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ABSTRACT

Fast and accurate generation of molecular conformers is desired for downstream
computational chemistry and drug discovery tasks. In this work, we propose two
mechanisms for accelerating the training and inference of flow-based generative
model for 3D molecular conformer generation. For fast training, we introduce the
SO(3)-Averaged Flow training objective, which we show to converge faster and
generate better conformer ensembles compared to conditional optimal transport and
Kabsch alignment-based optimal transport flow. For fast inference, we demonstrate
that reflow methods and distillation of these models enable few-steps or even one-
step molecular conformer generation with high quality. Using these two techniques,
we demonstrate a model that can match the performance of strong transformer
baselines with only a fraction of the number of parameters and generation steps.

1 INTRODUCTION
Molecular conformer generation is the task to predict the ensemble of 3D conformations of molecules
given the 2D molecular graphs (Hawkins, 2017). In the domain of drug discovery, molecular
conformer generation is a prerequisite for both structure-based and ligand-based compound virtual
screening applications. For established computational chemistry molecular conformer generation
tools, there is a trade-off between generation speed and the quality/diversity of generated conformers
(Axelrod & Gomez-Bombarelli, 2022). Deep generative models are being sought as a potential
solution to overcome such trade-off and bring fast, diverse, and high-quality molecular conformer
generation. Many earlier works are based on generative models (Simm & Hernández-Lobato, 2019;
Luo et al., 2021; Xu et al., 2022). However, established cheminformatics tools still has better
generation quality with faster sampling speed compared with early deep-learning based methods.
Torsional diffusion (Jing et al., 2022) is the first diffusion model that achieves better generation quality
than cheminformatics model. More recent works such as Molecular conformer field (MCF) (Wang
et al., 2024) and ET-Flow (Hassan et al., 2024) perform diffusion/flow-matching directly on the
Cartesian coordinates of the atoms. With more scalable transformer architecture, They have achieved
the state-of-the-art conformer generation quality. However, iterative ODE or SDE solving with large
transformer model to generate every conformer can still be computationally infeasible when the
library to be virtually screened contains billions of compounds (Bellmann et al., 2022).

Figure 1: SO(3)-Averaged Flow and Re-
flow (a) We illustrate a comparison between
our approach Averaged Flow, conditional OT,
and Kabsch+Flow. While conditional OT ran-
domly assigns any rotation of the data, Kab-
sch+Flow assigns the rotation of largest over-
lap. Our method instead computes the ex-
pected flow across all rotations. (b) The flow
trajectories (100 Euler steps) are effectively
straightened after reflow.

In this work, we propose (i) a novel flow-matching training objective called SO(3)-Averaged Flow
(Fig. 1a). As an objective, Averaged Flow avoids the need to rotationally align prior and data
distribution by analytically computing the averaged probability flow from the prior to all the rotations
of the data sample. Model trained with Averaged Flow is experimentally shown to converge faster
to better performance. (ii) To improve the sampling efficiency, we adopt the reflow and distillation
technique (Liu et al., 2022) to straighten the flow trajectories (Fig. 1b). Straightened trajectories
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allow high quality molecular conformer generation with few-step or even one-step ODE solving, thus
significantly relieving the computational cost.

2 METHOD

2.1 SO(3)-Averaged Flow

The concept of Averaged Flow involves recognizing that the data distribution q may exhibit group sym-
metries, which can be explicitly integrated out. A symmetry group G of q consists of transformations
g : x 7→ g · x that leave the distribution q unchanged, meaning q(x) = q(g · x).
If we focus on Lie groups with a Haar measure(Zee, 2016; Nachbin & Bechtolsheim, 1965; Chirikjian
& Kyatkin, 2000), we can express q as q(x) =

∫
dx̂ q̂(x̂)

∫
dg δg·x̂(x), where q̂ represents the

distribution over the group orbits, x̂ is a representative point of the orbit, and the integral over G uses
the Haar measure.

By substituting this into equation equation FM8, we obtain:

ut(x) =

∫
dx̂ q̂(x̂)

∫
dg ut(x|g · x̂)

pt(x|g · x̂)
pt(x)

(1)

Notice that pt(x) =
∫
dx̂ q̂(x̂)

∫
dg pt(x|g · x̂) is the partition function.

Let’s consider the case of conformer generation: (i) x is aN×3 matrix representing the 3D coordinates
ofN atoms. (ii) The groupG is the rotation group SO(3). We will useR to denote the rotation matrix,
which acts on x as x 7→ xRT . (iii) The orbits x̂ in this case corresponds to the different low-energy
conformers of a given molecule and their permutations that leave the 2D molecular graph invariant.
Therefore, the integral

∫
dx̂ q̂(x̂) in Eq.1 representing the entire conformer ensemble can be written as∑

x̂∈conformers q̂(x̂), where q̂(x̂) is the weight associated to that conformer. (iv) pt(x|x1) is a Gaussian

of the form: pt(x|x1) ∝ exp
(

1
2

1
(1−t)2

∑
ijδ(x−tx1)iδΣij(x−tx1)jδ

)
≡ exp

(
1
2
∥x−tx1∥2

Σ

(1−t)2

)
where

Σ is a RN×N matrix. We will use the notation ∥A∥2Σ = tr(ATΣA).

