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ABSTRACT

Predicting the intermediate trajectories between an initial and target distribution
is a central problem in generative modeling. Existing approaches, such as flow
matching and Schrodinger Bridge Matching, effectively learn mappings between
two distributions by modeling a single stochastic path. However, these methods are
inherently limited to unimodal transitions and cannot capture branched or divergent
evolution from a common origin to multiple distinct outcomes. To address this, we
introduce Branched Schriodinger Bridge Matching (BranchSBM), a novel frame-
work that learns branched Schrodinger bridges. BranchSBM parameterizes multiple
time-dependent velocity fields and growth processes, enabling the representation
of population-level divergence into multiple terminal distributions. We show that
BranchSBM is not only more expressive but also essential for tasks involving
multi-path surface navigation, modeling cell fate bifurcations from homogeneous
progenitor states, and simulating diverging cellular responses to perturbations.

1 INTRODUCTION

Tasks like crowd navigation and modeling cell-state transitions under perturbation involve learning
a transport map between two empirically observed endpoint distributions, rather than a noisy prior
required for denoising diffusion (Austin et al., 2021) and flow matching (Lipman et al., 2023). The
Schrodinger Bridge (SB) (Schrodinger, 1931) problem seeks to identify an optimal stochastic map
between a pair of endpoint distributions that minimizes the Kullback-Leibler (KL) divergence to an
underlying reference process.

Schrodinger Bridge Matching (SBM) solves the SB problem by parameterizing a drift field that
matches a mixture of conditional stochastic bridges between endpoint pairs that each minimize the
KL divergence from a known reference process. Typically, SBM assumes conservation of mass from
the initial to the target distribution, which fails to capture dynamical population behaviors such as
growth and destruction of mass, commonly seen in single-cell population data. Furthermore, prior
works focus on transporting samples from a pair of unimodal initial and target distributions via a
single, continuous trajectory, without accounting for branching dynamics (Liu et al., 2023a; Tong
et al., 2024b; Theodoropoulos et al., 2024; Liu et al., 2022; De Bortoli et al., 2021b), where a uniform
population follows a branched trajectory that diverges toward multiple distinct target distributions.

The notion of branching is central to many real-world systems. For example, when a homogeneous
cell population undergoes a perturbation such as gene knockouts or drug treatments, it frequently
induces fate bifurcation as the cell population splits into multiple phenotypically distinct outcomes
or commits to divergent cell fates (Shalem et al., 2014; Zhang et al., 2025a). These trajectories are
observable in single-cell RNA sequencing (scRNA-seq) data, where each subpopulation independently
evolves and undergoes growth or contraction along its trajectory toward a distinct terminal state (Dixit
etal., 2016).

In this work, we introduce Branched Schrodinger Bridge Matching (BranchSBM), a novel
framework for learning stochastic transport maps from an unimodal initial distribution to multiple
target distributions via branched trajectories.

Our main contributions can be summarized as follows:
1. We define the Branched Generalized Schrodinger Bridge problem and introduce BranchSBM, a

novel matching framework that learns optimal branched trajectories from an initial distribution
7o to multiple target distributions {7 1 }.
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2. We derive the Branched Conditional Stochastic Optimal Control (CondSOC) problem as the
sum of Unbalanced CondSOC objectives and leverage a multi-stage training algorithm to learn
the optimal branching drift and growth fields that transport mass along a branched trajectory.

3. We demonstrate the unique capability of BranchSBM to model dynamic branching trajectories
while matching multiple target distributions across various problems, including 3D navigation
over LiDAR manifolds (Section 5.1), modeling differentiating single-cell population dynamics
(Section 5.2), and predicting heterogeneous cell states after perturbation (Section 5.3).

2 PRELIMINARIES

Schrodinger Bridge Given a reference probability path measure Q, the Schrodinger Bridge (SB)
problem aims to find an optimal path measure PSB that minimizes the Kullback-Leibler (KL) diver-
gence with Q while satisfying the boundary distributions Py = 7y and P; = 7.

PSB — mﬂ)jn{KL(PHQ) 1Py = mo, Py = 1} )

where Q is commonly defined as standard Brownian motion. For an extended background and formal
definition of Schrodinger Bridges, refer to Definition 3 and Appendix A.1.

Generalized Schrodinger Bridge Problem The solution to the standard SB problem minimizes
the kinetic energy of the conditional drift term u;(X) that preserves the endpoints drawn from the
coupling (x¢,x1) ~ 7 1 defined as

dXt :Ut(Xt)dt+0'dBt
Xo ~mo, X1~

1
min/ Ep, [Ju:(Xe)|?dt s.t. { 2)
Ut 0

where dB; is standard d-dimensional Brownian motion. To define more complex systems where the
optimal dynamics cannot be accurately captured by minimizing the standard squared-Euclidean cost
in entropic OT (Vargas et al., 2021), the Generalized Schrédinger Bridge (GSB) problem introduces
an additional non-linear state-cost V;(X;) (Chen et al., 2021b; Chen & Georgiou, 2016; Liu et al.,
2022). The minimization objective becomes

! 1
min/ Ep, [2||ut(Xt)|2_|_V;(Xt)] dt 3)
Ut 0

The state cost can also be interpreted as the potential energy of the system at state X;.

3 BRANCHED SCHRODINGER BRIDGE MATCHING

A key challenge in trajectory matching is simulating trajectories that reconstruct multi-modal
marginals. Existing Schrodinger bridge and flow matching techniques have approached this problem
by reconstructing the weighted multi-modal distribution by simulating many independent particle
trajectories. To ensure that the intermediate trajectories follow a path distribution that approximates
that observed in the data, multimarginal Schrodinger bridge matching interpolates between
intermediate distributions along the path at specified time steps (Shen et al., 2024; Chen et al., 2023;
Theodoropoulos et al., 2025).

However, these methods remain limited in their ability to dynamically model branched trajectories,
where the marginal distributions have distinct modes that diverge in the state space following some
underlying energy landscape. When there is limited ground truth snapshot data of the intermediate
marginals, existing methods fail to accurately infer intermediate dynamics that follow some potential
energy manifold. Furthermore, simulating a branched path distribution containing multi-modal
marginals with independent particle simulations can suffer from mode collapse, where particles are
biased towards a high-density mode in the distribution or only traverse low-energy intermediate paths.

To address this challenge, we introduce Branched Schrodinger Bridge Matching (BranchSBM), a
framework that infers intermediate branched dynamics by learning a set of diverging velocity networks
that accurately reconstruct a multi-modal target distribution following a potential energy landscape
V, and growth networks that optimally distribute mass across the set of branches while recovering
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Figure 1: Branched Schrodinger Bridge Matching (A) Stage 1 trains a correction term that learns the optimal
interpolant conditioned on endpoints (B) Stage 2 and 3 trains a separate flow and growth network for each branch
independently (C) Stage 4 jointly optimizes the flow and growth networks to minimize the energy, mass, and
matching loss.

the target density. Crucially, our approach does not require explicit samples from intermediate time
points and can model branched, multi-modal dynamics from simulating a single sample from the
initial distribution.

3.1 UNBALANCED CONDITIONAL STOCHASTIC OPTIMAL CONTROL

Unbalanced Generalized Schrodinger Bridge Problem Extending the definition of the General-
ized Schrodinger Bridge (GSB) problem in Equation 3, we define the Unbalanced GSB problem by
scaling the minimization objective by a time-dependent weight w;(X;) = wo + fot gs(Xs)ds that
evolves according to a time-varying growth rate g;(X;) : R? x [0,1] — R.

1 1 dXt :Ut(Xt)dt+O'dBt
mign/ Ep, |:§Hut(Xt)H2 + Vi(Xe) | wie(Xe)dt st § Xo ~mo, X1 ~m 4)
Uut,gt * *
0 wo(Xo) = wg, wi(X1)=w]

Unbalanced Conditional Stochastic Optimal Control (CondSOC) Now, we show that we can
solve the Unbalanced GSB problem as an Unbalanced CondSOC problem where the optimal drift u;
and growth g; minimize the expectation of the objective in (4) conditioned on pairs of endpoints.
Proposition 1 (Unbalanced Conditional Stochastic Optimal Control). Suppose the marginal density
can be decomposed as p;(X;) = fm ) P (X¢|x0,X1)p0,1(X0, X1)dm0,1, Where mg 1 is a fixed joint
coupling of the data. Then, we can identify the optimal drift uy and growth gf that solves the
Unbalanced GSB problem in (4) by minimizing the Unbalanced Conditional Stochastic Optimal
Control objective given by

! 1
it B | [ B | X o0 4 VX0 | )] ®

Ut gt

s.t. dXy = ue(Xe|x0,%1)dt + 0dBy, Xo = x0, X1 =x1 wo(Xo)=w5, wi(X1)=w] (6)

where wy = wo + fot 9s(Xs)ds is the time-dependent weight initialized at wi, uy is the drift, g, is
the growth rate, and my 1 is the weighted coupling of paired endpoints (xo, w§, X1, W) ~ T 1.

The proof is provided in Appendix C.1. This defines the objective for us to tractably solve the
Unbalanced GSB problem by conditioning on a finite set of endpoint pairs in the dataset.

3.2 BRANCHSBM: SUM OF UNBALANCED CONDSOC PROBLEMS

Branched Generalized Schrodinger Bridge Problem Given the Unbalanced GSB problem, we
define the Branched GSB problem as minimizing the sum of Unbalanced GSB problems across all
branches. All mass begins along a primary path indexed k& = 0 with initial weight 1. Over ¢ € [0, 1],
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mass is transferred across K secondary branches with initial weight 0 and target weight w; j, such
that it minimizes the objective defined as

_ ! 1 K 1
min / {Ept’o |:§Hut,O(Xt,O)”2 + ‘/t(Xt,D):| w0 + ZEPt,k [§|\utk(th)\|2 + Vt(Xt,k):| wt,k}dt
0

{ut,kagt,k}i(:(] k=1
s.t. dXyp = utvk(Xt,k)dt + odBy, Xo ~ mo, X1,k ~ T1,k, Wo,k = Ok=0, w1,k = W1,k 7
When total mass across branches is conserved, we enforce Zf:o wyr = 1forallt € [0,1],

which constrains the growth rates such that g, (X o) + Zszl 9t x(Xtx) = 0. This ensures
that mass lost from the primary branch (when g; o < 0) is redistributed among the secondary
branches (where g; ;, > 0). The primary branch evolves from an initial weight of 1 according to

wyo =1+ |, g 9s(Xs.,0)ds and the K secondary branches grow from the primary branch from weight
0 according to wy j, = fg 9s(Xs,k)ds.

Branched Conditional Stochastic Optimal Control Following a similar procedure as shown
for the Unbalanced GSB problem, we can reformulate the Branched GSB problem as solving the
Branched CondSOC problem where we optimize a set of parameterized drift {u,, k}fzo and growth
{9, k'}k:K:O networks by minimizing the energy of the conditional trajectories between paired samples
(%0, {x11}t=0) ~ {Po, 1.k io-

Proposition 2 (Branched Conditional Stochastic Optimal Control). For each branch, let py (X, 1) =
Epo i [Ptk (Xt k]X0, X1,1)], where o 1., is the joint coupling distribution of samples Xo ~ o from
the initial distribution and X, j, ~ 1 ), from the kth target distribution. Then, we can identify the set
of optimal drift and growth functions {u; k> g; k}kK:O that solve the Branched GSB problem in (3.2)
by minimizing the sum of Unbalanced CondSOC objectives given by

1
. 1
i Bogsorsono | {Eraaso [3lu0(Xeoll? + Xun)| wio

{ue, k96,61,

K 1
1
+ZE(XO7X1,1¢)~W0,1,1€/ Ept,\o,l,k [§||Utk(th)H2+Vt(th):| wt,k}dt ®)
k=1 0

st dXy gk = ur p(Xep)dt + 0dBe, Xo = X0, X1,k = X1,k Wo,k = Ok=0, W1,k = W1,k (9)
where w0 = 1 + fot 9s.1(Xs,1)ds is the weight of the primary paths initialized at 1 and w; ), =
fot 9s.k (X5, )ds are the weights of the K secondary branches initialized at 0.

The proof is given in Appendix C.2. This defines the objective for us to tractably solve the Branched
GSB problem in Section 4 by conditioning on a discrete set of branched endpoint pairs in the dataset.
Remark 1. When g, o(X;,0) = 0and g, (X k) =0 forallt € [0,1] and k € {1,..., K}, then the
Branched CondSOC problem is the solution to the single path GSB problem.

4 LEARNING BRANCHSBM USING NEURAL NETWORKS

Given an initial data distribution 7y and K + 1 target distributions {7y j }/_,, we aim to parameterize
the optimal drift and growth fields that solve the Branched CondSOC problem in Proposition 2.

4.1 BRANCHED NEURAL INTERPOLANT OPTIMIZATION

Since the optimal trajectory under the state cost V;(X;) follows a non-linear cost manifold, given a
pair of endpoints (Xg, X1 4 ), We train a neural path interpolant ¢ ,, (X0, X1,) : R x R4 x [0, 1] — R?
that defines the intermediate state x; ,, », and velocity X; ,, p = 0yX¢ p., at time ¢, which minimizes
(2). We note that the neural interpolant has been introduced previously for single-path interpolants in
Kapusniak et al. (2024); Neklyudov et al. (2023). We define x; ,, ;; to be bounded at the endpoints as
given by

Xtk = (1 —1)x0 + x5 + t(1 — t) (X0, X1,1) (10)
ek = X156 — Xo + (1 — t)Prn(%0,X1,) + (1 — 2t) 4 (X0, X1,1) (11)
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To optimize ¢y ,(Xo,X1,x) such that it predicts the energy-minimizing trajectory, we minimize the
trajectory loss Ly defined as

K 1
1, .
Lug(n) =D / E g )~ 1. [QHXt,n,kn% + Vi) | dt (12)
k=0

After convergence, Stage 1 returns the network 7 , (xo, %1,%) that generates the optimal conditional
velocity x; »,& Which defines the matching objective in Stage 2. In Stage 2, we parameterize a set

of neural drift fields uf ; (x; 1) : R x [0, 1] — R that generates the mixture of bridges defined in
Stage 1 by minimizing the conditional flow matching loss (Lipman et al., 2023; Tong et al., 2024a).

K 1
EﬂOW(e) = Z/O E(XO;xl,k)N‘ﬂ'O,l,k sz,n,k - uf,k(xtk)Hz dt (13)
k=0

Proposition 3 (Solving the GSB Problem with Stage 1 and 2 Training). Stage I and Stage 2 training
yield the optimal drift u} (X) that generates the optimal marginal probability distribution p; (Xy)
that solves the GSB problem in (3).

The proof is provided in Appendix C.3. Since the drift for each branch uf_’ (X3) are trained indepen-
dently in Stage 2, we can extend this result across all K + 1 branches and conclude that the sequential
Stage 1 and Stage 2 training procedures yields the optimal set of drifts {ut* o, that generate the

optimal probability paths {pj k}kK:O that solves the GSB problem for each branch.

