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ABSTRACT

Synthesizing high-quality singing voice from music score is a challenging prob-
lem in music generation and has many practical applications. Samples generated
by existing singing voice synthesis (SVS) systems can roughly reflect the lyrics,
pitch and duration in a given score, but they fail to contain necessary details. In this
paper, based on stochastic differential equations (SDE) we propose RealSinger
to generate 22.05kHz ultra-realistic singing voice conditioned on a music score.
Our RealSinger learns to find the stochastic process path from a source of white
noise to the target singing voice manifold under the conditional music score, al-
lowing to sing the music score while maintaining the local voice details of the
target singer. During training, our model learns to accurately predict the direction
of movement in the ambient Euclidean space onto the low-dimensional singing
voice manifold. RealSinger’s framework is very flexible. It can either generate in-
termediate feature representations of the singing voice, such as mel-spectrogram,
or directly generate the final waveform, as in the end-to-end style which rectify
defects and accumulation errors introduced by two-stage connected singing syn-
thesis systems. An extensive subjective and objective test on benchmark datasets
shows significant gains in perceptual quality using RealSinger. The mean opinion
scores (MOS) obtained with RealSinger are closer to those of the human singer’s
original high-fidelity singing voice than to those obtained with any state-of-the-art
method. Audio samples are available at https://realsinger.github.io/.

1 INTRODUCTION

Figure 1: SVS system consists of two com-
ponents, score-to-feature and vocoder.

Synthesizing ultra-realistic singing voices from mu-
sic score (lyrics, notes and duration) is an important
problem and has tremendous applications, includ-
ing artificial intelligence singer, music-editing, and
computer-aided composing. Singing voice synthesis
(SVS) technology consists of two important and rel-
atively independent modules, one is to convert mu-
sic score into acoustic voice features, such as mel-
spectrogram and the other is vocoder, which trans-
forms voice features into singing waveform.

Recently the state-of-the-art (SOTA) SVS systems
are based on deep learning. Many widely studied
voice generative models, such as generative adver-
sarial network (GAN) (Goodfellow et al., 2014; Chen
et al., 2021; Huang et al., 2021), Tacotron (Wang et al., 2017; 2022b), FastSpeech (Ren et al., 2020a;
Wang et al., 2022a; Dong et al., 2022), etc., can be used for this task. But previous work study
score-to-feature (Liu et al., 2021) and vocoder (Huang et al., 2021) separately, and design different
algorithms for both tasks. In this paper we propose a flexible framework called RealSinger, which
is based on Itô stochastic differential equations (SDE) for both of the components in SVS.
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The generative model based on SDE (Song et al., 2020) is a kind of diffusion probability model,
which has recently shown promising results in the field of image (Ho et al., 2020) and audio syn-
thesis (Kong et al., 2020; Popov et al., 2021), even surpassing other SOTA GAN models (Dhariwal
& Nichol, 2021). Prior generative models, such as GAN, flow-based model (Valle et al., 2020), or
variational auto-encoder (VAE) based model (Liu et al., 2021) can be understood as a direct data dis-
tribution transformation approach, which use a crafted neural network and special training methods
to achieve the transfer between white noise and the target image or audio distribution. In contrast to
these previous methods, the diffusion probability model decomposes this data transformation into
thousands of steps, and each of which is a simple Gaussian sampling. If the number of steps in the
diffusion model tends to infinity, it becomes an SDE. The generation method based on SDE is very
flexible, we can design different drift and diffusion coefficients to achieve infinitely accurate trans-
formation between data distributions, and also this method has no special structure requirements for
neural networks. The purpose of this paper is to explore SDE to achieve ultra-realistic singing voice
generation.

Specifically, we make the following contributions:

• To the best of our knowledge, RealSinger is the first SVS system based on solving Itô
SDEs.

• RealSinger is flexible that it can generate both middle representation feature (e.g. mel-
spectrogram) and waveform (end-to-end) of singing voice

• RealSinger can generate ultra-realistic singing voices that are comparable to human being’s.

