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Figure 1: Feed-forward subject-driven generation by EchoGen. By employing a visual autore-
gressive paradigm, EchoGen achieves both high-quality image synthesis with lower latency, pre-
serving intricate subject identity with exceptional efficiency.

ABSTRACT

Subject-driven generation is a critical task in creative AI; yet current state-of-the-
art methods present a stark trade-off. They either rely on computationally ex-
pensive, per-subject fine-tuning, sacrificing efficiency and zero-shot capability, or
employ feed-forward architectures built on diffusion models, which are inherently
plagued by slow inference speeds. Visual Auto-Regressive (VAR) models are
renowned for their rapid sampling speeds and strong generative quality, making
them an ideal yet underexplored foundation for resolving this tension. To bridge
this gap, we introduce EchoGen, a pioneering framework that empowers VAR
models with subject-driven generation capabilities. The core design of EchoGen
is an effective dual-path injection strategy that disentangles a subject’s high-level
semantic identity from its low-level fine-grained details, enabling enhanced con-
trollability and fidelity. We employ a semantic encoder to extract the subject’s
abstract identity, which is injected through decoupled cross-attention to guide the
overall composition. Concurrently, a content encoder captures intricate visual
details, which are integrated via a multi-modal attention mechanism to ensure
high-fidelity texture and structural preservation. To the best of our knowledge,
EchoGen is the first feed-forward subject-driven framework built upon VAR mod-
els. Both quantitative and qualitative results substantiate our design, demonstrat-
ing that EchoGen achieves subject fidelity and image quality comparable to state-
of-the-art diffusion-based methods with significantly lower sampling latency.

1 INTRODUCTION

The rapid evolution of text-to-image synthesis models (Saharia et al., 2022; Rombach et al., 2022;
Batifol et al., 2025; Esser et al., 2024) has catalyzed a variety of novel applications (Zhang et al.,
2023), among which subject-driven generation stands out as an important task. This task aims
to accurately depict a specified subject within diverse, user-defined scenes described through text
prompts, while rigorously upholding the subject’s core identity. The early approaches (Ruiz et al.,
2023; Gal et al., 2022; Kumari et al., 2023) introduced a test-time fine-tuning paradigm that op-
timizes a large pretrained model using a few images for each new subject. Although effective in
preserving identity to some extent, this per-subject optimization process is computationally expen-
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sive, demanding at least hundreds of training iterations and substantial GPU resources, ultimately
resulting in a distinct model checkpoint for each subject. These limitations significantly hinder the
practicality and scalability of the test-time fine-tuning paradigm in real-world applications.

To improve efficiency and practicality, a new class of feed-forward approaches has recently
emerged (Li et al., 2023; Pan et al., 2024; Ye et al., 2023; Tan et al., 2025; Shin et al., 2025)
based on diffusion models (Rombach et al., 2022; Podell et al., 2024; Batifol et al., 2025). In-
stead of fine-tuning on a small set of images for each new subject, feed-forward approaches perform
a single, large-scale supervised fine-tuning on a vast dataset composed of triplets (text, reference
image, target image). The model is trained to learn a generalizable mapping from a subject image
to the snapshot version in the specified scene. The single process of pretraining enables zero-shot
generation at inference time–a novel subject can be synthesized immediately without any subject-
specific fine-tuning, significantly reducing the initial setup cost and decreasing generation latency
by eliminating the need for test-time optimization. Nevertheless, these methods still inherit the
computational demands of the underlying diffusion models due to the iterative denoising process.

Inspired by autoregressive generation in language models (Radford et al., 2018; Achiam et al.,
2023), autoregressive visual generation (Esser et al., 2021; Ramesh et al., 2021; Sun et al., 2024)
has emerged as a compelling alternative to diffusion models. Unlike diffusion’s iterative denoising,
autoregressive models synthesize content sequentially, token by token. This paradigm is further
advanced by the Visual Autoregressive (VAR) model (Tian et al., 2024; Han et al., 2025), which
employs a coarse-to-fine next-scale generation strategy instead of traditional next-token generation.
It first generates tokens for the global composition and then renders fine-grained details, capturing a
complete hierarchical representation from structure to texture. The novel paradigm allows VAR to
achieve superior performance compared to traditional autoregressive models, outperforming top-tier
diffusion models while offering faster inference speed. Despite the inherent suitability of the autore-
gressive paradigm for fine-grained conditioning, its potential for controllable generation, especially
in the feed-forward, subject-driven context, remains largely untapped compared to the wealth of
research on diffusion-based methods. This critical gap severely limits the practical applicability of
VAR models, hindering their adoption in real-world scenarios where subject control is paramount.

In this work, we aim to bridge this gap by leveraging the inherent advantages of VAR to build an
effective, scalable, and highly controllable system for subject-driven image synthesis. We propose
EchoGen, the first efficient feed-forward autoregressive framework that generates faithful visual
renditions of a given subject in arbitrary scenes. At the core of EchoGen is a dual-path injection
mechanism that disentangles semantic features from fine-grained details. We inject high-level fine-
grained semantic features extracted by a semantic encoder based on the pretrained vision foundation
model (DINOv2 (Oquab et al., 2024)) into the decoupled cross-attention layers (Kumari et al., 2023)
to bring structural and stylistic coherence while avoiding drift in prompt following. To enable global
semantic conditioning, we prepend the global semantic embedding extracted from DINOv2 as a
prefix and subsequently infuse it via Adaptive LayerNorm, thereby steering the overall semantic
generation. However, generating with semantic features alone often misses low-level details. To
complement these features, a second pathway employs a pretrained content encoder (FLUX.1-dev
VAE (Batifol et al., 2025)) to extract fine-grained image features, which are incorporated via a
multi-modal attention module, ensuring faithful reconstruction of local textures and details. To
preserve the generative capabilities of the pretrained VAR model, we adopt a parameter-efficient
fine-tuning strategy that freezes the backbone and only updates key components within the subject
injection modules. Extensive quantitative and qualitative evaluations on DreamBench (Ruiz et al.,
2023) benchmark and human evaluation demonstrate that EchoGen achieves subject fidelity, text
alignment, and image quality comparable to and even exceeding state-of-the-art diffusion-based
methods, while exhibiting lower sampling latency.

