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ABSTRACT

Large Language Models (LLMs) have achieved remarkable success in complex rea-
soning tasks, but their inference remains computationally inefficient. We observe
a common failure mode in many prevalent LLMs, overthinking, where models
generate verbose and tangential reasoning traces even for simple queries. Recent
works have tried to mitigate this by enforcing fixed token budgets, however, this can
lead to underthinking, especially on harder problems. Through empirical analysis,
we identify that this inefficiency often stems from unclear problem-solving strate-
gies. To formalize this, we develop a theoretical model, BAM (Budget Allocation
Model), which models reasoning as a sequence of sub-questions with varying un-
certainty, and introduce the E3 metric to capture the trade-off between correctness
and computation efficiency. Building on theoretical results from BAM, we propose
PLAN-AND-BUDGET, a model-agnostic, test-time framework that decomposes
complex queries into sub-questions and allocates token budgets based on estimated
complexity using adaptive scheduling. PLAN-AND-BUDGET improves reasoning
efficiency across a range of tasks and models, achieving up to 70% accuracy gains,
39% token reduction, and 193.8% improvement in E3. Notably, it elevates a
smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-
LLaMA-70B), demonstrating PLAN-AND-BUDGET’s ability to close performance
gaps without retraining. Our code is available at Pland-and-Budget.

1 INTRODUCTION

Large Language Models (LLMs) exhibit strong generalization capabilities, enabling them to perform
a wide range of tasks, such as mathematical problem solving (Ahn et al., 2024; Imani et al., 2023),
scientific question answering (Huang et al., 2024; Lu et al., 2022), and structured reasoning (Guo et al.,
2025; Wei et al., 2022), without task-specific retraining. Recent advances in test-time computation
like Chain-of-Thought (CoT) prompting (Wei et al., 2022), self-consistency (Wang et al., 2023),
and tool-augmented inference (Chen et al., 2023) have significantly enhanced their performance
on complex, multi-step reasoning tasks. These enhancements have paved the way for LLMs to
be increasingly deployed in high-stakes domains such as education (Golshan & Academy, 2023),
finance (Yang et al., 2023), law (Katz et al., 2024), and scientific research (Taylor et al., 2022), where
robust reasoning at inference time is critical.

Despite these advances, deploying LLMs in real-world settings introduces new challenges, particularly
in scenarios requiring deliberative reasoning under compute and time constraints. A key issue is the
lack of calibrated reasoning behavior during inference. Although LLMs are proficient in multi-step
reasoning, they often struggle to regulate how much reasoning effort is appropriate for a task. This
miscalibration manifests in two major failure modes: overthinking (Sui et al., 2025; Chen et al.,
2024; Turpin et al., 2023), where models generate unnecessarily long and tangential reasoning paths,
even for simple queries, incurring excessive computational cost without improving accuracy; and
underthinking (Wang et al., 2025a; Wei et al., 2022), where models terminate reasoning prematurely,
sacrificing correctness to conserve resources. Recent methods (Lee et al., 2025; Xu et al., 2025;
Han et al., 2024) have attempted to mitigate overthinking by introducing hard token constraints (e.g.,
“using fewer than B tokens” in the prompt). While these strategies may be effective on simpler tasks,
they often degrade performance on complex queries by inducing underthinking, highlighting the
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Figure 1: Illustration of REASONING MISCALIBRATION. Vanilla reasoning overthinks and wastes
tokens; global budgeting underthinks and fails. Our method combines planning and local budgeting
to guide structured, efficient reasoning, achieving the correct answer with fewer tokens.

limitations of fixed, non-adaptive approaches. To the best of our knowledge, there is limited work
that has systematically addressed both overthinking and underthinking in a unified framework.

In this paper, we take the first step toward closing this gap. With a comprehensive empirical study
of test-time reasoning behavior in state-of-the-art LLMs ranging from 32B to 70B parameters, we
uncover a pervasive phenomenon we term “REASONING MISCALIBRATION”, a failure mode where
models exhibit unregulated inference depth during reasoning. This miscalibration manifests as either
overthinking, where the model engages in unnecessary and tangential reasoning, or underthinking,
where reasoning terminates prematurely. Our study reveals that reasoning miscalibration is frequently
triggered by two types of queries: (1) trivial-but-ambiguous queries, which elicit diffuse token
distributions and lead to speculative reasoning; and (2) hard-and-rare queries, where models engage
in shallow trial-and-error without meaningful convergence. These findings raise a central research
question: How can we characterize the internal reasoning and inference mechanisms of LLMs,
and how can we guide them to allocate computation adaptively based on task complexity?

To answer this, we analyze reasoning miscalibration through the lens of uncertainty, quantified by
the entropy of the model’s marginal next-token distribution at each step. This distribution reflects
the model’s belief over possible continuations, where higher entropy signals indecision or ambiguity.
We find that high entropy often correlates with unnecessarily deep reasoning (i.e., overthinking),
while low entropy observed at early steps often leads to premature truncation of reasoning (i.e.,
underthinking). These suggest that uncertainty can serve as a valuable signal for dynamically
adjusting reasoning depth. Motivated by this, we introduce the Budget Allocation Model (BAM), a
theoretical resource allocation model that aligns computation with uncertainty. BAM conceptualizes
reasoning as a sequence of sub-problems, each characterized by varying degrees of uncertainty,
and allocates greater computational budget to sub-questions with higher uncertainty, enabling more
calibrated and efficient inference. From this perspective, we derive two key principles for effective
reasoning: (1) reasoning should be structured: decomposing complex queries into smaller, targeted
sub-questions helps reduce speculative exploration; and (2) computation should be adaptive: early
reasoning steps typically bear higher uncertainty and thus merit greater computational focus.

Building on these principles, we propose a novel compute-efficient reasoning strategy, called PLAN-
AND-BUDGET, which consists of two stages: Plan and Budget. In the Plan Step, the model
decomposes the original query into a sequence of sub-questions, providing a soft scaffold for
structured reasoning. In the Budget Step, we apply simplified scheduling strategies that dynamically
assign token budgets to each sub-question, guided by its uncertainty pattern, following the BAM
principle. To evaluate our approach, we introduce E3, namely the Efficiency-Aware Effectivenss
Evaluation Score that captures the trade-off between reasoning accuracy and computational cost.
Unlike conventional efficiency metrics that overlook output quality, E3 offers a more robust, holistic
measure of inference performance.
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We evaluate our method through extensive experiments across four state-of-the-art LLMs, including
DeepSeek-R1 Distill-Qwen-32B (DS-Qwen-32B) (Guo et al., 2025), QwQ-32B (Team, 2025),
DeepSeek-R1 Distill-Llama-70B (DS-LLaMA-70B) (Guo et al., 2025), and OpenAI o4-mini (OpenAI,
2025) on three representative task domains: mathematical reasoning, instruction following, and
agentic planning. Our method is model-agnostic: it requires no retraining or fine-tuning, relying only
on prompting and lightweight planning. Despite this simplicity, PLAN-AND-BUDGET consistently
improves all LLMs across all benchmarks. We observe downstream accuracy gains of up to 70%,
token usage reductions of up to 39%, and combined efficiency improvements (as measured by
E3) of up to 193.8% over strong baselines. An especially notable case comes from the agentic
planning task domain, where a smaller DS-Qwen-32B improves from a low E3 of 0.16 to 0.47
using PLAN-AND-BUDGET—closing the gap with the larger DS-LLaMA-70B model (E3 = 0.50)
without planning. This demonstrates that uncertainty-guided planning and budgeting can act as
inference-time equalizers, boosting the efficiency and competitiveness of smaller models without
retraining. Together, these findings underscore the promise of principled compute allocation for more
calibrated, efficient, and accessible LLM inference.

