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Abstract

We address the critical challenge of applying feature attribution methods to the transformer
architecture, which dominates current applications in natural language processing and beyond.
Traditional attribution methods to explainable AI (XAI) explicitly or implicitly rely on linear
or additive surrogate models to quantify the impact of input features on a model’s output.
In this work, we formally prove an alarming incompatibility: transformers are structurally
incapable to align with popular surrogate models for feature attribution, undermining the
grounding of these conventional explanation methodologies. To address this discrepancy, we
introduce the Softmax-Linked Additive Log-Odds Model (SLALOM), a novel surrogate model
specifically designed to align with the transformer framework. SLALOM demonstrates the
capacity to deliver a range of insightful explanations with across both synthetic and real-world
datasets. We highlight SLALOM’s unique efficiency-quality curve by showing that SLALOM
can produce explanations with substantially higher fidelity than competing surrogate models
or provide explanations of comparable quality at a fraction of their computational costs.

1 Introduction

The transformer architecture (Vaswani et al., 2017) has been established as the status quo in modern natural
language processing (Devlin et al., 2018; Radford et al., 2018; 2019; Touvron et al., 2023). However, the
current and foreseeable adoption of large language models (LLMs) in critical domains such as the judicial
system (Chalkidis et al., 2019) and the medical domain (Jeblick et al., 2023) comes with an increased need
for transparency and interpretability. Methods to enhance the interpretability of an artificial intelligence
(AI) system are developed in the research area of Explainable AI (XAI, Adadi & Berrada, 2018; Gilpin
et al., 2018; Molnar, 2019; Burkart & Huber, 2021). A recent meta-study (Rong et al., 2023) shows that
XAI has the potential to increase users’ understanding of AI systems and their trust therein. Local feature
attribution methods that quantify the contribution of each input to a decision outcome are among the most
popular explanation methods, and a variety of approaches have been suggested for the task of computing
such attributions (Kasneci & Gottron, 2016; Ribeiro et al., 2016; Sundararajan et al., 2017; Lundberg & Lee,
2017; Covert et al., 2021; Modarressi et al., 2022).

It remains hard to formally define the contribution of an input feature for non-linear functions. Recent
work (Han et al., 2022) has shown that many common explanation methods do so by implicitly or explicitly
performing a local approximation of the complex black-box function, denoted as f , using a simpler surrogate
function g from a predefined class G. For instance, Local Interpretable Model-agnostic Explanations (LIME,
Ribeiro et al., 2016) or input gradient explanations (Baehrens et al., 2010) use a linear surrogate model to
approximate the black-box f ; the model’s coefficients can be used as the feature contributions.

Surrogate model explanations have the advantage that they directly describe the behaviour of the model in
the proximity of a specific input, i.e., under small perturbations, a property known as fidelity (Guidotti et al.,
2018; Nauta et al., 2023). Fidelity can be quantified through the difference between the prediction model’s
outputs and the surrogate model’s outputs (Yeh et al., 2019; Zhou et al., 2019). We refer to the notion where
the explanations quantitatively describe the prediction model’s output under perturbations as strict fidelity.
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Input sequence t (positive: [0.5,∞]):
this is a fantastic movie .

f(t):

BERT 1.09
linear 0.93

Add prefix u (neutral: [−0.5, 0.5]):
it has been a long time since we saw the last

movie because something always happened to

come up . however ,

f(u):

BERT 0.29
linear 0.19

f(t) + f(u):
Σ BERT 1.38
Σ linear 1.12

Concatenation [t, u]:

it has been a long time since we saw the last

movie because something always happened to come

up . however , this is a fantastic movie .

f([t, u]):

BERT 0.45
linear 1.12

Common Surrogate Models in XAI
Predictive

Models
Surrogate

Models
Explanation
Techniques

Logistic / Linear
Regression,

ReLU networks

Linear Model:
✗no non-linearities
✗no interactions

C-LIME, Gradients, IG

GAM, ensembles,
boosting

GAM:
✓non-linearities
✗no interactions

Removal-based,
e.g. Shapley

Values, Local GAM
approximation

Transformers
SLALOM (ours):
✓non-linearities

✓interactions

Local SLALOM
approximation

Figure 1: Transformers cannot be well explained through additive models. Left: We exemplarily
show the log-odds for the outputs of a BERT model and a linear Naïve-Bayes model (“linear”) assigning each
word a weight trained on the IMDB movie review dataset. We pass two sequences to the models independently
and in concatenation. While for the linear model, the output of the concatenated sequence can be described
by the sum, this is not the case for BERT. We show that this phenomenon is not due to a non-linearity in
this particular model but stems from a general incapacity of transformers to represent additive functions.
Right: To overcome this difficulty, we propose SLALOM, a novel surrogate model specifically designed to
better approximate transformer models.

An implication of models with high representative capacity and high-fidelity explanations is the recovery
property: If the true relation f between features and labels in the data is already within the function class G,
the model will learn this function and we can effectively reconstruct the original f from the explanations. As
an example, suppose that the black-box function we consider is of linear form, i.e., f(x) = w⊤x and has
been correctly learned. In this case, a gradient explanation as well as continuous LIME (C-LIME, Agarwal
et al., 2021) will recover the original model’s parameters up to an offset (Han et al., 2022, Theorem 1).
Shapley value explanations (Lundberg & Lee, 2017) possess a comparable relationship: It is known that they
correspond to the feature contributions of Generalized Additive Models (GAM, Bordt & von Luxburg, 2023).
The significance of recovery properties lies in their role when explanations are leveraged to gain insights into
the underlying data. Particularly when XAI is used for scientific applications such as drug discovery (Mak
et al., 2023), preserving the path from the input data to the explanation through a learned model is crucial.
However, such guarantees can only be provided when surrogate function class G can effectively mimic the
model’s learned relation, at least within some local region.

In this study, we demonstrate that the transformer architecture, the main building block of LLMs such as the
GPT models (Radford et al., 2019), is inherently incapable of learning additive and linear models on the input
tokens, both theoretically and empirically. We formally prove that encoder-only and decoder-only transformers
structurally cannot represent additive models due to the attention mechanism’s softmax normalization, which
necessarily introduces token dependencies over the entire sequence length. An example is illustrated in
Figure 1 (left). Our finding that the function spaces represented by additive models and transformers are
disjoint when dismissing trivial cases implies that prevalent additive explanations are insufficient to model
transformers. They cannot possess high fidelity, i.e., they cannot quantitatively describe these models’
behavior well. This also undermines the recovery property, therefore highlighting a significant oversight in
current XAI practices. As our results suggest that the role of tokens cannot be described through a single
score, we introduce the Softmax-Linked Additive Log-Odds Model (SLALOM, cf. Figure 1, right), which
represents the role of each input token in two dimensions: The token value describes the independent effect
of a token, whereas the token importance provides a token’s interaction weight when combined with other
tokens in a sequence. In summary, our work offers the following contributions over the related literature:

(1) We theoretically and empirically demonstrate that common transformer architectures fail to represent
GAMs and linear models on the input tokens, jeopardizing current attribution methods’ fidelity.
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(2) To mitigate these issues, we propose the Softmax-Linked Additive Log-Odds Model (SLALOM),
which uses a combination of two scores to quantify the role of input tokens.

(3) We theoretically analyze SLALOM and show that (i) it can be represented by transformers (i.e., the
fidelity property), (ii) it can be uniquely identified from data (i.e., the recovery property), and
(iii) it is highly efficient to estimate.

(4) Experiments on synthetic and real-world datasets with common language models (LMs) confirm the
mismatch between surrogate models and predictive models, underline that two scores cover different
angles of interpretability, and that SLALOM explanations can be computed that have substantially
higher fidelity or efficiency than competing techniques.

2 Related Work

Explainability for Transformers. Various methods exist to tackle model explainability (Molnar, 2019;
Burkart & Huber, 2021). Furthermore, specific approaches have been devised for the transformer architecture
(Vaswani et al., 2017): As the attention mechanism at the heart of transformer models is supposed to focus
on relevant tokens, it seems a good target for explainability methods. Several works are turning to attention
patterns as model explanation techniques. A central attention-based method is put forward by Abnar &
Zuidema (2020), who propose two methods of aggregating raw attentions across layers, flow and rollout.
Brunner et al. (2020) focus on effective attentions, which aim to identify the portion of attention weights
actually influencing the model’s decision. While these approaches follow a scalar approach considering
only attention weights, Kobayashi et al. (2020; 2023) propose a norm-based vector-valued analysis, arguing
that relying solely on attention weights is insufficient and the other components of the model need to be
considered. Building on the norm-based approach, Modarressi et al. (2022; 2023) further follow down the path
of decomposing the transformer architecture, presenting global level explanations with the help of rollout.
Beyond that, many more attention-based explanation approaches have been put forward (Chen et al., 2020;
Hao et al., 2021; Ferrando & Costa-jussà, 2021; Qiang et al., 2022; Sun et al., 2023; Yang et al., 2023) and
relevance-propagation methods such as LRP have been adapted to the transformer architecture (Achtibat
et al., 2024). A drawback with these model-specific explanation remains the implementational overhead that
is required to adapt these methods for each architecture. On the formal side, there is no explicit method
to quantitatively predict the transformer model’s behavior under perturbations leaving the fidelity of these
explanations unclear. The most intuitive interpretation would be to interpret the attributions as scores of
a linear model, i.e., if feature i has a contribution of ϕi, removing i should reduce the model output by ϕi,
giving rise to an implicit linear model. Our work shows that linear models are generally sub-optimal to
explain transformers with high fidelity.

Model-agnostic XAI. In contrast to transformer-specific methods, researchers have devised model-agnostic
explanations that can be applied without precise knowledge of a model’s architecture. Model-agnostic
local explanations like LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017) and others (Shrikumar
et al., 2017; Sundararajan et al., 2017; Smilkov et al., 2017; Xu et al., 2020; Covert et al., 2021, etc.) are a
particularly popular class of explanations that are applied to LMs as well (Szczepański et al., 2021; Schirmer
et al., 2023; Dolk et al., 2022). Surrogate models are a common subform (Han et al., 2022), which locally
approximate a black-box model through a simple, interpretable function.

Linking Models and Explanations. Prior work has distilled the link between classes of surrogate models
that can be recovered by explanations (Agarwal et al., 2021; Han et al., 2022, Theorem 3). Notable works in
include Garreau & von Luxburg (2020) which provides analytical results on different parametrizations of
LIME and Bordt & von Luxburg (2023) which formalizes the connection between Shapley values and GAMs
for classical Shapley values as well as n-Shapley values that can also model higher-order interactions.

We contribute to the literature by showing that transformers are inherently incapable to represent GAMs or
linear models, casting doubts on the fidelity of LIME, SHAP, and attention-based attribution methods that
can be understood as an implicit linear models when applied to transformers. We show that additive scores
are insufficient to predict behavior of transformers, leaving us with no method that enables strict fidelity. To
bridge this gap we provide SLALOM, a novel surrogate model with substantially increased fidelity and a
recovery property for transformers.
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3 Preliminaries

3.1 Input and output representations
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...
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Figure 2: Transformer architecture. In
each layer, input embeddings h

(l−1)
i for each

token i are transformed into output embed-
dings h

(l)
i . When detaching the part prior to

the classification head (“cls”), we see that the
output only depends on the last embedding
h

(L−1)
1 and attention output s1.

In this work, we focus on classification problems of token
sequences. For the sake of simplicity, we initially consider
a 2-class classification problem with labels y ∈ Y = {0, 1}.
We will outline how to generalize our approach to multi-class
problems in Appendix C.1.

The input consists of a sequence of tokens t=
[
t1, . . . , t|t|

]
where |t| ∈ 1, . . . , C is the sequence length that can span
at most C tokens (the context length). The tokens stem
from a finite size vocabulary V, i.e., ti ∈ V, i = 1, . . . , |t|.
To transform the tokens into a representation amenable to
processing with computational methods, the tokens need to
be encoded as numerical vectors. To this end, an embedding
function e : V → Rd is used, where d is the embedding
dimension. Let ei = e(ti) be the embedding of the i-th
token such that the entire sentence is embedded in a matrix
E = [e1, . . . , e|t|]⊤ ∈ R|t|×d. The output is given by a logit
vector l ∈ R|Y|, such that softmax(l) contains individual
class probabilities.

