
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BID: BROAD INCREMENTAL FOR ANDROID MALWARE
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid rise of mobile devices, the threat of malware targeting these plat-
forms has escalated significantly. The fast-paced evolution of Android malware
and new attack patterns frequently introduce substantial challenges for detection
systems. Although many methods have achieved excellent results, they need to
be retrained when faced with new attack modes or observation objects, and it is
challenging to attain dynamic updates. To address this issue, we propose a novel
Broad Incremental Detection (BID) method for real-time Android malware detec-
tion. Our method leverages incremental function to achieve dynamic adaptation
to the growing variety of malware attacks while maintaining high computational
efficiency, benefiting from its lightweight shallow network architecture. We also
develop relational structures to capture complex relations and features of history
attacks by fine-turning the network’s weights unsupervised. Experimental results
across three datasets demonstrate that BID achieves superior detection accuracy
and computational efficiency compared to state-of-the-art approaches. Our work
presents a robust, flexible, and lightweight framework for dynamic Android mal-
ware detection.

1 INTRODUCTION

With the widespread adoption of mobile devices, particularly smartphones, the Android operating
system (OS) has emerged as a dominant force. Compared to its counterparts, such as iOS and
Windows, Android enjoys a significantly larger global user base, holding a substantial share of the
mobile device market. However, this proliferation of Android devices has escalated security threats
Razgallah et al. (2021). Android has become the primary target for mobile malware, which can
infiltrate devices through various means, including app downloads, malicious links, and network
vulnerabilities. This exposes users’ personal information, banking details, passwords, and more.
Therefore, designing an effective Android malware detection system is an urgent necessity.

According to previous research, Android malware detection technology can be mainly categorized
into three types: static detection Pan et al. (2020), dynamic detection Garcı́a & DeCastro-Garcia
(2021), and hybrid detection Hadiprakoso et al. (2020). Static detection involves analyzing sus-
picious code without running Android applications. In contrast, dynamic detection is based on
analyzing Android applications by running the code. Hybrid detection combines both static and dy-
namic detection methods. However, as obfuscation technology advances and becomes more preva-
lent, traditional rule-based Mehtab et al. (2020) detection methods struggle to keep up with these
rapidly evolving threats. Specifically, they often suffer from overfitting, decreased classification ac-
curacy, and increased false positive rates when encountering new malware. Recently, deep learning
Gopinath & Sethuraman (2023), Aslan & Yilmaz (2021), Shaukat et al. (2023) has been widely
adopted for Android malware detection. These methods automatically extract features from many
collected samples through reverse analysis, enhancing adaptability to new malware variants and im-
proving detection accuracy. Although deep learning has certain advantages in malware detection,
it has several limitations, e.g., longer training time, higher computational costs, and more exten-
sive parameter tuningBensaoud et al. (2024). Moreover, with the continuous evolution of malware
and attack techniques, retraining deep learning models to identify new malware becomes highly
time-consuming and labour-intensive.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

As an efficient alternative to deep neural networks, the broad learning system (BLS) Chen & Liu
(2017), which is based on the random vector functional link neural network (RVFLNN) Pao et al.
(1994), has attracted more attention due to its outstanding performance and shorter training time.
BLS is a single-layer structural neural network, including feature nodes and enhancement nodes. In
general, feature nodes are obtained from the original data, and enhancement nodes are mapped using
a linear combination of feature nodes. Unlike stacking layers to improve accuracy, BLS expands in
a broad direction. The output of the final weight is calculated by pseudo-inverse, resulting in short
training time and not requiring high hardware conditions. Simultaneously, incorporating incremental
learning into BLS allows for real-time parameter updates and system reconstruction as new malware
samples emerge without retraining. This ensures that the system remains responsive and up-to-
date, making it highly suitable for the dynamic and rapidly evolving landscape of Android malware
detection.

Additionally, due to the typically large number of features involved in Android malware detection,
feature selection is necessary to enhance model interpretability and prevent overfitting. However,
BLS generates mapping features by randomly initializing connection weights. To overcome random-
ness, sparse autoencodersNg et al. (2011) are employed to fine-tune and select features by minimiz-
ing the loss function, which consists of reconstruction function and regularization, demonstrating
good ability in extracting meaningful features. However, sparse autoencoders only consider data
reconstruction while ignoring the relationships and structure between the data. To address this issue,
we propose using a Sparse Relational Autoencoder (SRAE) to minimize the loss of its data features
and the relationships among them.