2 RELATED WORKS AND PRELIMINARY

2.1 RELATED WORKS

Scaling Laws. Recent work has explored how test-time computation affects LLM performance,
showing that an increased inference budget can reduce failure rates but often suffers from diminishing
returns (Snell et al., 2024; Wu et al., 2025; Zeng et al., 2025). Methods like MCTS-Judge (Wang et al.,
2025b) and EAG (Mei et al., 2025) demonstrate the benefits of adaptive compute in tasks like code
evaluation and multi-hop reasoning. Unlike prior work focusing on simply increasing compute, we
investigate how to allocate it efficiently through structured planning and uncertainty-aware budgeting.

Uncertainty. Quantifying uncertainty in deep models is often framed through epistemic vs. aleatoric
components (Hüllermeier & Waegeman, 2021), with techniques like MC Dropout (Gal & Ghahra-
mani, 2016), ensembles (Lakshminarayanan et al., 2017), and evidential learning (Huang et al.,
2023). Recent work extends these ideas to LLMs via consistency checks and parameter-efficient
ensembles (Tonolini et al., 2024; Halbheer et al., 2024). Our work builds on this by using uncertainty
decomposition to guide token allocation at inference time, offeringg a novel application of uncertainty
for test-time efficiency.

2.2 PRELIMINARY

We begin by summarizing previous work and introducing the key notations used throughout this
work. Table 1 lists the symbols relevant to our reasoning formulation.

Table 1: Notation Summary

Symbol Description

m Number of sub-questions
xi i-th query
sij j-th sub-question of query xi

bij Tokens allocated to sub-question sij
βij Complexity of sub-questionsij
B Total token budget per query
πi Decomposition plan for query xi

wij Normalized complexity weight for sij
γ, ϵ, p Decay scheduler hyperparameters

cij
Parameter characterizing epistemic
uncertainty reduction

Reasoning Miscalibration in LLMs. While
LLMs excel at complex reasoning tasks, they
often struggle to regulate how much inference
effort is appropriate per query. We refer to
this phenomenon as REASONING MISCALIBRA-
TION. It describes a mismatch between task
complexity and the depth of reasoning a model
performs at test time.

This miscalibration presents itself in two pri-
mary modes: (1) Overthinking Sui et al. (2025);
Chen et al. (2024); Turpin et al. (2023), where
the model engages in excessively verbose or
tangential reasoning even for simple queries, in-
curring unnecessary computational cost and introducing noise or contradictions; and (2) Underthink-
ing Wang et al. (2025a); Wei et al. (2022), where the model prematurely stops reasoning to conserve
budget, often yielding incomplete or incorrect answers.

Contrary to the common belief that allocating more decoding tokens leads to better performance,
we observe that excessive generation can degrade quality. In our empirical analysis, we show that
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longer outputs can lead models to wander within the solution space, becoming verbose, redundant,
or self-inconsistent. Our findings suggest that REASONING MISCALIBRATION does not stem from
a lack of knowledge or model capacity, but rather from the model’s inability to dynamically align
reasoning effort with a query’s evolving informational needs—particularly in response to uncertainty
at each step. We leverage a foundational concept of predictive uncertainty Hüllermeier & Waegeman
(2021) which decomposes the total uncertainty U(x) for a given input x into two distinct components:

U(x) = Uepistemic(x) + Ualeatoric(x),

where Uepistemic(x) captures uncertainty due to incomplete knowledge (and is reducible through
targeted computation), while Ualeatoric(x) accounts for irreducible ambiguity or noise in the input.
Recent work by Falck et al. (2024b) extends this decomposition to LLMs, revealing that LLMs
display dynamic uncertainty profiles throughout inference. These evolving patterns offer valuable
insights into both the models’ reasoning processes and the quality of their generated outputs. We
further demonstrate the validity of this decomposition in the LLM setting through formal analysis in
Appendix B.

Problem Definition. In multi-step reasoning, this decomposition reveals a crucial insight: REA-
SONING MISCALIBRATION arises from unregulated computational effort across sub-questions with
varying uncertainty levels. Some sub-problems demand greater inference depth to reduce epistemic
uncertainty, while others—dominated by aleatoric uncertainty—benefit from early termination or
concise solutions. Yet current LLMs lack a mechanism to adaptively allocate computation across
these stages. This misalignment leads to inefficiency and degraded reasoning quality. The goal is to
improve efficiency while mitigating REASONING MISCALIBRATION.

Efficiency-Aware Effectiveness Evaluation: E3 Score. We introduce the E3 index as an efficiency-
aware metric that jointly captures reasoning quality and computational cost. Rather than treating
token usage and accuracy as separate concerns, the E3 directly quantifies their trade-off:

E3 = A · A
T

=
A2

T
.

Here, A denotes the average accuracy achieved across a set of queries, and T represents the average
number of decoding tokens used per query. Earlier works typically measure efficiency as accuracy
per token (Muennighoff et al.; Lee et al.) (i.e., A/T ). By weighting this term with accuracy, the E3

emphasizes correctness, discouraging degenerate strategies that minimize token usage at the cost of
quality. In doing so, it reflects how well a model aligns its computational effort with task complexity,
rewarding those that invest more where needed and conserve resources otherwise. Thus, the E3

provides a principled evaluation framework for assessing whether a model mitigates REASONING
MISCALIBRATION while maximizing reasoning efficiency. To address this, we now formalize our
target problem as follows:
Problem 1. LLM Reasoning Calibration
Given: (1) A set of complex queries {x1, . . . , xn}, where each xi can be decomposed into a sequence
of m sub-questions; and (2) A total token budget Bi for each query xi.
Find: A computation strategy that maximizes the efficiency-aware score E3 = A2

T , subject to the
constraint Bi for each query. The objective is to allocate inference effort in a way that prioritizes
correctness under limited computational resources.

3 BUDGET ALLOCATION MODEL (BAM)

To address reasoning miscalibration in Problem 1, we need a principled method for allocating
computation across sub-questions with varying uncertainty. As established by Falck et al. (2024b),
effective reasoning requires focusing effort where epistemic uncertainty is high, and limiting it where
aleatoric noise dominates. Existing methods lack a formal mechanism for this adaptive allocation.
They often treat all reasoning steps uniformly, leading to inefficient budget use and exacerbating
reasoning miscalibration. To bridge this gap, we introduce the Budget Allocation Model (BAM),
a theoretical framework that models token allocation as uncertainty reduction under a fixed budget.
BAM provides a principled foundation for our adaptive reasoning framework presented in Section 4.

To distribute a finite token budget Bi across the sub-questions of xi, we adopt a Bayesian decision-
theoretic formulation that aims to maximize reasoning utility by minimizing total uncertainty. While
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standard LLM inference is deterministic, recent theoretical work suggests that In-Context Learning
can be viewed as implicit Bayesian inference (Falck et al., 2024a). We leverage this normative view
to characterize reasoning behavior, even without performing explicit posterior sampling at test time.
We assume an inverse power law governs epistemic uncertainty reduction for sub-question sij with
token allocation bij :

Uepistemic(sij | bij) =
cij

b
βij

ij

, (1)

where cij > 0 reflects the initial epistemic uncertainty and βij ≥ 1 captures the complexity of
reducing that uncertainty (where higher βij corresponds to being easier to reduce the uncertainty).
This formulation is motivated by established Neural Scaling Laws (Kaplan et al., 2020; Hoffmann
et al., 2022; Zeng et al., 2025), which demonstrate that model loss—a proxy for uncertainty—scales
as a power law with compute. We effectively model test-time reasoning as a ’miniature’ scaling
law (Snell et al., 2024; Wu et al., 2025), where allocating more tokens reduces error at a diminishing
rate.