2 BACKGROUND ON SDE BASED GENERATIVE MODELLING

Itô linear SDE is an excellent and tractable model for converting between different probability dis-
tributions (Song et al., 2021). The general form of Itô linear SDE is as follows{

dX = [C(t)X + d(t)] dt+ g(t)IdW
X(0) = x(0).

(1)

for 0 ≤ t ≤ T , where x(t) ∈ Rd, C(t) ∈ Rd×d, d(t) ∈ Rd, [C(t)X + d(t)] is the drift coefficient,
g(t) is the diffusion coefficient, W is the standard Wiener process. Let p(x(t)) be the probability
density of the stochastic variable X(t). This SDE (1) transforms the beginning distribution p(x(0))
into the final distribution p(x(T )) by gradually adding the noise from W. In this paper, p(x(0)) is
to denote the probability distribution of singing voice. p(x(T )) is the Gaussian latent representation
of the singing voice corresponding to the music score.

If the solution process x(t) can be reversed in time, the target singing voice corresponding to the
musical score can be generated from a simple latent distribution.

Indeed the reverse-time process is the solution of the corresponding reverse-time SDE (Anderson,
1982) {

dX =
[
C(t)X + d(t)− g(t)2∇x log p(x(t))

]
dt+ g(t)dW

X(T ) = x(T )
(2)

for 0 ≤ t ≤ T , where W is the standard Wiener process in reverse-time. Therefore, it can be
seen that the key to generating singing voice with SDE lies in the calculations of ∇x log p(x(t))
(0 ≤ t ≤ T ), which is always called score1 function (Hyvärinen & Dayan, 2005; Song et al., 2021)
of the singing voice. And the score function can be obtained by optimizing the denoising score
matching loss (Hyvärinen & Dayan, 2005; Vincent, 2011).

3 REALSINGER

RealSinger is based on Itô SDE and score matching in principle. Conditioned on the input musical
score, the Itô SDE with mel (or wave) score as its drift coefficient can continuously transform targe

1There are three ‘score’s in this paper, the first is the musical score, which represents the combination of
lyrics, notes and duration; the second is the gradient of the log value of the probability distribution; the last
is the mean opinion score, which is a subjective scalar measure of speech quality. Readers can easily tell the
difference based on the context.
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mel-spectrogram (or raw wave) into Gaussian noise by gradually injecting small-scaled white noise
into it. Then the corresponding reverse Itô SDE can be used to generate the target voice from random
Gaussian noise, under the conditional text-speaker joint (or mel-spectrogram) input.

To overcome the problem of deviating from the expected path during the diffusion process, Diff-
Singer (Liu et al., 2021) diffuses the target acoustic features predicted by the FFT model for a very
few steps, and then do the reverse diffusion process to obtain the target acoustic features. To achieve
ultra-realistic voices, RealSinger takes a completely different approach. We first replace discrete
DDPM (Ho et al., 2020) with a continuous SDE diffusion model, which can be much more precise
and flexible in training and sampling with numerical differential equation solvers. The second is to
add the information of the target singing voice to the drift coefficient, so that the solution process
will not deviate from the expected path in the process of reverse diffusion. RealSinger is based on
the following generalized linear variance preserving (VP) SDE (Song et al., 2021){

dX = − 1
2β(t)(X−M)dt+

√
β(t)dW, t ∈ [0, 1]

X(0) = x(0) ∼ pmel(·|MS),
(3)

where β(t) = β0 + t(β1 − β0), M is a constant that contains the information of current expected
target singing voice, and MS is the conditional input music scores, which include lyrics, duration
and pitch. The VP SDE (3) is a special case of linear SDE (1).

3.1 SCORE FUNCTION AND APPROXIMATION

For general SDE, its score function is very difficult to calculate. Luckily, for linear SDE, we can get
the score by solving a deterministic differential equation. The transition densities p(x(t)|x(0)) of
the solution process X(t) for the SDE (3) is the solution to the Fokker-Planck-Kolmogorov (FPK)
equation (Särkkä & Solin, 2019)

∂p(x(t), t)

∂t
= −

d∑
i=1

∂
[
− 1

2β(t)(x−M)
]

∂xi
+

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[β(t)p(x(t), t)], (4)

which in this case can derive that p(x(t)|x(0)) is Gaussian with mean m(t) and variance V(t)
satisfy the ordinary equations (Särkkä & Solin, 2019){

dm(t)
dt = − 1

2β(t)(m(t)−M)
dV(t)
dt = −β(t)V(t) + β(t)I.

