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Abstract001

Existing vision-language planning methods per-002
form well on short-horizon tasks but strug-003
gle with long-horizon reasoning in dynamic004
environments due to the difficulty of training005
models to generate high-quality reasoning pro-006
cesses. To address this, we propose Structured007
Preference Optimization (SPO), a framework008
that enhances reasoning and action selection for009
long-horizon task planning through structured010
evaluation and optimized training. SPO in-011
troduces: 1) Structured Preference Evaluation012
and Optimization, which evaluates reasoning013
chains across task relevance, historical consis-014
tency (as part of textual coherence), and image015
awareness (alignment with visual observations)016
to construct high-quality preference pairs; and017
2) Curriculum-Guided Progressive Learning,018
enabling the model to adapt from simple to019
complex tasks, thereby improving generaliza-020
tion and robustness. To advance research in021
vision-language long-horizon task planning,022
we introduce ExtendaBench, a comprehensive023
benchmark covering 1,509 tasks across Virtu-024
alHome and Habitat 2.0, categorized into ultra-025
short, short, medium, and long tasks. Exper-026
imental results demonstrate that SPO signif-027
icantly improves reasoning quality and final028
decision accuracy, outperforming prior meth-029
ods on long-horizon tasks and underscoring the030
effectiveness of preference-driven optimization031
in vision-language task planning. Specifically,032
SPO achieves a +5.98% GCR and +4.68% SR033
improvement in VirtualHome and a +3.30%034
GCR and +2.11% SR improvement in Habitat035
over the best-performing baselines.036

1 Introduction037

In autonomous systems, there is a growing de-038

mand for robots capable of executing complex,039

real-world tasks in domestic environments. Tasks040

such as organizing a room, preparing a meal, and041

cleaning up afterward require not only a diverse042

set of actions but also sophisticated long-term plan-043
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Figure 1: Comparison with existing methods. (a) Self-
Rewarding DPO (Yuan et al., 2024) relies on a single
reward criterion to rank sampled responses and selects
both the highest-ranked (preferred) and lowest-ranked
(rejected) responses for DPO training. (b) Structured
Preference Optimization (ours) introduces a structured
scoring framework with multiple criteria and an adap-
tive preference selection strategy, enabling more fine-
grained and informed optimization.

ning capabilities. However, current approaches 044

struggle with long-horizon tasks due to a lack of 045

learning in long-term planning ability and the fact 046

that most benchmarks (Puig et al., 2018; Liao et al., 047

2019; Shridhar et al., 2020a,b) focus on short-term 048

discrete tasks. This gap hinders progress toward 049

robots capable of handling the complex, multi-step 050

tasks demanded by real-life scenarios. 051

Existing reasoning-based decision-making meth- 052

ods primarily rely on prompting strategies or en- 053

vironmental feedback to determine actions, often 054

without explicitly modeling the quality of reason- 055

ing chains. While recent approaches (Yao et al., 056

2022; Zhao et al., 2024; Zhi-Xuan et al., 2024) 057

leverage textual inputs for reasoning, they lack a 058

structured mechanism to incorporate multimodal 059

information or refine reasoning processes over ex- 060

tended horizons. Furthermore, prior optimization 061

frameworks, such as Self-Rewarding DPO (Yuan 062

et al., 2024), rely on a single reward criterion, 063

which may lead to suboptimal preference selection 064

as in Figure 1. 065
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To address these limitations, we propose Struc-066

tured Preference Optimization (SPO), a novel067

framework designed to enhance reasoning qual-068

ity and decision-making in long-horizon task plan-069

ning through structured preference evaluation and070

progressive learning. SPO consists of two core071

components: 1) Structured Preference Evalu-072

ation and Optimization: SPO systematically073

evaluates reasoning chains along two key dimen-074

sions—Textual Coherence, which assesses task075

relevance and historical consistency, and Image076

Awareness, which measures alignment with visual077

observations. These evaluations are used to con-078

struct high-quality preference pairs that explicitly079

guide the model toward superior reasoning steps,080

thereby enhancing decision reliability in complex081

multimodal tasks. 2) Curriculum-Guided Pro-082

gressive Learning: SPO utilizes a progressive cur-083

riculum, incrementally increasing task complexity084

during training. This structured progression helps085

the model develop robust reasoning strategies and086

enhances generalization to diverse long-horizon087

scenarios, ensuring consistent real-world perfor-088

mance.089

Finally, to bridge the notable gap in the field re-090

garding the absence of a benchmark tailored for091

long-horizon tasks, we propose ExtendaBench, a092

comprehensive benchmark that categorizes the task093

into four difficulty levels based on the number of094

steps required for completion, namely ultra-short,095

short, medium, and long. Leveraging the gener-096

ative capabilities of GPT-4o (OpenAI, 2024), we097

create a diverse and extensive collection of tasks.098

These tasks undergo minimal human refinement to099

ensure high-quality data while significantly reduc-100

ing the costs and effort associated with manual data101

labeling.102

Our contributions can be summarized as follows:103

• We introduce Structured Preference Optimization104

(SPO), a framework that enhances long-horizon105

reasoning through structured preference-based106

evaluation and curriculum-guided learning, en-107

abling more effective decision-making.108

• We propose ExtendaBench, a benchmark with109

four levels of difficulty and 1,509 tasks across110

VirtualHome and Habitat 2.0, providing a com-111

prehensive evaluation suite for sustained reason-112

ing in long-horizon task planning.113

• We validate SPO through extensive experiments,114

demonstrating state-of-the-art performance in115

long-horizon task planning.116

2 Related Work 117

2.1 Multimodal Large Language Models 118

The emergence of LLMs (Touvron et al., 2023; 119

Chiang et al., 2023) has driven substantial progress 120

in multimodal large language models (MLLMs), 121

which aim to integrate both visual and textual 122

modalities, advancing toward a more generalized 123

form of intelligence. Early works such as BLIP-2 124

(Jian et al., 2024), MiniGPT-4 (Zhu et al., 2023), 125

LLaVA (Liu et al., 2024), and OpenFlamingo 126

(Awadalla et al., 2023) capitalized on pretrained 127

vision encoders paired with LLMs, demonstrating 128

strong performance in tasks like visual question 129

answering and image captioning. mPLUG-Owl 130

(Ye et al., 2023) introduces a modularized training 131

framework to further refine cross-modal interac- 132

tions. On the closed-source side, models such as 133

GPT-4V (OpenAI, 2023) and Gemini (Team et al., 134

2023) pushes the boundaries of multimodal rea- 135

soning and interaction capabilities. Unlike general- 136

purpose MLLMs, we repurpose them for structured 137

training in embodied planning tasks. 138

2.2 LLM Self-improvement 139

Self-improvement methods enhance LLMs by train- 140

ing on their own generated outputs. These meth- 141

ods often involve supervised fine-tuning (SFT) on 142

high-quality responses generated by the models 143

themselves (Li et al., 2023; Wang et al., 2024b) or 144

preference optimization (Yuan et al., 2024; Ros- 145

set et al., 2024; Pang et al., 2024; Prasad et al., 146

2024; Zhang et al., 2024; Jiang et al., 2024), where 147

the model is trained to distinguish between better 148

and worse responses. These approaches mostly 149

employ LLM-as-a-Judge prompting (Zheng et al., 150

2024) or train strong reward models (Xu et al., 151

2023; Havrilla et al., 2024) to evaluate and filter 152

generated data, thereby guiding the model toward 153

improved performance. Unlike prior methods, we 154

introduce structured preference optimization with 155

targeted pair selection and curriculum learning for 156

long-horizon embodied tasks. 157

2.3 Embodied Task Planning 158

Traditional robotics planning methods have relied 159

on search algorithms in predefined domains (Fikes 160

and Nilsson, 1971; Garrett et al., 2020; Jiang et al., 161

2018), but face scalability challenges in complex 162

environments with high branching factors (Puig 163

et al., 2018; Shridhar et al., 2020a). Heuristics 164

have helped alleviate these limitations, leading 165
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to advancements (Baier et al., 2009; Hoffmann,166