Our principal contributions can be summarized as follows:
• We introduce EchoGen, the first feed-forward, efficient, subject-driven generation frame-

work built upon a visual autoregressive model. This establishes a compelling new paradigm
for controllable subject-driven synthesis beyond the dominant diffusion-based approaches.

• We propose a novel dual-path injection strategy that disentangles the identity of a sub-
ject into high-level semantics and fine-grained details. By injecting these features through
separate pathways within a parameter-efficiently tuned model, EchoGen achieves faithful
subject representation across diverse scenes.
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• Extensive experiments demonstrate that EchoGen achieves subject fidelity, text alignment,
and image quality that are competitive with or superior to state-of-the-art diffusion-based
methods with much faster inference speed.

2 RELATED WORKS

2.1 AUTOREGRESSIVE IMAGE GENERATION

Unlike diffusion-based methods that synthesize images via iterative denoising, the autoregressive
paradigm models image distributions by sequentially predicting visual tokens conditioned on the
preceding context. This approach evolves from inefficient and low quality early pixel-level meth-
ods (Van den Oord et al., 2016; Salimans et al., 2017) to a dominant two-stage framework that
first compresses images into discrete tokens and then models their distribution utilizing Trans-
former (Esser et al., 2021). This paradigm substantially improves generation fidelity and efficiency,
underpinning advances in text-to-image synthesis (Ramesh et al., 2021; Yu et al., 2022b) and con-
trollable generation (Li et al., 2025). Subsequent work further refines it by improving image tok-
enizers (Yu et al., 2022a; Mentzer et al., 2024), exploring continuous representations with diffusion
modeling (Li et al., 2024a; Fan et al., 2025), or adapting large language models for visual gener-
ation (Sun et al., 2024; Wu et al., 2024). To mitigate structural degradation induced by the fixed
raster-scan order, Visual Autoregressive (VAR) models (Tian et al., 2024) introduce a hierarchical
coarse-to-fine strategy that progressively refines fine-grained details by next-scale prediction. The
following version Infinity (Han et al., 2025) extends the VAR model to text-to-image generation,
achieving superior quality with significantly lower sampling latency than diffusion models. While
existing works extend VAR to controllable generation (Yao et al., 2024; Li et al., 2024b; Chung
et al., 2025), feed-forward subject-driven personalization remains underexplored, limiting the prac-
tical applicability of the VAR framework.

2.2 SUBJECT-DRIVEN IMAGE GENERATION

Test-time fine-tuning methods. Diffusion models (Ho et al., 2020; Rombach et al., 2022) have
achieved remarkable success in high-fidelity text-to-image (T2I) synthesis (Podell et al., 2024; Esser
et al., 2024; Batifol et al., 2025). For subject-driven tasks, relying solely on text prompts is often
insufficient to preserve the defining characteristics of specific subjects. To address this, pioneering
methods (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023) introduce customization by fine-
tuning on a small set of reference images for each target subject. While these approaches can
capture intricate details and deliver high fidelity to some extent, their dependence on per-subject
optimization remains time-consuming and computationally demanding, which limits practical use.

Feed-forward subject-driven approaches. To overcome the efficiency limitations of per-subject
optimization, feed-forward methods have been developed (Wei et al., 2023; Zeng et al., 2024; Patel
et al., 2024; Ma et al., 2024; Wang et al., 2025). These models are trained once to condition on
subject features from vision encoders, enabling fast, zero-shot synthesis for novel subjects. Early
works such as BLIP-Diffusion (Li et al., 2023) jointly fine-tune the denoising network with multi-
modal alignment modules while suffering from inadequate fidelity and image quality. To mitigate
the high computational cost of full model tuning, parameter-efficient strategies (Pan et al., 2024; Ye
et al., 2023; Tan et al., 2025; Zhang et al., 2025; Wu et al., 2025) incorporate lightweight modules
such as LoRA (Hu et al., 2022) or adapters. These modules inject reference features into the diffu-
sion transformer, typically via attention mechanisms, while keeping most pretrained weights frozen.
However, since these methods all rely on diffusion backbones, they inherit the substantial inference
latency of the iterative denoising process, which constrains their practical deployment.

3 PRELIMINARY OF VISUAL AUTOREGRESSIVE MODELING

Autoregressive models (Esser et al., 2021) reframe image synthesis as a sequential token predic-
tion, under the next-token prediction. The image is first tokenized into a discrete feature map us-
ing a visual tokenizer E and then flattened into a one-dimensional sequence, typically following
the raster scan order. The model is then trained to predict each token xi given the preceding to-
kens (x1, ..., xi−1) and the condition c, factorizing the sequence distribution as p(x1, . . . , xN |c) =∏N

i=1 p(xi|x1, . . . , xi−1, c). However, the vanilla next-token paradigm with fixed raster order in-
duces structural degradation and insufficient modeling.
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Figure 2: Overview of the EchoGen architecture. The left panel illustrates the overall model
framework with dual-path subject injection, while the right panel provides a detailed schematic of
the EchoGen block with a carefully designed attention mask applied in the Multi-Modal Attention
module to avoid feature leakage. C denotes the global semantic token extracted from the semantic
encoder, which is prepended to the input sequence. S represents the start token for the first-scale
generation. Adaptive Layer Normalization modules in the EchoGen blocks are omitted for clarity.

Visual autoregressive modeling (Tian et al., 2024) addresses the above issues by shifting the predic-
tion paradigm from next-token to next-scale: instead of predicting one token at a time, it predicts
entire token maps at progressively increasing resolutions. The visual encoder E first maps an image
I to latent F , and then produces K multi-scale token maps (r1, ...rK) with increasing resolutions
hk × wk by applying a residual vector quantizer. A GPT-style Transformer begins from the gener-
ation of the 1×1 map r1 and autoregressively predicts each subsequent scale given prior scales and
condition c, achieving generation from global structure to fine details, which is formulated as:

p(r1, . . . , rK |c) =
K∏

k=1

p(rk|r1, . . . , rk−1, c). (1)

This scale-wise coarse-to-fine paradigm is well suited for scalable text-to-image generation. The
text-to-image generation model Infinity (Han et al., 2025) leverages bitwise quantization to expand
the vocabulary size under the next-scale paradigm, reporting state-of-the-art performance with re-
duced sampling latency compared to diffusion baselines. In this paper, to bypass the cumbersome
per-subject fine-tuning and the heavy computational cost during inference, we propose a novel feed-
forward framework based on VAR models, featuring a single parameter-efficient fine-tuning phase.