To address the challenge of rapidly evolving malware patterns and to improve feature selection, we
propose a unified framework Broad Incremental Detection (BID) for Android malware detection.
Here, the main contributions of this paper are given as follows:

1) We are the first to employ an incremental function that enables the BID to dynamically adapt to
new malware samples without retraining, ensuring both efficiency and real-time malware detection.

2) To capture the complex relationships and features of history attacks, we develop relational struc-
tures to fine-tune the network weights unsupervised.

3) Experiment results show that BID achieves significant improvements in performance and speed
compared to machine learning and deep learning, benefiting from its lightweight network architec-
ture.

2 RELATED WORK AND BACKGROUND

2.1 ANDROID MALWARE

Android malware, specifically refers to those malicious program codes that are crafted against the
Android operating system with the aim of compromising the integrity, confidentiality, and availabil-
ity of the device and its data. This type of malware comes in various forms and covers a wide range
of types such as Trojans, ransomware, spyware and adware Alqahtani et al. (2019).

Malware refers to any type of malicious program code that can be installed automatically or
stealthily on all types of devices without the user’s explicit consent and performs its predefined
malicious functions without the user being aware of it Agrawal & Trivedi (2019). Currently, a no-
table feature of Android malware is its ability to evade detection by traditional antivirus solutions
Wu et al. (2021), and to achieve infiltration through advanced technical means such as hidden code
and altered payloads. To ensure persistence on infected devices, these malware may also employ
sophisticated methods such as masquerading as a system application or installing a rootkit, making
removal more difficult.

A major challenge of Android malware detection is its dynamic and evolving nature. Malware
creators continue to develop new variants and use advanced techniques to evade existing detection
systems. This adaptability allows malware to modify behavioral patterns and conceal code, making
it difficult for static and signature-based detection mechanisms to cope Wang et al. (2020).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Overall, the continuous evolution of Android malware presents significant challenges to traditional
detection mechanisms. As new variants emerge and adapt, there is an increasing need for more
robust and intelligent detection methods that can respond to these changes effectively.

2.2 EXISTING METHODS

Rule-based Detection: Traditional malware detection methods primarily rely on rule-based ap-
proaches that utilize predefined rules or features to identify malware. Early techniques focused
on signature-based detection Sihag et al. (2020), which detects malware by comparing file features
against a database of known malware. Behaviour-based detection Tanana (2020) identifies malicious
activities by monitoring the runtime behaviour of programs using established rules. Additionally,
permission-based detection Şahin et al. (2023) analyzes the permissions requested by Android appli-
cations upon installation to identify potential malware. While rule-based methods can be effective
in specific scenarios, they face limitations, including poor adaptability to new malware and vulner-
ability to variant attacks.

DL-based Detection:Deep learning (DL) methods have gained widespread application in malware
detection in recent years, leveraging large volumes of training data and complex models to capture
latent patterns and characteristics. For instance, Dong et al. (2024) and Wang et al. (2020) employ
convolutional neural networks (CNN) to classify malware, achieving significant performance im-
provements by training on raw byte streams. Garcı́a et al. (2023) enhances the detection capabilities
of deep learning models for new malware samples through transfer learning. While DL methods
often outperform traditional rule-based approaches in accuracy and robustness, they also encounter
challenges, such as high data requirements and substantial computational resource consumption.

In contrast, we propose the first BL-based malware detection approach. Benefiting from its
lightweight shallow network, the broad incremental function enables dynamic adaptation to evolving
attack patterns while maintaining high computational efficiency and low resource consumption.

2.3 BROAD LEARNING SYSTEM

Inspired by the Random Vector Functional Link Neural Network (RVFLNN), BLS differs by not
directly connecting its input and output layers. BLS constructs its hidden layer using n groups
of feature nodes and m groups of enhancement nodes. Feature nodes and enhancement nodes are
obtained via random mapping functions.