2001; Helmert, 2006; Bryce and Kambhampati,167

2007). More recently, learning-based methods like168

representation learning and hierarchical strategies169

have emerged, showing effectiveness in complex170

decision-making (Eysenbach et al., 2019; Xu et al.,171

2018, 2019; Srinivas et al., 2018; Kurutach et al.,172

2018; Nair and Finn, 2019; Jiang et al., 2019). The173

advent of LLMs has further revolutionized plan-174

ning by enabling task decomposition and robust175

reasoning (Li et al., 2022; Huang et al., 2022b;176

Ahn et al., 2022; Valmeekam et al., 2022; Silver177

et al., 2022; Song et al., 2023; Rana et al., 2023;178

Driess et al., 2023; Liu et al., 2023b; Wu et al.,179

2023; Wake et al., 2023; Chen et al., 2023; Bhat180

et al., 2024; Zhi-Xuan et al., 2024). Other works fo-181

cus on translating natural language into executable182

code and formal specifications (Vemprala et al.,183

2023; Liang et al., 2023; Silver et al., 2023; Xie184

et al., 2023; Skreta et al., 2023; Liu et al., 2023a;185

Zhang and Soh, 2023; Ding et al., 2023b,a; Zhao186

et al., 2024). Some approaches fine-tune LLMs for187

better performance (Driess et al., 2023; Qiu et al.,188

2023), while others opt for few-shot or zero-shot189

methods (Huang et al., 2022b,a; Singh et al., 2023)190

to avoid the resource demands of model training. In191

contrast, our method introduces multimodal prefer-192

ence optimization, fine-grained preference scoring,193

and curriculum-guided optimization.194

3 Preliminaries195

Direct Preference Optimization (DPO) (Rafailov196

et al., 2024) is a reinforcement learning-free ap-197

proach that optimizes a model’s policy using198

preference-labeled data. Instead of relying on an199

explicit reward model, DPO directly enforces pref-200

erence ordering by encouraging the model to assign201

higher probabilities to preferred outputs over less202

preferred ones.203

Given a dataset D = {(x, y+, y−)}, where y+ is204

the preferred response and y− is the less preferred205

response for input x, DPO optimizes the following206

contrastive ranking loss:207

LDPO(πθ;πref) = −E(x,y+,y−)∼D

[
log σ

(
208

β log
πθ(y

+ | x)
πref(y+ | x)

− β log
πθ(y

− | x)
πref(y− | x)

)]
, (1)209

where σ is the sigmoid function, and β is a scaling210

factor controlling preference sharpness.211

4 Structured Preference Optimization 212

The Structured Preference Optimization (SPO) 213

framework enhances long-horizon task planning by 214

introducing a structured evaluation mechanism for 215

reasoning quality and a progressive training strat- 216

egy to improve model generalization. Unlike stan- 217

dard preference optimization, which lacks explicit 218

reasoning quality assessment and task complexity 219

adaptation, SPO systematically refines the model’s 220

reasoning capabilities through Preference-Based 221

Scoring and Optimization and Curriculum-Guided 222

Training. The overview of our framework is shown 223

in Figure 2. 224

4.1 Preference-Based Scoring and 225

Optimization 226

The structured preference-based optimization 227

mechanism evaluates and ranks reasoning chains 228

based on explicit criteria. Unlike standard pref- 229

erence optimization, which treats reasoning as a 230

single scalar preference, SPO decomposes reason- 231

ing quality into multiple dimensions and optimizes 232

the model’s decision-making accordingly. 233

4.1.1 Structured Preference Evaluation 234

Instead of relying on external annotations, SPO 235

adopts a self-evaluation approach, where the vision- 236

language model (sLVLM) itself serves as the judge 237

to assess reasoning quality. Given a generated rea- 238

soning chain Ri, the model evaluates it based on 239

the task context, which includes: task instruction 240

(I), current image observation (o), and history of 241

executed actions (h). Using this structured input, 242

the model assigns two separate scores to assess 243

different aspects of reasoning quality: 244

• Textual Coherence (Stext): Evaluates the logical 245

consistency of the reasoning chain, ensuring that 246

each step is task-relevant and maintains histori- 247

cal consistency with prior steps. This prevents 248

reasoning errors such as goal misalignment or 249

contradictions in multi-step plans. 250

• Image Awareness (Simage): Measures whether 251

the reasoning chain sufficiently incorporates rel- 252

evant information from the visual observations, 253

ensuring that decisions are grounded in the en- 254

vironment rather than relying solely on textual 255

priors. 256

To obtain these scores, the model is prompted 257

with an evaluation query p, where the model M 258
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Observation

Task: Prepare a fruitful 
dinner by collecting 
the bananas, peach ...

VLM

Reason: The bowl with 
bananas is visible and 
accessible ...; Action: …

Self-Eval

Structured Preference 
Evaluation

Final Action

Textual Coherence

Reason: Pick up the 
bananas and peaches 
first, as they are listed 
at the beginning ....

Reason: Find a bunch 
of carrots and place 
them on the counter. 
Then, pick up a  ...

>

Image Awareness

Reason: The bananas 
are placed on the 
lower shelf, clearly 
visible and accessible. 
I first move towards 
the shelf, pick up ....

Reason: Bananas are 
usually stored in the 
fridge to keep them 
fresh. Assuming they 
are inside, I walk to 
the refrigerator, ....