4.2 LEARNING THE ENERGY-MINIMIZING BRANCHING DYNAMICS

Branched Energy Loss To solve the Branched CondSOC problem defined in Proposition 2, we
minimize a branched energy 10ss Lepergy defined as

! 1 1
Eenergy(07 ¢) = /; E{Pt,k}i(zo{ [5"”?’0(}(15,0)”2 + ‘/t(xt,o):l wio +Z |:§||uf,k(xt,k)“2 + ‘/f(xt,k):| wik }dt

k=1

primary trajectory K branches

t t
s.t. wio =1 +/ gil(xs,l)ds, wfjk = / gﬁk(xsyk)ds (14)
0 0

where (x¢, X1,0) are the endpoints of the primary path. At time t = 0, the primary path has weight 1
and the K branches have weights 0. Over ¢ € [0, 1], the weight of the primary path changes according

to gf o(x¢,0) and supplies mass to the K branches, which grow at rates gﬁ w(Xt,k) > 0 (Lemma 2).

Intuitively, the branched energy loss optimizes the branching growth rates such that they are non-zero
when branching is favored over the primary path.

Weight Matching Loss We define a weight matching 1oss Ly that aims to minimize the dif-

ference between the predicted weights of each branch at ¢ = 1, obtained by integrating the growth
function g, (X;) over ¢ € [0, 1], and the true weights of each terminal distribution {w? 1 o

K 2 1
Linaen (¢) = ZEka (wfk(xl,k) - wfk) ) st wfk(xl,k) = Wo,k +/ gﬁk(xmk)dt (15)
k=0 0
where w{ & = Ni /N is the fraction of the population in the kth target distribution.

Mass Conservation Loss To ensure that the growth rate satisfies conservation of total mass at
all times ¢ € [0, 1], we define a mass 10ss Ly, that enforces the sum of the weights of all K + 1

branches matches the true total weight at time ¢ denoted as w*@!,

1 K 2 K
Lonss(6) = /O By 0, [(wa’,k(ww?"‘“) +ZmaX(07wZ‘ik<xt,k))] dt (16)
k=0 k=0

where max(0, —wf «) assigns an additional linear penalty for negative weight predictions. For the
balanced branched SBM problem where the total mass is conserved, we have wi*® = 1.
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Training the Growth Networks In Stage 3, we train the growth networks { gff L HE_, by fixing the
weights of the flow networks {uf’k}kK:O and minimizing the weighted combined 10ss Lgrowm With an

additional growth penalty term ||gf) . |13 to ensure coercivity of Lgrowtn

K
Egrowth(¢) == Aem,rgytcenergy(97 ¢) + )\malch»cmatch((b) + )\masscmass(QS) + Agrowlh Z ||g?’k ||§ (17)
k=0

We show in Lemma 2 that the optimal growth rates across the K secondary branches are non-
decreasing; however, mass destruction can still be modeled by defining an additional branch with
target weight equal to the ratio of mass lost over ¢ € [0, 1]. To ensure that the set of optimal growth
functions g* exists, we establish Proposition 4 (see proof in Appendix C.4).

Proposition 4 (Existence of Optimal Growth Functions). Assume the state space X C R? is a
bounded domain within RY. Let the optimal probability density of branch k be a known non-negative
function bounded in [0, 1], denoted as py . : X x [0,1] — [0,1] € L>(X x [0,1]). By Lemma 2, we

can define the set of feasible growth functions in the set of square-integrable functions L? as
G:={9= (9005, 9t.) € L*(X x [0,1]) | ge.x(x) : X x [0,1] = R, g¢r(x) >0} (18)

Let the growth loss be the functional L(g) : L*>(X x [0,1]) — R. Then, there exists an optimal
function g* = (g} -, 9 i) € L* where g, € G such that L(g*) = infycg L(g) which can be
obtained by minimizing L(g) over G.

Final Joint Training In the final Stage 4, we train the weights for both the flow and growth
networks {uf k> gf’ k}i{:o by minimizing Lgrown from Stage 3 in addition to a reconstruction loss
Lecons that ensures the endpoint distribution at time ¢t = 1 is maintained.

K
Lrecons(e) = Z]Eln,k Z max (07 ||)~(1,k - Xl,k||2 — E) (19)

k=0 x1ENR (%1 1)

where ./\/:,L(XL %) is the set of n-nearest neighbors to the reconstructed state X1  ~ p1 x attime ¢ = 1
from the data points x; j, ~ 7 ) at time ¢t = 1.

Our multi-stage training scheme decomposes the Branched CondSOC problem into two parts. We
first independently learn an optimal drift field for each branch, which is a vector field over the state
space that propagates mass flow in the direction of each target distribution. Then, we fix the drift fields
and learn the growth dynamics that determine the optimal distribution of mass over the branches.

5 EXPERIMENTS

We evaluate BranchSBM on a variety of branched matching tasks with different state costs V;(X¢),
including multi-path LiDAR navigation (Section 5.1), modeling differentiating single-cell population
dynamics (Section 5.2), and predicting heterogeneous cell-states after perturbation (Section 5.3).

5.1 BRANCHED LIDAR SURFACE NAVIGATION

First, we evaluate BranchSBM for navigating branched paths along the surface of a 3-dimensional
LiDAR manifold, from an initial distribution to two distinct target distributions (Figure 3).

Setup We define a single initial Gaussian mixture 7y and two target Gaussian mixtures 71 o, 71,1
on either side of the mountain (Figure 3). We sample 5000 points i.i.d. from each of the Gaussian
mixtures and assign all endpoints a target weight of w9 = w;; = 0.5. To ensure trajectories
follow the LiDAR manifold, we define the state cost VFANP(X,) as the data-dependent LAND
metric (Kapusniak et al., 2024; Arvanitidis et al., 2016), which assigns lower costs in regions near
coordinates in the LIDAR dataset. Further experimental details are provided in Appendix E.3.
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Mass Evolution Per Branch Energy Evolution Per Branch

Table 1: Benchmark of BranchSBM
20 against single-branch SBM on
multi-path surface navigation.
| Wasserstein ~ distances (W; and

/ W>) between the reconstructed
° ” / and ground-truth distributions with
o ) Nyieps = 100 Euler steps at time ¢ = 1
" rime ' ’ Y ime ' from validation samples in the initial
distribution. Results are averaged over

Figure 2: Plot of weight (left) and energy (right) calculated with (14) of 5 independent runs.
each branch over time ¢ € [0, 1]. Mass is transferred from the primary

— Mass Branch — Energy

Normalized Mass
Energy Loss

branch to branch 1, and both converge to the target weight of 0.5 at ¢ = 1. Model Wi () Wa (1)
Both plots represent the average over trajectories from samples in the single Branch SBM  0.97510.000  1.28510.007
validation set. BranchSBM 0.23940001  0.3090.003

A N A . e A
A YA VA A

' s '
Initial and Target Distributions Learned Branching Drifts Branch 0 Branch 1
0 () 6
mo and {71 0,711} { supy (%)} w1 (%)

Figure 3: Application of BranchSBM on Learning Branched Paths on a LIDAR Manifold. Plots of the
initial and target distributions, learned interpolants, and learned branched trajectories on the LIDAR manifold.

Results We show that BranchSBM can learn distinct, non-linear branched paths that curve along
the 3-dimensional LiDAR manifold while minimizing the kinetic energy and state-cost. From the
mass and energy curves in Figure 2, we see that mass begins in the primary branch (branch 0) and is
gradually transferred to the secondary branch (branch 1) over ¢ € [0, 1], with both curves converging
to the target weight of 0.1 at ¢ = 1. As mass is transferred, the slope of the cumulative energy curve
decreases in branch 0 and increases in branch 1, reflecting the true energy dynamics. In Figure 3, we
observe that the branching occurs at the edge of the inclined mountain, indicating that the model can
determine the optimal branching time based on the paths of lowest potential energy. As shown in
Table 1, BranchSBM reconstructs the endpoint distributions with significantly higher accuracy in
comparison to single-branch SBM. In total, we demonstrate the capability of BranchSBM to learn
branched trajectories on complex 3D manifolds.

5.2 DIFFERENTIATING SINGLE-CELL POPULATION DYNAMICS

BranchSBM is uniquely positioned to model single-cell population dynamics where a homogeneous
cell population (e.g., progenitor cells) differentiates into several distinct subpopulation branches, each
of which independently undergoes growth dynamics. Here, we demonstrate this capability on mouse
hematopoiesis data (Sha et al., 2023; Weinreb et al., 2020) and pancreatic S-cell differentiation data
(Veres et al., 2019).

Mouse-Hematopoesis Results

We use a dataset consisting of Table 2: Results for Modeling Single-Cell Differentiation. Wasser-
mouse hematopoiesis SCRNA-seq stein distances (W, and W) between simulated and ground-truth cell
data analyzed by a lineage tracing distributions at time ¢; and ¢2 on the validation dataset. BranchSBM
technique from (Sha et al., 2023; reconstructs both intermediate and terminal states significantly better
Weinreb et al., 2020). This data than single-branch SBM. Results are averaged over 5 independent runs.

contains three time points ¢; for

i € {0, 1,2} that are projected to Model Single Branch SBM BranchSBM
two-d1me2n510na1 representations o Wi (1) Wa () Wi (D) Wa (D)

x € R~ referred to as force-

directed layouts or SPRING plots. 1 0.582+0.020 0.70310.00s 0.36640.034 0.47910.044

From the plotted data, we can 2 0.940+0.075 1.0374+0.074 0.210+0.042 0.26540.046
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Figure 4: Application of BranchSBM on Modeling Differentiating Single-Cell Population Dynamics.
Mouse hematopoiesis sScCRNA-seq data is provided for three time points o, t1, t2. (A) Simulated states (top) and
trajectories (bottom) at time ¢; using single-branch SBM. (B) Simulated states with BranchSBM at ¢1 (¢t = 0.5)
and (C) t2 (¢ = 1). (D) Learned trajectories over the interval ¢ € [to, t2] on validation samples.

Table 3: Results for pancreatic 5-cell differentiation experiment. 1-Wasserstein distance (W) of intermediate
distributions generated by DeepRUOT (Zhang et al., 2025¢), CytoBridge (Zhang et al., 2025d), and BranchSBM
(Ours) at eight different time points. 1 denotes values taken from (Zhang et al., 2025d).

t=1 t=2 t=3 t=4 t=5 t=6 t="T
Model W, W, W, Wi Wi Wi Wy
DeepRUOT { 8.0447 1 0.0005  8.077310.0021 7.630110.0032  8.006440.0042 7.9018.40.0117 8.3977T40.0102  7-834640.0109
CytoBridge f 8.0448410.0005  8.0771i10.0021  7.6299:0.0032  8.006640.0043  7.901810.0117 8.3974+00102  7.8343+0.0100
BranchSBM (Ours)  11.9774190000 7.4643124031 11.5204100000 11.259310.0000 10.288810.0000 8.730140.0000 6.870210.0000

observe two clear branches that

indicate the differentiation of progenitor cells into two distinct cell fates (Figure 4). We use k-means
clustering to define two distinct target distributions 7 o and 7 ; of samples at time ¢» and set their
target weights equal to wq,0 = w1,1 = 0.5 due to the equal ratio of cells (Figure 9). We used samples
across all time steps ¢; for i € {0, 1,2} to define the data manifold via the LAND metric V;""P.
BranchSBM was trained on pairs sampled only from ¢, and to, and samples from ¢; were held out
for evaluation. For comparison, we trained a single-branch SBM model with both clusters at ¢ as the
target distribution.

After evaluating the reconstructed distributions at the intermediate held-out time point ¢; and final time
point ¢2 (t = 1) from simulating validation samples from the initial distribution xy ~ 7. In Figure
4A, we observe that single-branch SBM trained with a single target distribution p; containing both
terminal fates fails to learn distinct branched trajectories, and the simulated cell states at time ¢5 do not
reach either of the terminal distributions. In contrast, we show that BranchSBM simulates branched
states at intermediate time steps not included in the training data while accurately reconstructing both
target distributions with significantly lower 1-Wasserstein and 2-Wasserstein distances compared to
the single-branch SBM model (Figure 4B-D; Table 2).

Pancreatic 5-Cell Differentiation Results We use a dataset consisting of pancreatic 5-cell differen-
tiation data (Veres et al., 2019) containing 51, 274 cells collected over eight time points as they evolve
from human pluripotent stem cells to pancreatic 5-like cells. This data contains eight time points ¢;
fori € {0,...,7} that are projected to 30-dimensional PC representations x € R3?, We use Leiden
clustering to define ' = 11 distinct target distributions of samples at time ¢7 and set their target
weights relative to the total weight at ¢y (App E.4). We used samples across all time steps to define
the data manifold via the RBF metric VR,?F BranchSBM was trained on pairs sampled only from ?¢
and t7, and the distributions at all intermediate time points were inferred from learning to minimize
the distance from the data manifold over time. For baselines, we compared two SOTA methods for
single-cell trajectory modeling: DeepRUOT (Zhang et al., 2025¢) and CytoBridge (Zhang et al.,
2025d), which are trained explicitly on intermediate snapshots to reconstruct the stochastic dynamics
of cells that evolve independently.
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Notably, BranchSBM not only reconstructs the multi-modal terminal distribution at ¢; with superior
accuracy against all baselines, but also produces intermediate trajectories that are competitive with
models trained directly on intermediate snapshots using explicit reconstruction losses (Table 3).
Leveraging the RBF state cost V;XP¥, which encourages trajectories to remain on the underlying data
manifold, BranchSBM effectively captures the true differentiation dynamics through the combined
influence of the neural interpolant and the path-energy objective. These results demonstrate that
BranchSBM scales reliably to a large number of branches and is particularly advantageous in settings
where intermediate timepoints are sparse or unavailable, allowing the model to infer biologically
meaningful trajectories even with limited temporal supervision.

5.3 CELL-STATE PERTURBATION MODELING

Predicting the effects of perturbation on cell state dynamics is a crucial problem for therapeutic
design. In this experiment, we leverage BranchSBM to model the trajectories of a single cell line
from a single homogeneous state to multiple heterogeneous states after a drug-induced perturbation.
We demonstrate that BranchSBM is capable of modeling high-dimensional gene expression data and
learning branched trajectories that accurately reconstruct diverging perturbed cell populations.

Setup For this experiment, we extract the data for a single cell line (A-549) under perturba-
tion with Clonidine and Trametinib at 5 pL, selected based on cell abundance and response
diversity from the Tahoe-100M dataset (Zhang et al., 2025a). Since both drugs had over
60K genes, we selected the top 2000 highly variable genes (HVGs) based on normalized ex-
pression and performed principal component analysis (PCA) to find the top PCs that capture
the variance in the data. We set the initial distribution at ¢t = 0 to be a control DMSO-
treated cell population and the target distributions at £ = 1 to be distinct clusters in the drug-
treated cell population. After clustering, we identified two divergent clusters in the Clonidine-
perturbed population and three in the Trametinib-perturbed population (Appendix Figure 10).
To determine the weights of each

branch, we take the ratio of each clus-
ter with respect to the total perturbed
cell population (Appendix Table 9).
For both experiments, we simulated
the top 50 PCs, which capture approx-
imately 38% of the variance in the

Table 4: Results for Clonidine Perturbation Modeling for In-
creasing Principal Component Dimensions. Maximum-mean
discrepancy (MMD) across all PCs and Wasserstein distances (VW1
and W) of top 2 PCs between ground truth and reconstructed distri-
butions at t = 1 simulated from the validation data at ¢ = 0. Results
for single-branch SBM (50 PCs) and BranchSBM (2 branches) were
averaged over 5 independent runs.

dataset. To further evaluate the scal-
ability of BranchSBM on simulating

trajectories in high-dimensional state Model RBF-MMD (]) Wi () Wa ()

spaces, we simulated the top 100 and  Single Branch 0.27940.024 512440500  6.14940.463

150 PCs for Clonidine and compared SBM (50 PCs)

the performance across dimensions. BranchSBM

Given that the intermediate trajectory 0 PCs 0.065+0.000  1.076+40.085 1.22440.007

between the control and perturbed 100 PCs 0.0534+0.002  1.83240.174  2.03710.174
150 PCs 0.083+0.001 1.72240.064 1.931+0.035

state is unknown, we assume that the
optimal trajectory both minimizes the
kinetic energy of the drift field while
minimizing the distance from the space of feasible cell states. We define the state cost V;(X;) with
the RBF metric (Kapusniak et al., 2024; Arvanitidis et al., 2016), which pushes the intermediate
trajectory to lie near states represented in the dataset. Further details are provided in Appendix E.5.