We model total uncertainty as the sum of the epistemic and aleatoric components:

U(sij | bij) =
cij

b
βij

ij

+ Ualeatoric(sij). (2)

Here, we treat Ualeatoric as a constant with respect to bij , since it reflects irreducible uncertainty
that cannot be mitigated through additional inference effort. A proof of the decomposition of total
uncertainty in LLM is provided in Appendix B.

We define the utility of successfully resolving a sub-question sij as inversely proportional to its
uncertainty:

r(sij | bij) = α · (1− U(sij | bij)) , (3)
where α is a model/task-based scaling factor. The total utility for query xi is then:

Rtotal =

m∑
j=1

r(sij | bij). (4)

The optimal budget allocation solves the following constrained optimization problem:

max
bi1,...,bim

m∑
j=1

α ·

(
1− cij

b
βij

ij

− Ualeatoric(sij)

)
s.t.

m∑
j=1

bij ≤ Bi. (5)

By introducing a Lagrange multiplier λ to handle the budget constraint and solving the resulting
Lagrangian, we arrive at the optimality principle:

bij = Bi ·
(cijβij)

1
βij+1∑

k(cikβik)
1

βik+1

. (6)

This allocation rule reveals a unimodal relationship between bij and βij , i.e., token budget increases
with complexity up to the peak, then decreases as further effort yields diminishing returns. This
relationship is key to mitigating reasoning miscalibration: moderately difficult sub-questions receive
more tokens to avoid underthinking, while overly difficult ones receive fewer to prevent overthink-
ing. BAM thus provides a principled, self-regulating mechanism for aligning inference effort with
reasoning value. Detailed proofs are provided in Appendix C and D.

4 REASONING CALIBRATION FRAMEWORK: PLAN-AND-BUDGET

Building directly on BAM’s principle in Eq. 6, the optimal allocation prescribes distributing a query-
level budget B across sub-questions by maximizing expected uncertainty reduction. In practice,
however, the marginal gain curves are unknown. Thus, we proposed PLAN-AND-BUDGET which
operationalizes the same objective via two proxies:

• We approximate ∆Ui(·) using lightweight online signals (e.g., prefix-entropy drop, self-
consistency disagreement, verifier loss), yielding marginal gain proxies ĝi.
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• Relaxing Equation (6) with a Lagrange multiplier λ and assuming diminishing returns leads
to multiplicative updates t(k+1)

i = γi t
(k)
i , γi ≈ exp

(
−λ/ĝi

)
, which adaptively shift budget

toward sub-questions with higher estimated gain.

This schedule is budget-feasible by construction and recovers the BAM allocation when proxies are
consistent.

4.1 PLAN STEP: QUESTION DECOMPOSITION AS GUIDED SCAFFOLD

Inspired by human problem-solving strategies, we use query decomposition as a reasoning scaffold
to improve efficiency and focus. Our planning process has two phases:

Phase 1: Automatic Planning. A lightweight planning function P decomposes xi into an ordered
sequence of sub-questions πi and their estimated complexity scores Di:

P(xi) → (πi,Di), πi = ⟨si1, si2, . . . , sim⟩, Di = ⟨di1, di2, . . . , dim⟩.

Here, πi denotes the decomposition plan, a sequence of m sub-questions, where each sij is a
natural language prompt targeting a specific sub-problem of the query xi. The vector Di =
⟨di1, di2, . . . , dim⟩ contains corresponding complexity scores, with each dij ∈ R>0 reflecting the
estimated complexity of solving sij based on LLM confidence, problem structure, or other heuristics.

The decomposition plan πi is not unique or guaranteed to be optimal, but acts as a soft scaffold, a
plausible high-level reasoning path as a prompt to guide the main LLM. The planning function P
can be implemented via applying a decomposition prompt in a lightweight LLM (see Appendix H).
The resulting complexity scores dij reflect epistemic uncertainty and help estimate the computational
effort required for each sub-question. These scores are then normalized into a weight vector wi:

wij =
dij∑m
k=1 dik

.

This normalized weight wij represents the proportion of the total “complexity” that is attributed to
the j-th sub-question. This weight vector then plays a key role in the budget allocation mechanism,
determining how the total token budget Bi is distributed across the individual sub-questions.

Phase 2: Guided Reasoning. After decomposing xi into sub-questions ⟨si1, . . . , sim⟩ and allocating
token budgets bi1, . . . , bim, the main reasoning LLM is guided by these sub-questions (see the prompt
template in Appendix H). Each sub-question sij is answered within its allocated budget bij , yielding
responses aij = fLLM(sij , bij), where fLLM denotes the budget-constrained generation process. This
constraint mitigates reasoning miscalibration by preventing excessive token use on individual steps.
After all sub-questions are answered, a synthesis function S aggregates the responses, which answers
the original query xi: yi = S(ai1, . . . , aim).

4.2 BUDGET STEP: DECAY-BASED BUDGET ALLOCATION

While our Bayesian formulation offers an optimal allocation strategy based on sub-question-specific
uncertainty parameters (cij and βij), estimating these values reliably in practice is often infeasible.
To bridge this gap, we introduce a family of decay-based scheduling functions that approximate
uncertainty-aware budget allocation in a lightweight and practical manner.

Figure 2: Visualization of decay functions. We
take B = 100, p = 2, γ = 0.9, and 5 sub-
questions with the same complexity as an example.

These functions allocate more tokens to early
sub-questions, based on the observation that
epistemic uncertainty is typically highest at the
start of reasoning—when foundational under-
standing and strategy formation occur. Early
token investment yields greater uncertainty re-
duction, consistent with the power law behav-
ior of epistemic uncertainty in Equation 1. In
contrast, later steps are generally narrower in
scope or more deterministic, and over-allocating
tokens at these stages risks wasting inference
effort, as additional computation cannot reduce
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Table 2: Decay-based scheduling strategies for token budget allocation.

Strategy Formula of dij Description

Non-decay 1 Equal priority for all sub-questions; budget follows wij .
Linear decay m− j Decreases priority linearly with j; emphasizes early steps.
Polynomial decay (m− j)p Stronger emphasis on early steps; steeper with higher p > 1.
Exponential decay γj Exponentially favors earlier sub-questions; controlled by

γ ∈ (0, 1).
Cosine annealing 0.5

(
1 + cos

(
πj

m−1

))
+ ϵ Smooth decay with mid-sequence flexibility; ϵ adds stability.

the irreducible aleatoric uncertainty and yields diminishing returns in epistemic gain. Thus, decay
functions offer a principled heuristic for prioritizing the budget where it is most valuable.

Given the normalized complexity weight vector wi = {wi1, . . . , wim} for a query xi and the total
token budget Bi, we allocate tokens using

bij =

⌊
wij · dij∑m

k=1 wik · dik
·Bi

⌋
, (7)

where dij = schedule(j,m) assigns positional priority to sub-question j in a length m sequence,
reflecting the belief that earlier steps often carry higher epistemic uncertainty and merit more budget.

Experimental Scheduling Strategy. We explore several decay strategies (Table 2), each encoding
a distinct prioritization schema over sub-question positions. Each strategy offers a flexible way
to encode task-specific preferences. For instance, polynomial decay aggressively front-loads the
budget, which may be beneficial in highly ambiguous tasks. Exponential decay offers a more
balanced approach for problems with both early and mid-sequence challenges. Ultimately, these
decay functions serve as practical surrogates to our Bayesian-optimal allocation by heuristically
targeting the most epistemically impactful stages of reasoning.