3.2 The common transformer architecture

Many popular LMs follow the transformer architecture introduced by Vaswani et al. (2017) with only minor
modifications. We will introduce the most relevant building blocks of the architecture in this section. A
complete formalization is given in Appendix B.1. A schematic overview of the architecture is visualized
in Figure 2. Let us denote the input embedding of token i = 1, . . . , |t| in layer l ∈ 1, . . . , L by h

(l−1)
i ∈Rd,

where h
(0)
i =ei. The core component of the attention architecture is the attention head.1 For each token, a

query, key, and a value vector are computed by applying an affine-linear transform to the input embeddings.
Keys and queries are projected onto each other and normalized by a row-wise softmax operation resulting in
attention weights αij ∈ [0, 1], denoting how much token i is influenced by token j. The attention output for
token i can be computed as si =

∑|t|
j=1 aijvj , where vj ∈ Rdh denotes the value vector for token j. The final

si are projected back to dimension d by a projection operator P : Rdh → Rd before they are added to the
corresponding input embedding h

(l−1)
i as mandated by skip-connections. The sum is then transformed by a

nonlinear function that we denote by ffn : Rd → Rd, finally resulting in a transformed embedding h
(l)
i . This

procedure is repeated iteratively for layers 1, . . . , L such that we finally arrive at output embeddings h
(L)
i .

To perform classification, a classification head cls : Rd → R|Y| is put on top of a token at some index r (how
this token is chosen depends on the architecture, common choices include r ∈ {1, |t|}), such that we get the
final logit output l = cls

(
h

(L)
r

)
. The logit output is transformed to a probability vector via another softmax

operation. Note that in the two-class case, we obtain the log-odds F (t) by taking the difference (∆) between
the two logits, i.e., F (t) := log p(y=1|t)

p(y=0|t) = ∆(l) = l1 − l0.

3.3 Encoder-Only and Decoder-Only models

Practical implementations introduce subtle modifications into the process described previously(see Appx. C.2
for details). The most relevant distinction is made between encoder-only models, that include BERT (Devlin
et al., 2018) and its variants, and decoder-only models such as the GPT models (Radford et al., 2018; 2019).

1Although we only formalize a single head here, our theoretical results cover multiple heads as well
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Encoder-only models. Considering BERT as an example of an encoder-only model, the first token is used
for the classification, i.e, r = 1. Usually, a special token [CLS] is prepended to the text at position 1, however
this is not strictly necessary for the functioning of the model.

Decoder-only models. In contrast, decoder-models like GPT-2 (Radford et al., 2019) add the classification
head on top of the last token for classification, i.e., r = |t|. A key difference is that in GPT-2 and other
decoder-only models, a causal mask is laid over the attention matrix, resulting in αi,j = 0 for j > i. This
encodes the constraint that tokens can only attend to themselves or to previous ones.

4 Analysis
Let us initially consider a transformer with only a single layer and head. Our first insight is that the
classification output can be determined only by two values: the input embedding at the classification token r,
h

(0)
r , and the attention output sr. This can be seen when plugging in the different steps:

F (t)=∆
(

cls(h(1)
r )
)

= ∆
(

cls
(

ffn(h(0)
r + P (sr))

))
:= g(h(0)

r , sr) = g
(

h(0)
r ,

|t|∑
j=1

arjvj

)
. (1)

The attention output is given by a sum of the token value vectors vj weighted by the respective attention
weights αrj .

4.1 Transformers cannot represent additive models

We now consider how this architecture would represent a linear model. In this model, each token is assigned
a weight w : V → R. The output obtained by adding weights and an offset b ∈ R:

F ([t1, t2, . . . , t|t|])
!= b +

|t|∑
i=1

w(ti). (2)

The transformer gives rise to an interesting observation when considering token sequences of identical tokens
but of different lengths, i.e., [τ ], [τ, τ ], etc. We first note that the sum of the attention scores is bound to be∑|t|

j=1 arj = 1. The output of the attention head will thus be a weighted average of the value vectors vi. As
the value vectors vj(tj) are determined purely by the input tokens tj , for a sequence of identical tokens, we
will have the same value vectors, resulting in identical vectors being averaged. In summary, this renders the
transformer incapable to differentiate between sequences of different lengths. We are now ready to state our
result, which formalizes this intuition.
Proposition 4.1 (Single-layer transformers cannot represent generalized additive models (GAMs)). Let V be
a vocabulary and C ≥ 2, C ∈ N be a maximum sequence length (context length). Let wi : V → R,∀i ∈ 1, ..., C
be any mapping that assigns a token encountered at position i a numerical score including at least one token
τ ∈ V with non-zero weight wi(τ) ̸= 0 for some i ∈ 2, . . . , C. Let b ∈ R be an arbitrary offset. Then,
there exists no parametrization of the encoder or decoder single-layer transformer F such that for every
sequence t = [t1, t2, . . . , t|t|] with length |t| ≤ C, the output of the transformer network is equivalent to
F ([t1, t2, . . . , t|t|]) = b +

∑|t|
i=1 wi(ti).

Proof Sketch. We prove the statement by concatenating the token τ to sequences of different length. We then
show that the inputs to the final part g of the transformer will be independent of the sequence length. Due
to g being deterministic, the output will also be independent of the sequence length. This is contradictory
to the GAM model with a weight wj(τ) ̸= 0 requiring different outputs for sequences of length j−1 and j.
Formal proofs for all results can be found in Appendix B.

In simple terms, the proposition states that the transformer cannot represent any GAMs on sequences of more
than one token besides constant functions or those fully determined by the first input token. Importantly,
the class of functions stated in the above theorem includes the prominent case of linear models in Eqn. (1),
where each token has a certain weight w independent of its position in the input vector (i.e., wi ≡ w,∀i, see
Corollary B.2). We would like to emphasize that this statement includes the converse:
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Corollary 4.2. Transformers whose outputs are not constant or fully determined by the first token of the
input sequence cannot be functionally equivalent to an additive model.

4.2 Transformer networks with multiple layers cannot represent additive models

In this section, we will show how the argument can be extended to multi-layer transformer networks. Denote
by h

(l−1)
i the input embedding of the ith token at the lth layer. The output is governed by the recursive

relation

h
(l)
i = ffnl(h(l−1)

i + Pl(si)) = gl(h(l−1)
i , si). (3)

Exploiting the similar form allows us to generalize the main results to more layers recursively.
Corollary 4.3 (Multi-Layer transformers cannot learn linear models either). Under the same conditions as
in Proposition 4.1, a stack of multiple transformer blocks as in the model F neither has a parametrization
sufficient to represent the linear model.

Practical considerations. The transformer model in our analysis contains one slight deviation from the
transformer architecture deployed in practice as it does not consider positional embeddings that are added on
the token embeddings. However, this does not have major ramifications in practice: While the transformer
would be able to differentiate between sequences of different lengths with positional embeddings in theory,
the softmax operation must be inverted for any input sequence by the linear feed-forward block that follows
the attention mechanism. This is a highly nonlinear operation and the number of possible sequences grows
exponentially with the context length and vocabulary size. Learning-theoretic considerations suggest that
this inversion is impossible for reasonably-sized networks as outlined in Appendix C.2. We will confirm our
results with empirical findings obtained exclusively on non-modified models with positional embeddings.

5 A Surrogate Model for Transformers

In the previous section, we theoretically established that transformer models struggle to represent additive
functions. While this must not necessarily be considered a weakness, it certainly casts doubts on the suitability
of additive models as surrogate models for explanations of transformers. For a principled approach, we
consider the following four requirements to be of importance:

(1) Interpretability. The surrogate model’s parameters should be inherently interpretable.
(2) Learnability. The surrogate model should be easiliy representable by common transformers.
(3) Recovery. If the predictive model falls into the surrogate model’s class, the fitted surrogate model’s

parameters should match those of the predictive model.
(4) Efficiency. The surrogate model should be efficient to estimate even for larger models.

5.1 The Softmax-Linked Additive Log-Odds Model

To meet the requirements, we propose a novel discriminative surrogate model that explicitly models the
behavior of the softmax function. Instead of only assigning a single weight w to each token, we separate two
characteristics: We introduce the token importance as a mapping s : V → R and a token value in form of a
mapping v : V → R. Subsequently, we consider the following discriminative model:

F (t) = log p(y = 1|t)
p(y = 0|t) =

∑
τi∈t

αi(t)v(ti), where αi(t) = exp(s(ti))∑
tj∈t exp(s(tj)) . (4)

Due to the shift invariance of the softmax function, we observe that the mappings s and s′ given by
s′(τ) = s(τ)+ δ result in the same softmax-score and thus the same log-odds model for any input t. Therefore,
the parameterization would not be unique. To this end, we introduce a normalization constraint on the
sum of token importances for uniqueness. Formally, we constrain it to a user-defined constant γ ∈ R such
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Figure 3: Transformers fail to learn linear models. We train different models on a synthetically sampled
dataset where the log-odds obey a linear relation to the features. Fully connected models (2-layer ReLU
networks with different hidden layer widths) capture the linear form of the relationship well despite some
estimation error (a). However, common transformer models fail to model this relationship and output almost
constant values (b)-(d). This does not change with more layers.

that
∑

τ∈V s(τ) = γ, where natural choices include γ ∈ {0, 1}. We refer to the discriminative model given in
Eqn. (4) together with the normalization constraint as the softmax-linked additive log-odds model (SLALOM).

As common in surrogate model explanations, we can fit SLALOM to a predictive model’s outputs globally or
locally and use tuples of token importance scores and token values scores, (v(τ), s(τ)) to give explanations
for an input token τ . While the value score provides an absolute contribution of τ to the output, its token
importance s(τ) determines its weight with respect to the other tokens. For instance, if only one token τ
is present in a sequence, the output is only determined by its value score v(τ). However, in a sequence of
multiple tokens, the importance of each token with respect to the others – and thereby the contribution of
this token’s value – is determined by the token importance scores s. This intuitive relation makes SLALOM
interpretable, thereby satisfying Property (1).

5.2 Theoretical properties of SLALOM

We analyze the proposed SLALOM theoretically to ensure that it fulfills Properties (2) and (3), Learnability
and Recovery, and subsequently provide efficient algorithms to estimate its parameters (4). First, we show
that – unlike linear models, SLALOMs can be easily learned by transformers.
Proposition 5.1 (Transformers can fit SLALOM). For any mapping s, v and a transformer with an
embedding size d and head dimension dh with d, dh ≥ 3, there exists a parameterization of the transformer to
reflect SLALOM in Equation (4) together with the normalization constraint.

This statement can be proven by explicity constructing the corresponding weight matrix. This proposition
highlights that – unlike linear models – there are simple ways for the transformer to represent relations
governed by SLALOMs. We demonstrate this empirically in our experimental section and conclude that
SLALOM fulfills Property (2). For Property (3), Recovery, we make the following proposition:
Proposition 5.2 (Recovery of SLALOMs). Suppose query access to a model G that takes sequences of tokens
t with lengths |t| ∈ 1, . . . , C and returns the log-odds according to a non-constant SLALOM on a vocabulary
V, normalization constant τ ∈ R, but with unknown parameter mappings s : V → R, v : V → R. For C ≥ 2,
we can recover the true mappings s, v with 2|V| − 1 forward passes of F .

This statement confirms property (3) and shows that SLALOM can be uniquely reidentified when we rule out
the corner case of constant models.

Complexity considerations. Computational complexity can be a concern for XAI methods. To estimate
exact Shapley values, the model’s output on exponentially many feature coalitions needs to be evaluated.
However, as the proof of Proposition 5.2 shows, to estimate SLALOM’s parameters for an input sequence
of V tokens, only 2|V| − 1 forward passes are required, verifying Property (4). We empirically show that
computing SLALOM explanations is about 5× faster than computing SHAP explanations when using the
same number of samples in our experimental section.
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5.3 Numerical Algorithms for computing SLALOMs

Having derived SLALOM as a better surrogate model, we make two key implementation choices for a practical
used as an explanation technique. First, we can control the sample set of features and labels by the predictive
model that is used to fit SLALOM. Second, we can use different optimization strategies. We suggest two
algorithms to fit SLALOMs post-hoc on input-output pairs of a trained predictive model:

SLALOM-eff. The first version of the algorithm to fit SLALOM models is designed for maximum efficiency
while maintaining reasonable performance across several XAI metrics. Obtaining a large dataset of input-
output pairs can incur substantial computational costs as a forward pass of the models needs to be executed
for each sample. To speed up this process, SLALOM-Eff uses very short sequences (we use only two
tokens in this work) randomly sampled from the vocabulary for this purpose. To efficiently fit the surrogate
model, we perform stochastic gradient descent on SLALOM’s parameters using the mean-squared-error loss.
SLALOM-eff is our default technique used unless stated otherwise.