Let’s rewrite ut(x), the flow-matching objective that averaged over SO(3) group, in the conformer
generation case:

ut(x) =
1

Zt(x, 0)

∑
x̂∈conformers

q̂(x̂)

∫
SO(3)

dR
x̂RT − x

1− t
e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2 (2)

and define Zt(x, α) as:

Zt(x, α) =
∑

x̂∈conformers

q̂(x̂)

∫
SO(3)

dR e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2

+tr(αT x̂RT ) (3)

with α being an N × 3 matrix that will be needed in the following steps.

Note ut(x) can be calculated via the derivative of logZt(x, α) with respect to α evaluated at α = 0,

ut(xt) = ([∂α logZt(xt, α)]α=0 − xt)/(1− t) (4)

The integral over R can be computed using the formula from Mohlin et al. (2020), which provides a
closed-form solution for F 7→ log

∫
SO(3)

dR exp(tr(FRT )), where F can be any 3× 3 matrix. In
our case, we have

logZt(x, α) =

log
∑

x̂∈conformers

q̂(x̂) exp

 log

∫
SO(3)

dRe
tr((αT+ t

(1−t)2
xTΣ)x̂RT )

︸ ︷︷ ︸
closed-form solution using F = αT x̂ + t

(1−t)2
xTΣx̂

− tr(xTΣx) + t2tr(x̂TΣx̂)

2(1− t)2


(5)

Then we can directly learn the analytically solved SO(3)-Averaged Flow ut(xt):
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LAvgFlow(θ) = E
[
∥vθt (xt)− ut(xt)∥2

]
,with t ∈ [0, 1]. (6)

We provide the python implementation of this formula in Appendix A.4.1. We note that while our
Averaged Flow implementation is capable of handling multiple conformer states in the summation in
Eq 5. In practice, we approximate the expectation of the conformer ensemble through sampling one
conformer in each training epoch. The benchmark of computation time (Table A.4.2) shows that only
a small overhead is added when using the Averaged Flow objective.

2.2 REFLOW AND DISTILLATION

One effective technique to reduce the sampling steps without significantly sacrificing the generation
quality is to straighten the trajectory. Inspired by the success of such technique in point-cloud
generation (Wu et al., 2023) and text-image generation (Esser et al., 2024; Liu et al., 2023b), we
finetune our model vθt trained with Averaged Flow using the reflow algorithm proposed in previous
rectified flow works (Liu et al., 2022; Liu, 2022). Specifically, we first randomly sample atom
coordinates X ′

0 from standard Gaussian and generates the corresponding conformer X ′
1 using the

Tsitouras’ 5/4 solver (Tsitouras, 2011). The coupling (X ′
0, X

′
1) is then used in the rectified flow

objective to finetune the model:

LReflow(θ) = E
[
∥vθt (X ′

t, t)− (X ′
1 −X ′

0)∥2
]
,with t ∈ [0, 1] (7)

Liu et al. (2022) proved that the coupling (X ′
0, X

′
1) yields equal or lower transport cost than (X0, X1)

where X0 is sampled from noise distribution and X1 from data distribution. Therefore, applying
the reflow algorithm to fine-tune model with Eq. 7 can effectively reduce the transport cost and
straighten the trajectory. We empirically find that the transport trajectories bridging Gaussian noise
and molecular conformers demonstrates high curvature when t is closer to 0 (Fig. 1b). Therefore,
inspired by Lee et al. (2024), we sample t from a exponential distribution with the probability density
function as p(t) ∝ Exp(λt), where λ is -1.2 by selection to focus the training more on t < 0.5. The
distribution of t is visualized in Fig. 4. After reflow, the sampling speed can be further reduced by
distilling the relation of the coupling (X ′

0, X
′
1) into model vθ to enable 1-step transport and eliminate

the need of ODE solving. During the distillation stage, we fine-tune the reflowed model vθ with the
following 7 with t = 0. We use a SE(3)-equivariant networks based on Batzner et al. (2022) for
predicting the time-dependent vector field. Details of our model are provided in Sec. A.2.3 and Fig.5.
Overall, the model is trained and fine-tuned using Averaged Flow + reflow + distillation following the
Algorithm 1. Details of model sampling are included in Sec. A.2.6.

3 EXPERIMENTS

Figure 2: Model trained with Averaged Flow
consistently converge to better performance on
GEOM-Drugs. The two objective we compared
Averaged Flow to are: (i) Conditional OT and (ii)
Kabsch alignment of noise X0 with conformer X1

before conditional OT. Values are the average of a
300-molecule test subset.

Following previous works, we train and evaluate
our model on the GEOM-QM9 and GEOM-Drugs
dataset (Axelrod & Gomez-Bombarelli, 2022). We
followed the splitting strategy proposed by Ganea
et al. (2021) and test our model on the same test
set containing 1000 molecules for both QM9 and
Drugs dataset. Dataset and splitting details are in-
cluded in Sec. A.2.4. The major model evaluation
metrics are the average minimum RMSD (AMR, the
lower the better) and coverage (COV, the higher the
better). Both AMR and coverage are reported for
precision (AMR-P and COV-P) and recall (AMR-R
and COV-R). The definition of metrics are specified
in Sec.A.3.1. Intuitively, coverage measures the per-
centage of ground truth conformers being generated
(recall) or the percentage of generated conformers
being close enough to ground truth (precision), while
AMR measures the average RMSD between each
ground truth and its closest generated conformer (re-
call) or vice versa (precision).
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3.1 AVERAGED FLOW LEADS TO FASTER CONVERGENCE TO BETTER PERFORMANCE

