of 25.02. This shows LLMs lack sufficient inherent knowledge for complex chem-
istry reasoning. RAG consistently boosts LLM performance, demonstrating the value of external
knowledge integration. TextRAG reaches an overall score of 40.14, bringing an average improve-
ment of 15.11 over direct inference. Our ChemisTRAG outperforms TextRAG significantly, achiev-
ing the highest overall score of 67.19 with an average improvement of 42.16 over direct inference.

Performance shows notable differences across IUPAC and SMILES inputs, revealing how input
representation affects LLM and RAG effectiveness. Across all methods, models score higher with
IUPAC than SMILES.For Direct reasoning, IUPAC achieves an overall score of 31.88, much higher
than SMILES at 18.18. This difference likely comes from IUPAC names being more similar to
natural language and easier for LLMs to understand. TextRAG widens the performance gap between
IUPAC and SMILES. With TextRAG, IUPAC’s overall score rises to 54.39 while SMILES only
reaches 25.89. This suggests current text-based retrievers lack proficiency in processing chemistry-
specific representations. Their failure to align SMILES queries hurts retrieval accuracy and thus
limits performance gains.

In contrast, ChemisTRAG narrows the gap between the two input formats. For IUPAC, it achieves
an overall score of 71.62 while maintaining its lead over TextRAG. For SMILES, it reaches 62.76,
a score that is far closer to its IUPAC performance than TextRAG’s corresponding gap. This advan-
tage stems from ChemisTRAG’s table-based design. By storing chemical information in structured
tables, it enables the retriever to align queries with knowledge across different naming conventions.
Grounded in this more precise retrieved knowledge, the LLM’s performance gap across the two
input representations is effectively narrowed.

5.2 RETRIEVAL RECALL ANALYSIS

We evaluate knowledge retrieval effectiveness using Recall@5 (denoted as R) and its correlation
with model performance scores (denoted as S). The analysis covers two task categories Reaction
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and Compound along with two input formats IUPAC and SMILES. Results are presented in Table
3. Recall@5 and performance scores show a strong positive correlation with a Pearson coefficient
of 0.96. This demonstrates that retrieval quality directly impacts reasoning correctness.

Table 3: Comparison of Recall@5 and perfor-
mance on two tasks.

Reaction Compound
R S R S
Overall

TextRAG 23.20 36.44 41.22 46.28
ChemisTRAG 68.20 57.07 88.72 84.06

IUPAC
TextRAG 33.67 45.13 68.67 69.85
ChemisTRAG 76.80 62.56 89.89 86.72

SMILES
TextRAG 12.73 27.76 13.78 22.72
ChemisTRAG 59.60 51.58 87.56 81.39

Compound tasks often achieve higher recall than re-
action tasks for both methods. For example, Tex-
tRAG achieves 41.22 for Compound tasks versus
23.20 for Reaction tasks. A possible reason is that
reaction tasks involve multiple entities and condi-
tions, making relevant knowledge harder to capture.
In contrast, compound tasks focus on single molec-
ular properties, so their information is more easily
retrievable.

TextRAG shows uniformly low recall values that
rarely exceed 42. It also has a large gap in re-
call score between IUPAC and SMILES inputs. For
Reaction tasks TextRAG’s Recall@5 for IUPAC is
33.67 nearly three times the 12.73 for SMILES. For Compound tasks the gap remains substantial
with 68.67 for IUPAC versus 13.78 for SMILES. Text-based retrievers rely on natural language so
they handle IUPAC well due to its language-like structure but struggle with SMILES which uses
chemistry-specific symbols.

ChemisTRAG achieves far higher Recall@5 and narrows the Recall@5 gap between IUPAC and
SMILES. For Reaction tasks the gap between IUPAC (76.80) and SMILES (59.60) is under 20. For
Compound tasks the gap is minimal with 89.89 for IUPAC and 87.56 for SMILES. ChemisTRAG’s
table-based design enables retrieval through explicit entity matches. This allows effective mapping
of input formats without requiring the retriever to have knowledge of chemical symbols. Its superior
Recall@5 explains the higher performance. More relevant retrieved knowledge supports accurate
reasoning by the LLM. This lets ChemisTRAG outperform TextRAG across all subcategories by
addressing the core retrieval bottleneck of text-based RAG systems.

5.3 ABLATION STUDY AND OUT-OF-CORPUS RESULTS

0 10 20 30 40 50 60 70

ChemisTRAG

w/o
Prototype

w/o
Adaptation

CoT

w/o All

67.19

64.35

63.25

61.00

60.28

34.58

31.33

30.19

29.04

28.08
25.02In Corpus

Out of Corpus

Figure 5: Performance comparison of reasoning
variants across IC and OOC RAG scenarios.