>

Chosen Highest-scoring response

High-quality reasoning, different action output

Low-quality reasoning, different action output

Low-quality reasoning, same action output

Rejected

Preference Pair Selection StrategyCurriculum-Guided Progressive Learning

Ultra-Short Short Medium Long

Preference 
Data

Figure 2: Overview of the Structured Preference Optimization. The SPO consists of three key components: 1)
Structured Preference Evaluation, which systematically scores reasoning-action pairs based on textual coherence
and image awareness; 2) Preference Pair Selection Strategy, which refines response optimization by selecting
the highest-scoring reasoning-action pairs while rejecting low-quality alternatives based on structured criteria; 3)
Curriculum-Guided Training, which progressively improves the model’s capabilities by adapting from ultra-short to
long-horizon tasks through a staged optimization process.

estimates reasoning quality as follows:259

Stext = M(ptext, Ri, I, h), (2)260

Simage = M(pimage, Ri, I, o, h), (3)261

where ptext and pimage are evaluation prompts de-262

signed to assess textual coherence and image aware-263

ness, respectively. The overall preference score can264

then be computed as either a weighted combina-265

tion:266

S(Ri) = w1Stext + w2Simage, (4)267

where w1 and w2 are weighting factors that con-268

trol the relative contribution of textual coherence269

and image awareness. Alternatively, instead of us-270

ing a predefined weighted sum, the model directly271

provides an overall preference score:272

S(Ri) = M(poverall, Ri, I, o, h), (5)273

where poverall is an evaluation prompt requesting274

a single comprehensive score. Empirically, we275

found that using the model to generate the overall276

preference score yields better optimization results277

compared to manually setting weighting factors.278

4.1.2 Preference Pair Selection Strategy279

To refine the model’s reasoning capabilities, SPO280

constructs structured preference pairs from model-281

generated samples, ensuring that the optimization282

process explicitly accounts for both reasoning qual-283

ity and action selection. Unlike prior methods,284

which simply select the highest-scoring reasoning 285

chain as the positive sample and the lowest-scoring 286

reasoning chain as the negative sample, SPO intro- 287

duces a targeted preference selection strategy that 288

prevents the model from over-optimizing reasoning 289

at the cost of decision accuracy. 290

Given a set of generated reasoning chains {Ri} 291

for the same task input (I, o, h), the model self- 292

evaluates each reasoning chain using the scor- 293

ing mechanism described in Structured Preference 294

Evaluation. The positive sample R+ is selected as 295

the highest-scoring reasoning chain, and in cases 296

where multiple chains achieve the same highest 297

score, we choose the one where the final action ap- 298

pears most frequently across all generated samples. 299

This ensures that the model prioritizes common and 300

stable action choices, reducing the risk of selecting 301

an outlier action due to randomness in generation. 302

For the negative sample R−, instead of always se- 303

lecting the lowest-scoring reasoning chain, SPO 304

considers different selection strategies to ensure 305

both reasoning quality and action feasibility are op- 306

timized. The negative sample is chosen from one 307

of the following categories: 308

• High-quality reasoning, different action output: 309

Reasoning chain with high preference scores but 310

a different final action from R+. This discour- 311

ages optimizing reasoning quality while overlook- 312

ing action correctness. 313
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• Low-quality reasoning, different action output:314

Reasoning chain with low preference scores and315

incorrect final action. This clarifies distinctions316

between poor reasoning and high-quality thought317

processes.318

• Low-quality reasoning, same action output: Rea-319

soning chain with low preference scores but iden-320

tical final action to R+. This prevents the model321

from focusing solely on reasoning quality with-322

out validating decision consistency.323

4.1.3 Preference Optimization324

Once the structured preference pairs (R+, R−) are325

selected, SPO directly applies DPO to align the326

model’s policy with the preferred reasoning chains.327

The optimization follows the original DPO con-328

trastive ranking loss (referencing Eq. 1, adapted to329

our task setting with inputs (I, o, h):330

Lpref(πθ;πref) = −E(I,o,h,R+,R−)∼D

[
log σ

(
331

β log
πθ(R

+ | I, o, h)
πref(R+ | I, o, h)

332

− β log
πθ(R

− | I, o, h)
πref(R− | I, o, h)

)]
. (6)333

4.2 Curriculum-Guided Progressive Learning334

To facilitate structured learning, SPO categorizes335

tasks into four levels: ultra-short, short, medium,336

and long-horizon tasks. Instead of training on337

all task types simultaneously, SPO follows a pro-338

gressive training strategy to gradually expose the339

model to increasing task complexity while prevent-340

ing catastrophic forgetting.341

Training is divided into four stages, where the342

model starts with ultra-short tasks and progres-343

sively incorporates more complex tasks in each344

subsequent stage. At every stage, a certain amount345

of previously learned tasks is retained to reinforce346

fundamental reasoning skills and prevent the model347

from overfitting to newly introduced tasks. This ap-348

proach ensures that earlier-learned reasoning strate-349

gies remain effective as the model learns to handle350

longer task horizons.351

A key challenge in curriculum learning is sta-352

bilizing the transition between different difficulty353

levels without disrupting previously learned deci-354

sion patterns. To address this, SPO maintains a355

dynamic balance between newly introduced tasks356

and previously learned ones. During each train-357

ing phase, the model is exposed to a mixture of358

current-stage tasks and replayed tasks from earlier359

stages, ensuring that it can generalize across task 360

difficulties while refining long-horizon reasoning 361

capabilities. 362

5 ExtendaBench 363

The ExtendaBench task corpus is developed using 364

tailored approaches for each simulator, both lever- 365

aging GPT-4o’s advanced generative capabilities. 366

For VirtualHome (Puig et al., 2018), we utilize 367

GPT-4o to directly generate diverse and complex 368

tasks, allowing for a wide range of scenarios. For 369

Habitat 2.0 (Szot et al., 2021), GPT-4o is used to 370

generate pre-defined templates as well as to create 371

specific task instances from these templates, result- 372

ing in systematically varied tasks with extended 373

action sequences that are suitable for long-horizon 374

planning. 375

5.1 VirtualHome 376

Task Proposal The initial phase begins within the 377

confines of VirtualHome, a simulated environment, 378

where a varied collection of objects sets the stage 379

for a multitude of task scenarios. By employing 380

GPT-4o as a task generator, we design tasks focus- 381

ing on object manipulation, striving for a wide ar- 382

ray of task varieties and complexities. This method 383

ensures an exhaustive representation of scenarios 384

that closely mimic real-world challenges. To fa- 385

cilitate the generator’s task creation, we provide 386

prompts that are carefully constructed to inspire a 387

broad range of tasks. 388

Review In the subsequent phase, GPT-4o under- 389

takes the generation of detailed action plans for 390

the devised tasks, meticulously outlining the steps 391

required for successful task execution. To ensure 392

the feasibility and coherence of these tasks, we 393

introduce an additional examiner of scrutiny, also 394

powered by GPT-4o. This examiner evaluates each 395

task and its associated action plan for clarity, ne- 396

cessity, and coherence of steps, as well as the rel- 397

evance and practicality of the actions and items 398

involved, ensuring they belong to the simulated 399

environment VirtualHome. It also assesses each 400

step for common sense applicability, providing con- 401

structive feedback for further refinement. 402

Refinement After undergoing expert scrutiny, the 403

generator refines the tasks and their correspond- 404

ing action plans. Subsequent simulation of these 405

revised tasks and plans enables further improve- 406

ments based on simulator feedback. Tasks that 407

are successfully executed within the simulator re- 408
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Given a 'HUMAN ACTION 
LIST' and an 'OBJECT LIST', 
use relevant items from 
both lists to compose a 
new household task.

