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Abstract

Modern generative machine learning (ML) models can propose novel inorganic
crystalline materials with targeted properties; however, synthesis planning of these
materials remains difficult due to the complexity of the associated physical pro-
cesses and limited availability of computational tools. We introduce a novel hybrid
framework to evaluate Large Language Models (LLMs) in inorganic synthesis
planning by combining thermodynamic databases with simplified kinetics mod-
els to approximate realistic synthesis conditions. As a case study, we focus on
the niobium—oxygen system, which features multiple industrially relevant oxide
phases with well-characterized data. In computational simulations, we compare
LLM-generated synthesis routes with classical path-planning algorithms, showing
that the implicit priors in LLMs can yield more viable strategies. In our evalua-
tion setting, classical search methods serve primarily as a foil rather than a direct
competitor. This illustrates the relative complexity of the problem and highlights
where the LLM’s implicit priors add value.

1 Introduction

The discovery and synthesis of novel inorganic materials underpin advances in energy technologies,
electronics, catalysis, and structural applications. Generative ML models have emerged as powerful
tools for proposing candidate materials with targeted properties (Wilfong et al.|[2025]). Such mod-
els can sample vast material design spaces, but the subsequent step of translating a computationally
designed material into a feasible synthesis plan presents a significant bottleneck. Traditional ap-
proaches for designing synthesis plans, such as exploring energy landscapes, lack reliable methods
for determining reaction coordinates and are typically based on a combination of literature sources,
intuition, and scientist experience.

We present a preliminary evaluation of LLMs for inorganic synthesis planning using a hybrid frame-
work that augments thermodynamic databases with simplified kinetic models. As a case study, we
investigate the binary niobium—oxygen system, a chemically rich space with multiple industrially
relevant oxide phases and well-characterized thermodynamics. By comparing LLM-generated syn-
thesis routes with those from a classical path-planning algorithm, we assess the extent to which the
embedded scientific priors in LLMs can improve planning quality.



Table 1: The four challenge problems assessed using our physics-based simulator.
ID  Start State Goal State
1 300K 100% Nb 300K 100% NbO
2 300K 100% Nb 2200 K 50% NbO, 50% liquid
3 300K 100% Nb 300K 50% NbO, 50% Nb,Os
4 300K 100% Nb,Os 300K  100% NbO

2 Related Work

LLMs, trained on vast corpora spanning scientific literature and general text, offer rich possibilities
to augment synthesis planning tools.

Outside of materials applications, there are works that consider the suitability of current generative
models for reasoning through problems more generally [Shojaee et al.l 2025]]. The ability of LLMs
to encode prior knowledge raises the possibility of them generating grounded synthesis pathways,
and a number of works have considered leveraging generative models to evaluate or determine syn-
thesis pathways. [Pu et al.|[2024] assessed LLLMs in terms of responding to text-based knowledge
prompts focusing on synthesis of gold nanoparticles. More direct prediction of synthesis routes,
in terms of identification of precursors and conditions, was performed by Prein et al.| [2025]], in-
cluding benchmarking against datasets of specific reactions in solid-state synthesis. In this work,
we propose a complementary approach using approximate but physically-grounded thermodynamic
simulations, rather than sets of reaction-specific data, for quantitative assessment of proposed routes
across a broad material system.

3 Methods

3.1 Material System and Problem Statement

Assessment using physics-based simulation in this work relies on the availability of well-validated
thermochemical data. We use the binary Nb—O system as a case study; phase diagrams are shown
in fig. 2] in the Supplementary Information (SI). This system exhibits several competing solid oxide
phases which allow us to pose challenges of varied complexity. Benchmarking synthesis models
in well-understood systems, such as Nb—O, will prepare for future extensions to systems without
completely assessed phase diagrams, which is ultimately desired for novel materials.

To simulate the kinetics of the system, we adopt a Johnson—-Mehl-Avrami (JMA) style approach|Mit-
temeijer|[[1992] in which phase fractions evolve according to f(At) = (feq — fo) [1 — exp(—kAt)],
where fy and f.q are the initial and equilibrium phase fractions, and k is the rate constant given by
k = ko exp [—E,/(RT)], with activation energy F,, gas constant R, and temperature 7".