SLALOM-fidel. We provide another technique to fit SLALOM optimized for maximum fidelity under
input perturbations such as token removals. To explain a specific sample, we sample input where we remove
up to K randomly sampled tokens. The sequences with tokens removed and their models scores are used to
fit the model, similar as done in LIME (Ribeiro et al., 2016). Instead of SGD, we can leverage optimizers
for Least-Square-Problems to fit the parameters iteratively, however incurring a higher latency. We provide
details and pseudocode for both fitting routines in Appendix D.

5.4 Relating SLALOM scores to linear attributions

Importantly, SLALOM scores can be readily converted to locally linear interpretability scores where necessary.
For this purpose, a differentiable model for soft removals is required. We consider the weighted model:

F (λ) =
∑

ti∈t λi exp(s(ti))v(ti)∑
ti∈t λi exp(s(ti))

, (5)

where λi = 1 if a token is present and λi = 0 if it is absent. We observe that setting λi = 0 has the desired
effect of making the output of the soft-removal model equivalent to that of the standard SLALOM on a
sequence without this token. Taking the gradients at λ = 1 we obtain ∂F

∂λi

∣∣∣
λ=1
∝ v(ti) exp(s(ti)), which can

be used to rank tokens according the linearized attributions. We defer the derivation to Appendix B.7 and
refer to these scores as linearized SLALOM scores.
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(d) Recovering Params.

Figure 4: SLALOM describes outputs of transformer models well (a, b). Fitting SLALOM to the
outputs of the real models. Despite having C/2=15× more parameters than the SLALOM model, the linear
and GAM models does not match the transformer behavior. We provide another empirical counterexample
and additional quantitative results in Appendix F.1. Recovering SLALOMs. We observe that we can
recover the original logit-scores by fitting SLALOM on a 2-layer DistilBERT model (c) and we see a strong
connection between original SLALOM parameters and the recovered ones (d). More results in Appendix F.2.
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6 Experimental Evaluation

We run a series of experiments to show the mismatch between surrogate model explanations and the
transformers. Specifically, we verify that (1) real transformers fail to learn additive models, (2) SLALOM
better captures transformer output, (3) SLALOM models can be reidentified from fitted models with tolerable
error, (4) SLALOM scores are versatile and align well with linear attribution scores and human attention, and
(5) that SLALOM performs well in faithfulness metrics and has substantially higher fidelity than competing
techniques. For experiments (1)-(3), we require knowledge of the ground truth, and therefore use synthetic
datasets. To demonstrate the practical strengths of our method, all the experiments for (4) and (5) are
conducted on real-world datasets, and in comparison with state-of-the-art XAI techniques.

6.1 Experimental Setup

LM architectures. We study three representative transformer language model architectures in our
experiments. In sequence classification, mid-sized transformer LMs are most popular on platforms such as
the Huggingface hub (Huggingface, 2023) often based on the BERT-architecture (Devlin et al., 2018), which
is reflected in our experimental setup. To represent the family of encoder-only models, we deploy BERT
(Devlin et al., 2018) and DistilBERT (Sanh et al., 2019). We further experiment with GPT-2 (Radford et al.,
2019), which is a decoder-only model. We use the transformers framework to run our experiments. While
not the main scope of this work, we show that due to its model-agnostic nature, SLALOM can be applied to
LLMs with up to 7B parameters and non-transformer models such as Mamba (Gu & Dao, 2023) or BLOOM
(Le Scao et al., 2023) with plausible results due to its general expressivity in Appendix F.7.

Datasets. We use two real-world datasets for sentiment classification. Specifically, we study the IMDB
dataset, consisting of movie reviews (Maas et al., 2011) and Yelp-HAT, a dataset of Yelp reviews, for which
human annotators have provided annotations on which tokens are relevant for the classification outcome (Sen
et al., 2020). We provide additional details on hyperparameters, training and datasets in Appendix E.

6.2 Evaluation with Known Ground Truth

Transformers fail to capture linear relationships. We empirically verify the claims made in Proposi-
tion 4.1 and Corollary 4.3. To ascertain that the underlying relation captured by the models is additive, we
resort to a synthetic dataset. The dataset is created as follows: First, we sample different sequence lengths
from a binomial distribution with a mean of 15. Second, we sample words independently from a vocabulary
of size 10. This vocabulary was chosen to include positive words, negative words, and neutral words, with
manually assigned weights w ∈ {−1.5,−1, 0, 1, 1.5}, that can be used to compute a linear log-odds model.
We evaluate this model and finally sample the sequence label accordingly, thereby ensuring a linear relation
between input sequences and log-odds. We train transformer models on this dataset and evaluate them on
sequences containing the same word (“perfect”) multiple times. Our results in Figure 3 show that the models
fail to capture the relationship regardless of the model or number of layers used. In Appendix A, we show
how this undermines the recovery property with Shapley value explanations.

Fitting SLALOM as a surrogate to transformer models. Having demonstrated the mismatch between
additive functions and transformers, we turn to SLALOM as a more suitable surrogate model. As shown
in Proposition 5.1, transformers can easily fit SLALOMs, which is why we hypothesize that they should
model the output of such a model well in practice. We fit the different surrogate models on a dataset of input
sequences and real transformer outputs from our synthetic dataset and observe that linear models and GAMs
fail to capture the relationship learned by the transformer as shown in Figure 4(a, b). On the contrary, SALO
manages to model the relationship well, even if it has considerably less trainable parameters than the GAM.

Verifying recovery. We run an experiment to study whether, unlike linear models, SLALOM can be fitted
and recovered by transformers. To test this, we sample a dataset that exactly follows the distribution given
by SLALOM. We then train transformer models on this dataset. The results in Figure 4(c, d) show that
the surrogate model fitted on transformer outputs as a post-hoc explanation recovers the correct log-odds
mandated by SLALOM (c) and that there is a good correspondence between the true model’s parameters
and the recovered model’s parameters (d).
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LM values v importances s lin.
BERT 0.619 ± 0.01 0.349 ± 0.01 0.626 ± 0.01

Distil-BERT 0.692 ± 0.01 0.373 ± 0.01 0.693 ± 0.01
GPT-2 0.618 ± 0.01 0.292 ± 0.01 0.619 ± 0.01

average 0.643 0.338 0.646

(a) Measuring average rank-correlation (Spear-
man) between Naive-Bayes scores and SLALOM
scores. Linearized performs best.

LM values v importances s lin.
Bert 0.786 ± 0.01 0.807 ± 0.01 0.801 ± 0.01

Distil-BERT 0.688 ± 0.01 0.681 ± 0.01 0.686 ± 0.01
GPT-2 0.674 ± 0.01 0.685 ± 0.01 0.683 ± 0.01

average 0.716 0.724 0.724

(b) Measuring average AU-ROC between SLALOM expla-
nations and human token attention. The importance scores
are clearly and most strongly predictive of human attention.

SLALOM-fidel SLALOM-eff

LM v-scores lin. v-scores lin. LIME SHAP IG Grad LRP

BERT 0.025 ± 0.002 0.023 ± 0.001 0.031 ± 0.002 0.031 ± 0.002 0.024 ± 0.002 0.026 ± 0.003 0.557 ± 0.034 0.611 ± 0.033 0.030 ± 0.006
DistilBERT 0.028 ± 0.003 0.024 ± 0.002 0.027 ± 0.002 0.027 ± 0.002 0.027 ± 0.003 0.029 ± 0.003 0.495 ± 0.027 0.508 ± 0.028 0.023 ± 0.002

GPT-2 0.052 ± 0.008 0.050 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.230 ± 0.017 0.042 ± 0.005 0.454 ± 0.022 0.493 ± 0.023 0.069 ± 0.010

average 0.035 ± 0.004 0.032 ± 0.004 0.049 ± 0.004 0.049 ± 0.004 0.094 ± 0.007 0.032 ± 0.003 0.502 ± 0.028 0.537 ± 0.028 0.041 ± 0.006

(c) Area Over Perturbation Curve for deletion. Linearized scores and SHAP performs best in the XAI metric.

Table 1: Evaluation of SLALOM scores (“values”, “importance”, “lin.”) with std. errors across explanation
quality measures highlights that SLALOM’s different scores serve different purposes. IMDB dataset shown.

6.3 Examining Real-World Predictions from Different Angles

We increase difficulty and deploy SLALOM (fitted using SLALOM-eff) to explain predictions on real-world
datasets. As there is no ground truth for these datasets, it is challenging to evaluate the quality of the
explanations (Rong et al., 2022). To better understand SLALOM explanations, we study them from several
angles: We compare to linear scores obtained when fitting a Naïve-Bayes Bag-of-Words (BoW) model, scores
on removal and insertion benchmarks (Tomsett et al., 2020; DeYoung et al., 2020), the human attention
scores available on the Yelp-HAT dataset (Sen et al., 2020), and provide qualitative results.

Explaining Sentiment Classification. We show qualitative results for explaining a movie review in
Figure 5. The figure shows that both negative and positive words are assigned high importance scores
but have value scores of different signs. Furthermore, we see that some words (“the”) have positive value
scores, but a very low importance. This means that they lead to positive scores on their own but are easily
overruled by other words. We compare the SLALOM scores obtained on 100 random test samples to a linear
Naïve-Bayes model (obtained though counting class-wise word frequencies) as a surrogate ground truth in
Table 1a through the Spearman rank correlation. We observe good agreement with the value scores v and
the combined linearized SLALOM scores (“lin”, see Section 5.4).

Predicting Human Attention. To study alignment with a user perspective, we predict human attention
from SLALOM scores. We compute AU-ROC for predicting annotated human attention as suggested in Sen
et al. (2020) in Table 1b. We use absolute values of all signed explanations as human attention is unsigned
as well. In contrast to the previous experiments, where value scores were more effective than importances,
we observe that the importance scores are best at predicting where the human attention is placed. In
summary, these findings highlight that the two scores serve different purposes and cover different dimensions
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(b) GPT-2

This movie was so frustrating . Everything seemed energetic and

I was totally prepared to have a good time . I at least thought

I ’d be able to stand it . But , I was wrong . First , the weird

loop ing ? It was like watching ” America ’s Fun n iest Home

Videos ”. The damn parents . I hated them so much . The stereo

- typ ical Latino family ? I need to speak with the person responsible

for this . We need to have a talk . That little girl who was always

hanging on someone ? I just hated her and had to mention it .

Now , the final scene transc ends , I must say . It ’s so glor iously

bad and full of bad ness that it is a movie of its own . What

crappy dancing . Hor rible and beautiful at once .

(c) Token highlighting (linearized SLALOM, GPT-2)

Figure 5: Explaining a real review with SLALOM (qualitative results). SLALOM assigned two scores to each
token and can be used to compute attributions. See Figure 12 (Appendix) for fully annotated plots.
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Figure 6: Assessing Strict Fidelity. We plot the MSE for predicting model outputs under token removal
and find that SLALOMs predictions have up to 70% less error than the closest competitor when up to 10
random tokens from a sentence are removed (log-y plots). We interpret LRP scores as a linear model.

of interpretability. SLALOM offers higher flexibility through its 2-dimensional representation. We show that
SLALOM’s results for BoW correlations and human attention prediction are in the same range and often
outperform competing techniques in Appendix F.3.2, but defer a comparative analysis to the next sections.

Assessing Strict Fidelity. Having established the roles of its components, we verify that SLALOM can
produce explanations that have substantially higher fidelity than competing surrogate or non-surrogate
explanation techniques. To assess this, we remove up to 10 tokens from the input sequences and use the
explanations to predict the change in model output using the surrogate model (SLALOM or linear). We
compare the two SLALOM versions to baselines such as LIME (Ribeiro et al., 2016), Kernel-SHAP (Lundberg
& Lee, 2017), Gradients (Simonyan et al., 2013), and Integrated Gradients (IG, Sundararajan et al., 2017) and
layer-wise relevance propagation (LRP) for transformers (Achtibat et al., 2024), a non-surrogate technique.
We report the Mean-Squared-Error (MSE) between the predicted change and the observed change when
running the model on the modified inputs in Figure 6. We observe that SLALOM-fidel offers substantially
higher fidelity with a reduction of 70% in MSE for predicting the output changes over the second-best method
(LRP). Other surrogate approaches and LRP remain cluttered together, potentially highlighting the frontier
of maximum fidelity possible with a linear surrogate model.