By solving the above linear ordinary differential equations with initial conditions of m(0) = x(0)
and V(0) = 0, we obtain{

m(t) = exp
{[
− 1

2B(t)
]}

x(0) + (I − exp
{[
− 1

2B(t)
]}

)M
V(t) = I− I exp{[−B(t)]}, (5)

where B(t) =
∫ t
0
β(s)ds = β0t+ 1

2 t
2(β1 − β0).

Therefore the score of the SDE (3) is

∇x(t) log p(x(t)|x(0),MS) = −V(t)−1 [x(t)−m(t)] . (6)

and prior distribution p(x(T )) is a Gaussian

N (x(T );M, I) =
exp
(
− 1

2 ‖x(T )−M‖2
)

√
(2π)d

, (7)

which shows that the sampling at the beginning is in the vicinity of M , so that the reverse diffusion
process can be controlled not to deviate from the expected path.

It can be seen from Eq. (5) and 6 that m(t) is dependent on x(0), so the score in Eq. 6 is unknown.
A neural network Sθ called denoiser is used to approximate the score function, where θ denotes
the parameters of the network. The input of the network Sθ includes time t, x(t), an approximated
mel-spectrogram M (which is the same as the M in the SDE (3)), conditional input musical score
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MS. The expected output is ∇x(t) log p(x(t)|x(0),MS). The following denoising score matching
(DSM) loss (Vincent, 2011; Song & Ermon, 2019)

DSM loss = Et∼[0,T ]Ex(0)∼pmel(x(0))Ex(t)∼p(x(t)|x(0))[
1

2
‖ Sθ(x(t), t,M,MS)−∇x(t) log p(x(t)|x(0)) ‖2

]
(8)

is used in this paper to train the score prediction network. After we obtain
∇x(t) log p(x(t)|x(0),MS), then we can sample x(T ) from Eq. (7) and use the following
reverse-time linear VP SDE{

dX =
[
− 1

2β(t)(X−M)− β(t)∇x log p(x(t))
]
dt+

√
β(t)dW

X(T ) = x(T )
(9)

to generate the singing voice corresponding to the music score.

Figure 2: The training pipeline of RealSinger.

3.2 TRAINING

RealSinger adopts an encoder-decoder-denoiser structure as shown in the Figure 2. The encoder is
to encode and add the lyrics, notes and duration information in the music score together, and then
expand according to the duration to obtain the final musical score embeddingMS, which will be the
input to the decoder and denoiser. The decoder will transcribe the music score embedding MS into
an approximate corresponding singing voice spectrogram M ′. The approximate spectrogram has
two usages, one is as a benchmark in the diffusion SDE (3), and the other is as a conditional input in
the score prediction. The denoiser is used to approximate the mel-spectrogram M ′ and music score
embedding to predict the score function of the current signal x(t) at the time t.

In order to make the approximated melM ′ obtained by the decoder as close as possible to the ground
truth M , a L2 loss ‖ M −M ′ ‖2 is used. So as to train the denoiser, we need to push the output of
Sθ(x(t), t,M ′,MS) to be the same as ∇x(t) log p(x(t)|x(0),MS) in Eq. (6). Thus we obtain the
training procedure of the score network Sθ, as shown in Algorithm 1.