4 ECHOGEN

4.1 OVERALL FRAMEWORK

We are seeking a novel feed-forward framework for subject-driven generation built upon Infinity,
based on the proposed EchoGen block with effective dual-path subject information injection, in
which a content encoder and a semantic encoder cooperate to provide comprehensive subject fea-
tures from both sides of a coin. The overview of the EchoGen architecture and its basic block
is illustrated in Figure 2. Before subject injection, to ensure robustness against background noise
that may interfere with subject injection, a pipeline based on the multi-modality model Qwen2.5-
VL (Bai et al., 2025) and the open segmentation model GroundingDINO (Liu et al., 2024) is care-
fully designed to segment the subject from complex scenes. Given the segmented subject image,
our EchoGen model is trained using a parameter-efficient methodology that freezes the pretrained
backbone while fine-tuning only newly introduced attention modules. During inference, we apply
flexible subject-text classifier-free guidance for explicit control over the trade-off between subject
fidelity and textual alignment, enabling versatile and controllable generation.

4.2 DUAL-PATH SUBJECT INJECTION

Semantic feature injection for identity preservation. The semantic feature, which captures ab-
stract characteristics, provides a representation that is critical for avoiding the identity drift com-
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mon in subject-driven generative models. Following this principle, we introduce a bifurcated in-
jection strategy that targets both the fine-grained and global levels of the generative process. For
fine-grained conditioning, we employ the pretrained DINOv2 vision encoder to extract patch-level
semantic embeddings. These embeddings are synergistically integrated with the original textual
conditioning via a decoupled cross-attention mechanism (Kumari et al., 2023). Our decoupled cross-
attention mechanism operates on query features Z , conditioning them on both the text embedding
ct and the fine-grained semantic features cs , formulated as follows:

Q = ZW q , K = concat
(
csW

k
s , ctW

k
t

)
, V = concat (csW

v
s , ctW

v
t ) ,

Z ′ = Attention (Q,K,V) = Softmax
(
QK⊤/

√
d
)
V,

(2)

where W q is the query projector, (W k
t ,W

v
t ) and (W k

s ,W
v
s ) are two distinct sets of (k, v) pro-

jectors to embed text prompting ct and semantic injection cs , respectively. The resulting key and
value pairs for each condition are concatenated to form the final context vectors K and V . We keep
the projectors for text prompting (W k

t ,W
v
t ) and the query projector W q frozen while exclusively

optimizing the key and value projectors (W k
s ,W

v
s ) that map the semantic features of the reference

images, enabling an alignment mapping from the semantic visual space to the generator’s latent
space without perturbing the pretrained knowledge.

Moreover, we prepend the DINOv2 global semantic token C to the input sequence to impose holistic
semantic guidance. At the same time, this global token also serves as a condition for the Adaptive
Layer Normalization (AdaLN) layer in the proposed EchoGen block, following (Han et al., 2025).
The infusion of fine-grained and global semantics ensures comprehensive semantic-informed gen-
eration, promoting fine-grained fidelity and global structural coherence.

Content feature injection for detail preservation. While the semantic embeddings provide a ro-
bust identity preservation, their high abstraction leads to generation with insufficient subject details.
To achieve high fidelity of the subject’s content, we complement it with a content feature infusion
mechanism. To be specific, EchoGen employs the FLUX.1-dev VAE to extract low-level content
features cc , which are then integrated via the multi-modal attention. The generation process is then
steered by a carefully designed attention operation: generated tokens have unobstructed access to
the reference tokens, allowing them to distill fine-grained visual cues on demand; conversely, a
causal mask renders the reference tokens oblivious to the generated sequence, which is a critical
constraint for ensuring the autoregressive sampling trajectory. This masking schema is precisely
demonstrated in the lower-right inset of Figure 2. Specifically, given the generated token sequence
Z and the detailed content condition cc , the multi-modal attention utilizes separate linear projections
(W q ,W k ,W v ) for Z and (W q

c ,W
k
c ,W

v
c ) for the condition cc , with the applied attention mask

Mask, and then calculate the generated sequence Z ′ and condition cc
′ via:

Q = concat (ZW q , ccW
q
c ) , K = concat

(
ZW k , ccW

k
c

)
, V = concat (ZW v , ccW

v
c ) ,

Z ′, c′c = Attention (Q,K,V,Mask) = Softmax
(
Mask

(
QK⊤/

√
d
))

V.
(3)

The pathways for the generated token sequence remain frozen, while exclusively parallel attention
projectors (W q

c ,W
k
c ,W

v
c ) and FFN modules for processing content features are optimized.

Through this dual-path subject injection strategy, our model faithfully preserves the salient visual
characteristics of the reference image while simultaneously maintaining a strong adherence to the
provided text instructions.

4.3 SUBJECT SEGMENTATION

A common challenge in real-world scenarios is that user-provided reference images comprised of

Figure 3: The pipeline of subject segmentation.

the subject of interest within visually complex
backgrounds may harm the performance of sub-
ject injection. To mitigate this issue, we employ
a subject segmentation pre-processing pipeline,
illustrated in Figure 3. First, the Qwen2.5-
VL (Bai et al., 2025) vision-language model
identifies the subject’s semantic identity, pro-
ducing a descriptive text prompt. This prompt
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is then used to condition the GroundingDINO (Liu et al., 2024) model for precise subject local-
ization and bounding box generation. The foreground region is subsequently cropped according to
this bounding box, while the surrounding unrelated regions are explicitly discarded and replaced
with a uniform white background. This process ensures that subsequent feature injection operates
attentively on the isolated representation of the referred subject.