We conduct an ablation study with five method
variants to test key components of our ap-
proach. We also design two settings to simu-
late real-world RAG scenarios. The five vari-
ants include full ChemisTRAG and four ablated
versions. “w/o Prototype” removes the initial
reasoning prototype generation. “w/o Adapta-
tion” cuts the step that adapts reasoning to re-
trieved results. “CoT” (Chain of Thought, Wei
et al. (2022)) drops the first two steps and lets
LLMs reason step-by-step on retrieved results.
“w/o All” uses retrieved results for direct rea-
soning with no extra steps. The two evaluation
settings are In-Corpus (IC) and Out-of-Corpus
(OOC). IC tests questions with exact answers
in the knowledge base. It checks if LLMs can
extract information accurately when relevant data exists. OOC targets questions without exact an-
swers. It tests LLMs’ ability to reason with imperfect information. We implement OOC by removing
knowledge base entries matching benchmark data. Results are in Figure 5.

All ablated variants perform worse than full ChemisTRAG, showing the necessity of each compo-
nent of the reasoning framework. “w/o Adaptation“ (removing reasoning adaptation) drops perfor-
mance more than “w/o Prototype” (removing reasoning prototype generation). Probably because
it removes the injection of retrieved info into reasoning paths, the model easily produces biased
outputs without using retrieval context. CoT outperforms “w/o All” slightly, which indicates that
step-by-step reasoning without pre-generated reasoning context gives small benefits in RAG.
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Table 4: Performance of various LLMs across direct answering and retrieval methods.
Qwen3-8B Llama-3.1-8B ChemLLM-7B GPT-4o Qwen3-8B-Think Deepseek-R1

w/o RAG 25.02 20.59 15.92 36.71 26.43 35.90
w/ BM25 57.22 48.34 24.57 58.64 57.83 55.29
w/ Qwen3 Emb 40.47 35.61 27.43 41.48 40.35 40.39
w/ T-Retriever 67.19 59.05 30.17 72.06 69.53 73.43

All variants perform much worse in OOC than IC. This shows accurate knowledge and precise
retrieval are key for good reasoning. Even so, ChemisTRAG still boosts LLM performance in OOC.
Its OOC score of 34.58 is higher than the 25.02 baseline. This improvement proves our method lets
models learn from context. They can do analogical reasoning when exact retrieval fails. It shows the
method’s adaptability. Ablation trends in OOC match those in IC. This consistency confirms each
component works well whether exact knowledge exists or not.

5.4 RETRIEVAL STRATEGY AND MODEL ANALYSIS

We assess how different retrieval paradigms affect performance across diverse LLMs. Using our
tabular KB, we test six models: general open-source (Qwen3-8B, Llama-3.1-8B (Grattafiori et al.,
2024)), commercial (GPT-4o (Achiam et al., 2023)), chemistry-specialized (ChemLLM-7B (Zhang
et al., 2024)), and reasoning (Qwen3-8B-Think Mode, Deepseek-R1 (Guo et al., 2025)). We com-
pare three retrieval approaches: statistics-based (BM25 (Robertson et al., 2009)), vector-based
(Qwen-3-embedding (Zhang et al., 2025)), and our table-based retriever (T-Retriever).

Influence of Retrieval Strategy. Table 4 shows how knowledge retrieval enhances performance
across diverse LLMs, compared to direct reasoning without retrieval. All retrieval approaches
outperform direct reasoning for every LLM, proving RAG consistently boosts chemistry problem-
solving. Notably, the vector similarity method using Qwen3 Embedding, a state-of-the-art encoder,
performs worse than the statistics-based BM25 across most models. This gap reveals current em-
bedding models lack proficiency in chemistry-specific knowledge retrieval. Our table-based retrieval
achieves the highest scores across all LLMs.

Performance on Different Models. Retrieval effectiveness on performance aligns with the LLM’s
inherent capabilities. Commercial models like GPT-4o and reasoning-focused models such as
Deepseek-R1 deliver the best overall performance. They leverage retrieved knowledge well with
their strong base reasoning. General open-source models show moderate gains. The chemistry-
specialized ChemLLM-7B lags however. Its specialized fine-tuning likely reduces in-context learn-
ing flexibility, limiting retrieval benefits. Our method delivers the most significant gains across all
model types, showing its universal effectiveness.

Table 5: Comparison of lexical and domain-
specific encoders within T-Retriever.