Given input data X = {x1,x2, . . . ,xn} and labels Y = {y1,y2, . . . ,yn}, the feature mapping
nodes are computed as:

Zi = ϕ(XWfi + βfi), i = 1, 2, . . . , n, (1)
where Wfi and βfi are randomly sampled, and ϕ is the activation function Chen & Liu (2017). The
feature mapping layer is denoted as Zn = [Z1,Z2, . . . ,Zn]. Enhancement nodes are calculated by:

Ej = ζ(ZnWej + βej), j = 1, 2, . . . ,m, (2)

where Wej and βej are randomly generated, and ζ is typically chosen as the tansig function. The
enhancement layer is denoted as Em = [E1,E2, . . . ,Em]. The hidden layer is a fusion of feature
and enhancement nodes: H = [Zn | Em]. The output is obtained via:

Y = HW, (3)

where W is the output weight matrix. To solve for W, we minimize:

W = argmin
W

: ∥HW −Y∥22 + λ∥W∥22, (4)

with λ preventing overfitting. The solution is:

W = H+Y = lim
λ→0

(λI +H⊤H)−1H⊤Y. (5)

3 PROBLEM STATEMENT

Let fθ : X → Y be a learning model that maps features of Android applications (such as API calls,
permission requests, and behavioral patterns) from an input feature space X to an output label space

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Y, where Y represents the category of the application (e.g., malware or benign). By optimizing the
model parameters θ over a training dataset (X(train),Y(train)), we aim to ensure that fθ achieves
high classification accuracy on a test dataset (X(test),Y(test)).

However, due to the rapid evolution of Android malware, new data Xnew may contain previously
unseen features, which makes it challenging for the model to maintain high performance. This
results in a potential decline in detection accuracy when encountering these novel data. Addressing
this issue is crucial for building a robust, real-time malware detection system capable of handling
the dynamic nature of Android malware.

4 PROPOSED METHOD

Figure 1: The workflow of the our method.

Figure 1 overviews our method. First, the detection process begins by collecting data from Android
applications, such as behaviour patterns, permissions, and network activity. The relationships and
structures between these data points are analyzed, and essential features are extracted to reduce
complexity. Second, the extracted features are fed into the our framework, which classifies the app
as either malicious or benign. Finally, when new variants of Android malware appear, they are also
processed through the BID. One of the advantages of this approach is that BID does not need to
be retrained when new data is added, allowing the system to classify new malware quickly without
extra training steps. This ensures that malware can be detected quickly and effectively, even as it
evolves.

In details, we initially define the input as X = {x1, x2, . . . , xn} and the label matrix as Y =
{y1, y2, . . . , yn}. Let Z ∈ Rn×k be the randomly generated feature matrix computed by Equation
(1), where n is the sample size and k is the number of transformed features.

Since BID generates the mapping features by randomly initializing the connecting weights, in order
to overcome the randomness, a sparse relational autoencoder is adopted to more effectively capture
data relationships and give a sparse representation. As we can see, the random features Z are gen-
erated as equationZ = XW , where W is randomly initialized. Thus, the SRAE loss function is
formulated as:

min
W̃Zn

(1− α)∥ZW̃Zn −X∥22 + α∥τt(ZZ⊤)W̃Zn − τt(XX⊤)∥22 + λ∥W̃Zn∥22 (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here, α balances the data reconstruction and relationship reconstruction losses, while λ is the regu-
larization weight. The gradient with respect to W̃ is given by:

∇W̃Zn
= 2(1− α)(Z⊤(ZW̃Zn −X)) + 2α(τt(ZZ

⊤)W̃Zn − τt(XX⊤)) + 2λW̃Zn (7)

After determining W̃Zn , the mapping features are redefined as:

Zi = ξi(XW̃zi), i = 1, 2, . . . , n (8)

where W̃zi are weights from W̃ and ξi(·) is a nonlinear function, yielding Zn = [Z1,Z2, . . . ,Zn].
This steprefines the feature mapping process, enhancing the efficiency and effectiveness of the
model.

Similarly, the refined enhancement node can be obtained through W̃Em , which is optimized by
equation (9).

min
W̃Em

(1− α)∥FW̃Em −E∥22 + α∥τt(FF⊤)W̃Em − τt(EE⊤)∥22 + λ∥W̃Em∥22, (9)

where the transformed features are denoted by F = EmWHm ∈ RN×k1 with WHm being randomly
initialized.