4.4 SAMPLING WITH SUBJECT-TEXT CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) has become a cornerstone technique for
enhancing conditional control in generative models, especially in diffusion models. Its core principle
is to amplify the conditional signal by extrapolating from an unconditional prediction towards a
conditional one, thereby improving condition following at the cost of some diversity. Recently,
many autoregressive models (Chang et al., 2023; Tian et al., 2024) have also incorporated CFG into
their frameworks. In this work, we further enhance the influence of the text embedding ct and the
subject condition cs, cc within the CFG scheme for subject-driven generation. During training, we
independently replace the text condition ct with an unconditional token ∅t and the image condition
cs, cc with unconditional embeddings ∅s,∅c, each with a probability of 10%. During inference,
assuming the independence between the text condition ct and the image condition cs, cc, we compute
the final logits predicted by EchoGen via a flexible guidance rule that integrates both controls:

l̂ = l(∅t,∅s,∅c)+γt× (l(ct,∅s,∅c)− l(∅t,∅s,∅c))+γI × (l(ct, cs, cc)− l(ct,∅s,∅c)), (4)
where l denotes the Transformer output logits, and γt together with γI are hyperparameters that
govern the guidance scales. This dynamic text-subject guidance not only strengthens the influence of
text embeddings and image prompts, thereby improving generation performance, but also provides
a flexible mechanism to balance text alignment with the reference preservation.

5 EXPERIMENT

5.1 SETUP

Datasets. We conduct experiments on the Subjects200K dataset (Tan et al., 2025), a substantial
collection comprising about 256,000 triplets of text prompts, reference images, and target images.
The corpora were generated using GPT-4o and FLUX.1-dev, and with image resolutions larger than
500×500. For EchoGen-0.1B training, both the reference and target images are resized and center-
cropped to 256×256. To enable high-resolution generation for EchoGen-2B training, we avoid
direct interpolation, which may introduce undesirable artifacts; instead, we upscale the images to
1024×1024 using the PiSA-SR super-resolution model (Sun et al., 2025).

Training details. Our training protocol largely follows Infinity (Han et al., 2025). We train EchoGen
for 400k iterations, utilizing the AdamW (Loshchilov & Hutter, 2017) optimizer with a global batch
size of 128, setting the base learning rate as 3 × 10−5 and the momentum parameters (β1, β2) =
(0.9, 0.97). To stabilize fine-tuning, we apply a reduced learning rate of 3×10−6 to the multi-modal
attention parameters. More training details can be found in the appendix 7.3.1.

Evaluation. Following prior works (Ruiz et al., 2023; Li et al., 2023), we evaluate our approach
in terms of subject fidelity and text alignment on the DreamBench benchmark (Ruiz et al., 2023).
Subject fidelity is measured by the cosine similarity between the generated and reference images
using both CLIP (Radford et al., 2021) image embeddings (CLIP-I) and DINO (Zhang et al., 2022)
features (DINO). Text alignment is assessed via the CLIP cosine similarity between the generated
image and its corresponding input prompt (CLIP-T). DreamBench, comprising real-world images
with prompt annotations, includes 30 unique subjects, each paired with 25 distinct prompts. Follow-
ing the standard protocol, we generate four images for each prompt-subject pair, yielding a total of
3,000 images for evaluation.

5.2 MAIN RESULTS

We compare EchoGen with three categories of prior works: (1) test-time fine-tuning methods that
require per-subject optimization; (2) unified generation models with large-scale pre-training; and (3)
feed-forward approaches that share the same paradigm as ours and constitute our most baselines.

Quantitative results. We benchmark EchoGen performance against contemporary subject-driven
diffusion-based methods in the DreamBench dataset (Ruiz et al., 2023), with quantitative results
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Method Base Model DINO↑ CLIP-I↑ CLIP-T↑ Latency ↓
Test-time Fine-tuning

Textual-Inversion (Gal et al., 2022) SD-v1.5 0.569 0.780 0.255 50min
DreamBooth (Ruiz et al., 2023) SD-v1.5 0.668 0.803 0.305 15min
BLIP-Diffusion (Li et al., 2023) SD-v1.5 0.670 0.805 0.302 -
AR-Booth (Chung et al., 2025) Infinity-2B 0.750 0.808 0.269 2.8h

Unified Generation
OmniGen (Xiao et al., 2025) OmniGen 0.693 0.801 0.315 93.4s

Feed-Forward
ELITE (Wei et al., 2023) SD-v1.4 0.621 0.771 0.293 11.0s
Re-Imagen (Chen et al., 2023) Imagen 0.600 0.740 0.270 -
BLIP-Diffusion (Li et al., 2023) SD-v1.5 0.594 0.779 0.300 -
λ-Eclipse (Patel et al., 2024) Kan-v2.2 0.613 0.783 0.307 -
BootPIG (Purushwalkam et al., 2024) SD-v2.1 0.674 0.797 0.311 -
MS-Diffusion (Wang et al., 2025) SDXL 0.671 0.792 0.321 39.6s
IP-Adapter (Ye et al., 2023) SDXL 0.613 0.810 0.292 16.9s
IP-Adapter (Ye et al., 2023) FLUX.1-dev 0.561 0.725 0.351 -
OminiControl (Tan et al., 2025) FLUX.1-dev 0.684 0.799 0.312 27.5s
EasyControl (Zhang et al., 2025) FLUX.1-dev 0.652 0.789 0.325 47.6s

EchoGen-0.1B Infinity-0.1B 0.675 0.806 0.321 0.5s
EchoGen-2B Infinity-2B 0.755 0.837 0.324 5.2s

Table 1: Quantitative comparisons on DreamBench (Ruiz et al., 2023). We highlight the best ,
second-best , and third-best values for each metric. The results indicate that EchoGen attains

performance on par with diffusion-based approaches while delivering substantially faster sampling.