Approach Avg. Time (s)
Grad 0.01 ± 0.00

IG 0.02 ± 0.00
LRP 0.02 ± 0.00

SLALOM-eff 2.03 ± 0.01
SLALOM-fidel 3.77 ± 0.24

LIME 3.93 ± 0.19
SHAP 11.56 ± 0.03

Table 2: Runtime comparison us-
ing 5000 samples to estimate sur-
rogate models.

Evaluating XAI Metrics. There are several other metrics to quantify
quality of explanations and to compare different explanation techniques.
As a sanity check and to show that SLALOM explanations do not lag
behind other techniques in established metrics, we run the classical in-
sertion/removal benchmarks (Tomsett et al., 2020). For the insertion
benchmark, we successively add the tokens with the highest attributions
to the sample which should result in a high score for the target class. We
iteratively insert more tokens and compute the “Area Over the Perturba-
tion Curve” (AOPC, see DeYoung et al. (2020)), which should be low for
insertion. This metric quantifies the alignment of explanations and model
behavior but only considers the feature ranking and not the assigned score.
For surrogate techniques (LIME, SHAP, SLALOM) we use 5000 samples
each. Our results in Tab. 1c highlight that linearized SLALOM scores outperform LIME and LRP and
perform on par with SHAP. Removal results for IMDB and results on YELP with similar findings are deferred
to Table 11 (Appendix). In conclusion, this shows that on top of SLALOM’s desirable properties, it does not
lag behind other techniques in common evaluation metrics.

Computational Costs. Finally, we take a look at the computational costs of the methods, which are
mainly determined by sampling the dataset to fit the surrogate model. We provide the runtimes to explain a
sample on our hardware when using 5000 samples to estimate surrogates in Table 2 with more results in
Appendix F.6. We observe that SHAP incurs the highest computational burden. Among surrogate model
explanations SLALOM-eff is the most efficient, being about 5× more efficient that SHAP and 2× more
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efficient than LIME. Nevertheless, non-surrogate techniques are far more efficient as they require only one or
few (IG steps) forward or backward passes, but suffer from other disadvantages (e.g., implementation effort,
no explicit way to predict model behavior). Overall, our results highlight that the two SLALOM fitting
routines can produce explanations of comparable utility as other surrogate models at a fraction of the costs,
or produce explanations with higher fidelity at similar costs due to structurally better alignment between
surrogate and predictive models.

7 Discussion and Conclusion

In this work, we established that transformer networks are inherently incapable of representing linear or
additive models commonly used for feature attribution. We prove that the function spaces learnable by
transformers and linear models are disjoint when ruling out trivial cases. This may explain similar incapacities
observed in time-series forecasting (Zeng et al., 2023), where they seem incapable of representing certain
relations. To address this shortcoming, we have introduced the Softmax-Linked Additive Log-Odds Model
(SLALOM), a surrogate model for explaining the influence of features on transformers and other complex
LMs through a two-dimensional representation.

Our work still has certain limitations that could potentially be addressed in future work. SLALOM is
specifically designed to explain the behavior of transformer models and therefore aligned with the classes
of functions commonly represented by transformers. However, it would not be a suitable choice to explain
models capturing a linear relationship. We therefore recommend using SLALOM only when the model is
known to have attention-like non-linearities. To complement this theoretical foundation, future work will
include further evaluation of SLALOM from a user-centric perspective, for instance, on human-centered
evaluation frameworks (Colin et al., 2022). From a broader perspective, we hope that this research paves the
way for advancing the interpretability and theoretical understanding of widely adopted transformer models.

Broader Impact Statement

This paper presents theoretical work on better understanding feature attributions in the transformer framework.
We advise using caution when using our XAI technique or other model explanation as all explanations present
only a simplified view of the complex ML model. Besides that, we do not see any immediate impact which
we feel must be specifically highlighted here.
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A Motivation: Failure Cases For Model Recovery

We provide another motivational example that shows a failure case of current explanation methods on
transformer architectures. In this example we test the recovery property for a linear model. We create a
synthetic dataset where each word in a sequence t has a linear contribution to the log-odds score, formalized
by

log p(y = 1|t)
p(y = 0|t) = F ([t1, t2, . . . , t|t|]) = b +

|t|∑
i=1

w(ti). (6)

We create a dataset of 10 words (cf. Table 3) and train transformer models on samples from this dataset. We
subsequently create sequences that repeatedly contain a single token τ (in this case, τ=“perfect”), pass them
through the transformers, and use Shapley values (approximated by Kernel-Shap) to explain their output.
The result is visualized in Figure 7, and shows that a fully connected model (two-layer, 400 hidden units,
ReLU) recovers the correct scores, whereas trainsformer models fail to reflect the true relationship. This
shows that explanation methods that are explicitly or implicitly based on additive models lose their ability to
recover the true data-generating process when transformer models are explained.
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Figure 7: SHAP values do not recover linear functions F for transformers. We compute SHAP values
for token sequences that repeatedly contain a single token τ with a ground truth score of 1.5 (i.e., F ([τ ])=1.5,
F ([τ, τ ])=3.0, ...) such that the ground truth attributions should yield 1.5 independent of the sequence
length. While this approximately holds true for a fully connected model, BERT and GPT-2 systematically
overestimate the importance for short sequences and underestimate it for longer ones.

B Proofs

B.1 Formalization of the transformer

Many popular LLMs follow the transformer architecture introduced by Vaswani et al. (2017) with only minor
modifications. We will introduce the most relevant building blocks of the architecture in this section. A
schematic overview of the architecture is visualized in Figure 2. Let us denote the input embeddings for
Layer l ∈ 1, . . . L by H(l−1) = [h(l−1)

1 , . . . , h
(l−1)
|t| ]⊤ ∈ R|t|×d, where a single line hi contains the embedding

for token i. The input embeddings of the first layer consist of the token embeddings, i.e., H(0) = E. At the
core of the architecture lies the attention head. For each token, a query, key, and a value vector are computed
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by applying an affine-linear transform. In matrix notation this can be written as

Q(l) = H(l−1)W
(l)
Q +1|t|b

(l)
Q

⊤
, (7)

K(l) = H(l−1)W
(l)
K +1|t|b

(l)
K

⊤
, (8)

V (l) = H(l−1)W
(l)
V +1|t|b

(l)
V

⊤
, (9)

where 1|t| ∈ R|t| denotes a vector of ones of length |t|, b
(l)
Q , b

(l)
V , b

(l)
K ∈ Rdh , W

(l)
Q , W

(l)
K , W

(l)
V ∈ Rd×dh , are

trainable parameters and dh denotes the dimension of the attention head.2 Keys and queries are projected
onto each other and normalized by a row-wise softmax operation,

A(l) = rowsoftmax
(

Q(l)K(l)⊤

√
dk

)
. (10)

This results in the attention matrix A(l) ∈ R|t|×|t|, where row i indicates how much the other tokens will
contribute to its output embedding. To compute output embeddings, we obtain attention outputs si,

S = [s1, . . . , s|t|]⊤ = A(l)V (l). (11)

Note that an attention output can be computed as si =
∑|t|

j=1 aijvj , where vj denotes the value vector in the
line corresponding to token j in V = [v1, . . . , v|t|]⊤ and aij = A

(l)
i,j . The final si are projected back to the

original dimension d by some projection operator P : Rdh → Rd before they are added to the corresponding
input embedding h

(l−1)
i due to the skip-connections. The sum is then transformed by a nonlinear function

that we denote by ffn : Rd → Rd. In summary, we obtain the output for the layer, h
(l)
i , with

h
(l)
i = ffnl(h(l−1)

i + P (si)). (12)

This procedure is repeated iteratively for layers 1, . . . , L such that we finally arrive at output embeddings
H(L). To perform classification, a classification head cls : Rd → R|Y| is put on top of a token at classification
index r (how this token is chosen depends on the architecture, common choices include r ∈ {1, |t|}), such
that we get the final logit output l = cls

(
h

(L)
r

)
. The logit output is transformed to a probability vector

via another softmax operation. Note that in the two-class case, we obtain the log-odds F (t) by taking the
difference (∆) between logits

F (t) := log p(y = 1|t)
p(y = 0|t) = ∆(l) = l1 − l0. (13)

B.2 Proof of Proposition 4.1

Proposition B.1 (Proposition 4.1 in the main paper). Let V be a vocabulary and C ≥ 2, C ∈ N be a
maximum sequence length (context window). Let wi : V → R,∀i ∈ 1, ..., C be any mapping that assigns a
token encountered at position i a numerical score including at least one token τ ∈ V with non-zero weight
wi(τ) ̸= 0 for some i ∈ 2, . . . , C. Let b ∈ R be an arbitrary offset. Then, there exists no parametrization of
the encoder or decoder single-layer transformer F such that for every sequence t = [t1, t2, . . . , t|t|] with length
1 ≤ |t| ≤ C, the output of the transformer network is equivalent to

F ([t1, t2, . . . , t|t|]) = b +
|t|∑

i=1
wi(ti). (14)

Proof. We show the statement in the theorem by contradiction. Consider the token, τ ∈ V, for which
wj(τ) ̸= 0 for some token index j ≥ 2 which exists by the condition in the theorem. We now consider

2We only formalize one attention head here, but consider the analogous caae of multiple heads in our formal proofs.
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sequences of length k of the form tk = [ τ, . . . , τ︸ ︷︷ ︸
repeat k times

] for k = 1, . . . , C. For example, we have t1 = [τ ],

t2 = [τ, τ ], etc. The output of the transformer is given by

F (t) = g

h(0)
r ,

|t|∑
j=1

arjvj

 = g

e(τ),
|t|∑

j=1
αrjvj

 , (15)

where r is the token index on which the classification head is placed. Note that with r = |t| for the decoder
architecture, the sum always goes up to |t| (for the encoder architecture this is always true). As all tokens in
the sequence have a value of τ , we obtain h

(0)
r = e(tr) = e(τ). The first input to the final part will thus be

equal for all sequences tk. We will now show that the second part will also be equal.

We compute the value, key, and query vectors for τ . v, k, q ∈ Rdh correspond to one line in the respective
key, query and value matrices. As the inputs are identical and we omit positional embeddings in this proof,
all lines are identical in the matrices. This results in

v = W ⊤
V e(τ) + bV (16)

k = W ⊤
K e(τ) + bK (17)

q = W ⊤
Q e(τ) + bQ (18)

We omit the layer indices for simplicity. As pre-softmax attention scores (product of key and value vector),
we obtain s = q⊤k/

√
dk. Subsequently, the softmax computation will be performed over the entire sequence,

resulting in

αr = softmax([s, . . . , s︸ ︷︷ ︸
k times

]) =
[

exp(s)
k exp(s)

]
(19)

=
[1

k
, . . . ,

1
k︸ ︷︷ ︸

k times

]
(20)

The second input
∑|t|

j=1 αrjvj to the feed-forward part is given by

|t|∑
j=1

αrjvj =
k∑

j=1
αrjvj =

k∑
j=1

1
k

v = v, (21)

as αrj and v are independent of the token index j. We observe that the total input to final part g is
independent of k in its entirety, as the first input e(τ) is independent of k and the second input is independent
of k as well. As g is a deterministic function, also the log-odds output will be the same for all input sequences
tk and be independent of k. By the condition we have a non-zero weight wj(τ) ̸= 0 for some j ≥ 2. In
this case, there are two sequences tj−1 (length j−1) and tj (length j) consisting of only token τ , where the
outputs of the GAM follow

fGAM(tj) = b +
j∑

i=1
wi(τ) (22)

= b +
j−1∑
i=1

wi(τ) + wj(τ) (23)

= fGAM(tj−1) + wj(τ) (24)

As we suppose wj(τ) ̸= 0, it must be that fGAM(tj) ̸= fGAM(tj−1) which is a contradiction, with the output
being equal for all sequence lengths.
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Multi-head attention. In the case of multiple heads, we have

F (t) = ∆
(

cls(h(1)
r )
)

(25)

= ∆
(

cls
(

ffn(h(0)
r + Ph=1(sh=1

r ) + Ph=2(sh=2
r ) + . . . + Ph=1(sh=H

r ))
))

(26)

= g(h(0)
r , sh=1

r , . . . , sh=H
r ) (27)

As before, we can make the same argument, if we show that all inputs to g are the same. This is straight-
forward, as we can extend the argument made for one head for every head, because none of the head can
differentiate between the sequence lengths. The first input will still correspond to h

(0)
r = e(τ), which results

in the same contradiction.