Clonidine Perturbation Results  After multi-stage training of BranchSBM with d € {50, 100, 150}
PCs and two branched endpoints (Appendix Figure 6A), we simulated the final perturbed state of each
branch at time £ = 1 from the samples in the initial validation data distribution xq ~ g corresponding
to the control DMSO condition. In Appendix Figure 6C, we demonstrate that BranchSBM accurately
reconstructs the ground-truth distributions of endpoint O (top row) and endpoint 1 (bottom row)
across increasing PC dimensions, capturing the location and spread of the dataset. To prove the
necessity of our branched framework, we simulate the target distribution with only a single endpoint
distribution p; containing both clusters with single-branch SBM and show that it only reconstructs
the population of cells in endpoint 0, which represent cells closest to the control cells along PC2, and
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A Trametinib Perturbation Data B Branch 0
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Branch 2

Mass Evolution Per Branch
Stage 3 Training
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Stage 3 Training Stage 4 Training Stage 4 Training

Weight Per Branch

Time (t=0 > 1) Time (t=0 > 1)

Figure 5: Results for Trametinib Perturbation Modeling with BranchSBM. (A) Gene expression data of
DMSO control (¢ = 0) and cells after treatment with 5 M Trametinib (¢ = 0) with three distinct endpoints
(purple, turquoise, and pink). (B) The simulated endpoints of the top 50 PCs at ¢ = 1 on the validation data for
each branch. (C) The evolution of cumulative energy across t € [0, 1] calculated as (14) along each branched
trajectory after Stage 3 (growth with fixed drift) and Stage 4 (joint) training. (D) The evolution of mass across
t € [0, 1] along each branched trajectory with target weights of w10 = 0.603, w1,1 = 0.255 and w1,2 = 0.142.

fails to differentiate cells in cluster 1 that differ from cluster O in higher-dimensional PCs (Appendix
Figure 6B). Concretely, BranchSBM used across all PC dimensions outperforms single-branch SBM
on only 50 PCs (Table 4), indicating that BranchSBM is required to model complex perturbation
effects in high-dimensional gene expression spaces.

Trametinib Perturbation Results We further show that BranchSBM can scale beyond two
branches, by modeling the perturbed cell population of Trametinib-treated cells, which di-
verge into three distinct clusters (Figure 5A). We trained BranchSBM with three endpoints
and single-branch SBM with one endpoint containing all three clusters on the top 50 PCs.
After simulating the trajectories

over time ¢ € [0, 1] on the vali-
dation cells in the control popu-
lation, we show that BranchSBM

Table 5: Results for Trametinib Perturbation Modeling. Maximum-
mean discrepancy (MMD) across all 50 PCs and Wasserstein distances
(W and W) of top 2 PCs between ground truth and reconstructed

distributions at ¢ = 1 simulated from the validation data at ¢ = 0.
Results were averaged over 5 independent runs.

generates clear trajectories to all
three branched endpoints (Figure
5B) and reconstructs the over-

all target distribution with lower Model RBF-MMD () Wi () W2 (1)
error compared to smgloe-branch Single Branch SBM 0.24640.013 5.42840.234 6.42640.186
SBM (Table 5) IIl Flgure SC BranchSBM 0-053i0.001 0.838i0‘061 0~973i0.050

and D, we plot the evolution of
cumulative energy calculated in
Leneray (0, ¢) (14) and weight of each branch over ¢ € [0, 1], demonstrating that BranchSBM’s multi-
stage training scheme effectively learns the optimal trade-off between minimizing the energy across
trajectories and matching the target weights of each branch.

6 CONCLUSION

In this work, we introduce Branched Schrodinger Bridge Matching (BranchSBM), a novel
matching framework that solves the Generalized Schrodinger Bridge (GSB) problem from an initial
distribution to multiple weighted target distributions through the division of mass across learned
branched trajectories. BranchSBM solves the branched SBM problem as a sum of Unbalanced
Conditional Stochastic Optimal Control tasks, parameterizing branch-specific velocity and growth
rates with neural networks to predict system trajectories with a single inference simulation. Through
applications to nonlinear 3D navigation, cell differentiation, and perturbation-induced gene expression,
we demonstrate that BranchSBM provides a unified and flexible framework for modeling complex
branched dynamics across biological and physical systems.

10
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REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility of BranchSBM. All theoretical derivations
are fully detailed in the main text and Appendix, with proofs of Propositions 1-4 provided in
Sections C.1-C.4. Our multi-stage training procedure is described explicitly, and pseudocode is
given in Algorithm . Experimental setups for each task are described in detail, including synthetic
LiDAR navigation (Appendix E.3), differentiating single-cell dynamics (Appendix E.4), and cell-state
perturbation modeling (Appendix E.5). We specify all hyperparameters and architectures in Table 11,
evaluation metrics such as Wasserstein distances and MMD are defined in Equations 95, 96, and 97,
and additional loss functions are given in Equations 12-17. Figures 1-5 and Tables 1-5 provide full
benchmarking comparisons to baselines. We will release all code, training data splits, and pretrained
BranchSBM models upon publication to allow complete reproducibility.

ETHICS STATEMENT

This work focuses on the development of a theoretical and computational framework for learning
branched Schrodinger bridges in generative modeling. All experiments are conducted on publicly
available or synthetic datasets, including 3D LiDAR manifolds, mouse hematopoiesis sSCRNA-seq data,
and the Tahoe-100M perturbation dataset, and do not involve any personally identifiable, sensitive
human subject data, or animal experiments. BranchSBM provides a general-purpose algorithm for
modeling stochastic processes with branching dynamics, with potential applications in biological
modeling, navigation, and physics. Possible risks, such as misuse in simulating sensitive biomedical
data, are mitigated by the fact that BranchSBM is a general generative framework that requires curated
training datasets and does not directly generate actionable biological interventions. We believe the
potential benefits of this work, in advancing generative modeling theory and enabling more accurate
modeling of branching systems in biology and beyond, outweigh possible risks. Code and models
will be released under a research-only license to encourage responsible use.
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OUTLINE OF APPENDIX

In Appendix A, we provide an extended background on the relevant theory for learning optimal
stochastic bridges (A.1) and simulating trajectories on the data manifold (A.2). In Appendix B, we
discuss the relationship between our proposed formulation for BranchSBM and previous related
works. Appendix C provides the theoretical basis for Sections 3 and 4, including formal proofs for
Proposition 1 (C.1), Proposition 2 (C.2), Proposition 3 (C.3), and Proposition 4 (C.4). In Appendix E,
we describe further details on experiments and hyperparameters used including specific details for
each experiment, including multi-path LiDAR navigation (E.3), modeling differentiating single-cells
(E.4), and modeling cell-state perturbations (E.4). Finally, we provide the pseudo code for the
multi-stage training algorithm in Appendix F.

Notation We denote the state space as X C R? and time interval as ¢ € [0, 1]. The branches are
indexed with k € {0, ..., K'}. We denote initial data distribution at time ¢ = 0 as 7y and the terminal
data distributions at ¢ = 1 as {71'1,]6}]5:0. The joint data distribution is denoted 7 1,5 and a pair
of samples is given by (xg,X1,%) ~ 70,1,5- For simplicity, we denote d(x¢,X1,) = dmo 1. Let
uy (X ) denote the marginal velocity field, g; 1 (X;) denote the growth rate, and p; , (X;) denote the
marginal probability density, where we sometimes drop the input X, for simplicity. In addition, we
denote the conditional velocity field and probability density as wug|o,1,k = Usjo,1,%(X¢ |x0,%1,) and
Ptj0,1,k = Pt]o,1,6(X¢|X0, X1,1) respectively. The optimal values for any quantity are superscripted
with a x symbol. We denote the parameterized flow neural networks as uf7 « With parameters 6 and

the growth neural networks with gf , With parameters ¢. In the context of unbalanced endpoint
distributions, we denote the true initial weight of a sample as wg and the final weight of a sample
from the kth target distribution as w7 ;. The predicted weights generated from the growth dynamics
are given by wy(X}), and we seek to match the predicted weight at time ¢ = 1 given by w; (X3 1) to
the true weight w} ;.. L* denotes the space of square integrable functions and | - || > be the L*-norm
in function space. L denotes the space of essentially bounded functions such that || f||o < oco.

A EXTENDED THEORETICAL BACKGROUND

A.1 LEARNING OPTIMAL STOCHASTIC BRIDGES

Pinned-Down Stochastic Bridges Let Q € M be a Markovian reference path measure that evolves
over t € [0, 1] according to a drift field f;(X;) : R? — R? and stochastic d-dimensional Brownian
motion B; € R%, via the SDE

dXt = ft(Xt)dt + O'tdBt, X() ~ T (20)
Given Q, consider a stochastic process (X¢)¢c[o,1) over the time interval ¢ € [0, 1] pinned-down at
the initial point X = x and final point X; = x; denoted as Q.o (-|xo, X1). Due to the endpoint
conditions, Q.01 is not necessarily Markov, and evolves via the SDE

dXy = {f/(X¢) + 07V log Qi (x1|X¢) Ydt + 00d By, Xo = Xo (21)

where V log Q;4(x1]X¢) is a non-Markovian score function that corrects the drift field f;(X;) of
the reference process such that it points toward the target endpoint x;. Since log Q1 (x1|X¢) is
the log-likelihood that the final state satisfies the condition X; = x;, the gradient defines how the
log-likelihood changes with respect to the changes in the state x at time ¢. The drift moves x in the
direction of the largest increase in log-likelihood given by the score function, which ensures that the
process satisfies X; = x; following the theory of Doob’s h-transform (Rogers & Williams, 2000).
Now, we can define the conditional probability distribution p; as a mixture of pinned-down stochastic
bridges over pairs of endpoints in the data coupling 7y 1 = my ® 71 given by

Pe(x) = m0,1Q¢j0,1(X|x%0,%x1) = /Qt|0,1(X|X0,X1)d7To,1 (22)

To simplify notation, we denote each conditional bridge as Qy|o,1(X¢[x0,X1) = pyjo,1(X¢[x0,X1)
and the joint distribution 7 1 = po,1(x0,x1). Now, we can rewrite the marginal p; as

pe(Xi) = /pt\o,1(Xt\Xo,X1)po71d(Xo,Xl) = Epo. [Prj0,1(Xe|x0,%1)] (23)
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Furthermore, we denote w01 = ugo,1(X¢|x0,%1) = {fi(Xy) + 07 Vxlog Qq¢(x1]X;)} as the
conditional drift that generates p;o1 = ptjo,1(X¢[X0,X1), that satisfies the conditional Fokker-
Planck equation

0 1
P01 = =V - (ug)0,1P¢)0,1) + 502Apt|0,1 24)

Definition 1 (Reciprocal Class). Given our definition of the conditional bridge Q.|o,1, we can define
the reciprocal class, denoted R(Q), of the reference measure Q as the class of path measures that

share the same bridge as Q, defined as R(Q) = {II | II(Xy|x0,x1) = Q(X¢|x0,%1)}.

Markovian Projections Given a mixture of conditional stochastic bridges II = I1y,1Q.o,; under
the reference measure Q that require knowledge of the joint distribution py ;, we aim to project
II to the space of Markovian measures M, where the drift dynamics u;(X;) is only dependent on
the current state X; and require no knowledge on the endpoints. This allows us to parameterize a
Markovian drift u? (X;) that can transport samples from the initial distribution xo ~ m( to samples
from the target distribution x; ~ ;. To do this, we define the Markovian projection of I1 (Shi et al.,
2023; Liu et al., 2023b).

Definition 2 (Markovian Projection). Given a conditional bridge Q. | that evolves via the SDE in
(21), we define a Markovian projection of the mixture of bridges I1 = 115 1Q. 0,1 as a Markov process
M* = proj \((IT) € M with the same marginals as II such that X, ~ I1, for all t € [0,1], X3 ~ m
and evolves via the SDE

dXi = {fi(Xs) + v (Xy) }dt + 04d By (25)
vy (Xt) = UQEHW [th log Q1|t(X1\Xt)|Xt = Xt] (26)

where 11y, is the conditional distribution of X1 under the mixture of bridges 11 and
Vx, log Q1):(X1|X¢) points in the direction of greatest increase in the log-likelihood of the tar-
get endpoint X1 ~ T under the reference process Q. In addition, the Markov projection M*
minimizes the KL-divergence with the mixture of bridges M* = arg minye pm KL(II||M) and can be
obtained by parameterizing v?(X,;) and minimizing the dynamic formulation given by

1
1 2
KL(IT|IM) = E(x) x))~To 1 Ex, 11,0, / %57 { Hofvxt log Q¢ (x1]x¢) — vf(xt)H dt (27
0 20%

In general, the Markovian projection of a reference measure Q does not preserve the conditional
bridge and is not in the reciprocal class R(Q). The unique path measure P that is the Markovian
projection of Q, is in the reciprocal class R(Q), and preserves the endpoint distributions is called the
Schrodinger Bridge.

Definition 3 (Schrodinger Bridge). Given a reference measure Q, a initial distribution g, and final
distribution m1. A path measure P is the unique Schrodinger bridge if it satisfies

1. P is the Markovian projection of Q, such that P = proj ,,(Q).

2. Pis in the reciprocal class of Q, i.e. P € R(Q), such that it preserves the conditional bridge
P(X¢[x0,x1) = Q(X¢|x0,%1).

3. P preserves the endpoint distributions Py = w9 and P; = .

The goal of Schrodinger Bridge Matching (SBM) is to estimate the Schrodinger Bridge that transports
samples from an initial distribution 7 to a final distribution 7; given the optimal reference dynamics.
We further discuss previous approaches to solving the SB problem in Appendix B.

A.2 SIMULATING TRAJECTORIES ON THE DATA MANIFOLD

Riemannian Manifolds and Metrics Since the interpolant x; ,, learned in Stage 1 is defined by
minimizing a non-linear state cost V;(X;), the resulting velocity field u{ (X;) lies on the tangent
bundle 7+ of a smooth d-dimensional manifold Q € R? called a Riemannian manifold. Intuitively,
a Riemannian manifold can be thought of as a smooth surface where the local curvature around a
point x € €) can be approximated by a tangent space 7T, that defines the set of directions in which
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x can move along the manifold. These directions are defined by a set of tangent vectors u € T2,
which pushes the point x along the manifold.