Setting Encoder Reac. Comp. Overall

IC ChemBERTa 48.38 74.74 58.27
ROUGE-L 57.07 84.06 67.19

OOC ChemBERTa 39.72 33.20 37.27
ROUGE-L 30.22 41.85 34.58

Comparison with Domain-Specific Encoders.
We further examine whether domain-specific
dense retrievers offer advantages over lexical
matching for entity alignment in our table-based
retrieval. We compare our default ROUGE-L
with ChemBERTa (Chithrananda et al., 2020), a
specialized chemistry encoder. Table 5 reveals
an interesting trade-off: ROUGE-L significantly
outperforms ChemBERTa in IC settings, confirm-
ing that precise lexical linking is superior when
exact knowledge exists. However, in OOC settings, ChemBERTa performs better on Reaction tasks.
This suggests that dense embeddings capture semantic relevance (e.g., similar reaction types), which
aids analogical reasoning when exact matches are missing.

5.5 GENERALIZABILITY AND ROBUSTNESS

To verify the generalization of our method beyond the constructed dataset, we evaluate Chemis-
TRAG on two external public benchmarks: ChemBench (Zhang et al., 2024) and SciBench (Wang
et al., 2024b). These datasets cover diverse tasks including yield prediction and college-level chem-
istry problems. As shown in Table 6 (Left), ChemisTRAG consistently outperforms both the direct
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Table 6: Performance on public benchmarks (Left) and robustness against input perturbation (Right).

External Benchmarks Perturbed Subset
ChemBench SciBench Reaction Compound Overall

w/o RAG 55.38 30.57 21.11 24.27 22.30
w/ TextRAG 57.63 32.75 34.21 44.16 37.94
w/ ChemisTRAG 60.25 34.93 53.33 79.95 63.31

inference baseline and the text-based ChemRAG. This demonstrates that our structured retrieval
paradigm generalizes effectively to external datasets and broader chemical tasks.

We further assess the robustness of our system against input noise, a common issue in real-world
applications. We introduce random perturbations (e.g., typos, name variations) to the entity names
within a 15% random sample of our evaluation dataset. Then, we evaluate performance specifically
on this perturbed subset. As shown in Table 6 (Right), while performance naturally drops for all
methods compared to clean data, ChemisTRAG maintains a significant performance margin. It
achieves an overall score of 63.31 on this noisy subset, surpassing Text-based RAG (37.94) and
direct inference (22.30), demonstrating strong resilience to entity perturbations.

5.6 IMPACT OF THE NUMBER OF RETRIEVED ENTRIES

1 3 5 10

55

60

65

70

75

80

53.40

68.31

75.90
78.29

52.85

62.02

67.19

70.15

Recall@K
Score

Figure 6: Recall and performance scores across
different retrieved numbers for ChemisTRAG.

To explore how the quantity of retrieved en-
tries (K = 1, 3, 5, 10) affects the overall per-
formance of the RAG system, we investigate
two key metrics across different K values:
Recall@K and the corresponding performance.

Figure 6 shows a consistent upward trend in
both Recall@K and performance scores as K
increases. A larger K expands the retrieval
scope, enhancing the probability of capturing
critical relevant knowledge that supports accu-
rate reasoning. However, this expansion may
also introduce redundant or irrelevant informa-
tion, which may interfere with the LLM’s abil-
ity to focus on core task-related content. This
aligns with a common tradeoff in RAG systems.
Notably, the growth rate of both metrics varies across K ranges. The improvement is most pro-
nounced when K increases from 1 to 5. In contrast, when K further increases from 5 to 10, the
growth of both Recall@K and performance slows. Considering both performance gains and system
efficiency, K = 5 should be a good choice.

6 CONCLUSION AND FUTURE WORK

We proposed ChemisTRAG to enhance LLMs in chemistry problems, which encompasses the full
pipeline of RAG driven by tables, namely the table-based KB, structured retriever, and adaptive
reasoning method. We also built a multi-task benchmark dataset for a fair and comprehensive evalu-
ation. Experimental results showed the effectiveness of ChemisTRAG. We discuss the limitations of
our work and potential future improvement. 1)LLM Hallucination. While RAG grounds generation
to mitigate hallucinations, intrinsic LLM flaws persist. Future work may implement hallucination
detection or multi-model checks to further reduce this risk. 2) Multi-step Reactions and Reason-
ing. Our current work focuses on single-step QA. Addressing multi-step reactions and mechanistic
reasoning is a crucial future challenge. This may require collecting expert-annotated CoT data and
exploring methods like Reinforcement Learning to enhance long reasoning.
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ETHICS STATEMENT