B.3 Corollary: Transformers cannot represent linear models

Corollary B.2 (Transformers cannot represent linear models). Let the context window be C > 2 and suppose
the same model as in Proposition 4.1. Let w : V → R be any weighting function that is independent of the
token position with w(τ) ̸= 0 where for at least one token τ ∈ V. Then, the single layer transformer cannot
represent the linear model

F ([t1, t2, . . . , tN ]) = b +
N∑

i=1
w(ti). (28)

Proof. This can be seen by setting wi ≡ w for every i in Proposition 4.1. With w(τ) ̸= 0, the condition from
Proposition 4.1, i.e., having one wi with wi(τ) ̸= 0 for i ≥ 2 is fulfilled as well such that the result of the
proposition as well.

This statement has a strong implication on the capabilities of transformers as it shows that they struggle to
learn linear models.

B.4 Proof of Corollary 4.3

Corollary B.3 (Corollary 4.2 in the main paper). Under the same conditions as in Proposition 4.1, a stack
of multiple transformer blocks as in the model F neither has a parametrization sufficient to represent the
linear model.

Proof. We show the result by induction, with the help of a lemma.

Lemma: Suppose a set S of sequences. If (1) for every sequence t ∈ S the input matrix H(l) = [h(l)
1 , . . . , h

(l)
|t| ]

will consist of input embeddings that are identical for each token i, and (2) single input embeddings also have
the same value for every sequence t ∈ S, in the output H(l+1) (1) the output embeddings will be identical for
all tokens i and (2) they will have equal value for all the sequences t ∈ S considered before.

For the encoder-only architecture, the proof from Proposition 4.1 holds analogously for each token output
embedding (in the previous proof, we only considered the output embedding at the classification token r).
Without restating the full proof the main steps consist of

• showing the attention to be equally distributed across tokens, i.e., αij = 1/|t|

• showing the value vectors vi to be equal because they only depend on the input embeddings which
are equal

• concluding that the output will be equal regardless of the number of inputs
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This shows that for each sequence t ∈ S, the output at token i remains constant. To show that all tokens
i result in the same output, we observe that the the only dependence of the input token to the output is
through the query, which however is also equivalent if we have the same inputs.

For the decoder-only architecture, for token i, the attention weights are taken only up to index i resulting in
a weight of 1

i for each previous token and a weight of 0 (masked) for subsequent ones. However, with the
sum also being equal to 1 and the value vectors being equivalent, there is no difference in the outcome. This
proves the lemma.

Having shown this lemma, we consider a set S of two sequences S = {tj−1, tj} where kj−1 contains j−1
repetitions of token τ and tj contains j repetitions of token τ. We chose j ≥ 2, τ such that wj(τ) ̸= 0, which
is possible by the conditions of the theorem. We observe that for H(0), the embeddings are equal for each
token and their value is the same for both sequences. We then apply the lemma for layers 1, . . . , L, resulting
in the output embeddings of H(L) being equal for each token, and most importantly identical for tj−1 and tj .
As we perform the classification by F (t) = ∆

(
cls
(

h
(L)
r

))
, this output will also not change with the sequence

length. This result can be used to construct the same contradiction as in the proof of Proposition 4.1.

B.5 Proof of Proposition 5.1

Proposition B.4 (Transformers can easily fit SLALOM models). For any mapping s, v and a transformer
with an embedding size d, dh ≥ 3, there exists a parameterization of the transformer to reflect the SLALOM
model in Equation (4).

Proof. We can prove the theorem by constructing a weight setup to reflect this mapping. We let the embedding
e(τ) be given by

e(τ) = [s(τ), v(τ), 0, 0, . . . , 0]. (29)

We then set the key mapping matrix K to be

Wk = 0 (30)
bk = [1, 0, . . . , 0]. (31)

such that we have

Wke(τ) + bk = [1, 0, . . . , 0]. (32)

For the query mapping we can use

Wq = I (33)
bq = 0 (34)

such that

Wve(τ) + bv = [s(τ), v(τ), 0, . . . , 0]. (35)

This results in the non-normalized attention scores for query τ ∈ V and key θ ∈ V

a(ti, tj) = (Wqe(ti) + bq)⊤(Wke(tj) + bk) = s(tj) (36)

We see that regardless of the query token, the pre-softmax score will be s(θ). For the value scores, we perform
a similar transform with

Wv = diag ([0, 1, 0, . . . , 0]) (37)
bv = 0 (38)
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such that

vi = Wve(ti) + bv = [0, 0, v(ti), 0, . . . , 0]. (39)

We then obtain

sr =
∑
ti∈t

arivi =
∑
ti∈t

softmaxi[s(t1), . . . , s(t|t|)]vi (40)

=
[

0, 0,
∑
ti∈t

αi(t)v(ti), . . . , 0
]⊤

(41)

We saw that the final output can be represented by

F (t) = ∆ (cls (ffn (e(t0) + P (sr)))) (42)

The projection operator is linear, which can set to easily forward in input by setting P ≡ I. Due to the skip
connection of the feed-forward part, we can easily transfer the second part through the first ffn part. In the
classification part, we output the third component and zero by applying the final weight matrix

Wclass =
[
0 0 0 · · · 0
0 0 1 · · · 0

]
(43)

and a bias vector of 0.

Multiple Heads. Multiple heads can represent the pattern by choosing P = I for one head and choosing
P = 0 for the other heads.

Multiple Layers. We can extend the argument to multiple layers by showing that the input vectors can
just be forwarded by the transformer. This is simple by setting P ≡ 0, the null-mapping, which can be
represented by a linear operator. We then use the same classification hat as before.

B.6 Proof of Proposition 5.2

Proposition B.5 (Proposition 5.2. in the main paper). Suppose query access to a model G that takes
sequences of tokens t with lengths |t| ∈ 1, . . . , C and returns the log-odds according to a non-constant SLALOM
on a vocabulary V with unknown parameter mappings s : V → R, v : V → R. For C ≥ 2, we can recover the
true mappings s, v with 2|V| − 1 queries (forward passes) of F .

Proof. We first compute G([τ ]),∀τ ∈ V. We know that for single token sequences, all attention is on one
token, i.e., (αi = 1) and we thus have

G([τ ]) = v(τ) (44)

We have obtained the values scores v for each token through |V| forward passes. To identify the token
importance scores s, we consider token sequences of length 2.

We first note that if the SLALOM is non-constant and |V| > 1, for every token τ ∈ V, we can find another
token θ for which v(τ) ̸= v(θ). This can be seen by contradiction: If this would not be the case, i.e., we
cannot find a token ω with a different value v(ω), all tokens have the same value and the SLALOM would
have to be constant. For |V| = 1, SLALOM is always constant and does not fall under the conditions of the
theorem.

We now select an arbitrary reference token θ ∈ V. We select another token θ̂ for which v(θ̂) ̸= v(θ). By the
previous argument such a token always exists if the SLALOM is non-constant. We now compute relative
importances w.r.t. θ that we refer to as ηθ. We let ηθ(τ) = s(τ)− s(θ) denote the difference of the importance
between the importance scores of tokens τ, θ ∈ V. We set ηθ(θ) = 0

We start with selecting token τ = θ̂ and subsequently use each other token τ ̸= θ to perform the following
steps for each τ ̸= θ:
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1. Identify reference token τ̂ . We now have to differentiate two cases: If v(τ) = v(θ), we select τ̂ = θ̂ as
the reference token. If v(τ) ̸= v(θ), we select τ̂ = θ as the reference token. By doing so, we will always have
v(τ̂) ̸= v(τ).

2. Compute G([τ, τ̂ ]). We now compute G([τ, τ̂ ]). From the model’s definition, we know that

G([τ, τ̂ ]) = exp(s(τ))
exp(s(τ)) + exp(s(τ̂))v(τ) (45)

+ exp(s(τ̂))
exp(s(τ)) + exp(s(τ̂))v(τ̂) (46)

= exp(s(τ))
exp(s(τ)) + exp(s(τ̂))G([τ ]) (47)

+ exp(s(τ̂))
exp(s(τ)) + exp(s(θ))G([τ̂ ]) (48)

= exp(s(τ))
exp(s(τ)) + exp(s(τ̂))G([τ ])) (49)

+
(

1− exp(s(τ))
exp(s(τ)) + exp(s(τ̂))

)
G([τ̂ ]) (50)

which we can rearrange to

G([τ, τ̂ ])−G([τ̂ ]) = exp(s(τ))
exp(s(τ)) + exp(s(τ̂)) (G([τ ])−G([τ̂ ])) (51)

and finally to
exp(s(τ))

exp(s(τ)) + exp(s(τ̂)) = G([τ, τ̂ ])−G([τ̂ ])
G([τ ])−G([τ̂ ])

:= g(τ, τ̂) (52)

and
1

1 + exp(s(τ̂))
exp(s(τ))

= g(τ, τ̂) (53)

⇔ 1
g(τ, τ̂) = 1 + exp(s(τ̂))

exp(s(τ)) (54)

⇔ log
(

1
g(τ, τ̂) − 1

)
= s(τ)− s(τ̂) := d(τ, τ̂) (55)

This allows us to express the importance of every token τ ∈ V relative to the base token τ̂ .

3. Compute importance relative to θ, i.e., ηθ(τ). In case we selected τ̂ = θ, we set ηθ(τ) = d(τ, τ̂) =
s(τ)− s(θ). In case we selected τ̂ = θ̂, we set

ηθ(τ) = d(τ, τ̂)− d(θ̂, θ) = s(τ)− s(θ̂) + (s(θ̂)− s(θ)) = s(τ)− s(θ) (56)

The value of d(θ̂, θ) is already known from the first iteration of the loop, where we consider τ = θ̂ (and needs
to be computed only once).

Having obtained a value of ηθ(τ) for each token τ ̸= θ, with |V| − 1 forward passes, we can then use the
normalization in constraint to solve for s(θ) as in∑

τ∈V
(ηθ(τ) + s(θ)) =! 0 (57)

such that we obtain

s(θ) =
∑

τ∈V ηθ(τ)
|V|

(58)

We can plug this back in to obtain the values for all token importance scores s(τ) = s(θ) + ηθ(τ). We have
thus computed the mappings s and v in 2|V| − 1 forward passes, which completes the proof.
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B.7 Relating SLALOM to other attribution techniques.

Local Linear Attribution Scores. We can consider the following weighted model:

F (λ) =
∑

ti∈t λi exp(s(ti))v(ti)∑
ti∈t λi exp(s(ti))

(59)

where λi = 1 if a token is present and λi = 0 if it is absent. We observe that setting λi = 0 has the desired
effect of making the output of the weighted model equivalent to that of the unweighted SLALOM on a
sequence without this token.

Taking the derivative at λ = 1 results in

∂F

∂λi
=

exp(s(ti))v(ti)
(∑

tj∈t,j ̸=i λj exp(s(tj))
)

(∑
tj∈t λj exp(s(tj))

)2 (60)

−
exp(s(ti))

(∑
tj∈t,j ̸=i λj exp(s(tj))v(tj)

)
(∑

tj∈t λj exp(s(tj))
)2 (61)

Plugging in λ = 1, and using αi(t) = exp(s(ti))∑
tj ∈t

λj exp(s(tj))
we obtain

∂F

∂λi

∣∣∣∣
λ=1

= αi (v(ti)(1− αi(t))− (F (1)− αiv(ti))) (62)

= αi ((v(ti)− αiv(ti)))− (F (1)− αiv(ti))) (63)
= αi (v(ti)− F (1)) (64)

Noting that αi = exp(s(ti))
R , where R and F (1) are independent of i, we obtain

∂F

∂λi

∣∣∣∣
λ=1
∝ v(ti) exp(s(ti)), (65)

which can be used to rank tokens according the locally linear attributions. We refer to this expression as
linearized SLALOM scores (“lin”).