Method Subject Fidelity↑ Text Alignment↑ Photorealism↑
OmniGen (Xiao et al., 2025) 0.15 0.13 0.09
IP-adapter (Ye et al., 2023) 0.21 0.05 0.14
OminiControl (Tan et al., 2025) 0.12 0.21 0.15
EasyControl (Zhang et al., 2025) 0.15 0.31 0.28

EchoGen-2B 0.37 0.30 0.34

Table 2: Human evaluation. We compare our method with previous approaches based on three
aspects: text alignment, subject fidelity, and photorealism.

summarized in Table 1. EchoGen achieves performance that superior to leading diffusion-based
approaches in the core metrics of subject fidelity and text alignment, and demonstrates balanced
performance across evaluation axes. In contrast, several baselines, such as IP-Adapter (Ye et al.,
2023) exhibit significant weaknesses in specific metrics. Furthermore, the adoption of the visual
autoregressive paradigm provides a clear efficiency advantage: EchoGen’s inference latency for a
1024×1024 image is under 6 seconds, representing a significant acceleration over the more than 10
seconds required by its diffusion-based counterparts. Overall, these results indicate that EchoGen
combines strong generative quality with markedly improved efficiency, offering a competitive alter-
native for subject-driven synthesis.

Qualitative results. Figure 4 presents a rigorous qualitative comparison with prominent diffusion-
based frameworks, revealing substantial advantages of our model in both subject fidelity and prompt
correspondence. EchoGen exhibits the ability to render high-fidelity details, such as the precise
reconstruction of the teapot spout and the nuanced texture of the sloth plushie, and we attribute this
capability to our dual-path semantic-content feature injection design. In contrast, baselines including
IP-Adapter (Ye et al., 2023) and OminiControl (Tan et al., 2025) exhibit characteristic failure cases,
corroborating EchoGen’s robustness. EchoGen also demonstrates more consistent compliance with
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Reference IP-Adapter OmniGen OminiControl EasyControl EchoGen-2B

A fringed cream boot on top of green grass with sunflowers around it

A clay teapot on top of a wooden floor

A grey sloth plushie on a cobblestone street

A duck toy floating on top of water

A tabby cat in the snow

Figure 4: Qualitative comparison with diffusion-based methods on DreamBench (Ruiz et al.,
2023). For a fair comparison, we adopt the default sampling settings for all baseline models.

textual prompts, avoiding the language deviations observed in the generations of the duck toy and
cat instances by IP-Adapter.

Human evaluation. To assess the perceptual quality of EchoGen, we conduct a human evaluation
study against strong baselines that span multiple categories of subject-driven methods. We focus
on three criteria: text alignment, subject fidelity, and photorealism. The images are generated con-
ditioned on the reference images and prompts sampled from DreamBench (Ruiz et al., 2023) and
DreamBench++ (Peng et al., 2024) benchmarks without any cherry-picking, and for each criterion,
participants select their preferred generated image among the outputs from five methods. We collect
450 responses from 25 participants, all with expertise in generative models, and report preference
ratios in Table 2. The results show that EchoGen is preferred for subject fidelity and photoreal-
ism, surpassing all the diffusion-based contemporary baselines on these criteria. For text alignment,
EchoGen performs on par with EasyControl (Zhang et al., 2025) and exhibits a clear advantage over
the other compared methods.

Sampling Latency Analysis. We conduct a thorough analysis to evaluate the performance-latency
trade-offs across all methods. Specifically, we evaluate diffusion-based methods with varying num-
bers of denoising steps and report their performance versus sampling latency in Figure 5. For the
diffusion baselines, increasing the number of denoising steps improves subject fidelity (as measured
by DINO, CLIP-I scores) up to a saturation point. In contrast, the text alignment (CLIP-T) score
converges much earlier. Our model consistently offers a better trade-off, achieving superior perfor-
mance with significantly lower sampling latency than the diffusion-based baselines. This confirms
the inherent efficiency and effectiveness of our approach.
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Figure 5: Performance v.s. sampling latency comparison among our EchoGen and baselines.

Enc. DINO↑ CLIP-I↑ CLIP-T↑
SigLIP-2 0.438 0.720 0.320
FLUX.1-dev 0.433 0.706 0.320
DINOv2 0.670 0.798 0.322

Table 4: Significance of fine-grained seman-
tic injection. “Enc.” denotes the encoder type.

Exp. DINO↑ CLIP-I↑ CLIP-T↑
w/o prefix 0.632 0.788 0.328
w prefix 0.670 0.798 0.322

Table 5: Ablation study on incorporating the
global semantic features of reference images.

Model Component Sampling Latency (s)

Grounding-DINO 0.24
Semantic encoder 0.008
Content encoder 0.025
Infinity generator 4.95

Qwen2.5-VL(Optional) 1.13

EchoGen (w/o Qwen2.5-VL) 5.22
EchoGen (w/ Qwen2.5-VL) 6.35

Table 3: Per-component sampling latency mea-
sured on a single H20 GPU.

The detailed component-wise sampling latency
of our EchoGen framework is provided in Ta-
ble 3. The results confirm that the frame-
work’s overall efficiency is not limited by aux-
iliary components such as Grounding-DINO.
EchoGen maintains a significant speed ad-
vantage over diffusion-based methods, even
with the inclusion of the optional Qwen2.5-VL
model. Although this model is employed dur-
ing training to automate subject identification
for the GroundingDINO segmentation model,
it is not required during inference. Instead, users can provide a descriptive text prompt (akin to the
DreamBench format) for specifying the subject.

5.3 ABLATION STUDIES

We conduct a series of ablation studies to verify the effect of each component in EchoGen. Owing to
computational constraints, all experiments are performed on EchoGen-0.1B with the same training
settings to ensure fair ablation studies.

Significance of fine-grained semantic information injection. Fine-grained semantic conditional
information is critical as it provides guidance for establishing the structure, enabling the model to
synthesize stylistically and structurally coherent features consistent with the subject. Conversely, we
argue that overly coarse-grained semantic features may fail to provide sufficient guidance for gener-
ating visually consistent echoes. To validate the importance of incorporating fine-grained semantic
information, we conducted an ablation study with three distinct feature types independently injected
via cross-attention:(1) coarse-grained semantic identity from SigLIP-2 (Tschannen et al., 2025), (2)
fine-grained semantic features from DINOv2 and (3) FLUX.1-dev VAE features, which lack enough
semantic information. Table 4 demonstrates that the fine-grained semantic DINOv2 features are the
most suitable to represent the echo information in this task, as evidenced by all criteria. The fail-
ure of the SigLIP-2 and FLUX.1-dev VAE features can be attributed to their respective limitations:
the former relies on features that are too coarse to guide subject generation, while the latter lacks
semantic information.