In Stage 2, we seek to parameterize a vector field u? (X;) that minimizes the angle from the tangent
vector X , = O;Xy , at each point x on the manifold optimized in Stage 1. To do this, we must define
the concepts of length and angles on Riemannian manifolds. First, we define a location-dependent
inner product in Riemannian manifolds known as the Riemannian metric gy : Tx§2 X Tx€2 — R that
maps two vectors u, v € Tx{) to a scalar that describes the relative direction and length of the two
vectors. Formally, the Riemannian metric can be written as the billinear and positive definite function

Yu # 0 gx(u,u) >0

G0 28)

gx(u,v) = u' G(x)v = (u, Gv) s.t. {

which defines the norm of a tangent vector as ||ul|,, = /gx(u,u). Now, we can decompose the
Riemannian norm of the tangent vector ||Xy,||4, to get the loss defined in (12) as follows

Lugj (1) = B, (0 1) ~pon [, ] (29)
= B¢, (xo,x1)~po,1 (Xt G(Xe )Xt n) (30)
= K¢, (x0,%1)~po 1 [”kt,n ‘% + (Xt,, (G(xt,n) — I)kt,n” (3D
= By (xo i )mpos [[Xemll3 + Ve(xey)] (32)

where the state cost is defined as V;(x¢ ) = (X¢., (G(X¢,5) — D)Xt ).

Data-Dependent State Cost Following Kapusniak et al. (2024), we define the metric ma-
trix G(xy,,) described previously as the data-dependent LAND and RBF metrics of the form
Granp(x,D) = Ggpr(x,D) = (diag(h(x)) — eI)~! which assigns higher cost (i.e. ||G(x)|
is larger) when x moves away from the support of the dataset D. Specifically, given a dataset

D = {x;}¥,, we define the elements h**N"P(x) € R? that scales down each dimension
j€{1,...,d} in the LAND metric as
(o] I — il
hJLAND(X) = Z(mf —27)?exp <—2021> (33)
i=1

where the exp term is positive when there is a high concentration of data points around the point
x (i.e. ||x — x;|| is small) and approaches O as the concentration of data around x decreases (i.e.

|x — x;|| is large). Writing (X ,,, G(x¢,,)X¢,,) in terms of h;(x), we get
Luraj(m) = B (xo,x1)~po.1 Kty G(Xen)Xe,) (34)
d ( .

Xin);
=E ~ —t (35)
t,(x0,X1)~po,1 ; h; (Xt,n) Te

When h;(x) is large, the loss is minimized, and when h;(x) is small, the loss is scaled up. While
the LAND metric effectively defines the data manifold in low dimensions, in high-dimensional state
spaces, setting a suitable variance o in h¥NP(x;) to ensure that the path does not deviate far from
the data manifold without overfitting is challenging. To overcome this limitation, the RBF metric
clusters the dataset into N, clusters with centroids denoted as %X,, € R and trains a set of parameters
{wWa.n}Ne | to enforce hj(x;) ~ 1 for all points in the dataset such that points x within the data

manifold are also assigned h;(x) ~ 1. Specifically, h?BF is defined as

N, A

B () = ) wn j(x) exp (—gﬂx - fcn||2> (36)
n=1
) -2

K
Ap== | — — %12 37

(i 3 ) @

where C,, denotes the nth cluster, & is a tunable hyperparameter, and \,, ; is the bandwidth of cluster
n the jth dimension. To train the parameters, we minimize the following loss
2

Lrer({wan}) = Y (1 -3 (x))) (38)

x; €D
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In our experiments, we use the LAND metric for the LiDAR and mouse hematopoiesis datasets
with dimensions d = 2 and d = 3 respectively, and the RBF metric for the perturbation modeling
experiment with gene expression data of dimensions d € {50, 100, 150}.

Sampling on the Data Manifold In Riemannian geometry, each Euclidean step At-uf (x) following
the tangent vector 1/ (x) along the manifold requires mapping back to the manifold via an exponential
map Xy a; = exp, (At - u?(x)). In general, computing the exponential map exp, under the
Riemannian metric G(x) requires simulation of the geodesic flow (i.e., approximating the final state
at t = 1 under the initial conditions xo = x and %o = uf (x)).

While the manifold defined by the data-dependent metric G(x, D) induces a Riemannian geometry
in Euclidean space that follows an optimal cost structure, its underlying space is still Euclidean.
G(x, D) just assigns varying costs of moving in the Euclidean space R?. Therefore, we can avoid
computing the exponential map and generate trajectories with simple Euclidean Euler integration
following

Xt+At = X¢ =+ At . ’U,? (Xt) (39)
where At = 1/Nyeps is the discretized step size.

B COMPARISON TO EXISTING WORKS

In this section, we discuss the relationship between our proposed formulation for Branched
Schrédinger Bridge Matching and related previous works. We establish reasons why BranchSBM is
the theoretically optimal formulation to solve the problem of modeling stochastic dynamical systems
with diverging trajectories over time by modeling branched Schrodinger bridges. We conclude by
introducing an alternative perspective of the Branched GSB problem defined in Section 3.2 as the
problem of modeling probabilistic trajectories of dynamic systems with nondeterministic states,
which BranchSBM is well-suited to solve.

B.1 MODELING BRANCHED SCHRODINGER BRIDGES

Schrodinger Bridge Matching Computational methods for solving the Schrodinger Bridge (SB)
problem for predicting trajectories between initial and target distributions have been extensively
studied in existing literature (De Bortoli et al., 2021a; Chen et al., 2021b; Korotin et al., 2023; Bunne
et al., 2022a; Chizat et al., 2018; Liu et al., 2023a; 2022; Shi et al., 2023; Kim et al., 2024; Wang
et al., 2021; Tong et al., 2024b; Peluchetti, 2024; Bunne et al., 2022a; Somnath et al., 2023; Gushchin
et al., 2024; Pavon et al., 2021; Garg et al., 2024; De Bortoli et al., 2024; Shen et al., 2024; Chen
et al., 2023; Noble et al., 2023). Previous work has framed the SB problem as an entropy-regularized
Optimal Control (EOT) problem (Cuturi, 2013; Léonard, 2014; Pavon et al., 2018) or a stochastic
optimal control (SOC) problem (Chen et al., 2016; 2021a; Liu et al., 2023a), which we build on in
this work.

Conditional Stochastic Optimal Control Several works (Chen et al., 2016; 2021a; Liu et al.,
2023a) have reframed the SB problem as a Conditional Stochastic Optimal Control (CondSOC)
problem, which takes the canonical form

1
1
min [ By [luCOIP + VX0 e + By fox0) 0)
¢+ Jo

S.t. dXt = ’U,t(Xt)dt + dBt, XO ~ T (41)
where ¢(X7) : X — R acts as a reconstruction loss that enforces that the distribution of X; ~ p;
matches the true distribution 7. Due to the intractability of g, 71, GSBM (Liu et al., 2023a) uses
spline optimization to learn an optimal Gaussian probability path pt*| 01 = N (¢, v?1,) using only
samples xg ~ my and x; ~ 71 from the initial and terminal distributions. Although GSBM does
not require knowledge of the densities, it follows an iterative optimization scheme that alternates
between matching the drift u; given a fixed marginal p;, and updating the marginal given the drift.
This strategy can get stuck in suboptimal solutions and is sensitive to the initialization of u{. GSBM
is also limited to learning unimodal Gaussian paths between one source and one target distribution
with balanced mass, making it unsuitable for modeling tasks with multimodal terminal distributions
and splitting of mass over multiple distinct paths.
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Regularized Unbalanced Optimal Transport Several previous works have studied the unbalanced
optimal transport problem (Zhang et al., 2025¢; Chen et al., 2021b; Liibeck et al., 2022; Pariset et al.,
2023); however, these approaches address a fundamentally different setting from the unbalanced
Generalized Schrodinger Bridge (GSB) problem considered in this work. Specifically, DeepRUOT
(Zhang et al., 2025c¢) solves the Regularized Unbalanced Optimal Transport (RUOT) problem by
parameterizing the canonical stochastic bridge SDE dX; = f;(X;)dt 4+ o,dB; with a probability
flow ODE given by

1
dX; = {ft(Xt) + QUtzvx logpf(Xt)} dt (42)

uf (X+)

where uf (X;) is the drift of the probability flow ODE that is learned along with the probability density
pY(X;) to derive the drift of the SDE f;(X;). Unlike GSBM (Liu et al., 2023a), which enforces
a hard constraint on the endpoints, DeepRUOT models a probability density flow by minimizing
a reconstruction loss that encourages alignment with both intermediate and terminal distributions.
While effective when intermediate distributions are observed, the method fails to learn meaningful
trajectories in settings where these intermediate snapshots are unavailable, limiting its applicability in
many real-world scenarios.

Learning Diverging Trajectories with Single Target SBM To model diverging trajectories with
single-branch SBM where the target distribution is multi-modal, we can follow a set of Ngmpies
samples from the initial distribution 7y to determine the distribution of samples that end at each of
the modes of the target distribution 7r;. While this can estimate the splitting of mass across different
trajectories, it does not explicitly learn the optimal distribution of mass in the latent space over time.

Furthermore, if the path toward a specific cluster in the target distribution has lower potential than
that of the other clusters, mode collapse could occur, where all samples follow the same trajectory
without reaching the other clusters. BranchSBM learns to generate the correct mass distribution
over each of the target states by optimizing the growth term with respect to the matching 1oss Lmatch
defined in Equation 15.

With the standard SBM formulation, it is also challenging to determine the time at which branching
occurs and the population diverges toward different targets, as all samples follow stochastic trajecto-
ries. With BranchSBM, we model population-wide branching dynamics with growth networks that
are trained to predict the origin of a branch from having zero mass (w; ; = 0) and the rate at which it
grows/shrinks over time 0;wy = g¢.5(X¢,x). The mass of a branch at any given time step can be

simulated with wy x(Xy.1) = wo s, + fy 97 (Xs1)ds.

Branching Dynamics While branched dynamics have been explored in the context of optimal
transport (Lippmann et al., 2022) and Brownian motion (Baradat & Lavenant, 2021), no previous
work has explicitly formulated or solved the branched Schrodinger bridge problem that seeks to
match an initial distribution to a multiple terminal distributions via stochastic bridges. For instance,
the concept of Branching Brownian Motion (BBM) introduced in Baradat & Lavenant (2021) models
a population of particles that each independently follow stochastic trajectories according to standard
Brownian motion with positive diffusivity v > 0. To model branching dynamics, each particle has
an independent branching rate A > 0 that determines the probability that the particle undergoes
a branching event, defined as the particle dying and generating k new particles that then evolve
independently. The number of generated particles is sampled from a probability distribution over
non-negative integers k ~ p = (pi)ken, Where py, is the probability of generating k particles at the
branching event and », . px = 1. Given py, g = Apy defines the rate of branching events that
generate k new particles and define a new probability measure ¢ = (qx)ken called the branching
mechanism.

While BBM defines branching as the generation of additional particles from a single particle following
an independent, temporal probability measure ¢, this model fails to model the division of mass across
multiple trajectories, where total mass remains constant but the mass of each branch changes. In
addition, BBM assumes that each branched particle undergoes independent Brownian motion, without
explicitly defining a terminal state or branch-specific drift. For these reasons, the BBM model is
unsuitable for modeling branching in the majority of real-world contexts, such as cell state transitions,
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where undifferentiated cells split probabilistically into distinct fates rather than proliferating in
number. In such systems, branching reflects a redistribution of probability mass over developmental
trajectories, governed by underlying regulatory patterns rather than purely stochastic reproduction.

Where existing frameworks fall short is in modeling meaningful energy-aware, conditional stochas-
tic trajectories with unbalanced and multi-modal dynamics, which we address in this work.
Specifically, we formulate the Unbalanced CondSOC problem followed by the Branched CondSOC
problem that defines a set of optimal drifts and growth fields that define a set of branched trajectories
following optimal energy-minimizing trajectories defined by the state cost V;(X;). Instead of spline
optimization, we leverage a parameterized network ¢}, (Xo,x1) that learns to predict an optimal
interpolating path given a pair of endpoints.

To model dynamic growth of mass along branched trajectories, we initialize a normalized population
weight of 1 at a primary branch (k = 0), that can split across K branches and generate weights
{wy 1}, that evolve co-currently via learned growth rates {gf 1< - This approach relies on
learning the growth rate over an entire population of samples across all branches rather than learning
independent growth rates of individual samples, which enforces stronger constraints during training
to ensure that the model captures true population growth dynamics.

B.2 MODELING PERTURBATION RESPONSES

In single-cell transcriptomics, perturbations such as gene knockouts, transcription factor induction,
or drug treatments frequently induce cell state transitions that diverge into distinct fates, reflecting
differentiation, resistance, and off-target effects (Shalem et al., 2014; Kramme et al., 2021; Dixit
et al., 2016; Gavriilidis et al., 2024; Zhang et al., 2025a; Kobayashi et al., 2022; Smela et al., 2023;
Pierson Smela et al., 2025; Yeo et al., 2021). Trajectory inference methods for modeling cell-state
dynamics with single-cell RNA sequencing data, including flow matching (Zhang et al., 2025b;
Rohbeck et al., 2025; Atanackovic et al., 2024; Tong et al., 2024b; Wang et al., 2025), Schrodinger
Bridge Matching (Alatkar & Wang, 2025; Tong et al., 2024b), and optimal transport (Zhang et al.,
2025c¢; Tong et al., 2020; Bunne et al., 2023; Driessen et al., 2025; Huguet et al., 2022; Klein et al.,
2024; Yachimura et al., 2024; Schiebinger et al., 2019; Zhang et al., 2021; Bunne et al., 2022b),
have been widely explored. While many algorithms have been developed to predict perturbation
responses (Bunne et al., 2023; Megas et al., 2025; Rohbeck et al., 2025; Roohani et al., 2023; Ryu
et al., 2024), they either predict only the terminal perturbed state without modeling the intermediate
cell-state transitions or model single unimodal perturbation trajectories. Schrodinger Bridge Matching
frameworks like [SF]?M (Tong et al., 2024b) and DeepGSB (Liu et al., 2022) have been shown to
effectively model stochastic transitions in biological systems, offering better scalability and sampling
efficiency than classical OT.

However, these models are still limited to modeling trajectories between a single pair of boundary
distributions, limiting their ability to represent divergent trajectories arising from the same perturbed
initial state. This is a key limitation when modeling processes like fate bifurcation post-perturbation,
where a cell population exposed to the same stimulus may split into multiple phenotypically distinct
outcomes. BranchSBM extends the SBM framework to support multiple terminal marginals, enabling
modeling of stochastic bifurcations in a mathematically principled way. By learning a mixture of
conditional stochastic processes from a common source to multiple target distributions, BranchSBM
can capture the heterogeneity and uncertainty of cell fate decisions under perturbation. Moreover,
it retains the empirical tractability of previous SB-based models, requiring only samples from
distributions, and ensures that intermediate trajectories lie on the manifold of feasible cell states.