To showcase the advantage of the Averaged Flow over other training objectives, we evaluate the
performance of model trained on different objectives using a randomly sampled GEOM-Drugs test
subset containing 300 molecules. The two other objectives to be compared are conditional OT and
Kabsch alignment. The Kabsch alignment objective is to rotationally align the sampled noise X0

with conformer X1 before training with the conditional OT objective. Fig. 2 demonstrates that
model trained with Averaged Flow is consistently better than with both conditional OT and Kabsch
alignment on all four metrics. With only 68 epochs of training, Averaged Flow has COV-R higher and
AMR-R lower than the other two objectives trained for 100 epochs. The COV-P (49.3%) and AMR-P
(0.831) of Averaged Flow trained for 52 epochs are better than conditional OT (COV-P= 49.1% and
AMR-P= 0.832Å) trained for 100 epochs. Also, Averaged Flow outperforms Kabsch trained for 100
epochs on AMR-P (Averaged Flow = 0.814Å and Kabsch= 0.815Å) and on COV-P (Averaged Flow
= 50.9% and Kabsch= 50.5%) after 76 and 84 epochs, respectively. Overall, model trained with
Averaged Flow converges with less epochs to better performance in molecular conformer generation.

3.2 GEOM-QM9 AND GEOM-DRUGS

On the GEOM-QM9 dataset, we compared our model with two prevailingly used cheminformatics
tools: RDKit and OMEGA, along with GeoMol (Ganea et al., 2021), Torsional Diffusion (Jing
et al., 2022), ET-Flow-SS (Hassan et al., 2024), and MCF (Wang et al., 2024). We denote our model
trained with Averaged Flow as AvgFlow, the model finetuned with reflow as AvgFlowReflow, and the
model further finetuned with distillation as AvgFlowDistill. The number of sampling steps required
by diffusion and flow-matching model are also noted. Table. 3 shows that AvgFlow outperforms all
other models in the COV-R metrics and almost matching the AMR-R of ET-Flow-SS, indicating it
is capable of generating very diverse conformers on the GEOM-QM9 dataset. More importantly,
the AvgFlowReflow and AvgFlowDistill achieve higher COV-R than other models with only 2-step
and 1-step ODE sampling, respectively. AvgFlowReflow also outperforms all cheminformatics tools
and GeoMol in all metrics. The benchmark on GEOM-QM9 shows that our model can match
the performance of state-of-the-art models with only much less trainable parameters on smaller
scale molecule. Table. 3 also shows that reflow+distillation can effectively maintain the conformer
generation quality with only 1 or 2 steps of ODE solving.

Table 1: Quality of generated conformer ensembles for GEOM-DRUGS (δ = 0.75Å) test set in terms
of Coverage (COV) and Average Minimum RMSD (AMR). Bolded results are the best. Baseline
values are taken from the corresponding papers. *Due to the use of adaptive step size, the number of
steps of AvgFlow is an average value over all test set molecules.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Mean Med Mean Med Mean Med Mean Med

RDKit - 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA - 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol - 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
Tor. Diff. 20 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
ET-Flow-SS (8.3M) 50 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442
MCF-S (13M) 1000 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B (64M) 1000 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF-L (242M) 1000 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530

AvgFlow (4.7M) 102* 76.8 83.6 0.523 0.511 60.6 63.5 0.706 0.670
AvgFlowReflow (4.7M) 2 64.2 67.7 0.663 0.661 43.1 38.9 0.871 0.853
AvgFlowDistill (4.7M) 1 55.6 56.8 0.739 0.734 36.4 30.5 0.912 0.888

We then trained and benchmarked our model on GEOM-Drugs, which is a larger dataset containing
conformers of drug-like molecules. Table. 1 shows that AvgFlow has good performance on GEOM-
Drugs by outperforming torsional diffusion on all metrics. Compared with MCF-S which has
approximately 3 times more parameters, our model achieves better COV-P and AMR-P, indicating
more AvgFlow-generated conformers are close to ground truth conformers. AvgFlowReflow can
outperform cheminformatics tools and GeoMol on all metrics, with large margin specifically on the
recall metrics. With only 4.7M parameters and 2 ODE steps, AvgFlowReflow pushes the limit of the
quality-speed trade-off of molecular conformer generations and bears the potential to be adopted
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for large-scale virtual screen use cases. The AvgFlowDistill is also shown to achieve better COV-R
and AMR-R than cheminformatics tools and GeoMol, showing the our model can maintain high
generation diversity even with a single ODE step.

3.3 WHEN IS REFLOW REALLY NECESSARY?

Figure 3: Effect of the number of ODE
steps to model’s performance Comparison
between model performance before and after
reflow with different number of ODE steps

From the benchmark results on GEOM-Drugs and GEOM-
QM9, we understand that our AvgFlowReflow model can
achieve better performance than cheminformatics methods
on all metrics. However, it is obvious that the model’s
performance drops after reflow especially for the preci-
sion metrics. Flow-matching models generally have high
generation quality with less steps compared to denoising
diffusion model (Lipman et al., 2023) thanks to the ODE
sampling process. In this section, we are trying to answer
the question: when is reflow really necessary to generate
high-quality molecular conformers?