Equilibrium phase fractions were computed using the CALPHAD technique with PyCalphad |Otis
and Liu|[2017] and the thermodynamic database of [Pérez and Massih| [2007], at 10 K intervals from
300 K to 3000 K, with a compositional spacing of 1 at.%. We set £, = 95.4 kJ/mol, based on the
experimentally-reported activation energy for diffusion-limited oxidation of Nb |Clenny and Rosa
[1980], |Gulbransen and Andrew| [[1958], and ko = 100 s~! to reproduce the reported timescale of
the transformation of Nb to Nb,O5 at 900 K |Clenny and Rosa|[[1980)].

Table [T] shows the four challenge problems that we assessed. Each problem consists of a starting
state and a desired goal state, where “state” is defined as a convex combination of realized phases
in the material system together with an associated temperature (pressure is assumed fixed at 1 bar).
These problems were designed to have a range of difficulty. They vary in features such as requiring
temperature variation, single or multiple phases, and/or traversal of “intermediate” phases in the
phase diagram. Table[3]in the SI provides further details on the challenges.

In response to each challenge, a respondent must provide a synthesis “recipe,” which may consist
of any sequence of three options: add precursor, change temperature, or wait. “Add precursor” may
choose from the two pure compounds: Nb or Os. “Change temperature” may set any temperature
between 300 K and 3000 K. “Wait” holds the temperature and composition constant while allowing
phase fractions to evolve according to thermodynamics and kinetics modeled by the simulator.



Executing the synthesis recipe results in some final state which is then scored by comparing it to
the problem goal state. Any solution that does not achieve the final temperature to within 20 K is
deemed unresponsive and assigned the maximum error of 1.0. Otherwise, the solution is scored by
computing a scaled mean squared error between the goal and realized phase fractions. In the future,
other scoring methodologies might be considered, including adding intermediate constraints (such
as avoiding a prohibited intermediate phase) or taking more careful account of the geometry of the
simplex when evaluating the phase differences.

3.2 Candidate Synthesis Planning Models

We compare two fundamentally different approaches for solving the synthesis planning problem:
(1) as a classical path planning problem to help quantify problem difficulty and (2) by leveraging
an LLM to explore the inclusion of prior knowledge. There are a variety of classical approaches
(e.g. |Kocsis and Szepesvari [2006]) that treat the problem as a search space. We elected to utilize
A* search Hart et al.|[[1968]] for its simplicity and because precision to within a small percentage
of the goal was acceptable. The search heuristics of A* are illustrative of techniques that can be
guided by mathematical expressions but are hard to shape with abstract priors or domain knowledge.
We discretize the state space into 100 bins along each of the phase fraction, element fraction, and
temperature dimensions. For a found state in A* , the cost to reach that state is taken to be the
number of steps in the path. Our heuristic for estimating the remaining cost to the goal is the
Euclidean distance between two normalized states.

In contrast to classical path planning, the LLM has prior knowledge of materials synthesis and can be
given further knowledge through prompting. We also provide the LLM with access to the simulator
itself, which it can invoke as a “tool” in generating a solution. This is analogous to domains like
mathematics, where LLMs are paired with tools (e.g., theorem provers) to derive new results.

Note that while an LLM-guided synthesis search can incorporate prior knowledge, it is also more
computationally expensive, and many-step LLM reasoning is an open area of research |Aghajohari
et al.| [2025], [Fei et al.| [2023]. We instructed the LLM to continue attempting a problem until it
reached a conclusion (fig. @) and did not otherwise limit its generation length. We let A* run until it
found a solution or exhausted system resources while building the search graph (128GB RAM).

Our LLM is implemented as a ReAct-based agent |Yao et al.| [2023]] using the Declarative Self-
improving Python (DSPy) framework Khattab et al| [2024] [2022], which we attach to OpenAlI’s
GPT40 model |OpenAl| [2024]. GPT4o was selected as a state-of-the-art non-reasoning model for
which we could introduce the reasoning process ourselves through prompting. Of course, future
work would compare multiple models, including reasoning vs non-reasoning varieties. Given that
the performance of in-context learning depends upon the prompt [Min et al.| [2022]], we also con-
sider strategies for designing this prompt in more systematic ways. For this preliminary study, we
leveraged DSPy’s prompt tuning capabilities; in particular, its LabeledFewShot strategy which,
given a training data set, randomly selects k£ = 4 new examples to add to the prompt

4 Results and Discussion

Our primary resultsE] are summarized in table and fig. |1} the former shows a comparison of A* and
the LLM agent on the challenge problems while the latter shows the full distribution of scores and
provides a comparison of LLM performance pre- and post-prompt tuning. In the case of table
“success” is defined as the final state being within some approximate e-ball of the goal state; of
course, other criteria might be considered in future work. Since the search space is deterministic,
we only run A* once, resulting in either 100% success or failure. To account for the stochasticity of
LLM generation, we run the LLM ten times on each problem. In general, we find that the LLM and
A* both exhibit some variability in performance across the four challenges. The relative effective-
ness of the LLM suggests that its scientific priors indeed catry over to our simulation environment.
Results from the preliminary prompt tuning (fig. [I) suggests that more careful optimization is im-
portant to consider in future work.