All raw corpora used in this study are sourced exclusively from publicly available datasets. During
data collection, we strictly adhered to the data access policies and web crawling protocols specified
by the original data providers. The processed data and associated code generated in this research
are intended solely for academic and research purposes. Although RAG significantly enhances the
performance of LLMs, LLMs still have inherent randomness and hallucination issues. Thus, users
need to carefully verify the system’s outputs, especially when these outputs are intended for chemical
synthesis and research.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The data and code used in this
study will be made publicly available. All experiments were conducted three times, and the average
values were reported. All key parameters and settings of experiments are disclosed in this paper.
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A DATASET

Task Definition and Justification Our evaluation benchmark is designed around two fundamental
units in chemistry: reactions and compounds, which represent the most common entities in chemical
research and applications (Han et al., 2025). For reaction-centric tasks, we follow established liter-
ature in defining five key tasks that comprehensively cover the reaction process (Guo et al., 2023;
Fang et al., 2024; Zhang et al., 2024; Zhong et al., 2025): predicting products from reactants, pre-
dicting reactants from products, and predicting key reaction conditions including solvents, catalysts,
and specific reaction parameters like temperature and pH value. These tasks encompass the complete
reaction workflow from input to output and conditions. We intentionally exclude yield prediction
due to inconsistent reporting in patent texts, where yield descriptions often require complex calcu-
lations from mass values or refer to intermediate steps, making reliable ground-truth establishment
challenging.

For compound-centric tasks, we focus on three fundamental capabilities: name conversion between
different chemical representations, basic chemical calculations such as molecular weight, and molec-
ular description generation. These tasks assess LLMs’ understanding of chemical entities. A key
advantage of our benchmark design is that each question-answer pair is explicitly traceable to spe-
cific entries in our knowledge base. This traceability enables precise analysis of how retrieval quality
impacts LLM performance, particularly in distinguishing cases where exact matches are available
versus those requiring reasoning with similar information. The dataset construction process ensures
both coverage of essential chemistry tasks and reliable evaluation of retrieval-augmented generation
methods.

Statistics. Our knowledge base comprises 38,495 unique compounds and 23,105 chemical reactions
extracted from USPTO (United States Patent and Trademark Office) patents granted between 2020
and 2025. The compound table includes detailed metadata, with compounds having an average
molecular weight of 223.41 and each compound participating in approximately 1.87 reactions on
average. Only 12.14% of compounds contain textual descriptions, with an average length of 34.91
words per description. The chemical representations show distinct characteristics: IUPAC names
average 53.08 characters in length, while SMILES strings are more concise at 35.21 characters.

The reaction table demonstrates high coverage for core reaction components. Reactants and products
are present in 100% of reactions, while reaction conditions are specified in 97.13% of cases. Solvents
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are documented in 80.63% of reactions, though catalysts are reported less frequently, appearing in
only 25.61% of reactions.

For evaluation, we constructed a benchmark of 4,800 question-answer pairs evenly distributed across
eight tasks: five reaction-centric and three compound-centric. Each task contains 600 instances,
with half using IUPAC names and half using SMILES strings as input to ensure fair comparison
across representation formats. Questions average 17.51 words in length, while answers are more
concise at 6.89 words, reflecting the focused nature of chemical question answering. This balanced
design enables comprehensive assessment of retrieval-augmented generation methods across diverse
chemical reasoning scenarios.

Data Examples. To intuitively reflect the dataset structure, Tables 7, 8, and 9 show representative
examples of compounds, reactions, and QA pairs, respectively. For Tables 7 (compounds) and 8 (re-
actions), considering their more attributes and the need for conciseness and space saving, attributes
are arranged vertically (listed row-wise on the left). This layout avoids overly wide tables and fa-
cilitates cross-sample comparison. Table 9 (QA pairs) retains the original column-wise attribute
arrangement due to fewer attributes, ensuring readability while aligning with the document format.

Table 7: Compounds Data Examples
Compound Attribute Compound 1 (mol id: 2) Compound 2 (mol id: 21853)

mol id 2 21853

iupac triphenylphosphane diethyl benzene-1,4-dicarboxylate

smiles C1=CC=C(C=C1)P(C2=CC=...) CCOC(=O)C1=CC=C(C=C1)C(=O)...

common name triphenylphosphine diethyl terephthalate

molecular formula C18H15P C12H14O4

molecular weight 262.3 222.24

relevant rxn 9661,10584,... -

pubchem id 11776 12483

description Triphenylphosphine is a member of the
class of tertiary phosphines...