Fig. 3 shows the the performance of our model using Euler
sampling method with number of ODE steps Nstep ∈
{1, 2, 3, 5, 10, 20, 50, 100}. The performance of models
are evaluated with the same four metrics on a subset of the
GEOM-Drugs test set containing 300 molecules. Overall,
AvgFlow has better performance when Nstep ≥ 10 than AvgFlowReflow. When Nstep < 10, the
performance of AvgFlow has start to collapse and eventually reaches 0% coverage for both recall and
precision when Nstep = 1. The performance gap becomes significant for all metrics when Nstep < 5.
AvgFlowReflow, on the other hand, has minimal loss in performance until Nstep = 2 thanks to the
straightened flow trajectory. The 1-step generation quality of the model still suffers even after reflow.
Distillation can effectively reduce the RMSD of 1-step generated conformers and improve both the
COV-R and COV-P. In summary, reflow is critical when generating molecular conformers with very
few ODE steps (Nstep < 5).

3.4 SAMPLING TIME

To demonstrate the sampling efficiency of our model, we compared the sampling wall time of our
model with MCF and torsional diffusion. Table. 4 shows the sampling time comparison between
models∗. The average sampling time of AvgFlowReflow for each conformer in the GEOM-Drugs test
set is 2.68 microseconds, which is 21 to 50× faster than different variants of MCF sampled with
DDIM for 3 steps. It is also 48× faster than torsional diffusion sampled with 5 steps. AvgFlowReflow

outperforms MCF-B on precision metrics and reached comparable performance on the recall metrics.
AvgFlowReflow also outperforms torsional diffusion and MCF-S by large margin with only a fraction
of the sampling time. The major speed-up of the our model is due to the JAX implementation and
less number of parameters. With reflow ensuring high-quality generation with only 2 ODE steps, our
model achieves extraordinary sampling efficiency.

4 CONCLUSION
We have presented SO(3)-Averaged Flow as a new objective to accelerate the training of flow-
matching models for molecular conformer generation. Averaged Flow leads to faster convergence to
better performance compared with conditional OT and Kabsch alignment. We have also experimented
reflow and distillation to straighten the flow trajectory and enable few-step molecular conformer
generation. Our model reaches the state-of-the-art performance on the coverage-recall metric of the
GEOM-QM9 dataset. It is also matching the performance of transformer-based model which have
several times more parameters on the GEOM-Drugs dataset. By analyzing the effect of number of
ODE steps to the model generation quality, we find out that reflow and distillation are necessary when
very few steps (Nstep < 5) of conformer generation is desired. Finally, by comparing the sampling
time, we demonstrate that our model is approximately 21 to 50 times faster than the other state-of-the-
art models, while achieving second to the best generation quality and diversity. Overall, given that the
Averaged Flow and reflow training scheme can be applied to any models, our method bridges the gap
between multi-step flow-matching models and practical molecular conformer generation application
by pushing the boundary of quality-speed trade-off.

∗ MCF and Torsional Diffusion sampling time values are adopted from Fig.6 of Wang et al. (2024)
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Swallowing the bitter pill: Simplified scalable conformer generation. In Forty-first International
Conference on Machine Learning, 2024.

Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao Liu, Yunyang Xiong, Rakesh Ranjan, Raghura-
man Krishnamoorthi, Vikas Chandra, and Qiang Liu. Fast point cloud generation with straight
flows. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9445–9454, 2023.

Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli,
and Jian Tang. An end-to-end framework for molecular conformation generation via bilevel
programming. In International conference on machine learning, pp. 11537–11547. PMLR, 2021.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Anthony Zee. Group theory in a nutshell for physicists, volume 17. Princeton University Press, 2016.

8



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A APPENDIX

A.1 BACKGROUND AND RELATED WORK

A.1.1 GENERATIVE MODELS FOR CONFORMER GENERATION

The task of molecular conformer generation in its core is to sample from the intractable conformer
distribution conditioned on the 2D molecular graph. Therefore, generative deep learning model is
well-suited for such task and many methods have been proposed. Deep learning model are usually
trained on datasets containing molecular conformers generated by CREST (Pracht et al., 2020) using
computationally expensive semi-empirical quantum chemistry method (Bannwarth et al., 2019) under
the hood. Earliest works in this field uses variational autoencoder to generate the intrinsic inter-atomic
distance (Simm & Hernández-Lobato, 2019; Xu et al., 2021). Shi et al. (2021) proposed a score-
matching method that learns the gradient of intrinsic atom coordinates in molecular graph. Ganea
et al. (2021) started to tackle molecular conformer generation by designing a message passing neural
network to predict the local 3D structure and torsion angles. Xu et al. (2022) adopted diffusion model
and equivariant graph neural network to generate molecular conformers by iteratively denoising the
Euclidean atom coordinates from sampled noise. Torsional diffusion (Jing et al., 2022) reduced
the degree-of-freedom by refining the torsion angles of RDKit-generated (Landrum, 2016) initial
conformers with a diffusion process on the hypertorus. Such design allowed torsional diffusion
to significantly reduce sampling steps. One drawback of torsional diffusion is that it relies on an
RDKit-generated conformer as the starting point of diffusion, which adds computational overhead to
generation process. The generation quality of RDKit, especially for atom coordinates in rings, can also
impact the sample quality of torsional diffusion. Molecular conformer field (MCF) proposed by Wang
et al. (2024) is a recent work that leverages the scaling power of the transformer architecture (Jaegle
et al., 2021) and diffusion model. MCF achieves state-of-the-art performance in molecular conformer
generation by training models with tens to hundreds million of parameters to denoise the atoms’
Euclidean coordinates using DDPM paradigm (Ho et al., 2020). Equivariant Transformer Flow
(ET-Flow) is a concurrent work that trains a equivariant flow-matching model to generate conformers
from prior distribution. By combining harmonic prior (Jing et al., 2023), flow-matching, and Kabsch
alignment that reduces transport cost, ET-Flow is reported to outperform MCF on several metrics
with less ODE steps.