Figure 2 shows that different decay strategies yield distinct allocation patterns even under uniform
complexity, with polynomial decay and cosine annealing favoring early steps, linear offering gradual
decline, and exponential decay providing balanced distribution—demonstrating that decay-based
scheduling flexibly adapts token emphasis to match the structure of reasoning tasks.

5 EXPERIMENTS

We conduct extensive experiments across three types of reasoning-intensive downstream tasks to
evaluate the effectiveness and efficiency of PLAN-AND-BUDGET. We assess performance in terms of
raw accuracy and compute-aware reasoning efficiency using our proposed E3 metric. In particular,
we aim to answer the following questions: Q1: Does Plan-and-Budget improve reasoning efficiency
without sacrificing accuracy, compared to the baseline of using no planning (Vanilla) or applying a
fixed budget (Global Budget)? Q2: How does local, uncertainty-aware budgeting perform across
models, datasets, and task types, relative to uniform or global strategies? Q3: Which scheduling
strategies yield the best efficiency–accuracy tradeoff?

5.1 EXPERIMENT SETUP

Datasets. We evaluate PLAN-AND-BUDGET on three representative benchmarks (see Table 6 in
Appendix): (1) MATH-500 (Lightman et al., 2024), a 500 math problem dataset requiring multi-step
symbolic reasoning, evaluated by accuracy; (2) NaturalInstructions (Wang et al., 2022), a diverse
instruction-following benchmark, evaluated using ROUGE score; and (3) TravelPlanner (Xie et al.,
2024), a challenging agentic planning task evaluated by a hard constraint pass rate in a tool-free
setting. This benchmark reflects the challenge of long-horizon, constraint-satisfying reasoning, with
GPT-4-Turbo achieving 22.2% at best.

Models. We test our methods on four state-of-the-art, publicly available reasoning-tuned LLMs:
DeepSeek-R1-Distill-Qwen-32B (DS-Qwen-32B) (Guo et al., 2025), QwQ-32B (Team, 2025),
DeepSeek-R1-Distill-LLaMA-70B (DS-LLaMA-70B) (Guo et al., 2025), and OpenAI o4-mini
(OpenAI, 2025). These models balance performance and accessibility and are specifically optimized
for complex reasoning. For planning and budgeting, we use a lightweight non-reasoning LLM,
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Table 3: Experiment results across different reasoning models on MATH-500. Acc denotes accuracy.

Models → DeepSeek-R1-Distill-Qwen-32B QwQ-32B DeepSeek-R1-Distill-Llama-70B o4-mini

Methods↓ Acc (%) ↑ Avg. Tok.↓ E3 ↑ Acc (%) ↑ Avg. Tok.↓ E3 ↑ Acc (%) ↑ Avg. Tok.↓ E3 ↑ Acc (%) ↑ Avg. Tok.↓ E3 ↑
D

ir
ec

t Vanilla 89.76±0.26 2105.12±31.94 3.83 84.88±1.18 3523.72±97.42 2.04 90.44±0.61 2286.63±26.42 3.58 93.16±0.89 711.20±8.31 12.20
Global Budget 89.60±0.88 1526.15±10.09 5.26 90.56±0.33 2565.18±37.10 3.20 90.80±0.62 1810.83±51.64 4.55 91.84±0.48 636.41±8.14 13.25

Pl
an

ne
d Vanilla 91.04±0.62 1883.73±63.82 4.40 85.30±1.56 3309.69±18.06 2.20 92.12±1.16 2022.38±28.74 4.20 91.88±1.36 539.36±18.94 15.65

Global Budget 91.24±1.34 1552.62±29.93 5.36 88.20±1.17 2671.60±15.02 2.91 92.56±0.71 1661.24±34.43 5.16 91.84±0.75 586.18±6.50 14.39

P
L

A
N

-A
N

D
-B

U
D

G
E

T + Uniform 90.16±0.74 1440.70±47.55 5.64 88.68±0.58 2397.16±23.01 3.28 92.28±0.41 1575.04±29.68 5.41 91.36±0.85 525.53±18.88 15.88
+ Weighted 90.48±0.46 1485.99±45.63 5.51 87.45±0.66 2479.46±39.21 3.08 92.64±0.68 1557.64±47.71 5.51 91.64±1.21 538.22±5.30 15.60
+ Linear 90.04±0.46 1336.27±31.18 6.07 88.13±0.90 2346.35±25.33 3.31 92.32±0.88 1529.98±45.35 5.57 90.56±0.73 534.45±7.64 15.34

+ Exponential 90.80±0.68 1389.75±61.06 5.93 87.90±1.27 2320.04±72.33 3.33 93.04±0.22 1469.29±73.77 5.89 90.88±0.36 525.51±11.70 15.72
+ Polynomial 90.04±0.26 1371.59±21.75 5.91 88.27±0.99 2346.94±17.73 3.32 91.92±1.15 1514.43±47.94 5.58 90.36±0.83 525.00±9.15 15.55
+ Cosine 89.88±1.72 1365.51±44.92 5.92 88.60±0.28 2306.83±24.11 3.40 92.88±0.46 1487.83±61.78 5.80 91.32±0.94 522.89±10.01 15.95

Table 4: Experiment results across different reasoning models on NaturalInstructions.

Models → DeepSeek-R1-Distill-Qwen-32B QwQ-32B DeepSeek-R1-Distill-Llama-70B o4-mini

Methods↓ ROUGE (%) ↑ Avg. Tokens ↓ E3 ↑ ROUGE (%) ↑ Avg. Tokens ↓ E3 ↑ ROUGE (%) ↑ Avg. Tokens ↓ E3 ↑ ROUGE (%) ↑ Avg. Tokens ↓ E3 ↑

D
ir

ec
t Vanilla 43.47±0.52 968.17±44.78 1.95 43.16±1.12 1818.34±24.99 1.02 43.13±0.76 894.46±50.69 2.08 47.24±0.31 460.99±11.31 4.84

Global Budget 42.81±0.39 787.25±58.17 2.33 44.77±0.73 1360.49±101.64 1.47 43.80±1.28 772.98±47.44 2.48 45.39±1.27 422.20±56.78 4.88

Pl
an

ne
d Vanilla 42.48±0.67 860.85±49.58 2.10 44.24±0.67 1426.74±52.92 1.37 43.40±0.18 821.27±21.85 2.29 43.78±1.47 344.99±14.44 5.56

Global Budget 42.50±0.36 717.98±36.28 2.52 45.13±0.56 1265.78±33.23 1.61 42.48±0.33 691.79±12.18 2.61 43.78±0.96 358.84±14.44 5.34

P
L

A
N

-A
N

D
-B

U
D

G
E

T + Uniform 41.03±0.55 644.87±46.34 2.61 44.47±0.35 996.91±31.31 1.98 43.06±0.33 665.94±47.22 2.78 44.08±0.81 348.74±8.13 5.57
+ Weighted 41.29±0.50 663.9427.29 2.57 44.40±0.61 1025.02±24.91 1.92 43.05±0.39 626.37±19.46 2.96 43.72±1.00 371.85±9.53 5.14
+ Linear 41.56±0.50 633.79±34.17 2.73 44.22±0.66 1003.24±26.23 1.95 42.05±0.99 613.05±33.68 2.88 44.21±0.44 363.65±13.70 5.37
+ Exponential 41.44±0.50 650.19±31.35 2.64 43.99±0.22 1026.89±8.51 1.88 42.73±0.24 622.72±33.58 2.93 43.68±1.06 364.86±10.81 5.23
+ Polynomial 41.44±0.78 600.04±40.52 2.86 44.66±0.68 995.95±14.43 2.00 43.19±0.44 641.62±32.22 2.91 44.63±1.04 363.16±11.71 5.48
+ Cosine 41.43±1.01 628.20±36.63 2.73 44.53±0.54 1000.64±17.85 1.98 42.83±0.63 657.93±59.06 2.79 44.36±1.06 363.05±16.72 5.42

LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024). To ensure that it does not inadvertently contribute
to final answer quality, we evaluate its standalone performance on the three benchmarks and find that
it underperforms specialized models: 48.76±0.74 on MATH-500, 21.72±0.98 on NaturalInstructions,
and 2.91±0.28 on TravelPlanner. This confirms its role as a neutral planner.