-

B ALGORITHM OF CHEMISTRAG

Algorithm 1 provides the procedural view of ChemisTRAG’s answer generation process based on
the tabular KB, summarizing the end-to-end workflow from query processing to answer genera-
tion. The algorithm integrates the structured projection retrieval and adaptive reasoning components
described in Section 4.

The algorithm formalizes the three-stage pipeline of ChemisTRAG. Steps 1-2 handle query parsing
into structured tuples. Steps 4-9 implement the table-based retrieval, with compound and reaction
queries following different paths. Steps 11-13 encapsulate the adaptive reasoning process, where
each function (fplan, fground, fexecute) represents an LLM operation guided by specific prompts as
described in Section 4.2.
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Table 8: Reactions Data Examples
Reaction Attribute Reaction 1 (ID: 1) Reaction 2 (ID: 2868)

Reaction ID 1 2868

Patent US-20240317765-A1 US-20240018095-A1

Reaction Description [0762] When a halogenation reaction
of a hydroxy group is carried out in
each step, examples of the halogenating
agent include hydrohalic acids and acid
halides of inorganic acids...

EXAMPLES [0042] Synthesis of
stearic acid amide (SAA) from SA and
EDA: 4.74 g of methyl stearate and
2.86 g of EDA were combined in a
sealed 20 mL vial...

Reactants ethanol.triphenylphosphine.carbon
tetrachloride

methyl octadecanoate.ethylenediamine

Products 1-chloroethane.triphenylphosphine ox-
ide

octadecanamide

Solvents - ethyl acetate

Catalysts - -

Operations reacting heating.filtration

Conditions {’temperature’: 0} {’temperature’: ’90’, ’time’: ’67’}
Yield 93 90.0

Notes Appel halogenation of ethanol to 1-
chloroethane with triphenylphosphine
and carbon tetrachloride, yielding triph-
enylphosphine oxide as by-product.

The product was obtained as white
powder.

Table 9: QA Pairs Data Examples (4 Samples)
rxn id mol id question answer qa type input type

22683 - If the reactants are cumene hy-
droperoxide and cumyl alcohol
(IUPAC), what main product
forms?

propylene oxide product prediction iupac

22683 - What’s the reac-
tion product of [O-
]O.C1(=CC=CC=C1)C(C)C
and
C(C)(C)(C1=CC=CC=C1)O?

propylene oxide product prediction smiles

- 25992 Calculate the molecu-
lar mass for 2-methyl-2-
phenylpropanamide.

163 mass prediction iupac

- 21854 What’s the SMILES for the
compound with IUPAC name
methyl 4-ethynylbenzoate?

C(#C)C1=CC=C
(C(=O)OC)C=C1

name conversion iupac
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Algorithm 1 ChemisTRAG: Table-based RAG for Chemistry QA
Require: Natural language query q, compound table C, reaction table R
Ensure: Final answer A

1:
2: Step 1: Query Parsing
3: Tq ← fparse(q) = ⟨etype, etarget, aquery⟩
4:
5: Step 2: Schema-aligned Retrieval
6: if etype = “compound” then
7: S ← top-k ci ∈ C by matchcomp(etarget, ci)
8: else
9: Crel ← top-k compounds matching etarget

10: Rlinked ← {rj ∈ R | ∃ci ∈ Crel : link(ci, rj)}
11: S ← top-k rj ∈ Rlinked by max compound similarity
12: end if
13:
14: Step 3: Adaptive Reasoning
15: Rprototype ← fplan(q) {Generate reasoning prototype}
16: Rgrounded ← fground(Rprototype, S) {Ground with retrieved evidence}
17: A← fexecute(q,Rgrounded) {Synthesize final answer}
18:
19:
20: return A
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C CASE STUDY

Case Study 1: Exact Match Scenario.

Answer Generation based on Exact Match with Table-driven Retrieval

Query: When benzaldehyde and benzohydrazide react, what most possible product is generated?