Scene assets

GPT-4o

Task:
Organize a Small Dinner Party
Plan:
1. [walk] <dining table>
2. [grab] <cloth>
3. [touch] <dining table> 
4. [putback] <cloth> <cabinet>
5. [walk] <cabinet>
6. [open] <cabinet>
7. [grab] <plate>
8. [putback] <plate> <dining table>
...Task Proposal Review

1. Clarify the task 
description.
2. Explain why each step 
is needed.
3. Justify how 
decomposed steps 
achieve the task.
4. Apply common sense.
5. Suggest adjustments 
if needed.

Refinement

Simulation

Environmental feedback

Human check 
(optional)

Task:
Host a cozy evening with friends, 
serving toasted bread and coffee 
on plates, with a well-set 
nightstand and a comfortable, 
inviting atmosphere.
Plan:
1. [walk] <nightstand>
2. [grab] <plate>
3. [putback] <plate> <nightstand>
4. [walk] <cabinet>
5. [open] <cabinet>
6. [grab] <plate>
…

Data Generation Pipeline for VirtualHome

Data Generation Pipeline for Habitat

Template Proposal

Can you help me 
to generate some 
tasks templates?

Scene assets

GPT-4o

Task Template:
Please move `obj1` and `obj2` from 
the `cab` to the fridge, and relocate 
`obj3` and `obj4` from the fridge to 
the `cab`.
Plan Template:
1. nav(frigde_push_point)
2. open(fridge_push_point)
3. nav(`cab`)
4. open(`cab`)
5. pick_`obj1`()
6. nav(fridge_push_point)
7. place(fridge_push_point)
...

Task Generation

Simulation

Sample task

Random Scene
Sample Objects
{
“obj1”：apple,
“obj2”：banana,
“obj3”：pear,
“obj4”：bowl
} success

save

Instruction Augmentation

1. Synonym Replacement
Please transfer `obj1` and `obj2` 
from the cabinet to the fridge, and 
shift `obj3` and `obj4` from the 
fridge to the cabinet.
2. Appearance description
replacement
apple->red round fruit
3. Add Context
……

GPT-4o

GPT-4o

GPT-4o

Figure 3: Data generation pipeline for ExtendaBench. (Top) In VirtualHome, GPT-4o generates tasks based on
scene assets and a human action list, followed by plan generation, review, and refinement using simulation and
feedback. (Bottom) In Habitat, scene objects are sampled and filled into task templates to create executable plans,
which are validated in simulation. Instructions are then augmented with synonyms, appearance descriptions, and
contextual cues to enhance linguistic diversity.

GCR SR

Figure 4: Comparison of various small vision-language
models on different sets of our ExtendaBench in Virtu-
alHome.
ceive preliminary approval. Nevertheless, to guar-409

antee optimal quality and applicability, we subject410

each task to a rigorous manual review, evaluating411

them for practicality and realism. Tasks that do412

not achieve success in the simulation are minimally413

modified by human according to the simulator’s414

feedback, focusing on enhancing their realism and415

feasibility.416

The multi-stage process, with minimal human in-417

tervention, is designed to ensure the reliability and418

quality of the tasks and their associated plans. The419

whole process of generating tasks in benchmark is420

shown in Figure 3.421

5.2 Habitat 2.0422

Building on the idea of Language Rearrange-423

ment (Szot et al., 2023), we replace its hand-424

crafted, short-horizon templates with an LLM-425

driven pipeline (Figure 3) that automatically writes426

task schemas and expands them into markedly427

longer action sequences.428

Template Proposal GPT-4o generates initial task429

templates based on scene assets. These templates 430

define general task structures (e.g., moving objects 431

between locations) and serve as the basis for gener- 432

ating varied instructions. 433

Task Generation Using the task templates, we 434

sample objects within random scenes to generate 435

specific tasks with extended action sequences. This 436

phase results in more complex task plans that eval- 437

uate an agent’s capacity for long-term planning and 438

adaptability. 439

Instruction Augmentation To increase task di- 440

versity, we apply various transformations to the 441

instructions. These include synonym replacement, 442

appearance description alterations (e.g., “apple” to 443

“red round fruit”), and additional contextual details. 444

This augmentation, powered by GPT-4o, allows us 445

to expand the instruction set, testing the agent’s 446

understanding and flexibility in interpreting varied 447

language inputs. 448

5.3 Dataset Statistics 449

The categorization within ExtendaBench is defined 450

by the length of the action sequence required to 451

accomplish a task, distributed as follows: 452

• Ultra-Short Tasks: Tasks that can be completed 453

in fewer than 10 actions. 454

• Short Tasks: Tasks requiring 10 to 20 actions for 455

completion. 456

• Medium Tasks: Tasks necessitating 20 to 30 ac- 457

tions to finish. 458

• Long Tasks: Tasks that demand more than 30 459

actions to complete. 460
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Table 1: Comparison with existing methods using Qwen2.5-VL 7B as the baseline on different sets of our
ExtendaBench in VirtualHome.

Ultra-Short Short Medium Long Average

Method GCR SR GCR SR GCR SR GCR SR GCR SR

Baseline 57.32 35.00 42.72 9.62 30.57 3.33 27.47 0 39.52 11.99
CoT (Wei et al., 2022) 68.66 41.67 35.46 3.85 36.36 1.67 20.45 0 40.23 11.80

Self-Rewarding (Yuan et al., 2024)

Iteration 1 62.13 35.00 42.89 7.69 36.38 3.33 22.55 0 40.99 11.51
Iteration 2 59.15 31.67 44.47 11.54 29.92 3.33 28.80 0 40.58 11.64
Iteration 3 58.93 35.00 48.16 9.62 32.56 3.33 27.46 0 41.78 11.99

Iterative RPO (Pang et al., 2024)

Iteration 1 67.03 38.33 41.59 7.69 26.97 1.67 26.06 0 40.41 11.92
Iteration 2 72.31 43.33 40.06 1.92 31.66 3.33 22.33 0 41.73 12.15
Iteration 3 59.86 31.67 46.42 11.54 34.02 6.67 29.06 0 42.34 12.47