B.3 MODELING PROBABILISTIC TRAJECTORIES WITH BRANCHSBM

We conclude the discussion with an alternative interpretation of the Branched Schrodinger Bridge
problem that deviates from the branching population dynamics problem. We instead consider
Branched SB as a probabilistic trajectory matching problem, where each branch is one of multiple
possible trajectories that a sample X, could follow. Since single-path SBM learns only a single
deterministic drift field u(X;) that determines the direction and flow of the SDE dX; = u{ (X;)dt +
od By, the probabilistic aspect of the trajectory remains restricted to Brownian motion via 0dBy. This
fails to capture probabilistic dynamics where probability densities begin concentrated at a single state
but evolve into multi-modal probability densities {p; 1 (X;)}_, over multiple different states, each
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of which evolve according to an SDE dX; = wu; 1, (X:)dt + o, dB; with an independent drift term
uy, (X)) and noise scaling oy.

Where other SBM frameworks fall short, BranchSBM is capable of modeling multiple probabilistic
trajectories, where a system begins at a single deterministic state Xy = x¢ with probability w; o = 1
and evolves via multiple probabilistic trajectories that diverge in the state space governed by the SDEs
dX: = uy 1 (X¢)dt+o,dBy. Attime ¢, the system exists in a non-deterministic superposition of states

{ X1, wi YK, each with a probability w; 5 such that >4 w{, = 1. In addition, BranchSBM
can model the evolution of the probability weights wf . by parameterizing the probabilistic growth

rates { gff . 1S, that preserve conservation of probability mass ZkK:o wf , = latall timest € [0, 1]

by minimizing the mass 10ss L5 (@) (16). This problem is prevalent in many biological and physical
systems, where a system does not exist in a single deterministic state, but rather a superposition over
a distribution of states.

Table 6: BranchSBM enables robust modeling of branched Schroodinger bridges compared to existing
frameworks. BranchSBM can model both branching and unbalanced trajectories, follows intermediate trajecto-
ries governed by a task-specific state cost, requires only endpoint samples for training, and samples trajectories
from only a single sample from the starting distribution.

Method Models Branching Models Intermediate Requirements Requirements
Unbalanced Dynamics for Training for Sampling
Generalized SBM No No Entropic OT Samples from Endpoints
Liu et al. (2023a) with learned o, T1 (x0,X1) ~ Ph 1
drift u?
DeepRUOT (Zhang Requires simulating multiple Growth rate Regularized OT ~ Samples from Sample
et al., 2025¢) samples 97 (X3) with learned T, M1 X ~ 0
drift ¢ and
density p?
BranchSBM Simulates divergent trajectories Branched Branched drifts ~ Samples from Sample
(Ours) and terminal states from single growth rates {uf k }i(:() that 7o and clusters X0 ~ o
sample xo {qf’k (XM, minimize {ma}b,

state-cost V;

C THEORETICAL PROOFS

C.1 PROOF OF PROPOSITION 1

Proposition 1 (Unbalanced Conditional Stochastic Optimal Control) Suppose the marginal
density can be decomposed as p.(X;) = «[ﬂ'o ) Pt (X¢|x0, X1)po,1 (X0, X1)dmo,1, where T 1 is a fixed
joint coupling of the data. Then, we can identify the optimal drift u} and growth g that solves the

Unbalanced GSB problem in (4) by minimizing the Unbalanced Conditional Stochastic Optimal
Control objective given by

. ! 1
min i, ,x; ), {/0 Epijo,1 {iHut(XJXO»Xl)HQ +Vt(Xt)} wt(Xt)dt} (43)

ut,gt

S.1. dXt = U,t(Xt|X0,X1)dt =+ O'dBt, Xo = Xo, X1 = X1 'l,UO(XO) = ’LUE;7 ’LU1(X1) = wf (44)
where w; = wo + fot 9s(Xs)ds is the time-dependent weight initialized at w, uy is the drift, g; is
the growth rate, and my 1 is the weighted coupling of paired endpoints (Xo, wo, X1, Ww1) ~ 7o 1.

Proof. We define the Unbalanced Generalized Schrodinger Bridge problem as the solution (uy, pt, g¢)
to the energy minimization problem such that the unbalanced Fokker-Planck equation is satisfied.

1 1 t
irtli;i/o E,, [2||ut(Xt)||2 + Vt(Xt)} (wo + /OgS(XS)ds) dt (45)
s.t %pt(Xt) =-V- (ut(Xt)pt(Xt)) + C’;Apt(Xt) + gt(Xt)pt(Xt) (46)
- Po = To, P1 = T1
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Under the assumption that the joint probability po 1(xo, X1) is fixed over all times ¢ € [0, 1] and the
marginal probability can be factorized as p;(X;) = E,, , [p¢(X¢[|x0,%1)], we can decompose the
minimization objective into

/OlEm Bnut(xt)nhvt(xt)} (woJr/tgs(Xs)ds) dt @7)

0

= [ BB [l +vicxo) (wo+ [

1 1 t .
:Ep011/0 Ep, 0, bHUt(Xt)HQ +Vt(Xt)] (wo +/Ogs(Xs)d5> dt (Fubini’s theorem)

t

gs(X S)ds) dt (law of total expectation)
0

which can be solved by identifying the conditional drift u; that minimizes the expected objective
value over all endpoint samples (x¢,X1) ~ po,1. Under similar assumptions, we can decompose all
terms in the Fokker-Planck equation. For the left-hand side, we have:

0

0 0
apt(Xt) =5 /770,1 Pe(X¢[x0,%1)po,1 (X0, X1)dm0,1 = E(xg x1) om0 {mpt(XdXo,Xl)} (48)

For the divergence term, we have:

Vo (ue(Xe)pe(Xy)) = V- (Ut(Xt)/ pt(XtX07X1)p0,1(X07X1)d7To,1>

_v. ( / ut(Xapt(XtxO,xl)po,l(xO,xl)dwo,1> 49)
0,1

By Fubini’s Theorem and the linearity of the divergence operator, we can switch the order of
integration to get

Vo (ue(Xe)pe(Xy)) = / V- (Ut(Xt)pt(XHXo,X1)>p0,1(X07X1)d7T0,1

0,1
= E(Xo,xl)Nﬂ'o,l |:V : (ut(Xt)pt(Xt|x07 Xl))} (50)
For the Laplacian term, we have:
o2 o?
?Apt(Xt) = 7V' (th(Xt))
o2

= ?V‘ (V/ pt(Xt|Xo7X1)P0,1(X0,Xl)dﬂo,1>

0.2
= 7/ (v . th(XtX07X1))p0,1(X07X1)d7T071
70,1

2
g
= 5By [APro,1 (X [%0,%1)] (51)

For the growth term, we have:

9t (Xe)pe(Xy) = gt(Xt)/ Pe(X¢|%0,X1)po,1(X0,X1)dmo 1

70,1

=/ 9¢(X)pe (Xt |x0, X1)po,1 (X0, X1)dmo 1
70,1

— Eiayeryomnn {gt(xopt(XAxO, x1) (52)

Combining all the terms of the Fokker-Planck equation, we have shown that (46) can be rewritten as

0
apt(Xt|Xo7X1) = =V (wpe(Xelx0,%1)) + Aprjo,1 (Xilx0, X1) + g0 (Xilx0,x1)  (53)

Therefore, the Unbalanced GSB problem is equivalent to solving the Unbalanced CondSOC problem,
and we conclude our proof of Proposition 1.
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C.2 PROOF OF PROPOSITION 2

Proposition 2 (Branched Conditional Stochastic Optimal Control) For each branch, let
Pek(Xe k) = Epo1p [Pek (X kX0, X1,1)], where mo.1 1 is the joint coupling distribution of sam-
ples xg ~ mo from the initial distribution and X1 j, ~ ™1 1, from the kth target distribution. Then,
we can identify the set of optimal drift and growth functions {u; ks 97, k}szo that solve the Branched
GSB problem in (3.2) by minimizing the sum of Unbalanced CondSOC objectives given by

1
. 1
min IE(xo,xl,o)Nﬂ'o,l.o/D {El’tlo,l,o |:§Hui,0(Xt,0)”2 + Vt(Xt,O):| Wt,0

{ut,kvgt,k}f=0

K 1
1
+ ZE(Xval,k)Nﬂ'O,l,k / El’ﬂo,l,k |:§Huf,k(xt,k)“2 + Vt(Xt,k):| wt,k}dt (54)
k=1 0
st dXp g = ugk(Xek)dt + 0dBy, Xo = %0, X1,5 = X1,k, Wo,k = Ok=0, W1,k = Wi,k (55)
where wyo = 1+ fot 9s,0(Xs,0)ds is the weight of the primary paths initialized at 1 and wy j, =
fot 9s.k (X5, )ds are the weights of the K secondary branches initialized at 0.

Proof. We extend the proof of Proposition | to the branching case by defining each branch £ as an
independent Unbalanced Generalized Schrodinger Bridge problem in (4) given by

1 t
. 1
win [, [fnut,k(Xt,k)n? n ww} (w +/ gs,k<Xs,k>ds) dt (56)
Ut ks 9tk Jo ! 2 0
ot 4 aPek(Xer) = =V (uer(Xo)per(Xew)) + AP k(X k) + 9o (Xe )i (Xek) 57)
Po = To, Ptk = Ttk

such that each branch independently solves the Fokker-Planck equation defined as % Die=—V-

(we ki) + %QApt’ k- Now, we show that the sum of unbalanced CondSOC problems still satisfies
the global Fokker-Planck equation

0 o?
5l = =V - (up) + 7Apt (58)
where we define p; as the weighted sum of the branched distributions given by
K
p(Xe) =Y wikpr k(X)) (59)
k=0

To obtain an expression for the global Fokker-Planck equation, we differentiate both sides and
substitute the branched FPE as follows

0 { S
Pt = =7 Wt kPt k
ot T ot | =

0 T 0 0
apt = Z -wt,k (apm> + (awt,k) pt,k:|

k=0
K r
0 o?
oy = E -V V+ A
5P 2 _wt,k ( (ue,kpe,k) + 3 pt,k) +gt,kpt,k:|

(substitute branched FPE and Oywy k. = gi,x)

K -
0 o?
=Pt = Z —wi,kV - (W, kPe,k) + wt,k?Apt,k + gt,kpt,k:|

ot
k=0 *
P K K o2 K
5Pt = Z (—wekV - (ut,kPek)) + Zwt,k?APt,k + th,kpt,k (60)
k=0 k=0 k=0
By linearity of the Laplacian, the diffusion term can be rewritten as
K 2 2 K 2
o o o
kz_owt,kgApt,k = 7A <kz_0wt,kpt,k> = 7Apt (61)

Pt
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Since the global growth term ZkK:O 9t,kD¢. % 18 the sum of the growth dynamics across all branches
and is separate from the drift and diffusion dynamics, it doesn’t alter the direction or motion of
particles along the branched fields. Thus, both the diffusion and growth terms satisfy the global FPE.

Now, we set the divergence term in (60) equal to the global divergence V - (uyp;) and derive
the expression for the total drift field u;(X;) that satisfies the global FPE. By the linearity of the
divergence operator, we get

—V - (uipe) = Y (—wenV - (uskpr))

k=0
K
=V (wpr) = =V - (Z wt,kut,kpt,k>
k=0
L
=V (up) = -V | = Zwt,kut,kpz,k Dt (62)
e

ut

Under the global FPE constraint, the drift u; is defined as the mass-weighted average of the drift
fields for each branch, given by u(X;) = m Zf:o wy k(X4 ) (Xe)pek (Xy). Intuitively, this
means that in the global context, for any X; = x;, the drift of state X; along the dynamics of branch
k is scaled by the weight of x; at time ¢ along branch k and the ratio of probability density of x;
under branch k over the total probability density of x; across all branches. Therefore, our definition
of the weighted drift decoupled over individual branches satisfies the global FPE equation in (58),
and this concludes the proof of Proposition 2.

Remark 1 (Reduction to Single Path GSBM) When g, o(X;,0) = 0 and g; (X ) = 0 for all
t€[0,1]and k € {1,..., K}, then the Branched CondSOC problem is the solution to the single
path GSB problem given by

dXt = Ut(Xt)dt + O'dBt

63
Xo ~mo, X1~m (©3)

. 1
win [ B, |3lCX01? + Vx| ar s {

where the probability density po,1(X¢[x0,X1) is conditioned explicitly on a pair of endpoints
(x0,%1) ~ mo,1 drawn from the joint distribution.

C.3 PROOF OF PROPOSITION 3

Proposition 3 (Solving the GSB Problem with Stage 1 and 2 Training) Stage I and Stage 2
training yield the optimal drift u; (X;) that generates the optimal marginal probability distribution
p; (X¢) that solves the GSB problem in (3).

Proof. Let the marginal probability distribution p} (X;) and corresponding drift «} (X;) define the
optimal solution to the GSB problem. It suffices to show that

1. Given (x¢,x1) ~ 7,1, Stage 1 training with the trajectory loss L,j(n) (12) yields the inter-
polant x; , and time-derivative x; ,, that define p; (X).

2. Given p;(X;), Stage 2 training with the explicit flow matching loss Lqow(6) (13) yields the
optimal drift u}(X;).
To prove Part 1, we establish the following Lemma.

Lemma 1. Given the Markovian reference process Q with drift vf (X;) that is the minimizer of the
unconstrained GSB problem in (3), Stage I training returns the velocity field X ,, that generates

reciprocal projection I1* = Projr(q) (P) of the path measure P = py 1.

Proof of Lemma. 1t suffices to prove that X7, minimizes the KL-divergence with v} (X;) under
endpoint constraints Xy = xg and X; = x;.
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Consider the unconstrained Markovian drift v} that is the minimizer of the energy function given by

1
* . 1
v} :argmln/ E,, {2vt(Xt)||2 + Vi(Xy)| dt (64)
Ut 0

The class of interpolants is given by parameters 7 is defined as

X = (1= t)x0 + tx1 + t(1 — )1 (%0, %X1) (65)
Xy = X1 — X0 + t(1 — t)prn(x0,%x1) + (1 — 2) 0 (%0, X1) (66)

Stage 1 training yields the optimal interpolant X7 ,, that minimizes the energy function across all time
points ¢ € [0, 1], defined as

1

. . 1.

X;n = arg m}n/ E,, |:2X;77(X0axl)2 + Vt(Xt*,n) dt (67)
t,m

Therefore, we aim to prove that X}, is the velocity field corresponding to II* = pg,1Q. 0,1, which is

the reciprocal projection of pg ; onto the class of path measures that share the same bridge marginals

conditioned on a pair of endpoints, called the reciprocal class R(Q) (Léonard, 2014).

By definition, the reciprocal projection II* is defined as the minimizer of the KL-divergence with
P = py 1 that lies within the reciprocal class R(Q) of measures that match the bridge conditions of

IT* = arg minpeg @ KL(P|II) (68)

The reciprocal projection matches the endpoint constraints of P while following the bridge condi-
tionals Q.jo,1 = Q(-|Xo = x0, X1 = x1) (Léonard, 2014). Therefore, we can write the generating
velocity field x7 ,, as

%7 (%0, %1) = Ex,~q [%¢| Xo = %0, X1 = x1] (69)

Since both vy generating Q and x}, minimize the same energy function, the objective in (68) reduces
to determining X7 ,, that is the minimizer of the dynamic formulation of KL divergence between the
reference process @ and all path measures P = p ; that preserve endpoint constraints given by

x; ,, = argmin KL(P(|Q) (70)
Xt
. ! 1 <k * 2
= arg r}{un (x0,%1)~Ppo,1 0 §||xt,n — U (Xt,n)H dt (71)
t,m

Therefore, we conclude that )'c;n generates the reciprocal projection IT* = po 1Q.g,1-

By Lemma 1, we know that v} is the optimal drift energy function in the GSB problem without

endpoint constraints and X7, is the reciprocal projection that follows the dynamics of v; while

preserving the coupling po,1. Therefore, we can define u3, | (X¢[x0,%1) = %7, (%0,%1) as the

conditional drift that generates the conditional probability distribution pfl 0.1(X¢t|x0,x1) that satisfies
the Fokker-Planck equation

1o} 1
P01 = =V - (u4)0,1P¢)0,1) + 502Apt|0,1 (72)

Given that pt*l 0.1(X¢|x0,x1) is the optimal bridge that solves the GSB problem for a pair of endpoints
(x0,%1) ~ po,1, we can define the marginal probability distribution p} as the mixture of bridges

p: = E(xg,x1)~ﬂ"0,1 P:\0,1(Xt|xoy Xl) (73)

which concludes the proof of Part 1.