Incorporating the global semantic information. To provide stronger guidance when constructing
the global structure in the generation process, we prefix the global semantic C token extracted by the
DINOv2 semantic encoder and incorporate this token into the model via Adaptive LayerNorm. As
demonstrated in Table 5, compared with solely relying on injecting fine-grained semantic features
via cross-attention, the introduction of the global semantic token yields a substantial performance
gain in consistency of subject characteristics, validating the effectiveness of incorporating global
semantic information.
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Module DINO↑ CLIP-I↑ CLIP-T↑
MM-Attn 0.646 0.792 0.325
Cross-Attn 0.670 0.798 0.322

Table 6: Different methods for incorporating
semantic features.

Distinct semantic feature injection strate-
gies. We explore the most effective method to
guide the synthesis process conditioned on the
semantic features of reference images. Table 6
presents an analysis comparing two distinct fea-
ture injection modules: multi-modal attention
and cross-attention. Our results indicate that
while the multi-modal module achieves slightly
better alignment with text prompts, the cross-attention mechanism yields significantly superior sub-
ject fidelity, as evidenced by a notably higher DINO score. Based on this, we opted to utilize
cross-attention for injecting the semantic features in all subsequent experiments, rather than the
multi-modal attention.

Exp. DINO↑ CLIP-I↑ CLIP-T↑
baseline 0.670 0.798 0.322
+Cross-Attn 0.667 0.803 0.318
+MM-Attn 0.672 0.806 0.321

Table 7: Impact of injecting subject details.

Enhancing subject fidelity with detailed con-
tent features. Considering the absence of lo-
cal details in the semantic features of the refer-
ence images, we incorporate a secondary path-
way that injects localized content features of
the subject. These features, extracted by the
FLUX.1-dev VAE, are used to guide the synthe-
sis of the fine-grained local details of the sub-
ject. The ablation study detailed in Table 7 demonstrates that employing a multi-modal attention
mechanism to infuse these content features substantially enhances the subject-fidelity of the gener-
ated samples, yielding a significant increase in the CLIP-I metric.

Reference Infinity + Semantic EchoGen

A fluffy dog in a firefighter outfit

A fringed cream boot on top of green grass with sunflowers around it

A robot toy with a city in the background

Figure 6: Qualitative analysis of the effect of se-
mantic and content feature injection.

Qualitative analysis of the effect of se-
mantic and content feature injection.
We further qualitatively dissect the effect
of each feature component to validate our
design. As shown in Figure 6, starting
from the base Infinity backbone, intro-
ducing semantic features extracted by DI-
NOv2 enables the generator to synthesize
subjects that faithfully preserve the refer-
ence subject’s structure and style. More-
over, further incorporating content fea-
tures from the FLUX.1-dev VAE signif-
icantly enhances EchoGen’s capability to
render fine-grained, coherent details (e.g.,
the facial features of the robot toy and the
fluffy dog, as well as the material and color
of the shoe uppers). These qualitative re-
sults confirm the effectiveness of our dual-
path injection design, where semantic and
content features play distinct yet comple-
mentary roles.

6 CONCLUSION

This paper presents EchoGen, a novel framework for efficient, feed-forward subject-driven image
synthesis based on a visual autoregressive paradigm, aiming to inherit the properties of high-quality
generation and fast inference speed. Central to our methodology is a dual-path injection mecha-
nism, meticulously designed to integrate both the semantic attributes and the precise textural details
of reference images. Comprehensive evaluations corroborate the superiority of our design, revealing
that EchoGen achieves generative performance on par with leading diffusion models while exhibit-
ing substantially lower sampling latency. By pioneering a feed-forward, autoregressive solution
for subject-driven synthesis, this research charts a new trajectory for the future development and
application of visual autoregressive generative models.
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7 APPENDIX

7.1 DATASET

Following common practices like OminiControl (Tan et al., 2025) and EasyControl (Zhang et al.,
2025), we train EchoGen on the synthetic Subjects200K dataset. The Subjects200K dataset1, in-
troduced by (Tan et al., 2025), comprises approximately 256,000 data triplets, each consisting of a
reference image, a textual prompt, and a corresponding generated sample. This dataset was specif-
ically established for subject-driven generative tasks. The curation process began by leveraging
ChatGPT-4o to generate over 30,000 diverse subject descriptions, each description portraying the
same subject across multiple scenes. Subsequently, these descriptions were reformulated into struc-
tured prompts, each detailing a single subject in two distinct scenes. These prompts were then used
as input for the FLUX.1-dev model to synthesize image pairs. In the final stage, GPT-4o was em-
ployed to filter the resulting pairs, validating both subject consistency and overall image quality. All
images within the dataset feature a resolution exceeding 500 pixels, ensuring sufficient detail for
model training.

7.2 PSEUDO-CODE OF THE ECHOGEN BLOCK

We provide a PyTorch-style pseudocode for our EchoGen Block in Algorithm 1 to facilitate repro-
ducibility and clarity.

7.3 IMPLEMENTATION DETAILS

7.3.1 TRAINING DETAILS

Data Preprocssing. All training images undergo a standardized pre-processing pipeline. Initially,
images are resized so that their shorter edge matches the model’s target resolution, which is 256
pixels for EchoGen-0.1B and 1024 pixels for EchoGen-2B, followed by a central crop to achieve a
square aspect ratio.

To maintain data quality for high-resolution image generation within the EchoGen-2B model, we
circumvent the quality degradation induced by naive bilinear upsampling. Instead of using simple
bilinear scaling on images smaller than 1024 pixels, we integrate a super-resolution step. Specifi-
cally, we leverage the PiSA-SR model (Sun et al., 2025) to upscale these images, a method chosen to
preserve fine-grained textures and prevent the introduction of common interpolation artifacts. This
ensures that the model is trained exclusively on high-quality and high-resolution exemplars.