Ground Truth: N-Benzylidene benzohydrazide

Parsed Tuple:
{

"level": "reaction",
"compounds": ["benzaldehyde", "benzohydrazide"],
"aspect": "product"

}

Retrieved Evidence:
{

"rxn_id": 4900,
"reactants": "benzaldehyde and benzohydrazide",
"products": "N-Benzylidene benzohydrazide",
"solvents": "ethanol and ethyl acetate",
"catalysts": "N/A",
"temperature": 25,
"match_info": "exact"

}

Reasoning Prototype (Step 1 in the Adaptive Reasoner):
Step 1: Identify the reactants. Benzaldehyde (C6H5CHO) is an aromatic aldehyde, and benzohy-
drazide (C6H5CONHNH2) is a derivative of hydrazine with a benzoyl group.
Step 2: Recognize the type of reaction. The reaction between an aldehyde and a hydrazide typically
involves nucleophilic attack by the hydrazide on the carbonyl carbon of the aldehyde.
Step 3: Determine the mechanism. The hydrazide acts as a nucleophile, attacking the electrophilic
carbonyl carbon of benzaldehyde, leading to the formation of a tetrahedral intermediate.
Step 4: Consider the stability of the intermediate. The intermediate is unstable and undergoes further
reaction, typically leading to the elimination of water and the formation of a hydrazone.
Step 5: Identify the product. The most likely product is benzohydrazone, which has the structure
C6H5CH=N-NH-C6H5. This compound is formed through the condensation of benzaldehyde with
benzohydrazide.

Evidence-Grounded Reasoning (Step 2 in the Adaptive Reasoner):
Step 1: Identify the reactants. Benzaldehyde (C6H5CHO) is an aromatic aldehyde, and benzohy-
drazide (C6H5CONHNH2) is a hydrazine derivative with a benzoyl group.
Step 2: Recognize the type of reaction.
The reaction between this aldehyde and hydrazide typically involves nucleophilic attack by the hy-
drazide on the aldehyde’s carbonyl carbon.
Step 3: Determine the mechanism. The hydrazide acts as a nucleophile, attacking the electrophilic
carbonyl carbon of benzaldehyde, leading to a tetrahedral intermediate.
Step 4: Consider the stability of the intermediate. The intermediate is unstable, undergoing water
elimination to form a conjugated imine - containing product.
Step 5: Identify the product. The most likely product is N-Benzylidene benzohydrazide , formed by
condensing benzaldehyde and benzohydrazide.

Final Answer: N-Benzylidene benzohydrazide

We present a case study to exemplify ChemisTRAG’s performance in exact match scenarios, where
query compounds have direct KB correspondences. For clarity, we present the structured KB entries
in JSON format, though they are originally stored in relational tables. Our table-based retriever
maps chemical names to correct reaction entries via structured tuple parsing, bypassing the semantic
matching challenges inherent in text-based approaches. Meanwhile, the adaptive reasoner generates
chemically accurate answers by grounding reasoning in retrieved evidence. This case validates our
core design principle: table-based retrieval enables precise matching, ensuring reliable performance
when exact knowledge is available in the KB.
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Adaptive Reasoning with Absent Exact Matches (OOC Scenario)

Query: Calculate the molecular weight of the compound 2,5-dichloropyrimidine

Ground Truth: 148.98

Parsed Tuple:
{

"level": "compound",
"compounds": ["2,5-dichloropyrimidine"],
"aspect": "weight"

}

One of Retrieved Entries (Not Exactly Matching):
{

"mol_id": 1813,
"iupac": "4,5-dichloropyrimidine",
"smiles": "C1=C(C(=NC=N1)Cl)Cl",
"common_name": "4,5-dichloropyrimidine",
"molecular_formula": "C4H2Cl2N2",
"molecular_weight": 148.98,
"description": nan,
"match": "similar"

}

Reasoning Prototype (Step 1 in the Adaptive Reasoner):
Step 1: Identify the molecular formula of 2,5-dichloropyrimidine. The compound 2,5-
dichloropyrimidine has the molecular formula C4H4N2Cl2 .
Step 2: Determine the atomic weights of each element involved. - Carbon (C): 12.01 g/mol - Hydrogen
(H): 1.008 g/mol - Nitrogen (N): 14.01 g/mol - Chlorine (Cl): 35.45 g/mol
Step 3: Calculate the contribution of each element to the molecular weight. - Carbon: 4 atoms × 12.01
g/mol = 48.04 g/mol - Hydrogen: 4 atoms × 1.008 g/mol = 4.032 g/mol - Nitrogen: 2 atoms × 14.01
g/mol = 28.02 g/mol - Chlorine: 2 atoms × 35.45 g/mol = 70.90 g/mol
Step 4: Sum the contributions to obtain the molecular weight. Molecular weight = 48.04 g/mol + 4.032
g/mol + 28.02 g/mol + 70.90 g/mol = 150.99 g/mol.