Shapley Values. We can convert SLALOM scores to Shapley values ϕ(i) using the explicit formula:

ϕ(i) = 1
n

∑
S⊂[N ]\{i}

(
n− 1
|S|

)
(F (S ∪ {i})− F (S)) (66)

= 1
n

∑
S⊂[N ]\{i}

(
n− 1
|S|

)(
F (S ∪ {i})− F (S ∪ {i})− αivi

1− αi

)
(67)

= 1
n

∑
S⊂[N ]\{i}

(
n− 1
|S|

)(
αi(vi − F (S ∪ {i}))

1− αi

)
(68)

(
αi(vi − F (1))

1− αi

)
(69)

However, computing this sum remains usually intractable, as the number of coalitions grows exponentially.
We can resort to common sampling approaches (Castro et al., 2009; Maleki et al., 2013) to approximate the
sum.
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C Additional Dicucssion and Intuition

C.1 Generalization to multi-class problems

We can imagine the following generalizing SLALOM to multi class problems as follows: Suppose we have
an importance mapping s : V → R that still maps each token to an importance score. However, we now
introduce a value score mapping vc : V → R for each class c ∈ Y. Addtionally to requiring∑

τ∈V
s(τ) = 0. (70)

we now require ∑
c∈Y

vc(τ) = 0,∀τ ∈ V (71)

For an input sequence t, the SLALOM model then computes

Fc(t) = log p(y = 1|t)
p(y = 0|t) =

∑
τi∈t

αi(t)vc(ti), (72)

The posterior probabilities can be computed by performing a softmax operation over the F -scores, as in

p(y = c|t) = exp(Fc(t))∑
c′∈Y exp(Fc′(t)) (73)

We observe that this model has
(
|Y|− 1

)
|V|− 1 free parameters (for the two-class problem, this yields 2|V|− 1

as before) and can be fitted and deployed as the two-class SLALOM without major ramifications.

C.2 Practical Considerations

Our theoretical model contains slight deviations from real-world transformers to make it amendable to
theoretical analysis. To represent token order, common architectures use positional embeddings, tying the
embedding vectors to the token position i. The behavior that we show in this work’s analysis does however
also govern transformers with positional embeddings for the following reason: While the positional embeddings
could be used by the non-linear ffn part to differentiate sequences of different length in theory, our proofs
show that to represent the linear model, the softmax operation must be inverted for any input sequence.
This is a highly nonlinear operation and the number of possible sequences grows exponentially at a rate
of |V|C with the context length C. Learning-theoretic considerations (e.g., Bartlett et al., 1998) show that
the number of input-output pairs the two-layer networks deployed can maximally represent is bounded
by O (dnhidden log(dnhidden)), which is small (d=786, nhidden=3072 for BERT) in contrast to the number of
sequences (C = 1024, |V| ≈ 3 × 104). We conclude that the inversion is therefore impossible for realistic
setups and positional embeddings can be neglected, which is confirmed by our empirical findings.

Common models such as BERT also use a special token referred to as CLS-token where the classification
head is placed on. In this work, we consider the CLS token just as a standard token in our analysis. In our
empirical sections, we always append the CLS token as mandated by the architecture to make the sequences
valid model inputs.

D Algorithm: Local SLALOM approximation

We propose two algorithms to compute local explanations for a sequence t = [t1, . . . , t|t|] with SLALOM
scores. In particular, we use the Mean-Squared-Error (MSE) to fit SLALOM on modified sequences consisting
of the individual tokens in the original sequence t. To speed up the fitting we can sample a large collection of
samples offline before the optimization.
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D.1 Efficiently fitting SLALOM with SGD

For the efficient implementation SLALOM-eff given in Algorithm 1 we sample minibatches from this
collection in each step and perform SGD steps on them. We perform this optimization using b = 5000 samples
in this work. We use sequences of n = 2 random tokens from the sample for SLALOM-eff, making the
forward passes through the model highly efficient.

D.2 Fitting SLALOM through iterative optimization

For the high-fidelity implementation SLALOM-fidel (Algorithm 2) we first use a different set of sequences
and model scores to fit the surrogate: We delete up to 5 tokens from the original sequence randomly to
create the estimation dataset (similar to LIME). The fitting algorithm optimized for maximum fidelity uses
an iterative optimization scheme to fit SLALOM models. It works by iteratively fitting v and s to the
dataset obtained. Denote by f ∈ Rb the model scores obtained for the b input sequences ti, i = 1...b. As
the SLALOM model in Equation (4) is a linear combination of the values score weighted by the normalized
importance score, we can set up a matrix A, where element ai,j = exp(s(ti))∑

tj ∈ti
exp(s(tj))

provides the normalized

importance for a given s. We solve

min
v

(Av − f)⊤(Av − f), (74)

for v, which is a linear ordinary least squared problem that can be solved through the normal equation. This
results in the optimal v for the given s. In a second step, we keep v fixed and find better s scores. We can
reformulate the equations for the samples as

∑
tj∈ti

exp(s(tj))v(tj) =

∑
tj∈ti

exp(s(tj))

fi (75)

⇔
∑

tj∈ti

exp(s(tj))︸ ︷︷ ︸
s̄j

(v(tj)− fi)︸ ︷︷ ︸
ei,j

= 0. (76)

This problem can be written with a vector s̄ ∈ R|V| and a matrix E ∈ Rb×|V| and results in an optimization
problem

min
s̄

(Es̄)⊤(Es̄), (77)

s.t. ŝ ≥ 0 (78)
∥ŝ∥1 ≥ |V| (79)

The conditions ensure that we can obtain the original s-scores as log ŝ (element-wise) and that the
trivial solution ŝ = 0 is not assumed. We solve this problem using a solver implemented in
scipy.optimize.least_squares.

E Experimental Details

In this section, we provide details on the experimental setups. We provide the full source-code for the
experimental evaluation in a ZIP file along with this submission to enhance reproducibility. We fully commit
to open-sourcing our code in case of acceptance.

E.1 Fitting transformers on a synthetic dataset

E.1.1 Dataset construction

We create a synthetic dataset to ensure a linear relationship between features and log-odds. Before sampling
the dataset, we fix a vocabulary of tokens, ground truth scores for each token, and their occurrence probability.

26



Under review as submission to TMLR

Algorithm 1 Local efficient SLALOM approximation (SLALOM-eff)
Require: Sequence t, trained model F (outputs log odds), random sample length n, learning rate λ, batch

size r, sample pool size b, number of steps c
Initialize v(ti) = 0, s(ti) = 0 ∀ unique ti ∈ t
B ← b samples of random sequences of length n obtained through uniform sampling of unique tokens in t.
Precompute F (B[i]), i = 1, . . . , b # perform model forward-pass for each sample in pool
steps← 0
while steps < c do

B′ ← minibatch of r samples uniformly sampled from the sample pool B
loss← 1

r

∑r
k=1 (F (B′[k])− SLALOMv,s(B′[k]))2 # compute MSE btw. F and SLALOM using precom-

puted models outputs F (B′)
v ← v − λ∇vloss # Back-propagate loss to update SLALOM parameters
s← s− λ∇sloss
steps← steps + 1

end while
return v, s−mean(s) # normalize s to zero-mean

Algorithm 2 Local high-fidelity SLALOM approximation (SLALOM-fidel)
Require: Sequence t, trained model F (outputs log odds), max. number of deletions n, learning rate λ,

batch size r, sample pool size b, number of steps c
Initialize s = 0, s = 0 ∀ unique ti ∈ t
B ← b samples of random sequences of length n obtained through deleting up to n tokens randomly from t.
Precompute F (B[i]), i = 1, . . . , b # perform model forward-pass for each sample in pool
steps← 0
while steps < c do

v = arg minv′
∑b

i=1 (F (B[i])− SLALOMv′,s(B[i]))2 # Fix s and optimize v, OLS problem
s = arg mins′

∑b
i=1 (F (B[i])− SLALOMv,s′(B[i]))2 # Fix v and optimize s, Quadratic problem

steps← steps + 1
end while
return v, s−mean(s) # normalize s to zero-mean

This means that each of the possible tokens already comes with a ground-truth score w that has been manually
assigned. The tokens, their respective scores w, and occurrence probabilities are listed in Table 3. Samples of
the dataset are sampled in four steps that are exectued repeatedly for each sample:

1. A sequence length |t| ∼ Bin(p = 0.5, n=30) is binomially distributed with an expected value of 15
tokens and a maximum of 30 tokens

2. We sample |t| tokens independently from the vocabulary according to their occurrence probability
(Table 3)

3. Third, having obtained the input sequence, we can evaluate the linear model by summing up the
scores of the individual tokens in a sequence:

F (t) = F ([t1, t2, . . . , t|t|]) =
|t|∑

i=1
w(ti). (80)

4. Having obtained the log-odds ratio for this sample F(t), we sample the labels according to this ratio.
We have p(y = 1)/p(y = 0) = exp(F (t)), which can be rearranged to p(y = 1) = exp(F (t))

1+exp(F (t)) . We
sample a binary label y for each sample according to this probability.

The tokens appear independently with the probability poccurrence given in the table.

27



Under review as submission to TMLR

word “the” “we” “movie” “watch” “good” “best” “perfect” “ok” “bad” “worst”
linear weight w 0.0 0.0 0.0 0.0 0.6 1.0 1.5 -0.6 -1.0 -1.5

poccurrence 1/6 1/6 1/6 1/6 1/15 1/20 1/20 1/15 1/20 1/20

Table 3: Tokens in the linear dataset with their corresponding weight
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Figure 8: Score distribution for the tokens for the analytical SLALOM used in the recovery experiment.

E.1.2 Post-hoc fitting of surrogate models

We train the models on this dataset for 5 epochs, where one epoch contains 5000 samples at batch size of 20
using default parameters otherwise.

For the results in Figure 3, we query the models with sequences that contain growing numbers of the work
perfect, i.e. [“perfect”, “perfect”, ...]. We prepend a CLS token for the BERT models.

For the results in Figure 4, we then sample 10000 new samples from this dataset (having the same distribution
as the training samples) and forward them through the trained transformers. The model log-odds score
together with the feature vectors are used to train the different surrogate models, linear model, GAM, and
SLALOM. For the linear model, we fit an OLS on the log-odds returned by the model. We use the word
counts for each of the 10 tokens as a feature vector. The GAM provides the possibility to assign each token a
different weight according to its position in the sequence. To this end, we use a different feature vector of
length 30 · 10. Each feature corresponds to a token and a position and is set to one if the token i is present at
this position, and set to 0 otherwise. We then fit a linear model using regularized (LASSO) least squares with
a small regularization constant of λ = 0.01 because the system is numerically unstable in its unregularized
form.

E.2 Recovering SLALOMs from observations

We resort to a second synthetic dataset to study the recovery property for the SLALOM. To find a realistic
distribution of scores, we compute a BoW importance scores for input tokens of the BERT model on the
IMDB dataset by counting the class-wise occurrence probabilities. We select 200 tokens randomly from this
dataset. We use these scores as value scores v but multiply them by a factors of 2 as many words have
very small BoW importances. In realistic datasets, we observed that value scores v are correlated with the
importance scores s. Therefore, we sample

s(τ) ∼ 5
(

v(τ) 3
2

)
+ 1

2N (0, 1) , (81)

which results in the value/importance distribution given in Figure 8. We assign each word an equal occurrence
probability and sample sequences of words at uniformly distributed lengths in random [1, 30]. After a sequence
is sampled, labels are subsequently sampled according to the log-odds ratio of the SLALOM. We train
the transformer models on 20 · 20000 samples. When using a smaller vocabulary size, we only sample the
sequences out of the first |V| possible tokens.
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dataset DistilBERT BERT GPT-2
IMDB 0.88 0.90 0.74
Yelp 0.86 0.88 0.88

Table 4: Accuracies of models used in this paper. For IMDB (|trainset| = 5000), we use 2-layer versions
of the models. For Yelp, (|trainset| = 5000), we use 6-layer versions of the models. For both datasets, the
|testset| = 100. The models are trained for 2 epochs after which we found the accuracy of the model on the
test set to have converged.

E.3 Training Details for real-World data experiments

Training details. In these experiments, we use the IMDB (Maas et al., 2011) and Yelp (Asghar, 2016)
datasets to train transformer models on. Specifically, the results in Table 1a are obtained by training 2-layer
versions of BERT, DistilBERT and GPT-2 with on 5000 samples from the IMDB dataset for 2 epoch,
respectively. We did not observe significant variation in terms of number of layers, so we stick to the simpler
models for the final experiments. For the experiments in Table 1b we train and use 6-layer versions of the
above models for 2 epochs on 5000 samples of the Yelp dataset. We report the accuracies of these models in
Table 4 and additional hyperparameters in Table 5.