For Part 2 of the proof, we aim to show that Stage 2 training yields the optimal Markovian drift
uy (X¢) that generates py (X¢). To do this, we write the Fokker-Planck equation for p} (X;) in terms
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of the conditional bridge py|o,; and drift field ;o ; to extract an expression for u; (X;) that satisfies
it. Starting from the definition of p}, we have

Py = /p:|o,1p0,1dxo,1
%P? = / (;Pt*|o,1> Po,1dX0,1
= / (V “(ug0,1pij0,1) + ;U2Apt*o,1> P0,1dX0,1
= / (—V : (ut|0,1p:|0,1)) Po,1dX0,1 +/ (;02Ap:|0,1> Po,10dX0,1
=-V. /(Ut|0,1pt*\o,1)P0,1dX0,1 + %UZA/PQOJPO,MXOJ

1
=-V- /(Utlo,lpfm,l):no,ldxo,l +502A/P?\o,1po,1dxo,1 (74)

*

(urp}) Py

For (74) to satisfy the Fokker-Planck equation, we set the first term equal to (u}p}) and solve for u}
to get

uipi = [ (i, o )poadros 75)
. Er, . {“ao,lpz\o,l]
up = : (76)
Dy

Therefore, the optimal Markovian drift (or Markovian projection) is the average of the conditional
drifts defined in part 1 as ut*‘o.l = X7, over the joint distribution po 1. This means that the minimizer

of the conditional flow matching loss Lgow(#) in (13) defined as the expected mean-squared error
between a Markovian drift field u.(X;) and X, OVer pairs (x0,X1) ~ po,1 in the dataset is the
optimal drift u} (X;) that solves the GSB problem.

1
up (X,) = argmin Looy (6) = argmin /0 E o x1)mpos [y — g (Xe)|[2dt an

U

which concludes the proof of Proposition 3. Since the drift for each branch uﬁ (X¢) are trained
independently in Stage 2, we can extend this result across all K + 1 branches and conclude that the
sequential Stage 1 and Stage 2 training procedures yields the optimal set of drifts {ut* k}szo that

generate the optimal probability paths {p;‘ i HE_, that solves the GSB problem for each branch.

C.4 PROOF OF PROPOSITION 4

Lemma 2. Suppose the optimal drift field uy . : R? — R? and probability density Pi R? —» R
that minimizes the GSB problem in (3) is well-defined over the state space X C R for each branch.
Then, the optimal weight wy ;. at any of the secondary branches k € {1,..., K} is non-decreasing
over the interval t € [0,1]. Equivalently, the optimal growth rates g; ,(X;) > 0 for all t € [0, 1].

Proof. We will prove this lemma by contradiction. Suppose there exists a branch & that decreases in
weight over the time interval [¢;, t3] for 0 < ¢; < ¢t < 1, such that wy, ,, > wy, . We know that
the target weight at time ¢ = 1 is non-negative wy ; > 0 and the total weight across all branches

is conserved (i.e. Ef:o wy 1 (X¢) = w®@) and non-decreasing (i.e. d;w®@ > 0 for all ¢ € [0, 1]).

In this proof, we let & (t1,t2) = :12 [% [[u 1 (XI5 + Vt(Xt)} denote the energy of following the
dynamics of the kth branch over the time interval [tq, t5].

Then, there can only be two possible reasons for the loss of mass along a branch k: (1) the mass is
destroyed, or (2) the mass is transferred to a different branch j # k.
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Case 1. The destruction of mass directly violates the assumption that the total mass across all
branches is conserved and non-decreasing. So, we only need to consider the possibility of Case 2.

Case 2. Suppose the mass is transferred to a different branch j # k over the interval [t1,t5]. By
Proposition 3, Stage 1 and 2 training yields the optimal velocity fields {u;} , (X;)};_, that generate
the optimal interpolating probability density {p; , (X;)}/, that independently minimize the GSB
problem in (3). '

If mass is transferred from branch k to branch j over the interval [t1, 2], it must be compensated
for over time [t2, 1] to reach the target weight wq j, > 0. Then, without loss of generality, we can
consider two sub-cases: (1.1) the mass is compensated from the primary branch, and (1.2) the mass
that diverges to the jth branch returns to the kth branch following a continuous trajectory.

Case 1.1. Since all mass along the K secondary branches originates from the primary branch, this
implies that there exists a positive weight w > 0 that first follows the dynamics of branch k and
is transferred to branch j, contributing to the final weight of the jth endpoint, and the total weight
supplied from the primary branch to branch & is w; , + w. Given that each branch has no capacity
constraints, it follows that the dynamics along branch k over [0, t1] and branch j over [¢1, 1] is optimal
for all mass reaching endpoint j. Formally, we express this in terms of energy as

Ek(0,t1) + &5(t1,1) < £;(0,1) (78)
which contradicts the assumption that the dynamics of branch j given by (u; ;, p; ;) are optimal over
the state space X.

Case 1.2. In this case, there exists a positive mass that follows the dynamics of branch k over the
interval [0, t1], the dynamics of branch j over [¢;, t2], and back to branch & over [to, 1]. Similarly to
Case 1.1, given that each branch has no capacity constraints, this implies that this concatenation of
dynamics is optimal for all mass reaching endpoint k. Expressing in terms of energy, we have

5k(07t1) —|—5j(t1,t2) —|—€k(t2,1) < 5k(071) (79)
which contradicts the assumption that the dynamics of branch k given by (u;‘ &> p; ,) are optimal over
the state space X.

Given that both sub-cases lead to a contradiction of the optimality assumption, we conclude that mass
along each branch cannot be transferred to another branch and is non-decreasing over ¢ € [0, 1].

Note that we do not need to consider the case where the mass is compensated from another secondary
branch ¢ # j, as this would imply that mass is transferred from branch ¢ to branch k, which is not
possible under the same argument.

Proposition 4 (Existence of Optimal Growth Functions) Assume the state space X C R% is a
bounded domain within RY. Let the optimal probability density of branch k be a known non-negative
function bounded in [0, 1], denoted as p; ;= X x [0,1] — [0,1] € L=(X x [0,1]). By Lemma 2, we

can define the set of feasible growth functions in the set of square-integrable functions L? as
G:={9="(910,- - 90k) € L*(X x [0,1]) | gex(x) : X x [0,1]] = R, grx(x) >0}  (80)

Let the growth loss be the functional L(g) : L*(X x [0,1]) — R. Then, there exists an optimal
function g* = (g5, .-, 97 r) € L? where 95k € G such that L(g*) = infyeg L(g) which can be
obtained by minimizing L(g) over G.

Proof. This proof draws on several concepts from functional and convex analysis. For a comprehensive
background on these concepts, see Benesova & Kruzik (2016). We follow the direct method in the
calculus of variations (Dacorogna, 1989) for proving there exists a minimizer for the functional
Legrowtn (g) in (17) with the following steps:

1. Show that the set G of feasible growth functions is convex and closed under the weak topology
of the set of square integrable functions L? (Lemma 3).

2. Show that the minimizing sequence {g(™} has a weakly convergent subsequence (Lemma 4).
3. Show that the functional Egmwth(g) is weakly lower semi-continuous (Lemmas 5, 6, 7, 8).

We prove each with a sequence of Lemmas.
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Lemma 3. The set of feasible growth functions G == {gix(x) : X x [0,1] - R € L*(X x
[0,1]) | g¢.x(x) > 0} is convex and closed over the weak topology of L>.

Proof. We first prove convexity and then closure under the weak topology of L?.

Proof of Convexity. To prove that the set of functions G is convex, we first define what it means for a
set of functions to be convex.

Definition 4 (Convex Set). A set of functions G is said to be convex if any convex combination of two
functions in the set g1, g2 € G is also in the set. Formally, G if

Vg.g €G, VA€0,1], ¢ =Xg+(1-N)g €G (81)

Recall our definition of G as the set of functions that return strictly non-negative values:
G = {gr(x): X x[0,1] >R e L*(X x[0,1]) | gr.x(x) >0} (82)
Given any \ € [0, 1], we have

91k (%) = Ager(x) + (1 = A)g} (%)
grE(X) = A0+ (1=1)-0
0

grp(x) >

)

(83)
which means gg\7 s € G and G is convex.

Proof of Closure. First, we define what it means to be closed under the weak topology of L?.
Definition 5 (Closure Under Weak Topology of L?). A set of functions G is said to be closed in the
weak topology of L? if the statement is true: if a sequence of functions {g(”) cgMeg } indexed by
n, converges to some function ¢\ € L? as n — oo, then ¢(>) € G.

To show that G is closed under weak topology of L?, we need to show that all sequences {gg,? :

gt(l) € G} converge to g € G as n — oo, such that g > 0. The proof follows directly from Fatou’s
Lemma (Ekeland & Temam, 1999) which states that given a sequence of non-negative, measurable

functions { gi? : gt(T,? € G}, the following is true

og/ lim inf gt(?(x)dxglim inf /gi?(x)dx (Fatou’s Lemma)
X n—oo ’ n—oo Jy ’

meaning that the limit of a converging sequence of non-negative functions g,foko) is also non-negative

over the state space X, and thus is in the set of feasible growth functions gio,:) € G, concluding our
proof.
Lemma 4. Given a minimizing sequence {g\™) € G} under the functional L(g) : L?> — R such

that L(g"™) — inf eg L(g), there exists a subsequence {g\") € G} that converges weakly in L? to
some limit g* € G.

Proof. 1t suffices to show the following:

1. The functional {g(™} is bounded in L? such that there exists a positive value M where
19|12 < M for all n.

2. The space of feasible functions G is reflexive, such that all bounded sequences have a weakly
convergent subsequence in L2.

The proof of Part 1 follows from the growth penalty term in £(g) defined as the squared-norm ||g||
of the growth functional. This term ensures that £(g) is coercive, such that

g™ = 00 = L(g™) = o (84)

which ensures that the sequence does not diverge to infinity in norm without incurring a penalty from
the loss functional. Given that £(g(™) — inf,eg £(g), where inf,cg £(g) < oo, it follows from
coercivity that [|g(™ || > does not diverge to infinity and {¢(™} is bounded in L?.
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The proof of Part 2 follows from the well-established result that for 1 < p < oo, the space L? is
reflexive (Beauzamy, 2011). Therefore, by reflexivity of L2, we have that every minimizing sequence
{g{™} has a weakly convergent subsequence {g(")}, such that (") — g* in L?, concluding our
proof.

Before proving that each component of the loss functional is weakly lower semi-continuous, we
establish the definitions for weakly continuous and weakly lower semi-continuous functionals.

Definition 6 (Weakly Continuous Functionals). A functional £ : L?> — R is said to be weakly
continuous if it satisfies

n—oo = g™ =g = L(¢g™) = L(g) (85)
such that if a sequence {g(") cg™ e G} converges g™ — g asn — oo, then the functional also
converges L(g™) — L(g).
Definition 7 (Weakly Lower Semi-Continuous Functionals). A functional L : L?> — R is said to be

weakly lower semi-continuous (w.l.s.c.) if it satisfies

n—oo = ¢ =g = lim inf L£(g"™)> L(g) (86)

n—oo

such that if a sequence {g(”) g e G} converges g™ — g asn — oo, then the functional is
lower bounded by L(g). By definition, weak continuity implies w.1.s.c.

Lemma 5. The functional L,uuei(g) : L? — R defined as

K 1 2
['matz‘h(g) - ZEp:,k (wO,k +/ gt,kdt - w{,k)
k 0

0

I
M=

1 2
<w0,k + / Eps  [g¢,6]dt — wi, k) (linearity of expectation)
o :

o

=0

K 1 2
= Z (/ / Pi kgt pdxdt + c> (87)
P o Jx

=0

where ¢ = wg i, — w3 . is a constant, is weakly lower semi-continuous in L? (w.ls.c.).

Proof of Lemma. First, we show that the map ¢(g¢ ) = f x Pf 19t,kdx is a bounded linear functional

in L?. By linearity of integration, we have that for two functions g,¢' € G, ¢(cg + 'g’) =

co(g) + cd(g'), so ¢(+) is a linear map. To establish that ¢(-) is bounded in L?, we must show that
lo(9)| < ClglL,- By the Cauchy-Schwarz Inequality (Steele, 2004), we have

16(g)] = [Pt 91| = ' / p:,kgt,kdx\ < otz llgeilce (88)
X

which is valid as p} ., gk € L?. Since I} x|l L= is a fixed constant with respect to gk, we have
shown that |¢(g¢x)| < C|lgt.k ||, and g: 1 is bounded. By the definition of weak topology on L2,
all bounded linear functionals are weakly continuous, such that lim,, ., ¢(¢(™) — ¢(g). Given
that ¢(g) is weakly continuous, as g(™) — g*, we have ¢(g(™) — ¢(g*). Since the square function
(+) = (+)? is convex and continuous and bounded below by 1) > 0, the function does not contain
discontinuities and lim,, ;o (¢(g™) — ¢)? > (¢(g*) — ¢)?, which is the definition of a w.Ls.c.
functional. Since the sum of w.l.s.c. functionals is also w.l.s.c., we conclude our proof.

Lemma 6. The functional Lenergy(g) : L? — R defined as

t

t 1
Lenergy(9) :/0 Ep;,k [§||Ut,k(Xt)H2 +Vt(Xt)] (wo,k +/0 gs,k(Xt)dS) dt

1 t
= / a(t) <wo,k —I—/ / p;kgs,kdxds> dt (linearity of expectation)
0 0o Jx

where a.(t) is a constant not dependent on gy i, is weakly lower semi-continuous in L? (w.ls.c.).

31



Under review as a conference paper at ICLR 2026

Proof of Lemma. Following a similar proof as Lemma 5, we have that the map ¢(gs ;) =
Jx P} 1 9s,kdX is a bounded linear functional, and thus is weakly continuous in L?. Given that

¢(g) is bounded, ¢ € [0, 1], and linearity of integration holds, the integral of ¢(g) over the interval
s € [0,t] remains a bounded linear functional in L2, and thus is weakly continuous in L2. Following

similar logic, the outer integral fol a(t) (w(),k + f(f d)(g)ds) dt is also a bounded linear functional

given that both «(t) and wy j, are constants, and we have shown that Lenerey (¢) is weakly continuous.
Since weak continuity implies w.l.s.c. and the sum of w.Ls.c. functionals is also w.l.s.c., we conclude
our proof.