3.3 SING THE SCORE

After we get the optimal encoder-decoder-denoiser through Algorithm 1, we can get the
gradient of the log probability density of the mel-spectrogram of certain music score with
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Algorithm 1 Training of RealSinger.
Input and initialization: The mel-spectrogram M with the corresponding music score, and the
diffusion time T .
1: for k = 0, 1, · · ·
2: Uniformly sample t from [0, T ].
3: Randomly sample batch of M with corresponding music score, let x(0) = M .
4: Use the encoder and decoder to obtain the music score embeddingMS and the approximated
mel-spectrogram M ′ respectively.
5: Sample x(t) from the Eq. (5) and Eq. (6).
6: Compute ∇x(t) log p(x(t)|x(0),MS) with Eq. (6).
7: Use the denoiser to obtain the score Sθ(x(t), t,M ′,MS).
8: Average the sum of the DSM loss (8) and the L2 loss ‖M −M ′ ‖2.
9: Do the back-propagation and the parameter updating of Sθ.
10: k ← k + 1.
11: Until stopping conditions are satisfied and Sθk converges, e.g. to Sθ∗ .
Output: Sθ∗ .

Figure 3: The inference pipeline of RealSinger.

Sθ∗(x(t), t,M ′,MS). Figure 3 shows the how RealSinger sings the music score. The encoder
first converts the music score into embeddings MS, and the decoder will transcribe it into the ap-
proximated mel-spectrogram M ′. Then with the denoiser, the Langevin dynamics (Welling & Teh,
2011) or the reverse-time Itô SDE (9) can be used to generate the mel-spectrogram correspond-
ing to certain music score. The reverse-time SDE (9) can be solved and used to generate target
mel-spectrogram data.

In this paper, we use a strategy that combines reverse-time diffusion sampling and Langevin dynam-
ics (Welling & Teh, 2011), that means at each time step, the reverse-time SDE

x(k∆t) = x(k∆t+ ∆t) +
1

2
β(k∆t+ ∆t) [x(k∆t+ ∆t)−M ]

+ β(k∆t+ ∆t)Sθ∗(x(k∆t+ ∆t), k∆t+ ∆t,M ′, S)∆t+
√
β(k∆t+ ∆t)ξ(k∆t)

is used to predict the mel-spectrogram corresponding to the music score first, then the Langevin
dynamics

x(k∆t)← x(k∆t) + εkSθ∗(x(k∆t), k∆t,M ′,MS) +
√

2εkξ(k∆t) (10)

is used to modify the first predicted result.

3.4 END-TO-END SVS

As suggested in Figure 1, general SVS is a connected system with two components. RealSinger is
flexible enough to support joint optimization of these two components as shown in Figure 2. This
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joint optimization is also called end-to-end (E2E) SVS, in which mel-spectrogram score prediction
is not needed, and thus can avoid the accumulation error caused by non-perfectly generated mel-
spectrogram. In E2E RealSinger, we employ the variance exploding SDE (Song et al., 2021),{

dX = σ0(σ1

σ0
)t
√

2 log σ1

σ0
dW, σ0 = 0.01 < σ1 = 50,

X(0) = x(0) ∼
∫
pwave(x)N (x(0);x, σ2

0I)dx,
(11)

which has been proved capable to generate human-level waveform. The objective and training
algorithm of E2E RealSinger are almost the same as in Algorithm 1.

3.5 IMPLEMENTATIONS

The music score contains lyrics, notes and duration, where the lyrics are first converted into phoneme
(and further to integer) sequences, and the notes and duration are in sequences of positive float. The
encoder first encodes the phoneme sequences containing the sinusoid position encoding information,
and then sends the encoding to the 4-layer feed-forward Transformer (FFT) block to obtain the
feature map of the encoded phone. Then the notes and duration will be encoded into embeddings
by using the standard Pytorch’s (Paszke et al., 2019) ‘nn.embedding’ function, and added to the
feature map of lyrics. The duration is used to extend the feature map to the length of the actual mel-
spectrogram of the singing voice. The feature map of the music score will be sent to the decoder
and denoiser as the conditional input. The decoder is to convert score embeddings into the singing
mel-spectrogram. It is also composed of 4 layers of FFT.