Finally, the combined mapping and transformed feature nodes are given by H = [Zn|EmW̃Em ],
leading to the final weight:

W+ = (λI+H⊤H)−1H⊤Y. (10)

Incremental Learning: In BLS, the incremental approach is based on calculating the pseudo-
inverse of the partitioned matrix. It estimates the Moore-Penrose generalized inverse by incorpo-
rating a small positive value into the diagonal of HH⊤, in accordance with the principles of ridge
regression. Therefore, we can continue to modify our solutions by modifying W+. Let Am

n repre-
sent the nodes of the initial network. The corresponding increment nodes for the new samples x can
be expressed as follows:

Hx = [Zx | Ex] . (11)

After that, we can combine the new and previous samples as,

H+ =

[
Hm

n
Hx

]
(12)

Specifically, HN can represent data from a new malware sample or a new observation for the same
sample in malware detection. We then update W+ by calculating the pseudo-inverse of the parti-
tioned matrix. The algorithm for updating the associated pseudoinverse can be derived as follows:

(xHm
n )

+
=

[
(Hm

n )
+ −BD⊤ | B

]
, (13)

B⊤ =

{
C+ if C ̸= 0(
1 +D⊤D

)−1
(Hm

n )
+
D if C = 0

(14)

where D⊤ = HxH
m+
n and C+ = H⊤

x −D⊤Hm
n . Finally, the dynamic updated weight is formu-

lated as,

xWm
n = Wm

n +
(
Y⊤

x −H⊤
xW

m
n

)
B (15)

where Yx is the label of new data x. This incremental learning approach optimizes computation by
only calculating the necessary pseudoinverse, making it ideal for handling new incoming input data,
such as a new malware application or a new observation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

In this section, the experiments are conducted to verify the performance of our model. Compared
with several machine learning and deep learning method. All the experiments in this paper are
carried out on four NVIDIA GeForce RTX 3090 GPUs.

5.1 DATASETS

1) The Tezpur University Android Malware Dataset (TUANDROMD) is publicly available at
https://www.kaggle.com/datasets/joebeachcapital/tuandromd. For the experiments, we use both
permission-based and API-based features of this dataset. Its features include 214 permissions and
27 unique API calls extracted from Android applications. The dataset contains 1000 benign samples
from Google Play and 24,553 malware samples representing 71 distinct malware families.

2) The CIC-InvesAndMal-2019 dataset (CIC-2019) is publicly available at
https://www.unb.ca/cic/datasets/invesandmal2019.html. For the experiments, we use the static
analysis part of this dataset. Its features include 8115 permissions and intent behaviors extracted
from the manifest.xml file of the APK file. The dataset contains 1187 benign samples and 407
malware samples. In addition to the basic binary classification benign and malware, malware is
further categorized into the following five categories: a) adware; b) ransomware; c) scareware; d)
SMS d) PremiumSMS.

3) The CCCS-CIC-AndMal-2020 dataset (CIC-2020) is publicly available at
https://www.unb.ca/cic/datasets/andmal2020.html. The static analysis portion of the dataset
contains 162,181 benign and 195,624 malware samples. The static analysis portion of the dataset
contains 162,181 benign samples and 195,624 malware samples with 9,502 features related to
permissions, intent, activity, broadcast receivers and providers, services, system characteristics, and
metadata. Fourteen malware categories are covered, including adware, backdoors, file infectors,
unclassified, potentially unwanted programs (PUAs), ransomware, riskware, scareware, Trojans,
banking Trojans, droppers, SMS Trojans, spyware, and zero-day attackware.

5.2 BASELINES

We compare our proposed approach with the following baseline models. SVM Singh et al. (2022) is
a classic classifier that finds a hyperplane to separate benign and malware classes by maximizing the
margin. Bayesian Anggraini et al. (2023) is a probabilistic model that assumes feature independence
to calculate the likelihood of each class. DeepAMD Brown et al. (2024) is a deep learning model
designed specifically for Android malware detection, using multiple layers to extract high-level
features from APK files. BiGRU Maniriho et al. (2023) is a Bidirectional Gated Recurrent Unit
network that processes sequence data forward and backward to capture context from API calls.
RNN-LSTM Al-Aql & Al-Shammari (2024) uses Long Short-Term Memory units to capture long-
term dependencies in sequential data, making it practical for tasks like analyzing system call traces.

5.3 SETTINGS

Experimental dataset setup: we extracted the static dataset of CIC-2019, and 1/40 of the static dataset
of CIC-2020, and the training set is set to 0.7. For BID with incremental learning added, we set the
ratio of the training set, test set and incremental set to be 5:3:2.