Overall, the trade-off between conformer generation quality and speed is a prevailing issue. Specifi-
cally, semi-empirical quantum chemistry can sample very high quality conformers with high com-
putational cost. Diffusion or flow-matching models can generate high quality conformers but the
iterative ODE/SDE solving process can be slow, making them less practical for large-scale virtual
screening. Cheminformatics tools such as RDKit and OMEGA are very fast but generate conformers
with underwhelming diversity.

A.1.2 FLOW-MATCHING

Averaged Flow is based on Flow Matching (Lipman et al., 2023; Liu et al., 2023a; Albergo &
Vanden-Eijnden, 2023), which models a probability density path pt(xt) that gradually transforms
an analytically tractable noise distribution (t = 0) into a data distribution (t = 1), following a time
variable t ∈ [0, 1]. Formally, the path pt(xt) corresponds to a flow ψt that pushes samples from p0
to pt via pt = [ψ]t ∗ p0, where ∗ denotes the push-forward. In practice, the flow is modelled via
an ordinary differential equation (ODE) dxt = vθt (xt)dt, defined through a learnable vector field
vθt (xt) with parameters θ. Initialized from noise x0 ∼ p0(x0), this ODE simulates the flow and
transforms noise into approximate data distribution samples. The probability density path pt(xt) and
the (intractable) ground-truth vector field ut(xt) are related via the continuity equation dpt(x)/dt =
−∇x ·(pt(x)ut(x)). To construct pt Lipman et al. (2023) introduce a conditional probability pt(x|x1)
and conditional vector field ut(x|x1) both related to their unconditional counterparts as follow:

pt(x) =

∫
pt(x|x1)q(x1)dx1. (FM6)

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dx1 (FM8)
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With the following simple choices of conditional probability and flow
pt(x|x1) = N (x;µt(x1), σ

2
t (x1)) (FM10)

ψt(x) = σt(x1)x+ µt(x1) (FM11)
they prove that

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1). (FM15)

It is noteworthy that we refer to the linear interpolant xt = tx1 − (1− t)x0 between the noise and
data distribution as conditional optimal transport (OT) following Lipman et al. (2023).

A.1.3 RECTIFIED FLOW AND OTHER DISTILLATION

With the success of denoising diffusion probabilistic models (Ho et al., 2020), many attention has
been drawn to improve the sampling speed of diffusion models. DDIM (Song et al., 2020) shows that
the sampling steps can be significantly reduced by formulating the sampling process as ODE solving.
Knowledge distillation techniques (Meng et al., 2023; Salimans & Ho, 2022; Song et al., 2023; Song
& Dhariwal, 2023) are also proposed to reduce sampling steps and accelerate generation. Rectified
flow (Liu et al., 2022; Liu, 2022) is a method proposed to train the model to learn straight probability
flow that bridges prior and data distribution. The reflow technique proposed in rectified flow can
straighten the flow trajectory and reduce the transport cost, allowing very few-step generation with
high quality. After reflow, the model can be further distilled to improve 1-step generation. The
reflow and distillation technique has been proven effective in enabling few-step or even single-step
text-to-image (Esser et al., 2024; Liu et al., 2023b) and point cloud (Wu et al., 2023) generation.

A.2 EXPERIMENTS DETAILS

A.2.1 TRAINING ALGORITHM

Training algorithm for Averaged Flow and Reflow+Distillation.

Algorithm 1 Averaged Flow with Reflow+Distillation Training
Require: Molecule Dataset G = [G0, ..., GD], each with conformers XG = [XG,0, ...XG,N ]
Require: Learnable Velocity Field Network vθ

1. Base SO(3) Averaged Flow Training
t,X0, G ∼ U(0, 1),N (0, 1),G
X1 ∼ XG

Xt ← t ·X0 + (1− t) ·X1

ut(Xt)← Solve closed-form Eq. 4 forXt and t
Gradient Step -∥vθt (Xt|G)− ut(Xt)∥2
2. Reflow
X ′

0 ∼ N (0, 1)
X ′

1 ∼ ODESolve
(
vθt (·|G), X ′

0

)
Finetune model with coupled pair (X ′

0, X
′
1) through Eq. 7

3. Distillation
Train model with coupled pair (X ′

0, X
′
1) through Eq. 7 with t = 0

A.2.2 TRAJECTORY AND DISTRIBUTION OF t

Figure 4: The distribution of t during
reflow

Here we are visualizing the trajectories of atoms in a
molecules during 100-steps of ODE transport. Fig. 1a shows
the trajectory before reflow, which demonstrate high cur-
vature at the beginning of the transport (t close to 0). We
observed such pattern in trajectory for most of molecules,
leading us to sample t from exponential distribution which
focus on the t < 0 region during the reflow. After reflow,
the 100-step ODE trajectory of the same molecules much
straighter (Fig. 1b).The distribution of t is visualized in
Fig. 4.
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A.2.3 MODEL ARCHITECTURE