'Note DSPy includes more sophisticated optimization strategies that we propose to explore moving forward.
We used random sampling as an initial proof-of-concept to determine whether prompt tuning seemed promising.
*More details, including the best solutions found by the LLM for each challenge, are provided in the SL



Table 2: Comparison of A* and LLM (no prompt tuning) results. “States visited” is the rough
magnitude of state transitions simulated during the application of the method.

Challenge 1 Challenge 2 Challenge 3 Challenge 4
Success  States Success States Success States Success  States
Method Rate Visited Rate Visited Rate Visited Rate Visited
A" 100% 0(10%) 0% > 0(107) 0% > 0(107) 100% 0(107)
LLM 20% 0O(10) 0% 0O(10) 0% 0O(10) 40% 0O(10)

Challenges 1 and 4 were both solved by A* and the LLM. However, A* explored orders of magni-
tude more states than the LLM. Challenges 2 and 3 include a target with multiple phases, and was
more difficult for both approaches. On challenge 2, the LLM obtained the correct phases, but not
the correct fractions. On challenge 3, the LLM was only able to find solutions after prompt tuning.
A* ran out of system resources before finding a solution to challenges 2 and 3. A key challenge in
applying A* is that, while distance to the goal is primarily measured in phase fractions, the available
simulation options only include elemental composition, temperature, and time. The relationship
between these spaces is provided by the simulation itself and difficult to estimate a priori, making
classic search strategies (even those leveraging heuristics) impractical. In contrast, the LLM is able
to attempt sensible approaches for this domain by leveraging training data and prompt information,
rather than an explicit notion of distance. Examples of LLM outputs are provided in [5]and [6]

5 Conclusions

This work provides three main results. First, we have demonstrated a strategy for using simple
physics-based simulation as a virtual “testbed” to assess LLMs’ ability to propose material synthesis
plans. Second, we identified synthesis problems where the LLM’s implicit priors appear to facilitate
finding solutions more efficiently than naive search methods. Third, there are still very simple
synthesis problems which both A* and the example LLM fail to solve; however, this framework
suggests straightforward ways to ground LLLM predictions by invoking physics-based tools. Both
our simulation and our prompt optimization strategy are nascent and there are many opportunities
to make this approach even more applicable to practical synthesis pathway planning.
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Figure 1: LLM performance on the 4 challenge problems (CP). (left) performance for the original,
manually curated prompt; (right) performance on CP 3 before (green) and after (purple) prompt
tuning. We ran the prompt tuning procedure 5 times (with different seeds), hence there are more
purple data points than green.
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A Supplementary Information

A.1 Phase diagrams

For the binary Nb—O system used in this work as a case study, two phase diagrams are shown in
fig. 2] The experimental phase diagram is reproduced from [Okamoto| [1990], and we computed
the phase diagram with the CALPHAD method as implemented in PyCalphad using the database
of Pérez and Massih| [2007]]. The same database was used with PyCalphad to compute the phase
fractions that would occur at thermodynamic equilibrium, which serve as input to the JMA-style
approximation to the kinetics described in Section[3.1]
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Figure 2: Phase diagrams for Nb—O. Observe the good agreement between the experimental (a) and
computational estimates (b) of the phases. “L” denotes the liquid phase, “rt” denotes the rutile NbO,
phase, “H” denotes the monoclinic Nb,Os phase, and “at.%” denotes atomic percent.

A.2 Details of challenge problems

The four synthesis challenges used to assess A* and LLMs in terms of their ability to generate
synthesis plans are enumerated in Table [3] Additionally, the search space for A* normalized all
temperatures by dividing by 3000K such that all dimensions of the search space fell within [0-1].
The phase fractions are naturally in this range without modification.