Evaluation Metrics. We report the following metrics: (1) Score (%), the original evaluation metric
used in each dataset; (2) Avg. Tokens, the average number of all billed completion tokens per
query, including planning, reasoning and output tokens (for open-source models, tokens before
</think> and final outputs; for o4-mini, the sum of reasoning and output tokens as reported in
OpenAI documentation (OpenAI, 2025)); and (3) E3 Metric, which captures the balance between
correctness and computational cost.

Baselines. We compare our proposed framework against several baselines: (1) Vanilla. The
query is given to the LLM without planning or token constraint; (2) Global Budget. Same as
Vanilla but with a token limit prompt (e.g., “use less than Bi tokens”); (3) Planned Vanilla /
Global Budget. Same as above, but with the original query and its decomposed sub-questions
provided; and (4) PLAN-AND-BUDGET. Our methods—the query, sub-questions, and local bud-
get prompts are given. We explore several scheduling strategies for local allocation: (a) Uni-
form, equal tokens per sub-question; (b) Weighted, proportional to the estimated difficulty; and
(c) Linear, Polynomial, Exponential, Cosine, weighted by difficulty with additional decay (we
use p = 2 and γ = 0.9). A hard cutoff of 8192 tokens is applied to prevent runaway gener-
ations. We report the average and standard deviation over 5 runs for all models and baselines.

Figure 3: Answer pass rate grouped by the question
difficulty level in TravelPlanner. The global budget
limit hurts the pass rate on all levels, while our
method not only achieves a higher pass rate but
also enjoys lower token usage. Overall pass rate
and average token usage are shown in the legend.

5.2 COMPARATIVE RESULTS

We now address the questions introduced earlier
by analyzing results across datasets and models.

Tables 3–5 summarize our main findings.
Across all datasets and model scales, PLAN-
AND-BUDGET consistently outperforms both
the Vanilla and Global Budget baselines, achiev-
ing up to 193.8% improvement in E3, while
maintaining comparable or even higher accu-
racy. To further illustrate this, Figure 3 shows
answer pass rates of QwQ-32B on TravelPlan-
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Table 5: Experiment results on TravelPlanner. Rate denotes the hard constraint pass rate.

Models → DeepSeek-R1-Distill-Qwen-32B QwQ-32B DeepSeek-R1-Distill-Llama-70B o4-mini

Methods↓ Rate (%) ↑ Avg. Tokens ↓ E3 ↑ Rate (%) ↑ Avg. Tokens ↓ E3 ↑ Rate (%) ↑ Avg. Tokens ↓ E3 ↑ Rate (%) ↑ Avg. Tokens ↓ E3 ↑
D

ir
ec

t Vanilla 14.33±2.17 1430.14±43.73 0.14 34.89±3.20 3432.33±78.66 0.35 26.22±1.82 1361.37±47.93 0.50 11.58±2.15 1559.65±8.84 0.086
Global Budget 13.78±1.20 1158.81±20.23 0.16 30.78±2.06 2530.04±40.87 0.37 24.33±2.30 1215.29±35.05 0.49 8.33±1.71 1248.53±26.97 0.056

Pl
an

ne
d Vanilla 20.22±1.01 1343.67±62.44 0.30 37.22±1.80 3669.88±42.09 0.38 30.67±2.17 1464.50±65.40 0.64 12.20±2.47 1640.46±95.33 0.091

Global Budget 22.56±2.41 1241.19±54.66 0.41 35.22±4.85 3199.58±63.14 0.39 30.67±1.73 1220.41±32.22 0.77 7.19±2.43 1392.11±31.05 0.037

P
L

A
N

-A
N

D
-B

U
D

G
E

T + Uniform 20.67±1.20 1227.99±68.55 0.35 36.00±2.79 2854.24±44.87 0.45 31.56±2.20 1232.98±34.16 0.81 11.00±1.62 1345.32±58.88 0.090
+ Weighted 23.33±1.11 1222.09±40.69 0.45 33.89±2.22 2842.74±77.68 0.40 29.67±3.01 1197.32±10.78 0.74 10.91±3.01 1353.67±37.64 0.088
+ Linear 19.56±2.47 1136.18±54.92 0.34 34.55±2.65 2671.70±67.97 0.45 31.67±2.32 1162.24±43.31 0.86 11.66±1.96 1306.54±55.05 0.103
+ Exponential 21.44±2.98 1156.64±30.52 0.40 35.44±2.06 2724.23±41.87 0.46 32.00±2.14 1187.85±36.57 0.86 9.91±1.96 1307.87±40.83 0.075
+ Polynomial 23.11±2.14 1148.53±37.33 0.47 35.00±3.35 2511.35±84.18 0.49 32.67±2.06 1148.14±59.00 0.93 11.49±1.31 1266.11±28.48 0.104
+ Cosine 20.22±2.34 1140.79±6.68 0.36 36.18±3.00 2496.46±40.10 0.52 31.67±2.22 1173.96±44.22 0.85 9.79±1.57 1252.06±80.85 0.077

ner, grouped by difficulty level. While global budget constraints reduce token usage, they also degrade
pass rates across all levels. In contrast, PLAN-AND-BUDGET achieves both higher pass rates and
lower token usage, especially on harder queries, highlighting its ability to scale reasoning adaptively
with problem complexity.

On MATH-500, our method improves E3 consistently by over 20%—for instance, from 4.55 → 5.89
(+29.4%) on DS-LLaMA-70B and from 13.25 → 15.95 (+20.3%) on o4-mini. Importantly, this is
achieved without compromising the accuracy. While the Global Budget baseline reduces token usage,
its gains are limited due to a lack of uncertainty-awareness. Notably, we find that planning alone
(Planned Global Budget) already mostly boosts efficiency by 2–13%, validating our first key principle:
reasoning should be structured. This scaffolding greatly reduces speculative exploration. Moreover,
E3 enables easy comparison across models – e.g., o4-mini consistently achieves the highest E3,
despite having similar accuracy to other models, because it uses the fewest tokens. This underscores
the importance of E3 as a practical efficiency metric.

A1: We achieve substantial efficiency gains with comparable accuracy. On NaturalInstructions,
PLAN-AND-BUDGET improves E3 by 19.3–36.0%. For example, on QwQ-32B, it improves from
1.47 → 2.00 (+36%), and on o4-mini, from 4.88 → 5.57 (+14%). Although these tasks are more
instruction-oriented, PLAN-AND-BUDGET remains beneficial. On TravelPlanner, the most open-
ended and challenging benchmark, we observe the most dramatic gains: E3 improves from 0.16 →
0.47 (+193.8%) on DS-Qwen-32B, from 0.49 → 0.93 (+89.8%) on DS-LLaMA-70B, and 0.056 →
0.104 (+85.7%) on o4-mini. These results highlight that the more complex the task, the greater the
benefit of structure and adaptivity.