The equivariant model used in this work is a modified variant (Fig. 5) of the NequIP model (Batzner
et al., 2022). The model takes 4 inputs including the atomic features Z, relative distance vector
between atoms r⃗, edge (bond) features e, and the flow-matching time-step t. The output model is
a vector field corresponding to the probability flow at t. Compared to the original NequIP model,
our variant has residue connection and equivariant layer normalization (Liao et al., 2023) after each
interaction block, which we found to be highly effective in stabilizing the training of model with
more than 4 layers. Bond information in the 2D molecular graph is critical inductive bias for the
molecular conformer generation task. To add bond information into the model, we featurize the edges
in the molecular graph and concatenate the edge features e with the radial basis embedding of relative
distance vector r⃗. The concatenated message is then fed into the rotationally invariant radial function
implemented as an multi-layer perceptron. To keep long-range information in the graph convolution
during intermediate time-step t, we remove the envelop function from the radial basis and keep only
the radial Bessel function.

For both the GEOM-Drugs and GEOM-QM9 dataset, we train a model with 6 interaction blocks. The
multiplicity is set to 96 and maximum order of irreps l is 2. The radial function MLP has 2 layers
and hidden dimension of 256. Molecular graph are fully-connected with non-bond as an specified
bond type. The relative distance vectors are scaled down by a soft cutoff distance of 10Å and 20Å for
QM9 and Drugs dataset, respectively. we used 12 Bessel radial basis functions in the model. The
model is implemented using e3nn-jax (Geiger & Smidt, 2022; Geiger et al., 2022).
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Figure 5: Model architecture (a) Overview of the modified NequIP architecture for the flow vector field
prediction. (b) Details of the interaction block, where atomic features are mixed and refined with relative distance
vectors r⃗ and edge features. (c) In the convolution block, a learnable radial function MLP incorporate basis
embedding of r⃗ and edge features. Tensor product is used to combine the output of the MLP and the spherical
harmonics Y (l)

m projection of r⃗.

A.2.4 DATASETS

The dataset we train and benchmark our model on are GEOM-Drugs and GEOM-QM9(Axelrod &
Gomez-Bombarelli, 2022). We follow the exact splitting defined and used in previous works (Ganea
et al., 2021; Jing et al., 2022; Wang et al., 2024). The train/val/test set of GEOM-Drugs con-
tains 243473/30433/1000 molecules, respectively. The train/val/test set of GEOM-QM9 contains
106586/13323/1000 molecules, respectively.

A.2.5 MOLECULAR GRAPH FEATURIZATION

We followed the atomic featurization from GeoMol (Ganea et al., 2021). Details of the atomic
featurization are included in Table. 2. Graph Laplacian positional encoding vector (Dwivedi et al.,
2023) with size of 32 is concatenated with the atomic features for each atom in molecular graph.
The edge features is the one-hot encoding of the bond types: {No Bond, Single Bond, Double Bond,
Triple Bond, Aromatic Bond}.
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Table 2: Atomic features as input to the model
Name Description Range

atom type Atom type One-hot encoding of the atom type
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybridization Hybridization type {sp, sp2, sp3, sp3d, sp3d2, other}
chirality Chirality Tag {unspecified, tetrahedral CW, tetrahedral CCW, other}
num H Total number of hydrogens {x : 0 ≤ x ≤ 8, x ∈ Z}
aromatic Whether on aromatic ring {True, False}
num rings Number of rings the atom on {x : 0 ≤ x ≤ 3, x ∈ Z}
ring size 3-8 Whether on ring size of 3-8 {True, False}

A.2.6 TRAINING AND SAMPLING DETAILS

The model is trained with the Averaged Flow for 990 epochs on the GEOM-Drugs dataset and 1500
epochs on the GEOM-QM9 dataset using 2 NVIDIA A5880 GPUs. We used dynamic graph batching
to maixmize the utilization of GPU memory and reduce JAX compilation time. The effective average
batch size is 208 and 416 for Drugs and QM9 dataset, respectively. We used Adam optimizer with
learning rate of 1e−2, which decays to 5e−3 after 600 epochs and to 1e−3 after 850 epochs. We
selected the top-30 conformers for model training.

To sample coupled (X ′
0, X

′
1) for reflow and distillation, we generate 32 noise-sample pairs for each

molecule in the Drugs and 64 for each molecule in the QM9 dataset. The reflow and distillation are
done using 4 NVIDIA A100 GPUs and doubling the effective batch size of each dataset. During the
reflow stage, the model is finetuned for 870 epochs on Drugs and 1530 epochs on QM9. We used
Adam optimizer with learning rate of 5e−3, which decays to 2.5e−3 after 450 epochs for Drugs
(500 epochs for QM9), and to 5e−4 after 650 epochs for Drugs (900 epochs for QM9). During
the distillation stage, the model is finetuned for 450 epochs on Drugs and 1200 epochs on QM9.
We used Adam optimizer with learning rate of 2e−3, which decays to 1e−3 after 300 epochs for
Drugs (500 epochs for QM9), and to 2e−4 after 450 epochs for Drugs (900 epochs for QM9). We
used exponential moving average (EMA) with a decay of 0.999 for all Averaged Flow, reflow, and
distillation training.