To verify the effectiveness of BID, we selected three state-of-the-art deep learning methods: Deep-
AMD, BiGRU and RNN-LSTM and two machine learning methods, SVM and Naive Bayesian, for
comparison. For BiGRU, we set the number of GRUs to 8 and the dropout rate to 0.6; For Deep-
AMD and RNN-LSTM, we set the number of hidden nodes in the middle layer to 10. All models
use the same epochs (50) and batch size (64) to ensure fairness. For SVM, we used a nonlinear
kernel function (RBF kernel). For the multi-categorization problem, a One-vs-One strategy is used
to automatically train a binary classification model for every two categories between them, and a
voting mechanism is used in the prediction phase to obtain the classification results. In addition,
we use a polynomial Bayesian model, which is particularly suitable for discrete data and large-scale
datasets and can show good results, especially when the feature dimensions are high or the number
of classes is large.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.4 RESULT

Contrast experiment: For the binary classification tasks presented in Table 1, the BID model
consistently achieves the highest accuracy, precision, recall, and F1 score across different datasets.
Specifically, in the TUANDROMD dataset, the model without increment reaches 99.48% in all
metrics, demonstrating its robustness and efficiency with a relatively low time cost of 3.24 seconds.
In comparison, other models like BiGRU and RNN-LSTM exhibit strong performance but with
higher time costs, particularly in the CIC 2019 and CIC 2020 binary classification tasks, where
BID still maintains its superiority, achieving similar top-tier results while minimizing computational
overhead.

The BID model performs well for multiclass classification tasks, as shown in Table 2. In particular,
the CIC 2019 multiclass dataset achieves an accuracy of 95.20% while maintaining the lowest time
cost of 10.73 seconds. These experiments highlight the strong performance of BID across both
binary and multiclass classification tasks, underscoring its versatility and suitability for a wide range
of classification scenarios. The model’s capacity to achieve high accuracy while maintaining short
training time makes it well-suited for detecting Android malware.

Table 1: Performance Comparison on Binary Classification Datasets
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Time (s)

TUANDROMD
SVM 98.05 99.11 97.94 98.77 0.0798
Bayesian 94.10 95.50 99.50 96.31 0.0054
DeepAMD 98.06 98.15 98.06 98.79 17.389
BiGRU 97.91 98.02 97.91 98.35 33.001
RNN-LSTM 97.98 99.15 97.98 98.73 26.068
BID 99.48 99.48 99.48 99.48 3.24

CIC 2019
SVM 88.28 88.91 88.28 87.33 1.66
Bayesian 89.95 89.94 89.95 85.52 0.02
DeepAMD 94.64 94.60 94.63 94.62 24.99
BiGRU 94.63 94.58 94.63 94.57 37.22
RNN-LSTM 94.79 94.75 94.79 94.73 19.02
BID 95.82 95.78 95.82 95.79 3.30

CIC 2020
SVM 83.83 83.81 83.81 83.81 93.59
Bayesian 83.32 83.32 83.32 83.28 0.14
DeepAMD 92.05 92.16 92.06 94.07 94.27
BiGRU 91.23 91.76 91.23 91.25 185.90
RNN-LSTM 92.80 93.15 92.80 92.81 90.21
BID 92.99 93.11 92.99 93.00 88.79

Increment experiment: We divided each dataset into a training set, test set, and incremental set in
a 5:3:2 ratio for the incremental experiments. The incremental dataset was sourced from the training
set of the previous experiments. This setup simulates a real-world scenario where new malware
samples become available over time, and the model needs to adapt without retraining from scratch.

In our incremental experiments, we observed improvements across all performance metrics after
applying incremental learning, as presented in Table 3. All metrics are improved in all datasets. The
consistent enhancements indicate that the BLS framework effectively leverages incremental data
to enhance its malware detection capabilities. The model adapts to evolving malware patterns by
incorporating incremental data, which is crucial for maintaining robust security measures in dynamic
environments.