A2: Local budgeting consistently improves efficiency. While structured planning alone improves
efficiency, adding local budgeting yields significant additional gains. We can observe that on MATH-
500, DS-LLaMA-70B improves E3 from 5.16 → 5.89 (+14.1%); on NaturalInstructions, QwQ-32B
improves from 1.61 → 2.00 (+24.2%); and on TravelPlanner, from 0.39 → 0.52 (+33.3%). These
results confirm the importance of adapting the budget to the sub-question, rather than applying a
global allocation.

A3: Front-loaded scheduling performs best on complex tasks. Among local budget schedulers,
polynomial decay and cosine annealing consistently deliver the highest E3 on mathematical and
long-form planning tasks. These strategies front-load computation, allocating more budget to early,
uncertain steps where reasoning direction is established. This pattern is particularly effective on
MATH-500 and TravelPlanner, where clarity at the beginning of the reasoning is crucial. In contrast,
on NaturalInstructions, weighted or uniform schedules usually perform well, suggesting that smooth,
evenly paced reasoning suffices for tasks with clearer structure and less ambiguity.

A4: Bridging the gap between small and large Models. Our method is model-agnostic: it requires
no retraining or fine-tuning, relying only on prompting and lightweight planning. We observe
consistent improvements across model sizes, from small models like QwQ-32B to large models like
DeepSeek-R1-70B and o4-mini. An especially notable result comes from TravelPlanner, where a
compact model (DS-Qwen-32B) originally achieved only E3 = 0.16, but reached E3 = 0.47 after
applying PLAN-AND-BUDGET, on par with a larger model with no planning (DS-LLaMA-70B, E3 =
0.50). This demonstrates that planning and budgeting can serve as powerful inference-time equalizers,
closing the gap between small and large models through better compute utilization.
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6 CONCLUSION

We propose PLAN-AND-BUDGET, a lightweight test-time framework that improves LLM reasoning
efficiency by combining structured planning with uncertainty-aware token budgeting. Built on
our BAM, PLAN-AND-BUDGET models reasoning as a sequence of sub-questions and adaptively
allocates computation based on estimated difficulty. Experiments on three different reasoning tasks
show that PLAN-AND-BUDGET achieves significant improvements in compute efficiency over strong
baselines, without compromising accuracy. Although effective, our method currently requires an
additional LLM call to generate the decomposition plan. In future work, we aim to fine-tune and
develop a dedicated planner LLM to internalize the plan-and-budget strategy, enabling end-to-end,
efficient reasoning within a single model.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility. Theoretical assumptions and derivations
of the Budget Allocation Model (BAM) are detailed in Section 3, with complete proofs provided
in Appendix B–D. Experimental setups, evaluation metrics, and dataset statistics are described in
Section 5 and Appendix E, including licenses for all datasets and models. We provide an anonymized
code repository (linked in the abstract) containing implementations of all baselines, our Plan-and-
Budget framework, and scripts to reproduce every table and figure. Additional details, such as prompt
templates and ablation studies of scheduling strategies, are included in Appendix G and F. Together,
these resources allow independent verification and extension of both our theoretical and empirical
findings.

ETHICS STATEMENT

This work relies exclusively on publicly available datasets (MATH-500, NaturalInstructions, and
TravelPlanner) and open-source or API-accessible large language models (e.g., DeepSeek, QwQ,
o4-mini). No human subjects, private, or sensitive data were used. The proposed method improves
inference efficiency by reducing unnecessary computation, which can lower environmental and
financial costs of deploying LLMs. However, as with any efficiency-focused technique, there is a
risk of misuse in high-stakes applications (e.g., medical or legal decision-making) if efficiency is
prioritized over accuracy. We mitigate this risk by explicitly emphasizing correctness in our E3 metric
and by recommending careful, task-specific evaluation before real-world deployment. Our framework
does not modify underlying model internals and thus inherits any limitations or biases present in the
base models.
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A LLM USAGE

Large language models (LLMs) were employed in a limited and transparent manner during the
preparation of this manuscript. Specifically, LLMs were used to assist with linguistic refinement,
style adjustments, and minor text editing to improve clarity and readability. They were not involved
in formulating the research questions, designing the theoretical framework, conducting experiments,
or interpreting results. All scientific contributions—including conceptual development, methodology,
analyses, and conclusions—are the sole responsibility of the authors.

B PROOF OF UNCERTAINTY DECOMPOSITION FOR LLMS

Let θ denote the parameters of an LLM (e.g., transformer weights), and let x∗ be the test-time input
with corresponding output y∗. Under a Bayesian treatment, the predictive distribution is given by:

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D) dθ,

and is often approximated via Monte Carlo sampling:

p(y∗|x∗, D) ≈ 1

M

M∑
m=1

p(y∗|x∗, θm), θm ∼ p(θ|D).

We define the total predictive uncertainty as the Shannon entropy of this marginal predictive
distribution:

U(x∗) = H [p(y∗|x∗, D)] = H
[∫

p(y∗|x∗, θ)p(θ|D)dθ

]
.

To derive the decomposition, we apply the law of total entropy, which relates the entropy of the
marginal to the expected entropy of the conditionals and the mutual information:

H[y∗|x∗, D] = Ep(θ|D)[H[y∗|x∗, θ]] + I(y∗; θ|x∗, D).

Step-by-step Derivation:

Let: - p(y∗|x∗, θ) — the conditional predictive distribution. - p(y∗|x∗, D) — the marginal (Bayesian
averaged) predictive distribution.

The total predictive uncertainty is:

U(x∗) = H [p(y∗|x∗, D)] = −
∑
y∗

p(y∗|x∗, D) log p(y∗|x∗, D).

Define aleatoric uncertainty as the expected conditional entropy:

Ualeatoric(x
∗) = Ep(θ|D)[H[p(y∗|x∗, θ)]] =

∫
p(θ|D)

(
−
∑
y∗

p(y∗|x∗, θ) log p(y∗|x∗, θ)

)
dθ.

Then define epistemic uncertainty as the mutual information:

Uepistemic(x
∗) = I(y∗; θ|x∗, D) = H[y∗|x∗, D]− Ep(θ|D)[H[y∗|x∗, θ]].

Combining the above, we obtain:

U(x∗) = Ualeatoric(x
∗) + Uepistemic(x

∗).

Interpretation:

• Ualeatoric(x
∗): Irreducible uncertainty present in each individual model prediction, even if θ

were known.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Uepistemic(x
∗): Captures model uncertainty due to limited data, reflected in disagreement

across posterior samples.

In practice, following Hüllermeier & Waegeman (2021), we approximate this decomposition using
Monte Carlo estimation. Drawing M samples θ1, . . . , θM from p(θ|D), we compute:

U(x∗) ≈ H

[
1

M

M∑
m=1

p(y∗|x∗, θm)

]
,

Ualeatoric(x
∗) ≈ 1

M

M∑
m=1

H [p(y∗|x∗, θm)] ,

Uepistemic(x
∗) ≈ U(x∗)− Ualeatoric(x

∗).

Thus, the uncertainty decomposition holds in both exact Bayesian inference and its Monte Carlo
approximation, validating its use in practical LLM reasoning pipelines. In the context of our Plan-
and-Budget framework, we utilize this decomposition as a theoretical lens to explain why structured
budgeting works. We do not perform the computationally expensive Monte Carlo sampling described
above during inference; rather, we rely on the deterministic approximation that the model’s single
generation path is dominated by the properties of its underlying uncertainty distribution.