There are two additional inputs for the denoiser, one is the conditional time step information, the
other is the mel-spectrogram of singing voice or Gaussian noise (clean mel-spectrogram during train-
ing, noise during inference). The singing voice’s mel-spectrogram will be encoded through several
linear layers and SILU (SIgmoid Linear Unit module) layers (Ramachandran et al., 2017); the time
step information will be coded through a module called Gaussian Fourier projection (GFP) (Ren
et al., 2020a), and then it will be added to the mel-spectrogram representations. Then the feature
maps will be sent to the key module of denoiser, several dilated residual blocks, each of which con-
sists of two 1D convolution layers and ‘CHUNK’s. It has two outputs, one is status information,
which is sent to the next residual block, and the other is part of the score information as output.
While the output of the encoder, which is musical score embeddings, will be sent to each residual
block as the main ingredient controlling the output of the denoiser. Finally, the outputs of all resid-
ual blocks are averaged, and after the two convolution layers are output, the score of the singing
mel-spectrogram in the distribution is obtained.

In end-to-end RealSinger, for the structure of wave score prediction network, the input is the wave
to be generated or the noise, and the conditional input has the output singing mel-spectrogram from
decoder, the music score embedding from the encoder, and time t. The output is the score at time
t. All the input require preprocessing processes. The preprocessing of the wave is through a con-
volution layer; the preprocessing of mel-spectrogram and music score embedding is based on the
upsampling by two transposed convolution layers. After all inputs are preprocessed, they will be
sent to the most critical module, which is of several serially connected dilated residual blocks. The
main input of the dilated residual block is the wave, and the step time condition, music score em-
beddings and mel-spectrogram condition will be input into these dilated residual blocks one after
another, and added to the feature map after the transformation of the wave signal. Similarly, there
are two outputs of each dilated residual block, one is the state, which is used for input to the next
residual block, and the other is the final output. The advantage of this is the ability to synthesize
information of different granularities. Finally, the outputs of all residual blocks are summed and
then pass through two convolution layers as the final output score.

4 RELATED WORK

RealSinger falls in the intersection of SVS and diffusion probability models. The earliest SVS sys-
tem uses pre-recorded short-waveform singing units selected from the database to stitch together
into a complete target singing voice (Macon et al., 1997; Kenmochi & Ohshita, 2007). This method
has two defects, one is that it requires a large-scale database to provide enough complete singing
units, and the other is that this method can not ensure that all singing units be connected smoothly.
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To address these two deficiencies, statistical parametric methods, such as Hidden Markov Models
(HMM), are proposed for singing voice generation (Saino et al., 2006; Oura et al., 2010). How-
ever, the synthesis system based on HMM have the over-smoothing effect, and the quality of the
synthesized sound cannot reach the naturalness of the real singing voice.

In recent years, SVS has taken a big step forward in naturalness thanks to the powerful fitting and
representation capabilities of deep learning. For example, various network structures, such as feed-
forward neural network, long short-term memory (LSTM), convolutional neural network (CNN),
and recurrent neural network (RNN), have been successively applied to SVS and shown to outper-
form connected or HMM-based systems. Especially in the past three years, many successful systems
have appeared in the network structure and the construction of the singing database. For example,
DeepSinger (Ren et al., 2020b) builds singing data by mining data from music websites, and builds
an SVS system from scratch based on this data. SingGAN (Chen et al., 2021) introduces source ex-
citation and AFL filter in the generator, which effectively alleviates the glitches in singing vocal syn-
thesis. At the same time, it introduces a multi-band discriminator with additional frequency domain
loss and sub-band feature matching loss to achieve stable training and high-frequency reconstruc-
tion. Multi-Singer (Huang et al., 2021) uses GAN to model the singing voice of unknown singers.
U-Singer (Kim et al., 2022) expresses emotional intensity by controlling subtle changes in pitch,
energy, and phoneme duration. Singing-Tacotron (Wang et al., 2022b) is an end-to-end SVS model
with a global duration-controlled attention mechanism, aiming to make the attention mechanism
controlled by duration information and improve the naturalness of synthesis. Deep performer (Dong
et al., 2022) proposes polyphonic mixers to align encoders and decoders with polyphonic inputs, and
also proposes note-by-note positional encoding to provide fine-grained tuning for synthesis models.
WeSinger (Zhang et al., 2022) proposes, a multi-scale rhythm loss and a progressive pitch-weighted
decoder loss, and a data augmentation method for variable duration segmentation to bridge the gap
between accuracy and naturalness.