Training Hyper-parameters. We follow the Infinity-2B standard training recipe (Han et al., 2025),
and the detailed hyperparameter configurations used to train our EchoGen are provided in Table 8.
To mitigate error accumulation, as mentioned in Infinity, we employ bitwise self-correction by ran-
domly flipping bits in the input sequence with a probability of 0.3. To improve robustness against
variations in instruction length, prompts are randomly truncated to a single sentence with a probabil-
ity of 0.5 during training. The EchoGen models are trained using 32 H20 GPUs, requiring 2 weeks
for the longest schedule (training our EchoGen-2B model for 20 epochs).

7.3.2 EVALUATION DETAILS

For our quantitative evaluation, we utilize the DreamBench dataset (Ruiz et al., 2023). The dataset
comprises 30 distinct subjects, categorized into 9 animate pets (cats and dogs) and 21 diverse inani-
mate objects (e.g., toys, sunglasses, backpacks). Each subject is associated with 25 textual prompts
specifically designed to test the model’s abilities in recontextualization, property modification, and
accessorization. Our data preparation protocol is adapted from (Pan et al., 2024), which involves
selecting a single reference image per subject and augmenting its subject identity phrase with de-
scriptive keywords. The correspondence between the DreamBench dataset directory name and the
augmented subject description is summarized as follows:

• backpack, backpack

1https://huggingface.co/datasets/Yuanshi/Subjects200K
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Algorithm 1 EchoGen Block: PyTorch-like Pseudo-codeclass EchoGenBlock(nn.Module)
def __init__(dim, mask):

# Multi-modal attention QKV projectors for the image token sequence
self.qkv_mm = nn.Linear(dim, 3*dim)
# Multi-modal attention QKV projectors for the detailed content feature
self.qkv_mm_c = nn.Linear(dim, 3*dim)
self.mask = mask

# Cross attention query projectors for the image token sequence
self.q_ca = nn.Linear(dim, dim)
# Cross attention KV projectors for the semantic feature
self.kv_ca_s = nn.Linear(dim, 2*dim)
# Cross attention KV projectors for the text embedding
self.kv_ca_t = nn.Linear(dim, 2*dim)

# FFN for the image token sequence
self.ffn = MLP(dim)
# FFN for the detailed content feature
self.ffn_c = MLP(dim)

def forward(self, x, cc, cs, ct):
# Multi-modal attention
q, k, v = self.qkv_mm(x)
qc, kc, vc = self.qkv_mm(cc)

q = torch.concat((q, qc))
k = torch.concat((k, kc))
v = torch.concat((v, vc))
x, cc = attention(q, k, v, self.mask)

# Cross attention
q = self.q_ca(x)
ks, vs = self.kv_ca_s(cs)
kt, vt = self.kv_ca_t(ct)

k = torch.concat((ks, kt))
v = torch.concat((vs, vt))
x = attention(q, k, v, mask=None)

# Feed-forward network
x = self.ffn(x)
cc = self.ffn_c(cc)

return x, cc, cs, ct

Pseudo-code illustrating the EchoGen Block. Here, x denotes the image token sequence, and the generation
process is conditioned on the semantic feature cs and detailed content feature cc extracted from the reference
image, along with the text embedding ct.

• backpack dog, dog shaped backpack

• bear plushie, bear plushie

• can, ’Transatlantic IPA’ can

• candle, jar candle

• cat, tabby cat

• cat2, grey cat

• clock, number ’3’ clock

• colorful sneaker, colorful sneaker

• dog1, fluffy dog

• dog2, fluffy dog

• dog3, curly-haired dog

• dog5, long-haired dog

• dog6, puppy

• dog7, dog

• dog8, dog

• duck toy, duck toy
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Config value

Bitwise Self-correction Flip Ratio 0.3
Bitwise Self-correction Apply Layers 13
Dynamic Truncate Prompt Ratio 0.5

Infinity Image Encoder Channel 16(0.1B) / 32(2B)

Text Encoder Flan-t5-xl
Text Embedding Channels 2048
Maximum Text Tokens Length 512

Semantic Image Encoder DINO-v2-Base
Semantic Feature Channels 768
Semantic Downsample ratio 14

Content Image Encoder FLUX.1-dev VAE
Content Feature Channels 16
Content Downsample ratio 8

Reweight Loss by Scale True

Gradient clipping by norm 5.0
Optimizer Adamw
Beta1 0.9
Beta2 0.97
Decay 0
Base Learning rate 3e-5
Multi-Modal Modules Learning rate 3e-6
Learning rate warmup iterations 0

Training epochs 20
Total Batchsize 128
GPU H20

Table 8: Detailed hyper-parameters for training our EchoGen.

• fancy boot, fringed cream boot
• grey sloth plushie, grey sloth plushie
• monster toy, monster toy
• pink sunglasses, sunglasses
• poop emoji, poop-emoji shaped toy
• rc car, car toy
• red cartoon, cartoon character
• robot toy, robot toy
• shiny sneaker, sneaker
• teapot, clay teapot
• vase, tall vase
• wolf plushie, wolf plushie

To augment the diversity and rigor of our human evaluation, we incorporate a curated set of instances
from the DreamBench++ benchmark. DreamBench++ includes 150 subjects, each paired with nine
prompts.

7.4 MORE ABLATION STUDIES

In this section, we present additional ablation studies to analyze the individual components of
EchoGen. These ablation studies are also conducted based on EchoGen-0.1B model with fair train-
ing settings.
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Figure 7: Visualization of the effect of classifier-free guidance scale coefficient.

Exp. DINO↑ CLIP-I↑ CLIP-T↑
Content 0.663 0.795 0.322

Semantic 0.672 0.806 0.321

Table 9: Analysis of different information
types prepended to the Image Token. Content
represents prepending the global content feature,
while Semantic denotes prepending the global se-
mantic feature.

Importance of injecting global semantic in-
formation. Injecting global semantic informa-
tion serves as a prepended condition, to en-
sure global structural coherence during gener-
ation. Our ablation study in Table 5 confirms
the significant benefits of incorporating global
semantic features. Moreover, we conduct a tar-
geted experiment comparing the injection of
global semantic versus content features to the
Image Token. As shown in Table 9, the results
clearly indicate that prepending semantic fea-
tures rather than content information into the image token significantly enhances the subject fidelity.
This confirms that our choice to inject global semantic guidance into image tokens is both effective
and well-justified.