Lemma 7. The mass loss functional L,55(g) : L? = R defined as

>

k=0

1 [ K t 2
= / |:Z (wo,k + / Eyp, » [gt,k]) - wff’ml] dt (linearity of expectation)
0 0

k=0
/
0

K ¢ 2
1+ Z/ Ept,k,[gt,k} - wltom[:| dt (39)
k=00
total

where wi'" is a constant not dependent on g, i, is weakly lower semi-continuous in (L?)K+1
(w.L.s.c.). Note that we do not need to account for the negative penalty loss as we assume the growth
function is strictly positive.

2
wf’k(xt,k) — wioml] dt

1
Emass(g) = / E{Pt,k}kK—o
0 —

Proof of Lemma. Following a similar proof as Lemma 5, we have that the map ¢(g) = [ x D5 k9s,kdx

is a bounded linear functional, and thus is weakly continuous in L2. Since the sum of bounded linear
functionals across K + 1 branches is also weakly continuous in L2, following similar logic to Lemma
5, the composition of a weakly continuous functional with the convex and continuous square map is
w.Ls.c.. Since the sum of w.Ls.c. functionals is also w.L.s.c., Lmass(g) is w.l.s.c., which concludes our
proof.

Lemma 8. The combined Stage 3 training 10ss Lgrowin(9) = AenergyLenergy(9) + Amarch Lmaren (9) +
AmassLmass(9) + Ngrowm|| ]| L2 is weak lower semi-continuous in L? (wls.c.).

Proof of Lemma. Given the weighted sum of w.l.s.c. functionals Ef\il A:L;i(g) that each satisfy
lim,, o0 £i(g™) > L;(g) for constants {\; }, for a converging sequence ¢(™) — g asn — oo, it
follows easily that

M M
lim » Li(g™) > Lilg) (90)
=1 =1

By definition, the norm in L? is lower semi-continuous in the strong topology and thus the weak
topology. Since Lenergys Lmatch, aNd Liags are w.l.s.c. by Lemmas 5, 6, and 7, we conclude that
Legrowin (g) is w.Ls.c., which concludes the proof.

In total, we have shown:

1. The set G of feasible growth functions is convex and closed under the weak topology of the set
of square integrable functions L? (Lemma 3).

2. The minimizing sequence { g(”)} has a weakly convergent subsequence (Lemma 4).

3. The functional £(g) is weakly lower semi-continuous (Lemmas 5, 6, 7, 8).

Thus, by the direct method in the calculus of variations, we have shown

39" = (970---,900) €G st L{g") = inf L(g) O1)

which concludes the proof of Proposition 4.
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Figure 6: Results for Clonidine Perturbation Modeling. (A) Gene expression data of DMSO control (set to
t = 0) and cell states (set to ¢ = 1) after Clonidine perturbation with two distinct endpoints (pink and purple).
(B) The simulated trajectories for single-branch SBM on the top 50 PCs with both clusters. All samples take the
low-energy path without reaching the second cluster. (C) The simulated endpoints of the top 50, 100, and 150
PCs at t = 1 on the validation data for each branch.

D ADDITIONAL EXPERIMENTS AND DISCUSSIONS

D.1 COMPARISON TO SINGLE-BRANCH SCHRODINGER BRIDGE MATCHING

Setup For each experiment, we compared the performance of BranchSBM against single-branch
SBM. Instead of clustering the data at ¢ = 1 into distinct endpoint distributions, we left the unclustered
data as a single target distribution p; and let the model learn the optimal Schrédinger Bridge from
the initial distribution 7. For the single-branch task, we assume mass conservation and set the
weights for all samples from 7y and 77 to 1.0, while keeping the model architecture, state-cost V%,
and hyperparameters equivalent to BranchSBM. Since single-branch SBM does not require modeling
the growth of separate branches, we train only Stages 1 and 2 to optimize the drift field u{ of the
single branch. For evaluation, the trajectories of validation samples from the initial distribution
xo ~ 7o were simulated over ¢t € [0, 1] and compared with the ground truth distribution at ¢ = 1.
For BranchSBM, we take the overall distribution generated across all branches and compare it to the
overall ground truth distribution.

Modeling Mouse Hematopoiesis Differentiation In Figure 7, we provide a side-by-side compari-
son of the reconstructed distributions at time ¢; and 2 using BranchSBM (top) with two branches
and single-branch SBM (bottom), as well as the learned trajectories over the time interval ¢ € [¢1, 2].
While single-branch SBM produces samples that loosely capture the two target cell fates, the resulting
distributions display high variance and fail to align with the true differentiation trajectories. In
contrast, BranchSBM generates intermediate distributions that are sharply concentrated along the
correct developmental paths, more faithfully reflecting the underlying branching structure of the data.

Modeling Clonidine and Trametinib Perturbation For both Clonidine and Trametinib, we
performed the single-branch experiment on the top 50 principal components identified by PCA. After
training, we simulated all the validation samples from the initial distribution 7 by integrating the
single velocity field uf to t = 1. We evaluated the performance of the single-branch parameterization
by computing the RBF-MMD (97) of all PCs and W, (95) and W (96) distances of the top-2 PCs of
the simulated samples at time ¢ = 1 with the ground truth data points.

In Table 4, we show that BranchSBM with two branches trained on gene expression vectors across
all dimensions d € {50,100, 150} outperforms single-branch SBM on dimension d = 50 in recon-
structing the distribution of cells perturbed with Clonidine. In Table 5, we further show improved
performance of BranchSBM with three branches compared to single-branch SBM.

In Figure 8A and 8B, we see that single-branch SBM only reconstructs cluster 0, while failing
to generate samples from cluster 1 for Clonidine perturbation or clusters 1 and 2 for Trametinib
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Figure 7: Comparison of BranchSBM to Single-Branch SBM for Cell-Fate Differentiation. Mouse
hematopoiesis scRNA-seq data is provided for three time points o, t1, t2. (A, B) Distribution of simulated cell
states at time (A) t; and (B) ¢2 across both branches for BranchSBM (top) and single-branch SBM (bottom).
(C) Learned trajectories of BranchSBM and single-branch SBM over the ¢ € [t1, t2] on validation samples.

perturbation. The endpoints for both perturbation experiments are clustered largely on variance in the
first two or three principal components (PCs), where PC1 captures the divergence from the control
state to the perturbed clusters and PC2 and higher captures the divergence between clusters in the
perturbed population, where cluster O is closest to the control state along PC2 and cluster 1 and
2 are farther from the control. From Figure 8A and B, we can conclude that single-branch SBM
is not expressive enough to capture the complexities of higher-dimensional PCs and follows the
most obvious trajectory from the control to cluster 0, resulting in an inaccurate representation of the
perturbed cell population.

In contrast, we demonstrate that BranchSBM is capable of stimulating trajectories to both clusters in
the population perturbed with Clonidine (Figure 8B) and three clusters in the population perturbed
with Trametinib (Figure 8D), generating branched distributions that accurately capture the location
and spread of the perturbed cell distribution in the dataset.

D.2 EFFECT OF FINAL JOINT TRAINING ON LOSSES

In Table 7, we show the final losses after convergence, summed across each branch and averaged over
the batch size, for Stage 3 training of only the growth networks and Stage 4 joint training of the flow
and growth networks discussed in Section 4. All losses are calculated exactly as shown in Section 4.
Crucially, we find that the final joint training stage refines the parameters of both the flow and growth
networks simultaneously to minimize the energy 10ss Lenergy (€, ¢0) (14) while ensuring the growth
parameters maintain minimal losses across Lmach(¢) (15) and Lyass(¢) (16) for all experiments.
This indicates that jointly optimizing both the drift and growth dynamics leads to further refinement
towards modeling the optimal branching trajectories in the data.

E EXPERIMENT DETAILS

E.1 MULTI-STAGE TRAINING

To ensure stable training while incorporating all loss functions, we introduce a multi-stage training
approach (Algorithm 1).
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Figure 8: Comparison of BranchSBM to Single-Branch SBM for Perturbation Modelling. (A, B) Clonidine
perturbation trajectories with two target clusters generated by (A) single-branch SBM and (B) BranchSBM
from the validation data. (C, D) Trametinib perturbation trajectories with three target clusters generated by
(C) single-branch SBM and (D) BranchSBM. In both experiments, single-branch SBM only generated states

in cluster 0 and not cluster 1 or 2, whereas BranchSBM reconstructed all perturbed clusters via branched
trajectories.

Table 7: Validation Losses for Stage 3 and 4 Training Across Experiments. Losses are summed across both
branches and averaged over batch size. The final Stage 4 joint training stage that refines both the flow and growth
networks simultaneously minimize the energy 1088 Lenerey (6, ¢) (14) from Stage 3 while ensuring the growth
parameters maintain minimal losses across Lmatch (@) (15) and Lmass (¢) (16)

Experiment Stage 3 Stage 4

£energy(97 ¢) £mass (97 ¢) Ema(ch (97 ¢) £energy(67 ¢) [fmass (07 ¢) Ema(ch (97 ¢)
LiDAR 1.276 3.0 x 107° 0.007 0.768 2.0 x 107° 0.102
Mouse Hematopoiesis 2.209 1.2 x107* 0.054 1.918 5.0x 107° 0.076
Chlonidine Perturbation 36.469 0.030 0.109 25.798 0.053 0.153
Trametinib Perturbation 35.834 0.023 0.078 32.843 0.017 0.056

Stage 1 First, we train a neural interpolant ¢y , (%o, Xz ) : R x R? x [0,1] — R? that takes
the endpoints of a branched coupling and defines the optimal interpolating state X, at time ¢ by
minimizing the energy function Ly,j(n) in (12). This is used to calculate the optimal conditional

velocity X; , . that preserves the endpoints Xo = x¢ and X = x; 1, for the flow matching objective
in Stage 2.

Stage 2 Next, we train a set of flow networks {uf i 1, that generate the optimal interpolating
trajectories for each branch with the conditional flow matching objective Lgqy in (13).
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Stage3 We freeze the parameters of the flow networks and only train the growth networks { gf T
by minimizing Lgowm in (17).

Stage 4 Finally, we unfreeze the parameters of both the flow and growth networks and jointly
train {u gﬁ . 1<, by minimizing the growth loss Lerown in (17) from Stage 3 in addition to the
distribution reconstruction 108s Lecons in (19).

E.2 GENERAL TRAINING DETAILS

Leiden Clustering To identify branch endpoints in the dataset, we apply an automated clustering
pipeline to the final time point (¢ = 7), where the differentiated cell-states are most clearly defined.
First, we construct a 20-nearest-neighbor (kNN) graph on the final-timepoint embeddings and
run Leiden community detection using the ModularityVertexPartition objective. Leiden
clustering is particularly suited and the state-of-the-art method for clustering single-cell data, given
that it is robust to noise, can handle heterogeneous cluster sizes and shapes, and guarantees well-
connected clusters, all while being fully unsupervised and automatic. This gives us stable and
biologically meaningful terminal clusters compared to alternative methods such as K-means clustering,
which assumes spherical clusters and struggles with sparse high-dimensional manifolds. After initial
clustering, we merge any cluster with fewer than min_cells cells into the nearest large cluster
based on Euclidean centroid distance.

Model Architecture We parameterized the branched trajectory ¢; (%o, x1) with a 3-layer MLP
with Scaled Exponential Linear Unit (SELU) activations. The endpoint pair (xg, X1) and the time
step t are concatenated into a single (2d + 1)-dimensional vector and used as input to the model.
Similarly, we parameterize each flow network ufv «(x¢) and growth network gfy & (x¢) with the same
3-layer MLP and SELU activations but takes the interpolating state x; and time ¢ concatenated into a
(d + 1)-dimensional vector.

To ensure that the growth rates of all secondary branches are non-negative (i.e. forall k € {1,..., K},
gt.x(X¢) > 0), we apply an additional softplus activation to the output of the 3-layer MLP in the
growth networks, defined as softplus(-) = log(1 + exp(-)), which is smooth function that transforms
negative values to be positive near 0. For the growth network of the primary branch (k = 0), we
allow for both positive and negative growth, as all mass starts at the primary branch and flows into
the secondary branches, but the primary branch itself can grow as well, depending on whether mass
is conserved.

State Cost ; Depending on the dimensionality of the data type, we set the state cost V;(X;) :
R? — [0, 4+oc] to be either the LAND or RBF metric discussed in Appendix A.2. For the experiments
on LiDAR (d = 3) and Mouse Hematopoiesis scRNA-seq (d = 2) data, we used the LAND metric
(33) with hyperparameters o = 0.125 and € = 0.001.

To avoid the task of setting a suitable variance o for the high-dimensional gene expression space
d € {50,100, 150}, we use the RBF metric (37) that learns parameters to ensure the regions within
the data manifold have low cost and regions far from the data manifold have high cost. Using the
training scheme in Kapusniak et al. (2024), we identified N, cluster centers with k-means clustering,
and trained the parameters {wjyn}nNgl by minimizing Lrpr (38) on the training data. We found that
setting the number of cluster centers IV, too low resulted in non-decreasing Lrgr and that increasing
N, for higher dimensions enabled more effective training. Furthermore, we found that modeling
higher-dimensional PCs required setting a larger «, which determines the spread of the RBF kernel
around each cluster center. The specific values for N, and x depending on the dimension of principal
components are provided in Table 11.

Optimal Transport Coupling Since our experiments consist of unpaired initial and target distribu-
tions and we seek to minimize the energy of the interpolating bridge, we define pairings (xo, X1 )
using the optimal transport plan g ; , that minimizes the distance between the initial distribu-
tion 7o and each target distribution 7y j in probability space. Specifically, we define 7{ ; , as the
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2-Wasserstein transport plan (Villani et al., 2008) between 7 and 7 j, defined as
. 2
0,15 = ATg mmml,ken/ %0 — x1,1/[2dm (x0, X1,1) (92)
! TO®T1 k

where my ® 71y is the set of all possible couplings between the endpoint distributions. For each of
the branches, the dataset was paired such that (X, X1,x) ~ 75 | &-

Training We train each stage for a maximum of 100 epochs. For Stage 1, we used the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 1.0 x 10~ to train ¢ ,,(x, x1 ). For Stage 2,
3, and 4, we used the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay 1.0 x 10~°
and learning rate 1.0 x 10~3 to train each flow network ufv i and growth network gﬁ - All experiments
were performed on one NVIDIA A100 GPU. We trained on the LiDAR and mouse hematopoiesis
data with a batch size of 128 and the Clonidine and Trametinib perturbation data with a batch size of
128, each divided with a 0.9/0.1 train/validation split. All hyperparameters across experiments are
provided in Table 11.

Computational Overhead Although we train K + 1 flow and growth networks, the overall training
time remains comparable to that of single-branch SBM, since the networks for each branch is trained
only on the subset of data corresponding to its respective target distribution. While the method does
incur higher space complexity, we find that simple MLP architectures suffice for strong performance,
suggesting that scalability is not a major concern. BranchSBM also significantly reduces inference
time, as predicting branching population dynamics requires simulating only a single sample from the
initial distribution, unlike other models that require simulating large batches of samples.