Very recently, diffusion probability modelling has shown much better performance on image and
audio generation compared with GAN, flow or VAE. The earliest source of the ideas for diffusion-
based generative modelling should be the pioneering change of data estimation problem into the
estimation of the gradient of log of the data distribution density by Hyvärinen & Dayan (2005),
thus greatly simplifying the original problem. Another source is the pioneering use of a diffusion
Markov chain by Sohl-Dickstein et al. (2015) to diffuse the structure of the image data into a simple
distribution, and another opposite diffusion Markov chain to generate images in the target distribu-
tion from the simple distribution. These two primitive ideas have been carried forward. Ho et al.
(2020) has recently generated very high-quality large-scale natural images with a diffusion Markov
chain. DiffWave (Kong et al., 2020) uses a diffusion Markov chain for the vocoder. Song & Ermon
(2019) draws on the idea of (Hyvärinen & Dayan, 2005) to estimate the log gradient of the target
data distribution density function through a neural network, and then uses the Langevin dynamics
to generate large-scale image data in target distribution. Wavegrad (Chen et al., 2020) transplanted
the algorithm of Song & Ermon (2019) to vocoders, but in fact the final algorithm is exactly the
same as Diffwave (Kong et al., 2020). Immediately afterward, Song et al. (2020) further extended
the Markov chain to the continuous case, it became a stochastic differential equation. Ingeniously,
the equation unified the two methods of Ho et al. (2020) and Song & Ermon (2019) under one
framework, and both became its special cases.

Concurrent works: The most relevant work is DiffSinger (Liu et al., 2021), which proposes a hybrid
system using a feed-forward Transformer (FFT) blocks (Ren et al., 2020a) with a shallow diffusion
mechanism for fast sampling. Hybrid in DiffSinger is a compromise, as the authors found that the
vocals synthesized by the naive denoising diffusion probabilistic models (DDPM) (Ho et al., 2020)
had noticeable noise during ventilation. They argue that diffusion deviates from the expected path
due to over thousands of steps accumulating random errors. Our RealSinger is a pure continuous
diffusion probability model, which controls the diffusion path by adding acoustic feature information
as a hint in the SDE. Further, RealSinger supports end-to-end SVS.
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5 EXPERIMENTS

5.1 DATASET

The data set we use is PopCS (Liu et al., 2021), a singing voice database from a single qualified fe-
male vocalist, with a total of 5.95 hours accompanying phoneme-level aligned music scores. PopCS
has 127 Chinese pop songs, which are split into 5,498 song pieces accompanying phoneme-level
aligned music scores, randomly divided into 4948/275/275 for training/verification/testing, as the
same setting of (Liu et al., 2021). The sampling rate is 22050 Hz.

5.2 EXPERIMENTAL SETUP

In the experiment, for mel-spectrogram, the window length is 512, hop length is 128, and the number
of mel channels is 80. We use the Adam (Kingma & Ba, 2014) training algorithm for RealSinger.
We have done objective and quantitative evaluations based on mean opinion score (MOS) with other
state-of-the-art methods. For RealSinger, we compared with FFT-Singer and DiffSinger (Liu et al.,
2021). All experiments were performed on a GeForce RTX 3090 GPU with 24G memory.

For mel-spectrogram in this experiment, the window length is 512, the hop length is 128, and the
number of mel channels is 80. Adam (Kingma & Ba, 2014) is used to train RealSinger. Objective and
quantitative evaluations have been done with other state-of-the-art methods. RealSinger is compared
with FFT-Singer and DiffSinger (Liu et al., 2021). All experiments were performed on a GeForce
RTX 3090 GPU with 24G of memory.

In order to compare the singing quality of RealSinger with FFT-Singer and DiffSinger (Liu et al.,
2021), a pre-trained HiFi-GAN model (Su et al., 2020) as a vocoder to transform the singing mel-
spectrogram into the wave. For FFT-Singer and DiffSinger, we use the same hype-parameters as
in Liu et al. (2021).