C PROOF OF LAGRANGE OPTIMALITY

Proof. We aim to maximize the total utility:

Rtotal =

m∑
j=1

r(sij | bij) =
m∑
j=1

α

(
1− cij

b
βij

ij

− Ualeatoric(sij)

)
. (8)

Since α and Ualeatoric(sij) are constants with respect to bij , maximizing the total utility is equivalent
to minimizing the following:

m∑
j=1

cij

b
βij

ij

subject to
m∑
j=1

bij = Bi. (9)

Step 1: Form the Lagrangian.
We define the Lagrangian:

L({bij}, λ) =
m∑
j=1

cij

b
βij

ij

+ λ

 m∑
j=1

bij −Bi

 . (10)

Taking the partial derivative with respect to bij and setting it to zero:

∂L
∂bij

= −cijβijb
−(βij+1)
ij + λ = 0 ⇒ λ = cijβijb

−(βij+1)
ij . (11)

Solving for bij gives:

b
βij+1
ij =

cijβij

λ
⇒ bij =

(
cijβij

λ

) 1
βij+1

. (12)

Step 2: Apply the budget constraint.
Substitute into the constraint

∑
j bij = Bi:

m∑
j=1

(
cijβij

λ

) 1
βij+1

= Bi. (13)
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Let

Aj := (cijβij)
1

βij+1 , so that bij = λ−1/(βij+1)Aj .

Then the constraint becomes:
m∑
j=1

λ−1/(βij+1)Aj = Bi. (14)

This expression has a closed-form solution for λ only when all βij = β (i.e., homogeneous difficulty).
In that case:

bij =

(
cijβ

λ

) 1
β+1

⇒
∑
j

(
cijβ

λ

) 1
β+1

= Bi ⇒ λ =

(∑
j(cijβ)

1
β+1

B

)β+1

. (15)

Substituting back yields:

b∗ij = Bi ·
(cijβ)

1
β+1∑

k(cikβ)
1

β+1

. (16)

In the general case of heterogeneous βij , the normalized form can still be written as:

b∗ij = Bi ·
(cijβij)

1
βij+1∑

k(cikβik)
1

βik+1

, (17)

which satisfies the budget constraint
∑

j bij = Bi, thus completing the proof.

D ANALYSIS OF THE RELATIONSHIP BETWEEN bij AND βij

We examine the behavior of the allocation function in Equation 6:

bij = Bi ·
(cijβij)

1
βij+1∑

k(cikβik)
1

βik+1

. (18)

To analyze the relationship between bij and βij , we focus on the numerator:

f(β) := (βc)
1

β+1 = exp

(
log(βc)

β + 1

)
. (19)

Let us define:

g(β) :=
log(βc)

β + 1
, so that f(β) = eg(β). (20)

We now study the behavior of f(β) through the derivative of g(β):

g′(β) =
1

β + 1
· 1
β
− log(βc)

(β + 1)2
(21)

=
1

β(β + 1)
− log(βc)

(β + 1)2
. (22)

The sign of g′(β) depends on β, and it is not monotonic. The function g(β) increases initially, reaches
a maximum, and then decreases. Consequently, g(β) is unimodel, and since f(β) = eg(β), f(β) is
also unimodal.
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E BROADER IMPACTS

Our work proposes a lightweight test-time framework that improves the efficiency of LLM reasoning
through structured planning and uncertainty-aware computation. This has potential positive societal
impacts by reducing computational costs, improving energy efficiency, and making advanced LLM
capabilities more accessible—particularly in resource-constrained settings. By narrowing the perfor-
mance gap between small and large models, our method may also promote more equitable access to
language technologies.

However, as with any LLM inference technique, risks remain if deployed without careful oversight.
More efficient reasoning pipelines could accelerate LLM integration into high-stakes applications
(e.g., legal or medical decision-making) where accuracy, fairness, and robustness are critical. Our
method does not modify model internals and inherits any limitations or biases present in the base
models. Mitigation strategies include model-level auditing, task-specific evaluation, and responsible
deployment practices.

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 DATASET DESCRIPTIONS AND EVALUATION METRICS

Table 6: Dataset Statistics. LLaMA 3.1-
8B sole performance is also provided.

MATH-500 Natural
Instructions

Travel
Planner

Task Math
Reasoning

Instruction
Following

Agentic
Planning

QA Pairs 500 500 180

Metrics Accuracy ROUGE Pass rate

LLaMA 3.1-8B
Performance 48.76±0.74 21.72±0.98 2.91±0.28

To evaluate the general applicability of our framework,
we select three reasoning-heavy benchmarks spanning
symbolic math, instruction following, and long-horizon
planning.

MATH-500. A curated 500-problem subset from the full
MATH dataset, designed to test symbolic, multi-step math
reasoning. Each problem requires the model to interpret,
manipulate, and solve high-school level mathematical ex-
pressions. Performance is measured using exact-match
accuracy against gold answers.

NaturalInstructions. A broad instruction-following
benchmark consisting of over 1600 tasks covering ques-
tion answering, classification, transformation, and reasoning. We randomly sample 500 test queries
from the public split for evaluation. Since answers are open-ended and linguistic, we use ROUGE
score to measure semantic overlap with the reference answers.

TravelPlanner. A challenging planning benchmark that simulates real-world itinerary construction
under hard constraints (e.g., timing, location compatibility) and soft commonsense preferences. We
focus on the sole-planning setting where all relevant knowledge is embedded in the prompt, and no
tool use is required. We evaluate on the validation set using the hard constraint pass rate, measuring
whether the generated plan satisfies the minimal feasibility constraints (e.g., no overlaps or missing
connections). We omit the stricter full success rate (which includes commonsense and preference
matching) to isolate planning competence. Notably, even GPT-4-Turbo only achieves 22.2% under
this setting, highlighting the dataset’s difficulty.

F.2 LICENSES FOR EXISTING ASSETS

All models and datasets used in this work are publicly available and used in accordance with their
respective licenses:

• DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-LLaMA-70B (Guo et al.,
2025) are released under the DeepSeek open-source model license available at https://
github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL.

• QwQ-32B (Team, 2025) is licensed under the Apache License 2.0.

• OpenAI o4-mini (OpenAI, 2025) is accessed via the OpenAI API under the terms of service
and usage policies listed at https://openai.com/policies/terms-of-use.
No model weights are released or modified.
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• LLaMA-3.1-8B-Instruct is used via OpenRouter and follows Meta’s LLaMA 3 license
available at https://ai.meta.com/llama/license/.

• All datasets (MATH-500, NaturalInstructions, TravelPlanner) are publicly available and
properly cited. They are used for evaluation purposes under academic and research-friendly
terms of use.

F.3 COMPUTE RESOURCES

All experiments were conducted using API-accessible large language models, including OpenAI’s o4-
mini and models hosted via OpenRouter (e.g., DeepSeek-R1-Distill-Qwen-32B). Since our method
operates entirely at inference time through prompting, the computational cost is directly proportional
to the number of tokens generated. We report token usage for each setting in the main paper, which
can be used to estimate wall-clock runtime given model-specific generation rates (typically 50–80
tokens/sec depending on the provider) and the parallelism used.

All data preprocessing, prompt generation, and evaluation were performed on a cloud-based virtual
machine equipped with an Intel Xeon E5-2698 CPU and 500GB of main memory. No model training
or fine-tuning was involved, and the overall compute requirements are modest and accessible.