E.3 LIDAR EXPERIMENT DETAILS

LiDAR Data We used the same LiDAR manifold from Liu et al. (2023a); Kapusniak et al. (2024).
The data is a collection of three-dimensional point clouds within 10 unit cubes [—5,5]* C R? that
span the surface of Mount Rainier. Given any point x € R? in the three-dimensional space, we
project it onto the LiDAR manifold by identifying the k-nearest neighbors {X1, ..., X} and fitting a
2D tangent plane to the set of neighbors

k
1 —lx=xill\ @ W (2))2
argmin Zl exp <T (ax; " +bx;" +c—x;7) (93)
where 7 = 0.001 following Liu et al. (2023a). Then, we solve for the tangent plane az + by + ¢ = z
using the Moore-Penrose pseudoinverse from £ = 20 neighbors. From the tangent plane, we can
project any point x to the LIDAR manifold with the function 7(x) defined as

a

.
m(x) =x— (W> v, where v = [ b ] (94)

2 1

Synthetic Distributions To reformulate the experiment in Liu et al. (2023a) as a branching problem,
we define a single initial distribution and two divergent target distributions. Specifically, we define a
single initial distribution 7o = N (10, 0o) as a mixture of four Gaussians and two target distributions
1,0, 71,1 on either side of the mountain, both as mixtures of three Gaussians. The exact parameters
of each Gaussian are given in Table 8.

We sample a total of 5000 points i.i.d. from each of the Gaussian mixtures {x{}?°° ~ g,
{x4 032990 ~ 710, and {x} ;}5%° ~ ;. The data points are projected to the LiDAR mani-
fold with the projection function 7(x) in (94).

Evaluation Metrics To determine how closely the simulated trajectories match the ground truth
trajectories, we compute the Wasserstein-1 (JV;) and Wasserstein-2 (W) distances defined as

W, = ( min /x—y||2d7r(x,y)) (95)

mell(p,q)

1/2
Wy = ( min /xy||§d7r(x,y)) (96)

m€ll(p,q)
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Table 8: Synthetic Gaussian mixture distribution parameters for LiDAR experiment. 5000 datapoints are
drawn i.i.d. from each of the Gaussian mixtures and paired randomly (xo,X1,0,X1,1) to define the training
dataset. A visualization of the training data on the LIDAR manifold is provided in Figure 3.

Distribution m o
o N(po,00)  (—4.5,—4.0,0.5), (—4.2,—3.5,0.5), (—4.0, —3.0,0.5), (—3.75, —2.5,0.5)  0.02
mo  N(pio,01.0) (—2.5,-0.25,0.5), (—2.25,0.675,0.5), (=2, 1.5,0.5) 0.03
1,1 N(M1,1,0'1,1) (2,—2,0.5), (2‘6,—1.25,0.5), (3.2,—0‘5,0.5) 0.03

where p denotes the ground truth distribution and ¢ denotes the predicted distribution. After training
the velocity and growth networks on samples from the initial Gaussian mixture 7y and target Gaussian
mixtures 7 o and 7 1, we evaluate YV; and W, of the reconstructed distribution simulated from the
validation points in the initial distribution 7y against the true distribution at ¢ = 1.

E.4 DIFFERENTIATING SINGLE-CELL EXPERIMENT DETAILS

Mouse Hematopoiesis scRNA-seq Data We used the mouse hematopoiesis dataset from Zhang
et al. (2025¢) consisting of three timesteps g, t1, t2, with a total of 1429 cells at ¢, 3781 cells from
t1, and 5788 cells from ¢2. The data points at ¢y form a homogeneous cluster, while the data points
at to are clearly divided into two distinct cell fates. We performed k-means clustering with & = 2
clusters to create branching on the cells at 9, splitting the cells into two clusters: endpoint O with
2902 cells and endpoint 1 with 2886 cells. Since the two endpoints are near equal in ratio, we set the
final weights of both endpoints as 0.5 (i.e. wy,0 = wy,1 = 0.5). To match the size of the ¢y, samples,
we randomly sampled 1429 samples from each of these two clusters and used them as the endpoints
for branches 0 and 1, respectively. Training and validation follow a 0.9/0.1 split ratio.

Time t0 (1429 Cells) Time t1 (3781 Cells) Time t2 (5788 Cells)

Cluster 0

N 15 15 Cluster 1

05 05

X2

0.0 0.0

-05 -05

]
-
A

Figure 9: Mouse Hematopoiesis Single-Cell RNA Sequencing Data Plotted by Time Point. Real scRNA-seq
data is projected to 2D force-directed SPRING plots (Sha et al., 2023; Weinreb et al., 2020; Zhang et al., 2025c).
There is a clear divergence of cell fate between times ¢y (left), ¢1 (middle), and ¢o (right) from the initial
homogeneous progenitor cells into two distinct cell fates (shown in pink and purple in the 2 plot). Cells at time
to are clustered into endpoint O (pink; 2902 cells) and endpoint 1 (turquoise; 2886 cells).

Pancreatic 5-Cell Differentiation Data The pancreatic S-cell dataset from Veres et al. (2019)
contains 51,274 cells over eight time points that evolve from human pluripotent stem cells to
pancreatic S-like cells. Following (Zhang et al., 2025d), the gene expression representations are
projected to 30-dimensional PCA space. After Leiden clustering with £ = 20 and min_cells =
100, we obtain 11 clusters for X = 11 branches.

Evaluation Metrics To determine how closely the reconstructed distributions along the trajectory
match the ground truth distributions, we compute the 1-Wasserstein (W;) (95) and 2-Wasserstein
(Ws) (96) distances similar to the LIDAR experiment. After training the velocity and growth networks
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on samples from the initial cell distribution 7, and differentiated target cell distributions 7, ¢ and
T,,1, wWe evaluate YW, and W, between the reconstructed branched distributions at the intermediate
time ¢1 (py,,0 and p¢, 1) and the target distributions at the final time ?3 (py, 0 and py,,1) simulated
from the validation points in the initial distribution 7y and the true distributions 7, and 7, .

E.5 CELL-STATE PERTURBATION MODELING EXPERIMENT DETAILS

Tahoe Single-Cell Perturbation Data The Tahoe-100M dataset consists of 50 cell lines and over
1000 different drug-dose conditions (Zhang et al., 2025a). For this experiment, we extract the data for
a single cell line (A-549) under two drug perturbation conditions selected based on cell abundance
and response diversity.

Clonidine at 5 uL was selected first due to having the largest number of cells at this dosage, while
Trametinib was chosen as the second drug based on its second-highest cell count under the same con-
dition. For both drugs, we selected the top 2000 highly variable genes (HVGs) based on normalized
expression and projected the data into a 50-dimensional PCA space, which captured approximately
38% of the total variance in both cases.

We applied K -nearest neighbor () = 50) and conducted Leiden clustering separately for drugged
versus DMSO control conditions. The most abundant DMSO cluster was selected as the initial state
(t = 0). For Clonidine, we identified two clusters that were most distinct from the DMSO control
along PC1 and PC2, respectively. These were selected as two distinct endpoints for branches 1 and
2 att = 1. We applied centroid-based sampling to obtain balanced training sets of 1033 cells per
cluster (Figure 10).

For Trametinib, we extended the branching up to three endpoints. From its Leiden clustering
results, we identified three clusters that were the most divergent from the DMSO control clusters
along PC1, PC2, and PC3, respectively. All selected clusters contained at least 100 cells and were
subsampled to 381 cells each for branch training. The remaining cells were clustered with K -means
into three (Clonidine) or four (Trametinib) groups to construct the metrics dataset. The training and
validation dataset split followed a 0.9/0.1 ratio. The final visualization utilized the first two principal
components.

Table 9: Training cluster cell counts for perturbation experiments.

Clonidine Trametinib
Cluster O Cluster 1  Cluster 0 Cluster 1 ~ Cluster 2
Original Cell Count 1675 1033 1622 686 381
Initial Weight wo 1.0 0 1.0 0 0

Target Weight w1k 0.619 0.381 0.603 0.255 0.142

Evaluation Metrics To quantify the alignment of the reconstructed and ground-truth distri-
butions for the cell-state perturbation experiment on principal component (PCs) dimensions
d € {50,100, 150}, we calculate the Maximum Mean Discrepancy with the RBF kernel (RBF-
MMD) on all predicted PCs and the 1-Wasserstein (W;) (95) and 2-Wasserstein (Ws) (96) distances
on the top-2 PCs.

This choice is made because the Wasserstein distance between empirical measures (i.e., discrete point
clouds) is known to converge to the true Wasserstein distance between the underlying distributions at
a rate that scales as ¢ = O(n~1/%) for some constant C, where 7 is the number of samples and d is
the dimensionality of the state space. Therefore, an exponential number of samples is required to
achieve the same estimation accuracy in high dimensions.

Computing the Wasserstein distance on the top-2 principal components provides a statistically stable
and computationally tractable approximation that preserves the major axes of variation in the data. In
addition, we evaluate the RBF-MMD metric on all simulated PCs, ensuring that higher-dimensional
reconstruction accuracy is still quantitatively assessed.
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Figure 10: Clustered Cell-State Perturbation Data from the Tahoe-100M Dataset. PCA was conducted on
all cells for the control DMSO-treated and two drug-treated populations, and clustered. Plots show divergence
along the top 2 PCs. (A) Clonidine-treated cells (5 M) are plotted in pink (endpoint 0), and turquoise (endpoint
1), and the distribution of control cells is plotted in navy. (B) Trametinib-treated cells (5uM) are plotted in
purple (endpoint 0), turquoise (endpoint 1), and pink (endpoint 2), and the distribution of control cells is plotted
in navy.

Given the predicted distribution p and true distribution ¢ and n samples from each distribution
{x; ~ p}?, and {y; ~ q}"_,, the RBF-MMD between p and g is calculated as

MMD(p, q) Z Z Emix (X3, X5) + — Z Z kmix(¥i,Y;) — — Z Z kmix (Xi,¥5) 97)

=1 j=1 =1 j=1 =1 j=1

where knix(+, ) is a mixture of RBF kernel functions defined as

1 I — ol
m oo () o9

where ¥ = {0.01,0.1, 1,10, 100} is the set of values that determine how much the distances between
pairs of points are scaled when computing the overall discrepancy. The equations for 1-Wasserstein
(W) and 2-Wasserstein (WV,) distances are provided in (95) and (96) respectively.

kmix ( X, y)

E.6 COMPUTATIONAL COSTS

For each experiment, we report the GPU hours on a single NVIDIA A100 GPU, demonstrating that
only a minor increase in compute time is required for increasing the number of branches.

Table 10: Total training time for each experiment on a NVIDIA A100 GPU for different dimensions and
number of branches K.

Experiment (Branches) Total Training Time (min)
Mouse Hematopoesis (K = 1) 13m 4s
Mouse Hematopoiesis (K = 2) 14m 3s
Clonidine 50D (K = 1) 17m 22s
Clonidine 50D (K = 2) 22m 50s
Clonidine 100D (K = 2) 23m 3s
Clonidine 150D (K = 2) 18m 31s
Trametinib (K = 1) 4m 52s
Trametinib (K = 3) 6m 44s
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E.7 HYPERPARAMETER SELECTION AND DISCUSSION

In this section, we present the hyperparameters used in each experiment. While the model architecture
remained largely the same across experiments, we increased the hidden dimension to 1024 for di-
mensions d € {50,100, 150}. For low-dimensional data, we found that increasing model complexity
underperforms in comparison to lower hidden dimensions, and we established that a hidden dimension
of 64 achieves relatively optimal performance for d € {2, 3}. While beyond the scope of this study,
we believe that further exploration of diverse model architectures and hyperparameter tuning could
improve the performance of BranchSBM. Exploration of diverse task-dependent state costs for novel
applications is another exciting extension of our work.

Table 11: Hyperparameter settings for different datasets. The Clonidine perturbation experiment is split into
three columns for each of the three dimensions of principal components (PCs) used d € {50, 100, 150}.

Parameter Dataset

LiDAR Mouse Hematopoesis SCRNA Clonidine Perturbation Trametinib Perturbation

50PCs  100PCs  150PCs

branches 2 2 2 3
data dimension 3 2 50 100 150 50
batch size 128 128 32 32
Aenergy 1.0 1.0 1.0 1.0
Amass 100 100 100 100
Amatch 1.0 x 10 1.0 x 10 1.0 x 10% 1.0 x 10°
Arecons 1.0 1.0 1.0 1.0
Agrowth 0.01 0.01 0.01 0.01
Vi LAND LAND RBF RBF
RBF N, - - 150 300 300 150
RBF x - - 1.5 2.0 3.0 1.5
hidden dimension 64 64 1024 1024
Ir ¢, 1.0 x 1074 1.0 x 1074 1.0x 1074 1.0 x 107*
Ir u¢ 1.0x 1073 1.0x 1073 1.0x 1073 1.0x 1073
Ir g? 1.0x 1073 1.0x 1073 1.0x107? 1.0x 1073
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F

TRAINING ALGORITHM

Here, we provide the pseudocode for BranchSBM’s multi-stage training algorithm for stable opti-
mization of the velocity and growth networks over the K branched trajectories.

Algorithm 1 Multi-Stage Training of BranchSBM

1:
2:
3:

9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:
34
35:

36:

37:
38:

39:
40:
41:
42:
43:
44:
45:
46:

® Jxnk

Stage 1: Learning the Branched Neural Interpolants
while Training do
Vk, (%0, X1,k) ~ 751 4> t ~U(0,1)
for k =0to K do
Xeph — (1 —t)x0 +tx1 5 + (1 — ) s,y (X0, X1,k)
Xk = X1 = Xo + £(1 = 1)pe (X0, X1, )+ (1— 2t) ¢y (X0, X1,k)
Compute Vt(xt n,k) given the task-specific definition
ACtraj <_ fo [% ||Xt ) + W(Xtﬂhkﬂ dt
Update ¢, ,, using gradient V) Ly (1)
end for
end while
Stage 2: Initial Training of Velocity Networks
while Training do
Initialize K + 1 flow networks {uf W(X)HE
for k =0to K do
Calculate x; ,, x and Xy, . with the trained network ¢y , (X0, X1 1)
Liiow(0) = [I%e, .6 — uf j,(xe.0.0) |13
Update ug . using gradient Vg Lgow (6)
end for
end while
Stage 3: Initial Training of Growth Networks
while Training do
Freeze parameters of flow networks and initialize K + 1 growth networks { gff LX) HE
fort =0to 1do
for k =0to K do
t 6
Xtk A fO usjc(XSyk)dS
if £ = 0 then
\ wfjk — 1+ fot gfjk(x(g’k)ds
else

t
Cowly e fy g0 (X ds

end if N

t t
£energy(¢) — Eenergy +f * [7 kH2 + V;E(Xt k):| w?,k
end for )
ﬁmass — (Zf:o ngk - wtolal)
end for

K (& <\’
Loaich Zk:O (wl,k(xlyk) - wl,k)
K ~
‘Crecons(e) — Zkzo le’ke/\[”(xl,k) maX(O, ||X1,k - Xl,kHQ - 6)
K

Egmwth(d’) — )\energy‘cenergy(ov (b) + )‘malch‘cmatch(d)) + Amassﬁmass((b) + )‘gmwth Zk:() Hgf,k ||§
Update gfj .. using gradient V o Lorowin ()
end while
Stage 4: Final Joint Training

while Training do
Unfreeze parameters of flow networks {uf . (X;)}/,

Repeat steps of Stage 3 and calculate Ljoini (0, @) < Lgrowin (0, @) + Lrecons (6)
Jointly update ug . and gfj . for all branches using gradients Vg Lioinc (0, ¢) and V g Lioine (0, @)
end while
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