SPO (1 iteration) 71.53 48.33 48.96 13.46 38.92 3.33 31.41 2.17 47.71 16.83

The VirtualHome set includes a total of 605 tasks,461

with 220 ultra-short tasks, 128 short tasks, 155462

medium tasks, and 102 long tasks. Similarly, the463

Habitat 2.0 set comprises 904 tasks, distributed as464

161 ultra-short tasks, 243 short tasks, 190 medium465

tasks, and 310 long tasks.466

6 Experiments467

6.1 Experimental Setup468

For the VirtualHome set, we designate 218 tasks as469

the test set, with the remaining tasks serving as the470

training set. The Habitat 2.0 set also includes 120471

test tasks. As our approach is unsupervised, we do472

not utilize the training set data for model training.473

Evaluation Metrics To assess system efficacy, we474

employ success rate (SR) and goal conditions recall475

(GCR) (Singh et al., 2023) as our primary metrics.476

SR measures the proportion of executions where477

all key goal conditions (changing from the begin-478

ning to the end during a demonstration) are satis-479

fied. GCR calculates the discrepancy between the480

expected and achieved end state conditions, rela-481

tive to the total number of specific goal conditions482

needed for a task. A perfect SR score of 100%483

corresponds to achieving a GCR of 100%.484

6.2 Comparison of Vision-Language Models485

To assess the capabilities of various small-486

scale vision-language models (sLVLMs) on long-487

horizon task planning, we evaluated six mod-488

els—InternVL2 8B (Chen et al., 2024b), Pix-489

tral 12B (Agrawal et al., 2024), Qwen2-VL 7B490

(Wang et al., 2024a), Llama-3.2 11B (Dubey et al.,491

2024), InternVL2.5 8B (Chen et al., 2024a), and492

Qwen2.5-VL 7B (Team, 2025)—on our Extend-493

aBench benchmark in VirtualHome, spanning ultra-494

short to long tasks. Figure 4 presents the com- 495

parative performance in terms of GCR and SR 496

across different task horizons. The results indi- 497

cate that while all models perform well on ultra- 498

short tasks, performance drops sharply as task com- 499

plexity increases, with SR reaching 0% on long 500

tasks for most models. Among them, Qwen2.5- 501

VL 7B achieves the highest average GCR and SR, 502

demonstrating the best overall performance in long- 503

horizon task planning. 504

6.3 Comparison with Existing Methods 505

We compare SPO with existing long-horizon 506

reasoning methods, including Chain-of-Thought 507

(CoT) (Wei et al., 2022), as well as the multi- 508

modal VLM-based versions of Self-Rewarding 509

(Yuan et al., 2024) and Iterative RPO (Pang et al., 510

2024), using Qwen2.5-VL 7B (Team, 2025) as the 511

baseline. The evaluations are conducted on Ex- 512

tendaBench in VirtualHome (Table 1) and Habitat 513

(Table 2), covering tasks of increasing complexity 514

from Ultra-Short to Long. 515

ExtendaBench provides a structured evaluation 516

protocol with graded task difficulty, enabling fine- 517

grained analysis of model reasoning under increas- 518

ing complexity. As shown in Tables 1 and 2, model 519

performance consistently degrades on harder tasks, 520

validating the benchmark’s ability to reveal reason- 521

ing limitations across different methods. 522

Across both benchmarks, CoT improves over the 523

baseline in Habitat, particularly on shorter tasks, 524

highlighting the benefits of explicit reasoning in 525

simpler settings. However, its performance drops 526

notably on longer tasks, where it lacks structured 527

planning capabilities. In VirtualHome, CoT offers 528

limited gains and struggles with complex scenarios. 529
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Table 2: Results using Qwen2.5-VL 7B as the baseline on different sets of our ExtendaBench in Habitat.

Ultra-Short Short Medium Long Average

Method GCR SR GCR SR GCR SR GCR SR GCR SR

Baseline 41.67 33.33 14.39 8.57 3.17 0 2.48 0 15.43 10.48
CoT (Wei et al., 2022) 42.36 50.00 9.49 8.57 7.51 0 6.10 0 16.36 14.64

Self-Rewarding (Yuan et al., 2024)

Iteration 1 43.06 36.11 13.33 8.57 3.32 0 2.48 0 15.55 11.17
Iteration 2 43.06 33.33 14.19 8.57 4.34 0 2.48 0 16.01 10.48
Iteration 3 44.44 36.11 13.59 8.57 3.63 0 2.48 0 16.03 11.17

Iterative RPO (Pang et al., 2024)

Iteration 1 45.14 36.11 12.90 8.57 3.43 0 2.86 0 16.08 11.17
Iteration 2 33.33 38.89 12.17 11.43 11.35 0 7.62 0 16.12 12.58
Iteration 3 38.54 44.44 15.06 8.57 10.49 0 6.76 0 17.71 13.25

SPO (1 iteration) 52.08 50.00 14.78 11.43 10.51 0 6.67 0 21.01 15.36

Table 3: Ablation studies of different modules in VirtualHome.

Ultra-Short Short Medium Long Average

Textual Image Curriculum GCR SR GCR SR GCR SR GCR SR GCR SR

✗ ✗ ✗ 67.25 36.67 34.50 1.92 34.58 3.33 23.09 0 39.86 10.48
✓ ✗ ✗ 71.70 43.33 45.52 9.62 30.57 1.67 16.71 0 41.13 13.65
✗ ✓ ✗ 69.71 40.00 42.11 1.92 25.98 3.33 26.16 0 40.99 11.31
✓ ✓ ✗ 70.52 43.33 43.89 7.69 33.96 3.33 27.90 0 44.07 13.59
✓ ✓ ✓ 71.53 48.33 48.96 13.46 38.92 3.33 31.41 2.17 47.71 16.83

Self-Rewarding and Iterative RPO introduce it-530

erative refinement, leading to moderate improve-531

ments on short and medium tasks. However, both532

methods fail to generalize to long-horizon planning,533

with SR dropping to 0% in long tasks across en-534

vironments, indicating difficulties in maintaining535

coherent reasoning over extended sequences.536

In contrast, SPO achieves the best overall per-537

formance in both VirtualHome and Habitat, out-538

performing all baselines. Notably, SPO delivers539

strong long-horizon reasoning without relying on540

iterative generation, achieving higher GCR and SR541

than Iterative RPO and Self-Rewarding across all542

difficulty levels.543

6.4 Ablation Study544

To evaluate the contributions of different compo-545

nents in SPO, we conduct an ablation study on Vir-546

tualHome, selectively removing textual coherence547

scoring, image awareness scoring, and curriculum-548

guided training. The results in Table 3 show that re-549

moving textual coherence scoring leads to the most550

significant performance drop, especially on short,551

medium, and long tasks, indicating its critical role552

in maintaining reasoning consistency. Removing553

image awareness scoring also results in a decline,554

particularly on long tasks, where integrating visual555

observations becomes more important. Without556

curriculum learning, performance on medium and557

long tasks deteriorates, demonstrating that progres- 558

sive training helps the model handle more com- 559

plex task sequences. The full SPO model achieves 560

the highest performance, with 47.71% GCR and 561

16.83% SR, confirming that structured preference 562

learning and curriculum-guided training together 563

enable more effective long-horizon task planning. 564

7 Conclusion 565

We introduce Structured Preference Optimization 566

(SPO), a method for improving long-horizon vision- 567

language task planning through structured prefer- 568

ence learning and curriculum-guided training. Un- 569

like existing methods that struggle with multi-step 570

decision-making, SPO systematically evaluates rea- 571

soning chains based on textual coherence and im- 572

age awareness, ensuring high-quality reasoning and 573

action selection. Additionally, curriculum-guided 574

training progressively adapts the model from sim- 575

pler to more complex tasks, enhancing general- 576

ization and robustness in long-horizon scenarios. 577

To support research in this area, ExtendaBench 578

provides a benchmark spanning VirtualHome and 579

Habitat simulators with tasks of increasing diffi- 580

culty. Experimental results show that SPO outper- 581

forms prior methods, particularly in long-horizon 582

task planning, demonstrating improved reasoning 583

consistency and decision-making accuracy. 584
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Limitations585