SLALOM vs. Naïve Bayes Ground Truth. To arrive at the Spearman rank-correlations between
SLALOM importance scores s, value scores v and their combination (exp(s) · v) with a ground truth, we fit
SLALOM on each of the trained models and use a Naïve-Bayes model for ground truth scores. The model is
given as follows:

log p(y = 1|t)
p(y = 0|t) = log p(y = 1)

p(y = 0) +
∑
ti∈t

log p(ti|y = 1)
p(ti|y = 0) (82)

We obtain p(ti|y=1)
p(ti|y=0) by counting class-wise word frequencies, such that we obtain a linear score w for each token

τ given by w(τ) = (#occ. of τ in class 1)+α
(#occ. of τ in class 0)+α . We use Laplace smoothing with α = 40. The final correlations are

computed over a set of 50 random samples, where we observe good agreement between the Naïve Bayes scores,
and the value and linearized SLALOM scores, respectively. Note that the importance scores are considered
unsigned, such that we compute their correlation with the absolute value of the Naive Bayes scores.

SLALOM vs. Human Attention. The Yelp Human Attention (HAT) (Sen et al., 2020) dataset consists of
samples from the original Yelp review dataset, where for each review real human annotators have been asked
to select the words they deem important for the underlying class (i.e. positive or negative). This results in
binary attention vectors, where each word either is or is not important according to the annotators. Since
each sample is processed by multiple annotators, we use the consensus attention map as defined in Sen et al.
(2020), requiring agreement between annotators for a token to be considered important to aggregate them
into one attention vector per sample. Since HAT, unlike SLALOM, operates on a word level, we map each
word’s human attention to each of its tokens (according to the employed model’s specific tokenizer).
To compare SLALOM scores with human attention in Table 1b, we choose the AU-ROC metric, where the
binary human attention serves as the correct class, and the SLALOM scores as the prediction. We observe
how especially the importance scores of SLALOM are reasonably powerful in predicting human attention.
Note that the human attention scores are unsigned, such that we also use absolute values for the SLALOM
value scores and the linearized version of the SLALOM scores for the HAT prediction.

F Additional Experimental Results

F.1 Fitting SLALOM as a Surrogate to Transformer outputs

We provide an additional emprical counterexample for why GAMs cannot describe the transformer output in
Figure 9. The example provides additional intuition for why the GAM is insufficient to describe transformers
acting like a weighted sum of token importances.
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parameter value
learning rate 5e-5
batch size 5
epochs 2
dataset size used 5000
number of heads 12
number of layers 2 (IMDB), 6 (Yelp)
num. parameter 31M - 124M

(a) Hyperparameters

specification value
CPU core: AMD EPYC 7763
Num. CPU cores 64-Core (128 threads)
GPU type used 1xNvidia A100
GPU-RAM 80GB
Compute-Hours ≈ 150 h

(b) Hardware used (internal cluster)

Table 5: Overview over relevant hyperparameters and hardware

architecture L (num.layers) linear model GAM SLALOM
GPT-2 1 20.31 ± 2.02 48.78 ± 2.70 16.92 ± 1.33
GPT-2 2 24.81 ± 3.11 54.33 ± 3.26 22.17 ± 1.98
GPT-2 6 32.66 ± 7.60 57.08 ± 7.19 21.59 ± 4.14
GPT-2 12 25.74 ± 4.18 54.36 ± 3.94 20.25 ± 2.37

DistilBERT 1 28.28 ± 4.30 44.43 ± 2.22 10.83 ± 2.13
DistilBERT 2 32.58 ± 7.75 53.87 ± 7.20 16.82 ± 4.38
DistilBERT 6 31.49 ± 4.06 49.35 ± 3.13 17.26 ± 3.64
DistilBERT 12 50.82 ± 9.21 71.64 ± 9.19 27.50 ± 4.18

BERT 1 26.33 ± 1.90 43.30 ± 0.88 7.34 ± 0.70
BERT 2 28.43 ± 3.75 48.28 ± 3.23 9.92 ± 1.19
BERT 6 50.82 ± 6.34 68.23 ± 4.59 23.99 ± 3.38
BERT 12 44.58 ± 13.15 51.38 ± 14.71 18.77 ± 6.78

Table 6: MSE (×100) when fitting SLALOM to the outputs of transformer models trained on the linear
dataset. SLALOM manages to describe the outputs of the transformer significantly better than other surrogate
models even if the underlying relation in the data was linear.

We report Mean-Squared Errors when fitting SLALOM to transformer models trained on the linear dataset
in Table 6. These results underline that SLALOM outperforms linear and additive models when fitting them
to the transformer outputs. Note that even if the original relation in the data was linear, the transformer
does not represent this relation such that the SLALOM describes its output better. We present additional
qualitative results for other models in Figure 10 that support the same conclusion.

F.2 Fitting SLALOM on Transformers trained on data following the SLALOM distribution

We report Mean-Squared Errors in the logit-space and the parameter-space between original SLALOM scores
and recovered scores. The logit output are evaluated on a test set of 200 samples that are sampled from
the original SLALOM. We provide these quantitative results in Table 7 for logit scores the result are very
small Table 8. In logits the differences are negligibly small, and seem to decrease further with more layers.
This finding highlight that a) transformers with more layers still easily fit SLALOMs and such model can be
recovered in parameters space. The results on the MSE in parameter space show no clear trend, but are
relatively small as well (with the largest value being MSE=0.015 (note that results in the table are multiplied
by a factor of 100 for readability). Together with our quantitative results in Figure 4(c,d), this highlights
that SLALOM has effective recovery properties.
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Input Sequence BERT score GAM weight assignments SLALOM weight assignments

perfect 2.5 Assign w1(“perfect”) = 2.5 Assign v(“perfect”) = 2.5

perfect perfect 2.5 Assign w2(“perfect”) = 0 Expected SLALOM output: 2.5

worst -2.6 Assign w1(“worst”) = −2.6 Assign v(“worst”) = −2.6

worst worst -2.5 Assign w2(“worst”) = 0.1 Expected SLALOM output: -2.6

worst perfect 0.0 E Expected GAM output
w1(“perfect”) + w2(“worst”) = 2.6

Assign s(“perfect”) = s(“worst”) = 0
Expected SLALOM output: -0.05

Figure 9: A simple empirical counterexample for why GANs cannot describe transformer output. We report
rounded scores by a real 4-layer BERT model (similar behavior was observed for other layers/architectures)
and iteratively fit the GAM F (t) =

∑
ti∈t wi(ti) to match observed outputs on the two tokens “perfect” and

“worst”. We quickly arrive at a contradiction for the GAM. On the contrary, we can assign SLALOM scores
that model this behavior with minor error. Because transformers behave like a weighted sum of importances,
GAMs are insufficient to model their behavior. In conjunction with Figure 4(a,b) this underlines that GAMs
and linear models are insufficient as surrogates.

L (num.layers) DistilBERT BERT GPT-2
1 0.002 ± 0.001 0.002 ± 0.000 0.011 ± 0.009
2 0.003 ± 0.002 0.003 ± 0.002 0.017 ± 0.011
6 0.001 ± 0.001 0.011 ± 0.007 <0.001 ± 0.000
12 <0.001 ± 0.000 <0.001 ± 0.000 <0.001 ± 0.000

Table 7: MSE (×100), logit space, averaged over 5 runs

L (num.layers) DistilBERT BERT GPT-2
1 0.092 ± 0.045 0.540 ± 0.301 0.940 ± 0.392
2 0.094 ± 0.049 0.368 ± 0.085 1.652 ± 0.903
6 0.124 ± 0.030 0.830 ± 0.182 0.569 ± 0.177
12 0.287 ± 0.088 0.394 ± 0.255 0.385 ± 0.126

Table 8: MSE (×100), parameter space, averaged over 5 runs
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(c) DistilBERT (L=12)
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(d) GPT-2 (L=12)

Figure 10: SLALOM describes outputs of transformer models well. Fitting SLALOM to the outputs
of the models shown in Figure 3 using the synthetic dataset. We show results for a sequence containing
repetitions of the token “perfect”. Note however that the models were trained on a larger dataset of random
sequences samples as described in Appendix E.1.1, but these sequences were chosen for visualization purposes.
Results on additional models. Despite having C/2=15× more parameters than the SLALOM model, the
GAM model does not describe the output as accurately. We provide quantitative results in Table 6.

F.3 Additional Results on Real-World Data

We obtain SLALOM explanations for real-world data using the procedure outlined in Algorithm 1 (SLALOM-
eff) with sequences of length n = 2 and with Algorithm 2 (SLALOM-fidel) removing up to 5 tokens that
we compare with Naive-Bayes scores and Human Attention.

F.3.1 Additional Qualitative Results

Figure 12 shows the full results from the sample used in Figure 5, where we only visualized a choice of words
for readability purposes. After running SLALOM-eff on our trained IMDB models, we use to explain a
movie review taken from the dataset, visualizing value scores v against importance scores s.

F.3.2 Correlation with Naive-Bayes Scores

We compare the scores obtained with SLALOM with the scores obtained with other methods in Table 9,
obtaining scores that are reliable with SLALOM-eff (value scores and linear scores) in particular. While
SHAP achieves higher correlation on BERT, SLALOM achieves higher correlation than LIME and SHAP
on all models and higher correlations than LRP for GPT-2 while obtaining slightly inferior values for the
BERT-based architectures.

F.3.3 Human Attention

In Figure 11, we show qualitative results for a sample from the Yelp-HAT dataset. After fitting SLALOM
on top of the resulting model, we can extract the importance scores given to each token in the sample. We
can see that the SLALOM scores manage to identify many of the tokens which real human annotators also
deemed important for this review to be classified as positive. We also show qualitative results for the other
methods. However, we suggest caution when interpreting explanations visually without ground truth. We
argue that (1) theoretical properties of explanations (2) comparing to a known ground truth as well as (3)
consideration of metrics from different domains, e.g., faithfulness, human perspective, are required to allow
for a comprehensive evaluation. This is the approach taken in our work.

We show a quantitative comparison of the scores obtained with SLALOM with the scores obtained with other
methods on the comparison with Human-Attention in Table 10.

F.4 Insertion and Removal Benchmarks

It is important to verify that SLALOM scores are competitive to other methods in classical explanation
benchmarks as well. We therefore ran the classical removal and insertion benchmarks with SLALOM
compared to baselines such as LIME, SHAP, Grad (Simonyan et al., 2013), and Integrated Gradients (IG,
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the most delicious steak i ' ve ever had ! also the most
expensive , but it was totally worth it . our waiter was
incredible , as was his assistant , and we loved the vibe
of the restaurant . not too stuff y , really fun , great
cocktail s . if i ' m ever back in vegas , i ' d love to
return .

(a) Human annotation

the most delicious steak i ' ve ever had ! also the most
expensive , but it was totally worth it . our waiter was
incredible , as was his assistant , and we loved the vibe
of the restaurant . not too stuff y , really fun , great
cocktail s . if i ' m ever back in vegas , i ' d love to
return .

(b) SLALOM-eff

the most delicious steak i ' ve ever had ! also the most
expensive , but it was totally worth it . our waiter was
incredible , as was his assistant , and we loved the vibe
of the restaurant . not too stuff y , really fun , great
cocktail s . if i ' m ever back in vegas , i ' d love to
return .

(c) SHAP

the most delicious steak i ' ve ever had ! also the most
expensive , but it was totally worth it . our waiter was
incredible , as was his assistant , and we loved the vibe
of the restaurant . not too stuff y , really fun , great
cocktail s . if i ' m ever back in vegas , i ' d love to
return .

(d) LIME

the most delicious steak i ' ve ever had ! also the most
expensive , but it was totally worth it . our waiter was
incredible , as was his assistant , and we loved the vibe
of the restaurant . not too stuff y , really fun , great
cocktail s . if i ' m ever back in vegas , i ' d love to
return .

(e) AttnLRP

Figure 11: Qualitative comparisons of attribution maps. We provide attribution maps for the different
techniques in this figure. Many words deemed important by human annotators are likewise highlighted by
SLALOM and other techniques.
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Figure 12: Full scatter plots of SLALOM scores for the sample shown in the main paper (please zoom in for
details). We observe that words like “bad” or “fun” get assigned high importance scores and value scores of
high magnitude (albeit with different signs) by SLALOM.
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SLALOM-fidel SLALOM-eff

LM values v importances s lin. SLALOM values v importances s lin. SLALOM
DistilBERT 0.602 ± 0.10 0.020 ± 0.08 0.602 ± 0.10 0.692 ± 0.05 0.373 ± 0.09 0.693 ± 0.05

BERT 0.475 ± 0.12 0.031 ± 0.09 0.474 ± 0.12 0.619 ± 0.08 0.349 ± 0.09 0.626 ± 0.08
GPT-2 0.467 ± 0.17 0.017 ± 0.08 0.468 ± 0.17 0.618 ± 0.08 0.292 ± 0.10 0.619 ± 0.08

LM LIME SHAP IG Grad LRP
Distilbert 0.691 ± 0.05 0.619 ± 0.06 -0.285 ± 0.12 -0.215 ± 0.12 0.706 ± 0.05

BERT 0.616 ± 0.08 0.554 ± 0.09 -0.125 ± 0.14 -0.123 ± 0.14 0.639 ± 0.08
GPT2 0.213 ± 0.13 0.560 ± 0.09 0.033 ± 0.13 0.031 ± 0.13 0.615 ± 0.08

Table 9: Correlation with linear Naive Bayes Scores. The scores obtained with SLALOM-eff (value, lin.) are
better than those from LIME, SHAP and comparable to LRP scores.