G ADDITIONAL RESULTS

In addition to the answer pass rates discussed in the main results, we also examine the token usage
distribution across queries of varying difficulty. Figure 4 presents the average token usage and
corresponding pass rates on TravelPlanner, grouped by difficulty level.

Figure 4: Token usage and pass rate analysis across difficulty levels on TravelPlanner. (Left) Token
usage distributions. (Right) Answer pass rate by difficulty level.

As expected, we observe that token usage increases with query difficulty across all models—more
complex tasks naturally require deeper reasoning and longer responses. However, methods using
global budget constraints exhibit a consistently higher token usage across all difficulty levels com-
pared to our approach (Planned Local). This suggests that global budgeting fails to adapt to query
complexity, resulting in inefficient allocation of compute.

Moreover, global methods not only over-consume tokens but also suffer reduced answer pass rates at
every difficulty level. This inefficiency leads to lower overall E3, further reinforcing the advantage of
our uncertainty-aware local budgeting strategy. In contrast, PLAN-AND-BUDGET adapts compute
based on sub-question difficulty, achieving better calibration of reasoning effort across simple and
complex queries alike.
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H PROMPT TEMPLATES

Prompt Templates for Question Decomposition

-Goal-
You are an experienced expert in domain and exam question designer. Your role is to
help students break down challenging math problems into a series of simpler, high-level
sub-questions.
We don’t want too many detailed sub-questions, which are not beneficial for testing students’
ability in an exam. Each sub-question should build on the previous one so that, once all have
been answered, the complete solution is clear.
Your output should be a list of sub-questions with brief hints explaining the purpose of each
step, but you should not reveal your internal chain-of-thought either the final solution.

Instructions for Decomposition:
First, analyze the problem and identify the key ideas needed to solve it. Then, generate a
series of 2 to 5 sub-questions that lead the student step by step to the complete solution. The
difficulty level of the problem is presented out of 5, wher 1 is easy, and 5 is hard. Please
adjust the number of sub-questions based on the level. Ideally, we want fewer sub-questions
for easy problems and more sub-questions for challenging problems.
DO NOT perform reasoning, directly output those sub-questions based on your gut feelings;
only output the list of sub-questions with brief hints for each.
Your answer should be a list of numbered sub-questions. Each sub-question should have a
brief accompanying hint that explains what the student will achieve by answering that part.

Example Decomposition:
**Problem:** Find the remainder when (9× 99× 999× · · · × 99 · · · 9︸ ︷︷ ︸

999 9’s

) is divided by 1000.

**Level:** 3 out of 5

**Decomposed Sub-questions:**

1. Compute the product modulo 8.
Hint: Simplify each term using (10 ≡ 2 mod 8), noting that (10k ≡ 0 mod 8) for k ≥ 3,
leading to terms of (−1 mod 8).

2. Compute the product modulo 125.
Hint: Recognize (103 ≡ 0 mod 125), so terms for (k ≥ 3) become (−1 mod 125).
Calculate the product of the first two terms and combine with the remaining terms.

3. Solve the system of congruences using the Chinese Remainder Theorem.
Hint: Combine the results from modulo 8 and modulo 125 to find a common solution modulo
1000.

A student has presented you with the following math problem:
Problem: <problem>
Level: <level> out of 5
**REMEMBER**, you are not allowed to think about it, please directly generate the answer
in the following:
Decomposed Sub-questions:

Prompt Templates for Question Decomposition

You are an experienced expert in <domain> and exam question designer. Your task is to
evaluate the difficulty level of a given exam problem and its sub-questions by comparing it

18
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against a set of benchmark questions of known levels.
Based on their levels, you will need to assign each subquestion a portion of the credits
(assuming the total credit points is 100 for the whole problem).

Each level reflects increasing complexity from 1 (easiest) to 5 (most challenging).
Evaluate based on the conceptual depth, steps involved in solving, required knowledge, and
potential for misdirection.

Use the following benchmark examples as references:

<benchmarks>

1. You will be provided a question and its subquestions. You will evaluate the diffi-
culty level of the problem and its sub-questions.
Assuming the whole problem is worth 100 points, you assign each sub-question a portion of
the score points.
- Adhere to the given subquestions, and DO NOT make new subquestions.
- Sum of each subquestion’s credits MUST EQUAL to 100.

2. You must return the result in a structured JSON format:
{
"problem": {"reason": "...", "evaluated_level": level_q}
"1": {"reason": "...", "evaluated_level": level_1, "credit": credit_1},
"2": {"reason": "...", "evaluated_level": level_2, "credit": credit_2},
...}
where
- "reason": a short explanation (up to 50 words) of your level assessment.
- "evaluated_level": an integer from 1 to 5 indicating your judgment.
- "credit": an integer between 1 to 100 indicating when the question is solved correctly, how
many credit can be given.

Evaluate the level of the following question:
Problem: <problem>
Sub-questions: <steps>
Output:

Prompt Templates for Vanilla Model

< dataset-specific instruction>

Please reason step by step, and conclude your answer in the following format:

<dataset specific output format>

Question: <query>
Reference: <reference>(only applicable to TravelPlanner)
Output: <think>

Prompt Templates for Global Budget Model

< dataset-specific instruction>

Please reason step by step, and conclude your answer in the following format:

19
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<dataset specific output format>

Question: <query>
Reference: <reference>(only applicable to TravelPlanner)
Let’s think step by step and use less than <budget> tokens. Output: <think>

Prompt Templates for Planned Vanilla Model

<dataset-specific instruction>

The problem is given by an overall description, difficulty level out of 5, followed
by a series of sub-questions as a hint.
All the credit is given when you provide a correct final answer for the overall problem.
Please solve the question efficiently and clearly to achieve as much credit as possible.

Let’s start the exam. You are being given this math problem:
**Problem (100pt):** <query>
**Reference:** <reference>(only applicable to TravelPlanner)
**Level:** <level> out of 5

You may think following these sub-questions or feel free to use other methods that
works the best towards getting the final answer:
<decomposed>

Please provide your final answer in the following format:
<dataset specific output format>

Output: <think>

Prompt Templates for Planned Global Budget Model

<dataset-specific instruction>

The problem is given by an overall description, difficulty level out of 5, followed
by a series of sub-questions as a hint.
All the credit is given when you provide a correct final answer for the overall problem.
Please solve the question efficiently and clearly to achieve as much credit as possible.

Let’s start the exam. You are being given this math problem:
**Problem (100pt):** <query>
**Reference:** <reference>(only applicable to TravelPlanner)
**Level:** <level> out of 5

You may think following these sub-questions or feel free to use other methods that
works the best towards getting the final answer:
<decomposed>

Please provide your final answer in the following format:
<dataset specific output format>

Let’s think step by step and use less than <budget> tokens.
Output: <think>
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Prompt Templates for Planned Local Budget Model (Ours)

<dataset-specific instruction>

The problem is given by an overall description, difficulty level out of 5, followed
by a series of sub-questions as a hint.
All the credit is given when you provide a correct final answer for the overall problem.
Please solve the question efficiently and clearly to achieve as much credit as possible.

Let’s start the exam. You are being given this math problem:
**Problem (100pt):** <query>
**Reference:** <reference>(only applicable to TravelPlanner)
**Level:** <level> out of 5

You may think following these sub-questions or feel free to use other methods that
works the best towards getting the final answer:
<decomposed> (For each decomposed subquestion:) Please only think a little, and directly
solve it using up to <budget> words.

Please provide your final answer strictly following the format:
<dataset specific output format>

Output: <think>
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