While our proposed Structured Preference Opti-586

mization (SPO) framework demonstrates strong587

performance in long-horizon task planning, it is588

currently implemented using smaller-scale vision-589

language models to enable efficient training and590

extensive experimentation. This design choice al-591

lows for faster iteration and detailed analysis but592

may not fully reflect the potential of SPO when ap-593

plied to larger, more capable models. Extending the594

framework to larger-scale models remains an im-595

portant direction for future work, as it could further596

enhance reasoning ability and task performance in597

complex embodied environments.598
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A More Details for ExtendaBench 972

A.1 Statistics 973

A.1.1 Overview 974

Table 4 provides a summary of key characteristics 975

of the VirtualHome and Habitat datasets in our Ex- 976

tendaBench, highlighting differences in scene com- 977

plexity, task variety, and action requirements. The 978

VirtualHome dataset consists of 7 distinct scenes 979

with a total of 390 objects, supporting 294 task 980

types across 605 instructions. In VirtualHome, the 981

simulator provides 16 unique executable actions, 982

enabling a broader range of task interactions. In 983

contrast, the Habitat dataset features 105 scenes 984

with 82 distinct objects, enabling 20 task types 985

across 904 instructions. The Habitat simulator sup- 986

ports 6 unique executable actions. 987

Table 4: Overview of scene and task characteristics in
VirtualHome and Habitat.

VirtualHome Habitat

Scene Number 7 105
Scene Objects 390 82

Task Type 294 20
Instructions 605 904

Action Number 16 6

A.1.2 Data Distribution Across Sets 988

VirtualHome For the VirtualHome dataset, tasks 989

are categorized into ultra short, short, medium, and 990

long. Each category includes a portion reserved for 991

testing, with the remaining used for training. The 992

distribution is as follows: 993

• Ultra short: This category contains 220 tasks 994

in total, with 46 allocated for testing and 174 995

for training. 996

• Short: A total of 128 tasks, with 60 reserved 997

for testing and 68 for training. 998

• Medium: Comprising 155 tasks, with 52 for 999

testing and 103 for training. 1000
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• Long: The most complex category, including1001

102 tasks in total, with 60 allocated for testing1002

and 42 for training.1003

Habitat For Habitat, the dataset is similarly divided1004

into four categories based on task length: ultra1005

short, short, medium, and long. For each category,1006

a portion of the tasks is allocated for testing, and1007

the remaining are used for training. The details are1008

as follows:1009

• Ultra short: This category contains 161 tasks,1010

with 36 reserved for testing and 125 for train-1011

ing.1012

• Short: There are 243 tasks, of which 35 are1013

for testing and 208 for training.1014

• Medium: A total of 190 tasks, including 311015

for testing and 159 for training.1016

• Long: The largest category, comprising 3101017

tasks, with 30 allocated for testing and 280 for1018

training.1019

A.1.3 Word Frequency Distribution1020

Figure 5 presents the top 50 most frequent words,1021

excluding prepositions, in the datasets generated1022

for VirtualHome and Habitat environments. Sub-1023

figure (a) shows the word frequencies from Virtual-1024

Home, highlighting terms associated with common1025

objects and actions, such as “table,” “kitchen,” and1026

“place,” reflecting its simulation of domestic scenar-1027

ios. Subfigure (b) illustrates the word frequencies1028

for Habitat, where terms like “from,” “counter,” and1029

“cup” dominate, indicating tasks involving object1030

interaction and spatial relationships.1031

A.1.4 Action Lengths1032

Figure 6 splots primitive-action lengths and under-1033

scores the benchmark’s long-horizon nature: in Vir-1034

tualHome the training split already ranges broadly1035

(mean 14.8 actions) with a heavy tail extending1036

to 58 steps, while an extreme task is held out for1037

testing to enforce horizon extrapolation; Habitat1038

pushes lengths even higher—training tasks centre1039

around 20–35 actions (mean 21.0) and the test split,1040

though slightly shorter on average (17.7), still re-1041

quires multi-dozen-step plans—so across both en-1042

vironments the majority of tasks demand extended,1043

sequential reasoning, and all subsequent results are1044

reported per environment and split to reveal model1045

performance along this length-generalisation axis.1046

(a) VirtualHome

(b) Habitat

Figure 5: Word frequency analysis for ExtendaBench.

B More Details for Experiments 1047

B.1 Experimental Setup 1048

For data generation, we produce K = 5 responses 1049

per prompt, employing a sampling temperature of 1050

0.7 and a top-p value of 0.95. The generated dataset 1051

is then used to train the model for 3 epochs. Dur- 1052

ing training, the learning rate is set to 2e−5. For 1053

LoRA, we use a rank value of 16, an alpha param- 1054

eter of 32, and a dropout rate of 0.05. Unlike the 1055

Self-Rewarding framework, which involves itera- 1056

tive training where the trained model is used to 1057

re-label data and retrain in a loop, our approach 1058

trains the model only once, simplifying the train- 1059

ing process while maintaining effectiveness. All 1060

experiments are conducted on 1 L40 GPU. 1061

B.2 Effect of Preference Pair Selection 1062

To assess the impact of our preference pair se- 1063

lection strategy, we perform an ablation study us- 1064

ing the Textual Coherence model (corresponding 1065

to row 2 in Table 3). As shown in Table 5, en- 1066

abling pair selection improves GCR from 40.04% 1067
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a) VirtualHome

b) Habitat

Figure 6: Distribution of action lengths in our bench-
mark.

to 41.13% and SR from 11.73% to 13.65%, yield-1068

ing gains of +1.09 and +1.92 percentage points,1069

respectively. These results indicate that structured1070

preference selection contributes to more accurate1071

decision-making by guiding the model with more1072

informative comparisons.1073

B.3 Impact of Evaluator Strength1074

To quantify how the capacity of the external evalu-1075

ator influences learning, we replaced the default1076

Qwen2.5-VL 7B assessor with GPT-4o and re-1077

trained under otherwise identical settings. As re-1078

ported in Table 6, the stronger evaluator yields1079

consistent gains on the VirtualHome benchmark,1080

improving GCR from 47.71% to 49.62% and SR1081

from 16.83% to 19.26%. These results confirm1082

that higher-quality evaluators provide more infor-1083

mative preference signals, which in turn translate1084

into better long-horizon task performance.1085

Table 5: Average performance of preference pair selec-
tion strategy in VirtualHome.

pair selection GCR SR

✗ 40.04 11.73
✓ 41.13 13.65

Table 6: Compare with methods using different evalua-
tors in VirtualHome environment.