RealSinger uses 4 FFT layers in the music score encoder and decoder. Both mel and wave score
predictors use 20 residual layers. The approximated mel-spectrogram output of the decoder and the
music score embeddings are used as the condition input to the score estimation network.

The parameters of generalized VP linear SDE (3) in the experiment are β0 = 0.05, β1 = 20. For
VE linear SDE (11), we have σ0 = 0.01, σ1 = 50, and the number of time steps N = 1000.

5.3 SUBJECTIVE EVALUATION

To verify the naturalness and fidelity of the synthesized singing voice, we randomly selected 100
out of 275 test song pieces for each subject, and then requested the subject to give the synthesized
singing voice a MOS score of 0-5. 0 means ‘awful’ and 5 means ‘excellent’. Table 1 shows the
model size and MOS of all systems. It can be seen that RealSinger’s model is about the same size
as DiffSinger, but has a 0.16 MOS improvement. The end-to-end approach will further improve
RealSinger’s MOS to 4.48, which is very close to the human’s singing voice.

Table 1: MOS with 95% confidence in a comparative study of different state-of-the-art SVS methods
on the PopCS test set. All methods use a pre-trained HiFi-GAN as vocoder.

Methods Model size MOS
Ground truth - 4.56± 0.07
FFT-Singer 24.3M 3.87± 0.170
DiffSinger 39.3M 4.23± 0.165
RealSinger 39.4M 4.39± 0.160

RealSinger E2E 45.6M 4.48± 0.145

5.4 OBJECTIVE EVALUATION

Mel cepstral distortion (MCD) (Kubichek, 1993) is an objective metric for voice quality assessment.
The implementation of MCD from Samuel Broughton1 is used in this paper. The generated and
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ground truth waveforms are converted into mel-cepstral coefficients (MCEPS), and then the MCD
between these MCEPS are computed. The smaller of MCD, the smaller the distortion of the sound,
that is, the higher quality of the singing voice. Table 2 shows the MCD of all systems. It can be
seen that RealSinger can produce singing voices with minimal disturbance compared to real human
voices.

Table 2: MCD in a comparative study of different state-of-the-art SVS methods on PopCS test set.

Methods MCD (dB)
Ground truth mel + HiFi-GAN 3.81

FFT-Singer + HiFiGAN 6.08
DiffSinger + HiFiGAN 5.65
RealSinger + HiFiGAN 5.39

RealSinger E2E 5.12

5.5 ABLATION STUDY

We conducted ablation studies to prove the effectiveness of RealSinger, including

• Naive RealSinger: Use the original VP SDE (Song et al., 2021), that means without the
constant M in the SDE (3).

• Shallow RealSinger: Use the shallow mechanism similar to (Liu et al., 2021).
• Super RealSinger: Use 10,000 steps in diffusion.

The results are shown in Table 3. Removal of the constant M in the SDE (3) results in 0.38 MOS
lower than the baseline (RealSinger), which indicates that the benchmark at the start of diffusion
affects the synthesis quality. It can also be seen that the more steps of diffusion, the better the
performance, especially Super RealSinger (4.54 MOS) basically reaches the level of human singing
voices (4.56 MOS).

Table 3: MOS with 95% confidence in the ablation study.

Methods MOS
Ground truth 4.56± 0.07

Naive RealSinger 4.01± 0.185
Shallow RealSinger 4.19± 0.172
Super RealSinger 4.54± 0.14

RealSinger 4.39± 0.160
RealSinger E2E 4.48± 0.143

6 CONCLUSION

In this paper, we propose RealSinger, a novel SVS system based on linear SDEs. Given a musi-
cal score, RealSinger can continuously transform Gaussian noise into corresponding singing mel-
spectrogram and wave through reverse-time linear SDE and Langevin dynamic. RealSinger is a pure
diffusion-based method, it use neural networks to predict the mel and wave score, which is the gradi-
ent of the log probability density at a specific time. For RealSinger, we designed the corresponding
effective score prediction networks. Subjective and objective evaluation show that the RealSinger
can achieve the state-of-the-art.
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