A.3 Additional results

Figure [3| provides a visualization of the states explored by one invocation of the A* algorithm.

Table [] provides examples of successful synthesis pathways identified by the LLM for each chal-
lenge. Through pretraining knowledge, prompted hints, and strategies uncovered by the ReAct
technique, the LLM is able to attempt synthesis pathways that are potentially much closer to viable
than those prioritized by A*, even though they may appear quite roundabout when plotted in some
choice of two dimensions. For example, successful synthesis in the first challenge involves tem-
porarily raising temperature and later lowering it, which is hard to influence via an A* heuristic but
straightforward to convey to an LLM, or even for an LLM with pretraining knowledge to consider
without user interventions.



Table 3: Challenge problems related to the Nb-O oxide system posed to algorithms in this work.

Start Goal Example
ID  State State Solution Comments
add(50 at.% O)
To=300K Ty =300K settemp(1300 K) . ..
' 100%Nb  100% NbO wait(60 min) Direct composition change
toward single oxide phase that is
settemp(300 K) o o ..
adjacent” in composition space.
dd(46 at.% O)
To=300K T =2200K 2 . :
2 1 80% Nb 56% NbO, 50% liquid seiI:t emp(2.200 K) Requires multiple target phases
wait(60 min) and temperature change.
add(58 at.% O)
To=300K Ty=300K settemp(1300 K) . .
3 100%Nb  50% NbO,, 50% Nb,Os  wait (60 min) Requires multiple target phases
that are “non-adjacent” to starting
settemp(300 K)
phase.
add(22 at.% Nb)
To=300K Ty =300K settemp(1300 K) . . .
4 100% Nb,O;  100% NbO wait (60 min) §I‘1“t‘;’ll_e g.’“denlt’}}ase that is
settemp(300 K) on-acjacent.

Challenge 1: A* Search Order and Solution Comparison

last
EEl A* Final Path

BN LLM Final Path
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Figure 3: Progress of A* search on the first challenge, projected onto the temperature dimension and
the percent NbO dimension (the goal state is 100 % NbO at 300 K). Marker color denotes order in
which states were explored with blue being earliest and red the latest. The final synthesis path of A*
is in black, while the best plan found by the LLM for this challenge is in magenta.



Table 4: Best synthesis pathways found by the LLM for each challenge.

Id Best LLM Solution Comments
add(50 at.% O), settemp(1500 K), wait (30 min),
1 settemp(300 K), wait(10 min) Exactly solves challenge 1.
add(47 at.% O), settemp(1000 K), wait(70 min),
2 settemp(1500 K), wait(70 min), settemp(2200 K), Achieves correct temperature
wait(10 min) but 61% NbO, 39% liquid
instead of the goal: 49% NbO,
51% liquid.
add(65 at.% O), settemp(1700 K), wait (120 min),
3  settemp(1900 K), wait (120 min), settemp(300 K), Achieves correct temperature
wait(3 min) but far from correct material
phases.
4 add(50 at.% Nb), settemp(2000 K), wa it (240 min), Exactly solves challenge 4.

settemp(300 K), wait(10 min)




A.4 Additional LLM details

The LLM’s prompt consists of a context string, which provides the bulk of the detail, and the chal-
lenge problem itself, which defines the start and goal states. The context string is shown in fig. 4]
For all of our runs we used a LLM temperature setting of 0.1.

LLM Prompt

You should consider raising temperatures or holding them over long periods (hours), as well as fast
temperature changes (seconds). Even if you get close, try a few more options to see if you can get
closer.

Action sequences are specified as a list of dictionaries, with one dictionary for each action. There are
three types of actions: temperature change actions, composition change actions, and wait actions.

* Temperature change actions increase or decrease temperature over the provided amount of time.

* Composition change actions introduce raw precursors (Nb or O) in order to realize the specific
percentages. Note the arguments to this action are the final percentages to realize, NOT the amount to
be added.

* Wait actions specify a duration of time where there is no change to composition or temperature.
This may be needed (with a large duration) if you want to approach thermal equilibrium.

Valid keys for action dictionary are ”"Nb”, ”’O”, ”Temperature”, and "Time”, representing the fraction of
niobium in the overall composition, the fraction of oxygen in the overall composition, the temperature,
and the time taken from the last step.

* Composition entries may be omitted if they can be inferred from the implied sum-to-1 constraint.