To generate the benchmark results of AvgFlow (Table. 3, Table. 3, and Table. 4), we use the Tsitouras’
5/4 solver (Tsitouras, 2011) implemented in the diffrax package with adaptive stepping. The
relative tolerance and absolute tolerance are set to 1e−5 and 1e−6 when sampling for GEOM-Drugs,
respectively. The relative tolerance and absolute tolerance are both set to 1e−5 when sampling for
GEOM-QM9. Euler solver is always used for AvgFlowReflow and AvgFlowDistill. When comparing
the effect of ODE steps to models, Euler solver is used.

A.3 EVALUATION DETAILS AND RESULTS

A.3.1 EVALUATION MTRICS

We report the average minimum RMSD (AMR) between ground truth and generated structures,
and Coverage for Recall and Precision. Coverage is defined as the percentage of conformers with
a minimum error under a specified AMR threshold. Recall matches each ground truth structure
to its closest generated structure, and Precision measures the overall spatial accuracy of the each
generated structure. Following Ganea et al. (2021); Jing et al. (2022), we generate two times the
number of ground truth structures for each molecule. More formally, for K = 2L, let {C∗

l }l∈[1,L]

and {Ck}k∈[1,K] respectively be the sets of ground truth and generated structures:

COV-Precision :=
1

K

∣∣∣∣{k ∈ [1..K] : minl∈[1..L] RMSD(Ck, C
∗
l ) < δ}

∣∣∣∣,
AMR-Precision :=

1

K

∑
k∈[1..K]

minl∈[1..L] RMSD(Ck, C
∗
l ),

(8)
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where δ is the coverage threshold. δ is set to 0.75Å for the Drugs and 0.5Å for the QM9 dataset. The
recall metrics are obtained by swapping ground truth (K) and generated conformers (L) in the above
equations.

A.3.2 GEOM-QM9 BENCHMARK RESULTS

Table 3: Quality of ML generated conformer ensembles for GEOM-QM9 (δ = 0.5Å) test set in terms
of Coverage (COV) and Average Minimum RMSD (AMR). Bolded results are the best. Baseline
values are taken from the corresponding papers. *Due to the use of adaptive step size, the number of
steps of AvgFlow is an average value over all test set molecules.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Mean Med Mean Med Mean Med Mean Med

RDKit - 85.1 100 0.235 0.199 86.8 100 0.232 0.205
OMEGA - 85.5 100 0.177 0.126 82.9 100 0.224 0.186
GeoMol - 91.5 100 0.225 0.193 87.6 100 0.27 0.241
Tor. Diff. 20 92.8 100 0.178 0.147 92.7 100 0.221 0.195
ET-Flow-SS (8.3M) 50 95.0 100 0.083 0.035 91.0 100 0.116 0.047
MCF-B (64M) 1000 95.0 100 0.103 0.044 93.7 100 0.119 0.055

AvgFlow (4.7M) 60* 96.4 100 0.089 0.042 92.8 100 0.132 0.084
AvgFlowReflow (4.7M) 2 95.9 100 0.151 0.104 87.7 100 0.236 0.207
AvgFlowDistill (4.7M) 1 95.1 100 0.220 0.195 84.8 100 0.304 0.283

A.3.3 SAMPLING TIME BENCHMARK

Table 4: Sampling time and performance comparison between models. Bolded results are the best.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Time (ms) ↓ Mean Mean Mean Mean

Tor. Diff. 5 128 58.4 0.691 36.4 0.973
ET-Flow 5 106 77.8 0.476 74.0 0.550
MCF-S 3 57.3 56.9 0.725 30.8 1.014
MCF-B 3 102 66.5 0.665 39.9 0.951
MCF-L 3 134 71.6 0.636 45.3 0.686

AvgFlowReflow 2 2.68 64.2 0.663 43.1 0.871

A.4 AVERAGED FLOW DETAILS

A.4.1 PYTHON IMPLEMENTATION

Listing 1: Averaged Flow
def avg_harmonic_flow(

t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
edges: jax.Array, # [2, num_edges]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
degree = jnp.bincount(edges[0], length=x.shape[0])

def metric(x, y):
# x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
laplacian = (

jnp.sum(degree * x * y)
- jnp.sum(x[edges[0]] * y[edges[1]])
- jnp.sum(x[edges[1]] * y[edges[0]])

)
return laplacian / sigma_t**2

avg_x1 = avg_target(x, x1, t, metric, weights)
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return (avg_x1 - x) / (1 - t)

def avg_flow(
t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
def metric(x, y):

# x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
return jnp.dot(x, y) / sigma_t**2

avg_x1 = avg_target(x, x1, t, metric, weights)

return (avg_x1 - x) / (1 - t)

def avg_target(
x: jax.Array, # [n, 3]
targets: jax.Array, # [num_targets, n, 3]
t: jax.Array, # []
metric: Callable[[jax.Array, jax.Array], jax.Array],
weights: jax.Array | None = None, # [num_targets]

) -> jax.Array:
num_targets, n, _ = targets.shape
assert x.shape == (n, 3)
assert targets.shape == (num_targets, n, 3)
assert t.shape == ()

def outer(u, v): # [n, 3] x [n, 3] -> [3, 3]
return jax.vmap(jax.vmap(metric, (None, -1)), (-1, None))(u, v)

def inner(u, v): # [n, 3] x [n, 3] -> []
return jnp.sum(jax.vmap(metric, (-1, -1))(u, v))

def logZ(alpha): # [n, 3] -> []
def f(target): # [n, 3] -> []

return (
logcF(t * outer(target, x) + target.T @ alpha)
- (inner(x, x) + t**2 * inner(target, target)) / 2