evaluator GCR SR

Qwen2.5-VL 7B 47.71 16.83
GPT-4o 49.62 19.26

B.4 Score Combination Strategies 1086

As described in Section 4.1.1, we explore two ap- 1087

proaches for combining the textual coherence score 1088

(Stext) and image awareness score (Simage). The 1089

first, shown in Equation 4, uses a weighted sum 1090

with tunable weights (w1, w2). The second, de- 1091

scribed in Equation 5, adopts a direct scoring ap- 1092

proach, where the model is guided to first assess 1093

task alignment and image utilization independently, 1094

and then produce an overall score that integrates 1095

both aspects, following the prompt described in 1096

Section C.2. This approach avoids manual weight- 1097

ing and achieves better empirical performance. Ta- 1098

ble 7 compares the two approaches, showing that 1099

direct scoring achieves the best performance among 1100

the tested settings and does not require manual tun- 1101

ing of combination weights. 1102

B.5 Effectiveness of Curriculum Learning 1103

Our curriculum consists of four sequential stages 1104

aligned with progressively increasing task com- 1105

plexity. To quantify the contribution of each cur- 1106

riculum stage, we evaluate model performance cu- 1107

mulatively after completing each stage, with each 1108

stage initialized from the checkpoint obtained in 1109

the previous one. Results in Table 8 show consis- 1110

tent improvements from Stage 1 through Stage 4, 1111

with GCR rising from 41.88% to 47.71% and SR 1112

improving from 11.80% to 16.83%. These gains 1113

highlight the effectiveness of our curriculum strat- 1114

egy in systematically enhancing model capabilities 1115

on complex long-horizon tasks. 1116
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Table 7: Compare with methods using different combi-
nations in the VirtualHome environment.

GCR SR

weighted sum

w_1=1.0 w_2=1.0 41.66 9.17
w_1=1.0 w_2=0.8 43.13 11.73
w_1=1.0 w_2=0.5 41.59 13.46
w_1=0.8 w_2=1.0 45.25 13.88
w_1=0.5 w_2=1.0 41.81 11.99

direct scoring 47.71 16.83

Table 8: Comparison of different stages in curriculum
learning in the VirtualHome environment.

GCR SR

stage 1 41.88 11.80
stage 2 43.21 14.78
stage 3 45.98 14.90
stage 4 47.71 16.83

B.6 Comparison with Existing LLM-based1117

Methods1118

Our task formulation assumes that the agent re-1119

ceives only image observations and textual instruc-1120

tions as input, requiring it to infer actions solely1121

from visual context without relying on externally1122

provided ground-truth object identities or positions.1123

In contrast, prior frameworks such as SayCan (Bro-1124

han et al., 2023) and ProgPrompt (Singh et al.,1125

2023) depend on explicit object-level annotations,1126

making them less suited to realistic embodied en-1127

vironments. To facilitate meaningful comparison,1128

we adapted both methods by restricting inputs to1129

task instructions and raw visual observations, re-1130

moving access to ground-truth environment infor-1131

mation. Table 9 shows that under these consistent1132

input constraints, our approach significantly outper-1133

forms SayCan and ProgPrompt on the VirtualHome1134

benchmark.1135

The observed performance gap arises due to in-1136

herent limitations of these approaches when re-1137

stricted to our realistic input scenario. SayCan,1138

which relies on scoring all potential atomic actions1139

with a language model, struggles with the combina-1140

torial explosion of action-object pairs (over 2,0001141

possibilities) in our setting, causing inefficiencies1142

and unreliable scoring—particularly with smaller1143

models. ProgPrompt also faces challenges: firstly,1144

Table 9: Comparison with SayCan and ProgPrompt in
the VirtualHome environment.

GCR SR

SayCan (Brohan et al., 2023) 40.80 10.83
ProgPrompt (Singh et al., 2023) 39.64 9.17

Ours 47.71 16.83

it was originally designed to leverage large lan- 1145

guage models such as GPT3, whereas our setup 1146

employs a smaller vision-language model with con- 1147

strained structured reasoning and code generation 1148

capabilities; secondly, smaller models inherently 1149

struggle with long-context comprehension, hin- 1150

dering their ability to generate coherent, visually- 1151

grounded multi-step programs aligned with histori- 1152

cal context. 1153

B.7 Details for High-Quality Reasoning 1154

Selection 1155

For each task instance, all reasoning chains are 1156

first ranked by their overall scores. We identify 1157

the subset of chains that achieve the highest score. 1158

If multiple top-scoring responses result in differ- 1159

ent final actions, we select the one with the most 1160

frequently occurring action as the preferred out- 1161

put. The remaining top-scoring variants are treated 1162

as high-quality reasoning samples with differing 1163

actions. 1164

In cases where only a single top-scoring re- 1165

sponse exists, we also include reasoning chains 1166

whose scores fall within a margin of 0.1 points from 1167

the maximum and lead to different final actions. 1168

These are likewise categorized as high-quality rea- 1169

soning but are used as negative examples during 1170

training, as their final actions deviate from the pre- 1171

ferred one. This distinction encourages the model 1172

to differentiate between logically coherent reason- 1173

ing and correct decision-making. 1174

This combination of threshold-based filtering 1175

and action consistency selection helps reduce the 1176

bias in self-assessment and prevents the model 1177

from over-optimizing for reasoning fluency alone. 1178

B.8 Visualization 1179

To showcase the diversity and progressive difficulty 1180

of tasks in VirtualHome and Habitat 2.0, we present 1181

representative visualizations across four difficulty 1182

levels: ultra-short, short, medium, and long (Fig- 1183

ures 7–10, 11–14). Tasks are categorized based 1184

on action sequence length—a practical proxy for 1185
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planning complexity.1186

Figures 7–10 illustrate VirtualHome tasks rang-1187

ing from simple navigation to complex, multi-step1188

meal preparation. Figures 11–14 show correspond-1189

ing Habitat tasks that progress from basic object1190

transfers to extensive spatial rearrangements.1191

To further highlight the challenges of long-1192

horizon reasoning, we include two additional long1193

task examples in Habitat (Figures 15 and 16), fea-1194

turing diverse object types, complex layouts, and1195

longer planning sequences.1196

These visualizations confirm that our benchmark1197

enables structured, fine-grained evaluation across a1198

spectrum of embodied reasoning difficulties.1199

B.9 Case Study1200

Visual grounding failures occasionally occur due1201

to the limitations of the small VLM back-1202

bone (Qwen2.5-VL 7B). Common issues include1203

misidentifying small or partially occluded objects1204

(e.g., mistaking a wrench for a spoon as in Figure1205

17) or failing to attend to relevant scene regions.1206

Our structured scoring mechanism—based on tex-1207

tual coherence and image awareness—encourages1208

better alignment between reasoning and visual in-1209

put, which helps mitigate such errors during train-1210

ing.1211

A common failure in long-horizon tasks is histor-1212

ical inconsistency—where the model fails to con-1213

sider previously completed steps. As shown in1214

Figure 18, the CoT baseline incorrectly suggests1215

walking to the stove again, ignoring that the salmon1216

has already been baked. In contrast, our method1217

correctly interprets the execution history and pro-1218

ceeds to the next relevant subtask. This demon-1219

strates more coherent and context-aware reasoning.1220

C Prompts1221

C.1 Prompts for Generating Data1222

C.1.1 VirtualHome1223

Task Proposal

Follow these steps to generate your answer:
1. Think about the task generation:
- Design a task with more than 30 sequential
steps.
- Use only actions from the “HUMAN AC-
TION LIST” and objects from the “OB-
JECT LIST.”
- Ensure the task involves at least 12 distinct

1224

objects from the “OBJECT LIST.”
2. Provide a detailed task description:
- Output a comprehensive description of the
task.
- Include all subtasks and the required ob-
jects.
3. Decompose the task step by step:
- Break the task into individual steps.
- After completing each step, analyze and
output what needs to be done next.
- Include reasoning for each subsequent step
before outputting it.
Important rules:
- You have only two hands. Each time you
grab an object, one hand becomes unavail-
able until you put the object back.
- Track the number of free hands after each
action. Ensure you have at least one free
hand before interacting with any object.
- Use only actions from the “HUMAN AC-
TION LIST” and objects from the “OB-
JECT LIST.”
- The task must maintain a strong sequential
relationship between its decomposed steps,
ensuring logical and coherent progression.