* Temperature actions should not specify any raw material changes; these must be changed separately.
* Use your knowledge of materials science and the underlying phase diagram when devising the plan.
A successful plan may not necessarily be a straightforward trajectory.

* All times are in units of seconds and all temperatures are in units of Kelvin.

* Feel free to try as many examples as you like in the process of searching for a solution. Don’t give
up until you can’t think of any other ways to try to solve the problem.

Example: (1) raise temperature to 1500K over 10 seconds, (2) wait for 60 minutes, then (3) add
precursors so that the fraction of oxygen is 80% of the mixture:

[{”"Temperature”:1500, "Time:10.0}, {”"Wait”: 3600}, {”0”:0.8, ”Nb":0.2} ]

Example: (1) add raw precursors achieve 70% Nb then (2) heat to 2100K over 5 seconds, and finally
(3) cool back down to 300K over one minute:

[{"Nb”:0.7}, {"Temperature”:2100, Time”:5.0}, {”"Temperature”:300, ”Time:60.0}]

Your final answer must be a synthesis plan in the above form. You must provide a synthesis plan, even
if you don’t think it will solve the problem correctly.

Figure 4: LLM context string.



Example LLM Output on Challenge 4 (Successful)

Generate a synthesis plan for the following problem:

Start state: TEMPERATURE: 300, COMPOSITION: [NB: 0.29, O: 0.71], PHASE FRACTIONS:
[NB205: 1.0].

Goal state: TEMPERATURE: 300, PHASE FRACTIONS: [NBO: 1.0].

... LLM Context inserted here ...

Thought 1: To transform Nb205 into NBO, we need to consider the phase transformations that occur
with temperature changes. Nb20S5 can be reduced to NBO by controlling the temperature and possi-
bly the composition. Initially, I will try a synthesis plan that involves heating the material to a high
temperature to facilitate the reduction and then cooling it back to the desired temperature. I will start
by heating to 1500K over 10 seconds, wait for 3600 seconds to allow the reaction to occur, and then
cool back to 300K over 60 seconds.

Tool 1: simulate([Temperature: 1500, Time: 10.0], [Wait: 3600], [Temperature: 300, Time: 60.0])
Observation 1: final_temp=300; final_phases=[NB205: 0.9099999999999995, BCC_A2: 0.0, NBO:
0.0, HCP_A3: 0.0, GAS: 0.0, ION: 0.0, LIQUID: 0.0, NBO2: 0.09000000000000052, FCC_A1: 0.0]
Thought 2: The initial attempt did not produce the desired NBO phase... (truncated).

... Truncated for Readability ...

Thought 4: The third attempt also failed to produce the desired NBO phase, with the majority of
the material remaining as Nb205 and a small amount converting to NBO2. This suggests that the
conditions are still not optimal for the conversion to NBO. I will try a different strategy by adjusting
the composition to increase the niobium content, which might facilitate the formation of NBO. I will
add raw precursors to achieve 50% Nb, then heat to 1700K over 10 seconds, wait for 7200 seconds,
and finally cool back to 300K over 60 seconds.

Tool 4: simulate([Nb: 0.5, O: 0.5], [Temperature: 1700, Time: 10.0], [Wait: 7200], [Temperature:
300, Time: 60.0])

Observation 4: final_temp=300; final_phases=NB205: 0.0, BCC_A2: 2.2024444095574645¢-
06, NBO: 0.9999917981555904, HCP_A3: 0.0, GAS: 0.0, ION: 0.0, LIQUID: 0.0, NBO2:
5.9994000001725e-06, FCC_Al: 0.0

Thought 5: The final attempt successfully produced the desired NBO phase with a phase fraction
of approximately 0.99999. This indicates that the strategy of adjusting the composition to increase
the niobium content, followed by heating to 1700K and holding for 7200 seconds, was effective in
achieving the goal state. The synthesis plan is now complete.

Response: The synthesis plan to convert Nb20O5 to NBO involved several attempts to find the op-
timal conditions for the phase transformation. Initially, attempts to simply heat the material to high
temperatures and wait did not yield the desired NBO phase. This indicated that the temperature and
duration were not sufficient or appropriate for the conversion. Adjusting the composition to increase
the niobium content proved to be a successful strategy. By achieving a 50% Nb composition, heating
to 1700K, and holding for 7200 seconds, the desired NBO phase was successfully formed with a phase
fraction of approximately 0.99999. This approach balanced the composition and thermal conditions to
facilitate the desired phase transformation.