LM values v importances s lin. LIME SHAP LRP
Bert 0.786 ± 0.01 0.807 ± 0.01 0.801 ± 0.01 0.805 ± 0.01 0.800 ± 0.01 0.813 ± 0.01

Distil-BERT 0.688 ± 0.01 0.681 ± 0.01 0.686 ± 0.01 0.702 ± 0.01 0.668 ± 0.01 0.703 ± 0.01
GPT-2 0.674 ± 0.01 0.685 ± 0.01 0.683 ± 0.01 0.632 ± 0.01 0.671 ± 0.01 0.699 ± 0.01

Table 10: Comparison of techniques to predict Human Attention. SLALOM-eff (importances) perform better
than SHAP, comparably to LIME and slightly below LRP.

Sundararajan et al., 2017). For the insertion benchmarks, the tokens with the highest attributions are inserted
to quickly obtain a high prediction score to the target class. For the deletion benchmark, the tokens with the
highest attributions are deleted from the sample to obtain a low score for the target class. We subsequently
delete/insert more tokens and compute the “Area Over the Perturbation Curve” (AOPC) as in DeYoung
et al. (2020), which should be high for deletion and low for insertion. In addition to the insertion results in
Table 1c, the removal results are shown in Table 11a. We show results for the Yelp dataset in Table 11b and
Table 11c. Our linear SLALOM scores perform par with LIME and SHAP in this benchmark. For surrogate
techniques (LIME, SHAP, SLALOM) we use 5000 samples each.

F.5 Error Analysis for non-transformer models

We also investigate the behavior of SLALOM for models that do not precisely follow the architecture described
in the Analysis section of this paper. In the present work, we consider an attribution method that is specifically
catered towards the transformer architecture, which is the most prevalent in sequence classification. We advise
caution when using our model when the type of underlying LM is unknown. In this case, model-agnostic
interpretability methods may be preferred.

However, we investigate this issue further: We applied our SLALOM-eff approach to a simple, non-transformer
sequence classification model on the IMDB dataset, which is a three-layer feed-forward network based on a
TF-IDF representation of the inputs. We compute the insertion and deletion Area-over-perturbation-curve
metrics that are given in Table 12.

These results show that due to its general expressivity, the SLALOM model also succeeds to provide
explanations for non-transformer models that outperform LIME and SHAP in the removal and insertion tests.
We also invite the reader to confer Table 15 and Appendix F.7, where we show that SLALOM can predict
human attention for large models, including the non-transformer Mamba model (Gu & Dao, 2023).

F.6 Runtime analysis

We ran SLALOM as well as other feature attribution methods using surrogate models and compared their
runtime to explain a single classification of a 6-layer BERT model. We note that the runtime is mainly
determined by the number of forward passes to obtain the samples to fit the surrogates. While this number
is independent of the dataset size, longer sequences require more samples for the same approximation quality.
The results are shown in Table 13.
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SLALOM-fidel SLALOM-eff

LM v-scores lin. v-scores lin. LIME SHAP IG Grad LRP
BERT 0.893 ± 0.012 0.901 ± 0.012 0.881 ± 0.010 0.885 ± 0.010 0.875 ± 0.012 0.881 ± 0.011 0.084 ± 0.010 0.069 ± 0.008 0.852 ± 0.019

DistilBERT 0.841 ± 0.014 0.854 ± 0.013 0.888 ± 0.008 0.886 ± 0.008 0.838 ± 0.012 0.864 ± 0.009 0.143 ± 0.012 0.131 ± 0.012 0.865 ± 0.011
GPT-2 0.837 ± 0.013 0.844 ± 0.013 0.782 ± 0.013 0.784 ± 0.012 0.479 ± 0.024 0.859 ± 0.012 0.289 ± 0.021 0.269 ± 0.020 0.833 ± 0.013

average 0.857 ± 0.013 0.866 ± 0.013 0.851 ± 0.010 0.852 ± 0.010 0.731 ± 0.016 0.868 ± 0.011 0.172 ± 0.014 0.156 ± 0.013 0.850 ± 0.014

(a) IMDB: Area-Over Perturbation Curve (deletion, higher is better)
SLALOM-fidel SLALOM-eff

LM v-scores lin. v-scores lin. LIME SHAP IG Grad LRP
BERT 0.015 ± 0.005 0.011 ± 0.005 0.011 ± 0.005 0.011 ± 0.005 0.017 ± 0.009 0.012 ± 0.005 0.224 ± 0.024 0.214 ± 0.022 0.010 ± 0.005

DistilBERT 0.018 ± 0.006 0.019 ± 0.006 0.032 ± 0.009 0.032 ± 0.009 0.014 ± 0.005 0.020 ± 0.005 0.250 ± 0.027 0.249 ± 0.026 0.017 ± 0.009
GPT-2 0.033 ± 0.007 0.032 ± 0.007 0.045 ± 0.007 0.045 ± 0.007 0.129 ± 0.019 0.021 ± 0.004 0.251 ± 0.024 0.244 ± 0.024 0.039 ± 0.007

average 0.022 ± 0.006 0.021 ± 0.006 0.029 ± 0.007 0.029 ± 0.007 0.053 ± 0.011 0.018 ± 0.005 0.242 ± 0.025 0.236 ± 0.024 0.022 ± 0.007

(b) Yelp: Area-Over Perturbation Curve (insertion, lower is better)
SLALOM-fidel SLALOM-eff

LM v-scores lin. v-scores lin. LIME SHAP IG Grad LRP
GPT-2 0.747 ± 0.024 0.753 ± 0.024 0.726 ± 0.021 0.727 ± 0.021 0.444 ± 0.028 0.849 ± 0.015 0.292 ± 0.026 0.290 ± 0.026 0.740 ± 0.025
BERT 0.657 ± 0.038 0.667 ± 0.038 0.865 ± 0.012 0.863 ± 0.013 0.797 ± 0.022 0.859 ± 0.013 0.249 ± 0.028 0.281 ± 0.029 0.855 ± 0.017

DistilBERT 0.645 ± 0.033 0.642 ± 0.033 0.813 ± 0.017 0.813 ± 0.018 0.746 ± 0.025 0.854 ± 0.013 0.201 ± 0.026 0.243 ± 0.028 0.768 ± 0.024

average 0.683 ± 0.032 0.687 ± 0.032 0.801 ± 0.017 0.801 ± 0.017 0.663 ± 0.025 0.854 ± 0.014 0.247 ± 0.027 0.271 ± 0.028 0.788 ± 0.022

(c) Yelp: Area-Over Perturbation Curve (deletion, higher is better)

Table 11: Additional results for removal/insertion tests: We show results on the IMDB dataset for removal as
well as insertion and removal on the Yelp datset.

SHAP LIME lin. SLALOM-eff

Insertion (lower) 0.0120 ± 0.005 0.0053 ± 0.003 0.0039 ± 0.001
Deletion (higher) 0.8022 ± 0.026 0.9481 ± 0.005 0.9601 ± 0.004

Table 12: AOPC explantion fidelity metrics for the Fully Connected TF-IDF model. The scores highlight that
SLALOM can also provide faithful explanations for non-transformer models due to its general expressivity.

While IG and Gradient explanations are the quickest, they also require backward passes which have large
memory requirements. As expected, the computational complexity for surrogate model explanation (LIME,
SHAP, SLALOM) is dominated by the number of samples and forward passes done. Our implementation
of SLALOM is around 2x faster than LIME and almost 5x faster than SHAP (all approaches used
a GPU-based, batching-enabled implementation), which we attribute to the fact that SLALOM can be fitted
using substantially shorter sequences than are used by LIME and SHAP.

We are interested to find out how many samples are required to obtain an explanation of comparable quality to
SHAP. We successively increase the number of samples used to fit our surrogates and report the performance
in the deletion benchmark (where the prediction should drop quickly when removing the most important
tokens). We report the Area over the Perturbation Curve (AOPC) as before (this corresponds to their
Comprehensiveness metric of ERASER (DeYoung et al., 2020), higher scores are better). We compare
the performance to shap.KernelExplainer.shap_values(nsamples=auto) method of the shap package in
Table 14. Our results indicate that sampling sizes as low as 500 per explained instance (which is as low as
predicted by our theory, with average sequence length of 200) already yields competitive results.

F.7 Applying SLALOM to Large Language Models

Our work is mainly concerned with sequence classification. In this application, we observe mid-sized models
like BERT to be prevalent. On the huggingface hub, among the 10 most downloaded models on huggingface, 9
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(a) DistilBERT

Approach / # samples 1000 2000 5000 10000
SHAP 2.35 ± 0.01 4.62 ± 0.02 11.56 ± 0.03 23.08 ± 0.08
LIME 0.80 ± 0.04 1.58 ± 0.07 3.93 ± 0.19 8.04 ± 0.39

SLALOM-fidel 0.74 ± 0.03 1.42 ± 0.06 3.77 ± 0.24 7.95 ± 0.41
SLALOM-eff 0.42 ± 0.01 0.80 ± 0.01 2.03 ± 0.01 4.13 ± 0.02

LRP 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
IG 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

Grad 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

(b) BLOOM-7B

Runtime (s) SHAP LIME IG Grad SLALOM-eff

1000 Samples 25.04 ± 2.37 15.73 ± 2.37 0.29 ± 0.04 0.06 ± 0.01 0.62 ± 0.02

Table 13: Runtime results for computing different explanations. SLALOM is substantially more efficient that
other surrogate model explanations (e.g., LIME, SHAP). Gradient-based explanations can be computed even
quicker, but are very noisy and require backward passes. Runtimes are given in seconds (s).

Number of samples Deletion AOPC
SHAP (nsamples=“auto”) 0.9135 ± 0.0105

SLALOM, 500 samples 0.9243 ± 0.0105
SLALOM, 1000 samples 0.9236 ± 0.005
SLALOM 2000 samples 0.9348 ± 0.005
SLALOM, 5000 samples 0.9387 ± 0.005

SLALOM, 10000 samples 0.9387 ± 0.005

Table 14: Ablation study on the number of samples required to obtain good explanations. The results
highlight that a number as low as 500 samples can be sufficient to fit the surrogate model at a quality
comparable to SHAP.
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LM values v importances s lin. (exp(s) · v)
BLOOM-7B 0.69 ± 0.01 0.71 ± 0.02 0.70 ± 0.02
Mamba-2.8B 0.69 ± 0.02 0.32 ± 0.02 0.70 ± 0.01

Table 15: ROC-Scores for predicting Human attention with SLALOM-eff using LLMs

are BERT-based and the remaining one is another transformer with around 33M parameters3 (as of September
2023). In common benchmarks like DBPedia classification4, the top-three models are transformers with
two of them also being variants of BERT. We chose our experimental setup to reflect this. Nevertheless,
we are interested to see if SLALOM can provide useful insights for larger models as well and therefore
experiment with larger models. To this end, we use a model from the BLOOM family (Le Scao et al., 2023)
with 7.1B parameters as well as the recent Mamba model (2.8B) (Gu & Dao, 2023) on the Yelp-HAT dataset
and compute SLALOM explanations. Note that the Mamba model does not even follow the transformer
framework considered in this work. We otherwise follow the setup described in Figure 3 and assess whether
our explanations can predict human attention. The results in Table 15 highlight that this is indeed the case,
even for larger models. The ROC scores are in a range comparable to the ones obtained for the smaller
models. For the non-transformer Mamba model we observe a drop in the value of the importance scores. This
may suggest that value scores and linearized SLALOM scores are more reliable for large, non-transformer
models.

3https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads
4https://paperswithcode.com/sota/text-classification-on-dbpedia
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