Subject Segmentation. To mitigate the influence of irrelevant background noise and fo-
cus on the primary subject, we leverage the Qwen2.5-VL vision language model (Bai et al.,
2025) and the GroundingDINO segmentation model (Liu et al., 2024) to segment the subject

Exp. DINO↑ CLIP-I↑ CLIP-T↑
w/o SS 0.663 0.796 0.321
w/ SS 0.672 0.806 0.321

Table 10: Enhancement by subject segmen-
tation (denoted by SS) to mitigate background
noise.

from the reference image. We conducted an ab-
lation study, detailed in Table 10, to validate
the efficacy of the echo segmentation proto-
col. The results confirm that the introduction of
subject segmentation significantly enhances the
generation performance, which is observed in
the preservation of subject features, and demon-
strate that isolating the main subject is critical
to producing more accurate and faithful out-
puts.

Exp. DINO↑ CLIP-I↑ CLIP-T↑
w/o SS 0.737 0.829 0.324
Shift 0.739 0.833 0.321

Enlarge 0.735 0.831 0.321
w/ SS 0.755 0.837 0.324

Table 11: Analysis of the sensitivity of our
method to the quality of the segmentation. SS
denotes the subject segmentation; Enlarge and
Shift denote enlarging and shifting bounding box,
respectively.

To further analyze the sensitivity of our method
to the quality of segmentation, we conduct
an ablation study on about EchoGen’s robust-
ness to segmentation quality during inference.
Specifically, to simulate segmentation imper-
fections, we design three variants to simulate
disturbances and compare with employing sub-
ject segmentation without imperfection during
inference: 1. Enlarging Bounding Box: en-
larging the subject’s bounding box by 10%; 2.
Shifting Bounding Box: shifting the bounding
box by 10%; 3. No Segmentation: completely
removing the subject segmentation step. As
shown in Table 11, our model exhibits remark-
able robustness as its performance degrades only slightly under these disturbances. Moreover, our
model still produces strong results even without any segmentation, demonstrating its powerful gen-
eralization capability. In summary, EchoGen is highly robust to imperfect segmentation.
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Reference IP-Adapter OmniGen OminiControl EasyControl EchoGen-2B

A purple bear plushie

A jar candle with a mountain in the background

A fluffy dog in a firefighter outfit

A robin perched on a frost-covered branch in a wintry landscape

A robot toy with a city in the background

Figure 8: Additional qualitative comparisons between our EchoGen model and competing
methods.

Subject-text classifier-free guidance. As detailed in Figure 7, our experiments reveal a clear trade-
off governed by the CFG hyperparameters within a proper scope. As the subject guidance weight γI
increases, subject fidelity improves, as indicated by higher CLIP-I and DINO scores. Conversely,
this gain is accompanied by reduced text alignment, reflected in lower CLIP-T. The inverse rela-
tionship is observed when increasing the text condition scaling coefficient γt. This empirical result
demonstrates the efficacy and flexibility of our CFG design, enabling users to dynamically adjust
the balance between preserving reference image features and adhering to the text prompt.

7.5 MORE VISUALIZATION RESULTS

Reference Image A raccoon is standing 
by a stream

A raccoon is perched 
on a tree branch

Reference Image A penguin plushie
on a white rug

A penguin plushie
on the beach

Figure 9: More visualization of EchoGen-2B
on real-world subject personalization.

We further showcase additional qualitative re-
sults on DreamBench in Figure 8. Moreover,
we provide additional visual results from the
EchoGen-2B model on real-world subject per-
sonalization in Figure 9. These results demon-
strate that, with training exclusively on the
large-scale high-quality synthetic dataset Sub-
jects200K, our model exhibits strong general-
ization to real-world scenarios, including the
generation of live animals and diverse objects
under complex conditions. EchoGen-2B con-
sistently maintains high subject fidelity and
strong text alignment during these real-world
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Reference Image
A motorcycle is parked beside a 
bustling city street at night, 
illuminated by street lights

(a) Synthesize complex details

Reference Image
A steam locomotive is 
chugging through a 
dense forest

(b) Render tiny text

Figure 10: Failure cases generated by EchoGen.

personalization tasks, demonstrating the effectiveness of our training strategy and the proposed dual-
path semantic-content injection design.

7.6 LIMITATION & FAILURE CASE ANALYSIS

Our EchoGen takes a new step toward VAR-based feed-forward subject-driven generation to inherit
the strong capability of next-scale prediction and bidirectional modeling within scales. However, we
know that the feed-forward subject-driven image generation is highly dependent on the capability
of base models. The performance of our EchoGen models is fundamentally dependent upon the ca-
pability of the base models Infinity-0.1B and Infinity-2B. The Infinity-2B architecture still exhibits
a performance gap compared to state-of-the-art generation models such as Stable-Diffusion 3 and
FLUX, particularly in generating high-fidelity details. This inherited constraint limits EchoGen’s
efficacy in resolving fine-grained features, such as the faithful rendering of facial characteristics, the
synthesis of coherent text, and the reproduction of intricate material textures. Due to significant GPU
computational and temporal constraints, our experiments are confined to these specific backbones,
precluding an empirical investigation of larger models such as Infinity-8B. We hypothesize that mi-
grating the EchoGen architecture to a more potent VAR foundation model would unlock substantial
performance gains.

Additionally, the DINOv2 vision encoder operates on relatively low-resolution inputs (e.g.,
224×224), which limits its ability to capture fine-grained appearance cues and tiny textual elements.
We believe seeking an effective high-resolution semantic encoder presents a promising avenue for
further improvement in complex applications.

Due to the aforementioned limitations, as illustrated in Figure 10, the model exhibits reduced relia-
bility on subjects that have highly intricate structures or in scenarios requiring precise text rendering.
We will continue to investigate and address these challenges in future work.

7.7 THE USAGE OF LARGE LANGUAGE MODEL

We utilized the large language models Qwen-3 and GPT-5 to improve the clarity, grammar, and
formal tone of the writing in the method and experiment sections. Nevertheless, all technical content,
such as conceptual formulas and experiments remain our own; the large language models were used
solely as tools for linguistic enhancement and stylistic polishing.
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