)

return logsumexp(jax.vmap(f)(targets), weights)

return jax.grad(logZ)(jnp.zeros_like(x))

def logsumexp(a: jax.Array, weights: jax.Array | None = None) -> jax.Array:
assert a.ndim == 1
assert weights is None or weights.shape == a.shape
where = (weights > 0) if weights is not None else None

amax = jnp.max(a, where=where, initial=-jnp.inf)
amax = jax.lax.stop_gradient(

jax.lax.select(jnp.isfinite(amax), amax, jax.lax.full_like(amax, 0))
)
if where is not None:

a = jnp.where(where, a, amax)
exp_a = jax.lax.exp(jax.lax.sub(a, amax))
if weights is not None:

exp_a = exp_a * weights
sumexp = exp_a.sum(where=where)
return jax.lax.add(jax.lax.log(sumexp), amax)

# All the code below is adapted from a PyTorch code from David Mohlin, Gerald Bianchi and Josephine Sullivan

def logcF(F: jax.Array) -> jax.Array:
# \log \int_{SO(3)} \exp(\text{tr}(FˆT R)) dR
assert F.shape == (3, 3)
return logcf(*signed_svdvals(F))

def signed_svdvals(F: jax.Array) -> jax.Array:
u, s, vh = jnp.linalg.svd(F, full_matrices=False)
u, vh = jax.lax.stop_gradient((u, vh))
sign = jnp.sign(jnp.linalg.det(u @ vh))
return s.at[-1].mul(sign)

@jax.custom_vjp
def logcf(s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:

# assume s1 >= s2 >= s3
s1, s2, s3 = jnp.asarray(s1), jnp.asarray(s2), jnp.asarray(s3)
return s1 + s2 + s3 + jnp.log(factor(False, s1, s2, s3))

def _logcf_fwd(
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s1: jax.Array, s2: jax.Array, s3: jax.Array
) -> tuple[jax.Array, tuple[jax.Array, jax.Array]]:

# s1 >= s2 >= s3
f = factor(False, s1, s2, s3)
return s1 + s2 + s3 + jnp.log(f), (s1, s2, s3, f)

def _logcf_bwd(res: tuple[jax.Array, ...], grad: jax.Array) -> tuple[jax.Array]:
s1, s2, s3, f = res
# s1 >= s2 >= s3
assert s1.shape == ()
assert f.shape == ()
assert grad.shape == ()
g1 = grad * factor(True, s1, s2, s3) / f
g2 = grad * factor(True, s2, s1, s3) / f
g3 = grad * factor(True, s3, s1, s2) / f
return g1, g2, g3

logcf.defvjp(_logcf_fwd, _logcf_bwd)

def factor(add_x: bool, s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:
def f(x):

i0 = (1.0 - 2 * x) if add_x else 1.0
i1 = bessel0((s2 - s3) * x)
i2 = bessel0((s2 + s3) * (1 - x))
return i0 * i1 * i2

tiny = jnp.finfo(s1.dtype).tiny
a = 2 * (s3 + s1)

# a non zero:
a_ = jnp.maximum(a, 0.5)
y = jnp.linspace(tiny + jnp.exp(-a_), 1.0, 512)
r1 = jnp.trapezoid(jax.vmap(f)(-jnp.log(y) / a_), y) / a_

# a (close to) zero:
x = jnp.linspace(0.0, 1.0, 512, dtype=s1.dtype)
r2 = jnp.trapezoid(jax.vmap(f)(x) * jnp.exp(-a * x), x)

return jnp.where(a > 1.0, r1, r2)

def bessel0(x: jax.Array) -> jax.Array:
p = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2]
bessel0_a = jnp.array(p[::-1], dtype=x.dtype)

p = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2]
p += [-0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2]
bessel0_b = jnp.array(p[::-1], dtype=x.dtype)

abs_x = jnp.abs(x)
x_lim = 3.75

def w(x, y):
return jnp.where(abs_x <= x_lim, x, y)

abs_x_ = w(x_lim, abs_x)

return w(
jnp.polyval(bessel0_a, w(abs_x / x_lim, 1.0) ** 2) * jnp.exp(-abs_x),
jnp.polyval(bessel0_b, w(1.0, x_lim / abs_x_)) / jnp.sqrt(abs_x_),

)

A.4.2 SPEED BENCHMARK

We benchmarked the time used by our Python implementation to solve the Averaged Flow objective
for batched graphs. Each graph is set to have 50 nodes (the average number of atoms in GEOM-Drugs
molecules is 44). The benchmark is done on a single NVIDIA A5880 GPU.
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Table 5: Computation time of Averaged Flow on batched graphs (50 nodes per graph). Unit is in ms.
Nbatch is the number of graphs in a batch and Nconformer is number of conformers used in Averaged
Flow solving.

Nbatch

Nconformer

1 10 100 1000
1 0.6 0.5 0.5 0.6
10 0.5 0.5 0.6 1.0
100 0.5 0.6 1.1 7.6
1000 0.5 0.9 7.5 73.5
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