1225

Review

Follow these steps to verify the given task
and decomposed steps step by step.

- Think about whether the task description is
detailed enough to make it clear to a house-
hold agent what needs to be done, including
every objects in decomposed steps. Give
your reasons for this as well as your answer,
if the answer is no, give a more detailed
description of the task.
- Think and output the reasons why each step
is necessary to complete the task.
- Think and output that each step is coherent
with a necessary back-and-forth relationship
between them.
- Think and output the reasons why the de-
composed steps accomplish the task.
- verify the actions in decomposed steps only
come from “HUMAN ACTION LIST.”
- verify the objects in decomposed steps
only come from “OBJECT LIST.” The inclu-

1226
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Go to the bedroom and sit on the bed.

Figure 7: Generated task example in VirtualHome (ultra short).

Organize the home office by setting up essential devices like mouse and folder on TV stand and ensuring pillow in closet.

Figure 8: Generated task example in VirtualHome (short).

sion of any additional objects or locations is
strictly prohibited.
- Think and output the reasons why each step
make common sense.
- verify that each step is compliant with the
rule of [walk] object before interacting with
it.

If the verification passes, return true, other-
wise return false and then give your adjust-
ment.

1227

Refinement

This is the feedback and observation based
on your steps that have been executed:
[feedback]
<image>

1228

Please perform the following steps based on
the feedback:
1. Please think about and output the reason
why the steps failed to execute.
2. Based on the reasons why the steps failed,
think about and output the reasons why this
task is feasible given the rules, and output
yes or no.
3. if the task is feasible, output your modifi-
cations to the failed step.

1229

C.1.2 Habitat 1230

Template Proposal

You are a robot task generator that can
generate robot task templates of different
lengths based on given robot actions and
examples.

1231
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Prepare a fruitful dinner by collecting the bananas, peach, bell pepper to the kitchen counter and put the dish bowl, chips 
on the table.

Figure 9: Generated task example in VirtualHome (medium).

The actions you can use include:
1.nav(obj or receptacle) is used by the robot
to navigate to the corresponding object or
receptacle
2.pick(obj) is used by the robot to grab an
object
. . .

Rules:
1. You need to output five parts, including
instructions, task planning, replaceable ob-
jects and target states.
2. If the object or receptacle in the instruc-
tions and task planning can be replaced, use
p̀lus pronouns to replace it.

1232

Instruction Augmentation

You are a task instruction rewriter, and you
can rewrite and expand the robot’s task
instructions according to the given rewriting
rules.

Rules:
1. You can use the verbs of the task instruc-
tions Use synonyms to replace, for example,

1233

change move to reposition.
2. You can replace the objects used in the
task instructions, replace the objects with
corresponding colors or appearance descrip-
tions, such as changing apple to a red round
Fruit.
3. Add some context descriptions, for
example, in “Please put an apple on the
table for me,” change it to “I want to eat an
apple, please put an apple on the table for
me” to make the instruction longer.

Now Please help me rewrite the following
instructions:

1234

C.2 Prompts for Preference Evaluation 1235

Preference Evaluation

You are an evaluation system designed to
assess how well a reasoning chain (CoT)
aligns with the task instruction and how
effectively it utilizes the current image
observation.

Given a task instruction, a reasoning chain
(CoT), past execution history, and an RGB
image observation, your task is to evaluate:

1236
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Prepare salmon by baking in the stove, heat creamy buns in the microwave, then set bananas and a peach on the kitchen 
table; retrieve both dishes, set with cutlery, completing the meal arrangement on the kitchen table. 

Figure 10: Generated task example in VirtualHome (long).

1. **Task Alignment Score**: How well
the reasoning chain follows the task instruc-
tion and previous history.
2. **Image Utilization Score**: How well
the reasoning chain leverages the current
image observation to infer the next step.
3. **Overall Score**: A final score that
summarizes the overall quality of the
reasoning chain, considering both task
alignment and image utilization.

**Input Data**:
- **Task Instruction:** {INSTR}
- **Chain of Thought (CoT):** {REASON}
- **Previous Execution History:** {HIS-
TORY}

1237

- **Current Image Observation (RGB):**
<image>

**Output Format:**
Return the three scores in the following for-
mat:
Task Alignment Score: X
Image Utilization Score: Y
Overall Score: Z
Where **X**, **Y**, and **Z** are num-
bers between **0 and 1**.

1238

D License 1239

The dataset is published under CC BY-NCSA 4.0 1240

license, which means everyone can use this dataset 1241
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Transfer a knife to the designated black table.

Figure 11: Generated task example in Habitat (ultra short).

Move the wrench from the right counter to the left counter, the toy to the TV stand, and the lid to the sofa.

Figure 12: Generated task example in Habitat (short).

for non-commercial research purposes.1242
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Can you help me to rearrange the room, move the cup from the right counter to the left counter, the bowl from the TV stand to the left 
counter, the book from the TV stand to the left counter, the cube from the right counter to the left counter and the lego from the sink to the 
left counter.

Figure 13: Generated task example in Habitat (medium).

Please help me to transfer cup, bowl, cube, strawberry, banana, book from black table, sofa and brown table to right 
counter and can from right drawer to sofa.

Figure 14: Generated task example in Habitat (long).
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Please help me to transfer cup, book, bowl, strawberry, lego, banana from black table, black table and brown table to left 
counter and box , lemon from right drawer to sofa.

Figure 15: Generated task example in Habitat.
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Please help me to transfer cup, bowl, lego, book, cube, apple from right counter, brown table and black table to sofa 
and strawberry from right drawer to left counter.

Figure 16: Generated task example in Habitat.
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Predicted action: pick_spoon()

Figure 17: Example of visual grounding failure due to
object misidentification.

Instruction: Prepare salmon 
by baking in the stove, heat 
creamy buns in the 
microwave, then set bananas 
and a peach on the kitchen 
table; …
History: … [open]  <stove> … 
[place] <salmon> … [close] 
<stove>

CoT:
Reason: The task requires baking salmon in the stove. 
Therefore, the next step is to walk to the stove.
Next plan: [walk] <stove>

Ours:
Reason: The salmon has been baked as required. I am now in 
front of the stove. The next step is to find the creamy buns 
and go to the microwave to heat them.
Next plan: [walk] <buns>

Figure 18: Comparison between baseline CoT and our
method on reasoning consistency.
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