Answer: [Nb: 0.5, O: 0.5], [Temperature: 1700, Time: 10.0], [Wait: 7200], [Temperature: 300, Time:
60.0]

Figure 5: Successful attempt on challenge 4 by the LLM using the ReAct framework. The output
has been manually formatted for readability and to fit the page. The plan produced by the LLM
achieves the correct phase and the correct final temperature.
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Example LLM Output on Challenge 4 (Unsuccessful)

Generate a synthesis plan for the following problem:

Start state: TEMPERATURE: 300, COMPOSITION: [NB: 0.29, O: 0.71], PHASE FRACTIONS:
[NB205: 1.0].

Goal state: TEMPERATURE: 300, PHASE FRACTIONS: [NBO: 1.0].

... LLM Context inserted here ...

Thought 1: To transform Nb205 into NBO, we need to consider the phase transformations and the
necessary conditions for these transformations. Typically, reducing Nb205 to NBO involves a reduc-
tion process, which might require a high temperature to facilitate the reaction. We should start by
increasing the temperature significantly to see if this promotes the desired phase change. After heat-
ing, we can hold the temperature to allow the system to reach equilibrium. Let’s start by heating the
system to a high temperature and then holding it for a while.

Tool 1: simulate([Temperature: 1800, Time: 60], [Wait: 7200])

Observation 1: final_temp=1800; final_phases=[NB205: 0.07840216105964366, GAS: 0.0,
NBO: 0.0, LIQUID: 0.0, NBO2: 2.0829399531378196e-05, BCC_A2: 0.0, FCCAl: 0.0, ION:
0.9215770095408249, HCP_-A3: 0.0]

Thought 2: The initial attempt to heat the system to 1800K and hold it for 2 hours did not result in
the formation of NBO.... (truncated).

... Truncated for Readability ...

Thought 4: The stepwise temperature increase with intermediate holds still resulted in the complete
conversion to the ION phase, with no formation of NBO. This suggests that the current approach of
only adjusting temperature is not effective in achieving the desired phase transformation. We may need
to consider altering the composition to favor the formation of NBO. Let’s try adding Nb to increase its
proportion in the composition and see if this helps in forming NBO.

Tool 4: simulate([Nb: 0.5], [Temperature: 1500, Time: 60], [Wait: 3600], [Temperature: 1800, Time:
60], [Wait: 7200], [Temperature: 2100, Time: 60], [Wait: 14400])

Observation 4: final_temp=2100; final_phases=[NB205: 0.0, GAS: 0.0, NBO: 0.9999889654813701,
LIQUID: 0.0, NBO2: 0.0, BCCA2: 2.3775424105629224e-06, FCC-Al: 0.0, ION:
8.656976219446085e-06, HCP_A3: 0.0]

Thought 5: The addition of Nb to increase its proportion in the composition, followed by a stepwise
temperature increase, successfully resulted in the formation of NBO with a phase fraction of approx-
imately 0.99999. This indicates that the synthesis plan is effective in achieving the desired phase
transformation from Nb205 to NBO. The final synthesis plan involves adjusting the composition and
carefully controlling the temperature profile.

Response: The initial attempts to transform Nb2O5 into NBO by only adjusting the temperature were
unsuccessful, as they resulted in the formation of the ION phase instead. This indicated that the con-
ditions were not suitable for the desired phase transformation. By increasing the proportion of Nb in
the composition, the conditions became favorable for the formation of NBO. The successful synthe-
sis plan involved adding Nb to adjust the composition, followed by a stepwise temperature increase
with intermediate holds. This approach allowed the system to reach the desired phase transformation,
achieving a phase fraction of NBO close to 1.0.

Answer: [Nb: 0.5], [Temperature: 1500, Time: 60], [Wait: 3600], [Temperature: 1800, Time: 60],
[Wait: 7200], [Temperature: 2100, Time: 60], [Wait: 14400]

Figure 6: Unsuccessful attempt on challenge 4 by the LLM using the ReAct framework. The output
has been manually formatted for readability and to fit the page. While this plan achieves the desired
phase, it forgets to account for the goal temperature and ends with the material heated to 2100K.

11



	Introduction
	Related Work
	Methods
	Material System and Problem Statement
	Candidate Synthesis Planning Models

	Results and Discussion
	Conclusions
	Supplementary Information
	Phase diagrams
	Details of challenge problems
	Additional results
	Additional LLM details