Evidence-Grounded Reasoning (Step 2 in the Adaptive Reasoner):
Step 1: Identify the molecular formula of 4,5-dichloropyrimidine. The compound 4,5-
dichloropyrimidine has the molecular formula C4H2N2Cl2 .
Step 2: Determine the atomic weights of each element involved. - Carbon (C): 12.01 g/mol - Hydrogen
(H): 1.008 g/mol - Nitrogen (N): 14.01 g/mol - Chlorine (Cl): 35.45 g/mol
Step 3: Calculate the contribution of each element to the molecular weight. - Carbon: 4 atoms × 12.01
g/mol = 48.04 g/mol - Hydrogen: 2 atoms × 1.008 g/mol = 2.016 g/mol - Nitrogen: 2 atoms × 14.01
g/mol = 28.02 g/mol - Chlorine: 2 atoms × 35.45 g/mol = 70.90 g/mol
Step 4: Sum the contributions to obtain the molecular weight. Molecular weight = 48.04 g/mol + 2.016
g/mol + 28.02 g/mol + 70.90 g/mol = 148.98 g/mol.

Final Answer: 148.98

Case Study 2: Reasoning with No Exact Matches. This case demonstrates ChemisTRAG in out-
of-corpus scenarios, where there is no corresponding entry in the table KB for the given question.
The initial reasoning prototype incorrectly calculated the molecular weight using an erroneous for-
mula (C4H4N2Cl2 with a result of 150.99 g/mol). However, the reasoning skeleton is reasonable.
The grounding stage adapted the reasoning details by integrating the retrieved similar compound
(4,5-dichloropyrimidine, C4H2N2Cl2), whose structural similarity to the query compound enabled
accurate weight calculation (148.98 g/mol). The execution stage infers the answer based on this
context, resulting in the final answer of 148.98, which matches the ground truth. This exemplifies
how our decoupled inference framework maintains reasoning integrity even with imperfect initial
plans, leveraging chemical analogies when exact matches are unavailable.
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D IMPLEMENTATION DETAILS

We used the default temperature setting and empirically set top p to 0.4, ensuring the stability of the
LLMs’ output while retaining diversity. The number of retrieved entries is set to 5. To achieve rapid
inference and memory efficiency, we employed the vLLM library (Kwon et al., 2023) to deploy our
open-source LLM calling services. We used the default template of each LLM for LLM prompting.
All computational experiments were conducted on a server equipped with 8 × L20 48G GPUs. For
the inference of models with 7∼8B size, a single GPU was used; 4 GPUs were used for the inference
of GPT-OSS-20B model. For larger-scale and commercial LLMs, we utilized the generative AI
services hosted by our institution. Supported by vLLM, it took an average of 3.2 seconds to answer
a single query using ChemisTRAG on Qwen-3-8B.

Prompt for Reaction Extraction

You are a chemistry expert who collects specific chemical reactions from texts, targeted to construct a
knowledge base.
Your task is to extract chemical reaction information from chemical patents:
1. Reactants (list): Starting materials that directly participate in the chemical reaction process;
2. Products (list): Substances generated after the chemical reaction reaches completion;
3. Solvents (list): Liquids that dissolve reactants or catalysts without being consumed;
4. Catalysts (list): Substances that accelerate reaction rate without being consumed;
5. Condition (dict): Key environmental parameters that affect reaction progress;
6. Remark (str): Additional relevant details not covered by the above items.
Constraints:
- Reactants, Products, Solvents, and Catalysts should be only specific and legitimate compound names
(IUPAC), excluding any references such as ’Compound A’, ’Compound I’, etc., states of matter such
as ’solution’, ’solid’, and any additional descriptions such as ’complex’, ’composite’;
- Conditions should be a dict with JSON format, where the keys are ”temperature”, ”pH value”, and
the values should be in the simplest form, containing only numerical values.
- If encounter any parts that cannot be revised to meet the requirements, directly return an empty dict
or list.
- Output the corrected dict in JSON format.

Figure 7: Prompt for extracting reaction information for chemical patents.

Prompt for Reaction Check

You are a chemistry expert who collects specific chemical reactions from texts, targeted to construct a
knowledge base.
Your task is to check and ensure that each field meets the requirements:
1. Reactants, Products, Solvents, and Catalysts should be only specific and legitimate compound
names (IUPAC), excluding any references such as ’Compound A’, ’Compound I’, etc., states of matter
such as ’solution’, ’solid’, and any additional descriptions such as ’complex’, ’composite’;
2. Conditions should be in the simplest form, containing only numerical values.
3. The reaction should be reasonable. Use your professional knowledge to revise the incorrect parts,
making the reaction formula conform to chemical principles.
Constraints:
- If encounter any parts that cannot be revised to meet the requirements, directly return an empty dict.
- Output the corrected dict in JSON format, consistent with the original reaction info dict.

Figure 8: Prompt for checking reaction information.

E STATEMENT OF GENERATIVE AI USE

We use GPT-4o and DeepSeek for the purpose of correcting grammar, enhancing expressions, and
assisting programming. In our research, we employed generative models for the data construction
of our knowledge base and evaluation data, which constitute one of our central focuses aiming to
enhance model capabilities through the knowledge base and assess such improvement. However, it
is crucial to clarify that: (1) The method and experiment are designed by us independently. (2) All
experimental datasets were derived from empirical results.
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Prompt for Generation of Question Templates

You are a chemistry expert. Given a question type, generate 20 chemical questions with different lin-
guistic styles or syntactic structures. Below are the question types along with corresponding inputs
and expected outputs:
- Product Prediction: Given reactants, predict the products.
- Reactant Prediction: Given products, predict the reactants.
- Condition Prediction: Given a chemical equation including reactants and products, predict the reac-
tion conditions (e.g., temperature or pH value; specify one).
- Solvent Prediction: As above, predict the solvents.
- Catalyst Prediction: As above, predict the catalyst.
- Weight Computation: Given a compound, calculate its mass.
- Name Conversion: Given a compound name in one format (e.g., IUPAC or SMILES), convert it to
another format.
- Molecule Description: Given a compound, provide the corresponding description.
Requirements:
- Simulate real users’ queries as much as possible.
- Reserve one placeholder in each question, enclosed in “{}”, e.g., “{products}”.

Figure 9: Prompt for question template generation.

Prompt for Question Diversification

You are a chemistry expert. Given a question generated by an LLM, please rewrite it into a query that
is closer to the tone of real users.
Requirements:
- Make as many variations as possible, but only adjust the linguistic style while strictly preserving the
core meaning of the query. - Output the rewritten sentence directly.

Figure 10: Prompt for diversifying questions.

Prompt for Direct Inference

You are an intelligent assistant. Answer query based on the given few-shot examples.
# Constraints
- If you don’t know the answer, make the best guess based on your knowledge.
- Output must be JSON with ’thinking’ and ’answer’, where ’thinking’ is your thinking process, and
’answer’ should directly answer the given query in one or a few words.
- ’answer’ should specify the compound name or form numeric answer. For question requires you to
transform something into SMILES, the ’answer’ should output SMILES format.

Figure 11: Prompt for direct inference.

Prompt for Query Parsing

You are a chemistry expert. Given a chemical query, extract information into a JSON string with keys:
- ’level’: the level involved in the query (’compound’ or ’reaction’)
- ’compounds’: list of compound names in the query
- ’format’: input format of compounds in the query (’smiles’ or ’iupac’), NOT the output format.
- ’aspect’: query focus (e.g., weight, product, reactants, condition, name conversion, etc.) Output only
the JSON string.

Figure 12: Prompt for parsing queries to structural information.
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Prompt for Reasoning Prototype Generation

You are a chemistry expert. Given a chemical query, generate a step-by-step reasoning path to solve it.
Requirements:
1. Each reasoning path must have clear step numbering (e.g., Step 1...;Step 2...;Step 3...).
2. Highlight specific chemical names and numerical values.

Figure 13: Prompt for generating initial reasoning paths.

Prompt for Reasoning Path Adaptation

You’re a chemistry expert. Adapt the given reasoning path to strictly match the chemical record.
Steps:
1. Start by providing a json string with keys ”answer” pertaining to the aspect, copied directly from
the corresponding key of the record.
2. Then, replace the compound and reaction information in the reasoning path with data from the
record.
Requirements:
1. Strictly extract the name and info from the record without modifications.

Figure 14: Prompt for adapt reasoning paths to retrieval entries.

Prompt for Final Answer Generation

You’re a chemistry expert. Infer the answer to the query based on the given context.
Requirements:
1. If there is context highly matching the query, you should directly use the answer. Otherwise, take
the reasoning paths as few-shot examples and try to find something in common between compounds
in the reasoning paths and given query, then infer the answer with step-by-step thinking.
2. If there is no valid context, infer the answer using your knowledge step-by-step.
3. Conclude with a JSON string with a key ’answer’. The ”answer” should follow the format of the
concise answer in the reasoning path. Unless the query is a description task, the ”answer” should only
consist of one or several words or numbers that indicates only one answer to the query directly.

Figure 15: Prompt for final reasoning and answer generation.
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