Moreover, we found that the total time for the training dataset (50%) and incremental dataset (20%)
in the incremental experiment was less than the time required to train directly on the entire origi-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison on CIC 2019 and CIC 2020 Multiclass Classification
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Time (s)

CIC 2019
SVM 84.31 85.70 84.30 81.00 2.11
Bayesian 76.98 76.41 76.98 69.84 0.02
DeepAMD 93.22 93.09 93.22 93.07 27.86
BiGRU 92.59 92.49 92.59 92.46 22.18
RNN-LSTM 92.43 92.33 92.43 92.32 40.20
BID 95.20 95.16 95.19 95.02 10.73

CIC 2020
SVM 67.32 55.27 67.32 58.04 106.88
Bayesian 61.69 56.86 61.69 57.09 0.11
DeepAMD 82.28 77.83 82.28 79.13 88.42
BiGRU 84.85 82.27 84.85 82.71 191.01
RNN-LSTM 84.52 81.36 84.52 82.25 92.13
BID 85.79 84.72 85.79 84.38 83.00

nal training dataset (70%). This result highlights the computational efficiency of our incremental
learning approach, as it reduces the overall training time while still enhancing performance. This
efficiency is particularly beneficial for real-time malware detection systems, where timely updates
are essential.

Table 3: Comparison of Experimental Results Before and After Data Increment
Stage Accuracy (%) Precision (%) Recall (%) F1-Score (%) Time (s)

TUANDROMD (Binary Classification)
Before 98.58 98.58 98.58 98.58 1.44
After 99.33 99.33 99.33 99.33 0.70

CIC 2019 (Binary Classification)
Before 93.93 93.87 93.93 93.86 2.39
After 95.82 95.78 95.82 95.79 0.31

CIC 2019 (Multiclass Classification)
Before 92.25 92.86 92.26 92.36 3.73
After 94.35 94.48 94.35 94.25 0.31

CIC 2020 (Binary Classification)
Before 92.13 92.21 92.13 92.14 16.70
After 92.95 93.09 92.95 92.26 0.45

CIC 2020 (Multiclass Classification)
Before 85.15 83.91 85.15 84.05 14.33
After 85.75 84.64 85.75 84.38 0.51

6 CONCLUSION

In this paper, we introduced a novel framework (BID) for Android malware detection that utilizes
an incremental learning approach to dynamically adapt to new malware variants without retraining.
Our approach effectively balances detection accuracy and computational efficiency, benefiting from
its lightweight and flexible network architecture. Our method enhances feature selection and im-
proves detection capabilities by integrating relational structures to capture complex patterns from
past malware attacks. Experimental results across multiple datasets demonstrate that our approach

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

outperforms existing methods, offering a robust and efficient solution for real-time Android malware
detection.

REFERENCES

Prerna Agrawal and Bhushan Trivedi. A survey on android malware and their detection techniques.
In 2019 IEEE International conference on electrical, computer and communication technologies
(ICECCT), pp. 1–6. IEEE, 2019.

Nujud Al-Aql and Abdulaziz Al-Shammari. Hybrid rnn-lstm networks for enhanced intrusion de-
tection in vehicle can systems. Journal of Electrical Systems, 20(6s):3019–3031, 2024.

Ebtesam J Alqahtani, Rachid Zagrouba, and Abdullah Almuhaideb. A survey on android malware
detection techniques using machine learning algorithms. In 2019 Sixth International Conference
on Software Defined Systems (SDS), pp. 110–117. IEEE, 2019.

Nenny Anggraini, Muhammad Sigit Tri Pamungkas, and Nurul Faizah Rozy. Performance optimiza-
tion of naı̈ve bayes algorithm for malware detection on android operating systems with particle
swarm optimization. In 2023 11th International Conference on Cyber and IT Service Manage-
ment (CITSM), pp. 1–5. IEEE, 2023.

Ömer Aslan and Abdullah Asim Yilmaz. A new malware classification framework based on deep
learning algorithms. Ieee Access, 9:87936–87951, 2021.

Ahmed Bensaoud, Jugal Kalita, and Mahmoud Bensaoud. A survey of malware detection using
deep learning. Machine Learning With Applications, 16:100546, 2024.

Austin Brown, Maanak Gupta, and Mahmoud Abdelsalam. Automated machine learning for deep
learning based malware detection. Computers & Security, 137:103582, 2024.

CL Philip Chen and Zhulin Liu. Broad learning system: An effective and efficient incremental
learning system without the need for deep architecture. IEEE transactions on neural networks
and learning systems, 29(1):10–24, 2017.

Shi Dong, Longhui Shu, and Shan Nie. Android malware detection method based on cnn and dnn
bybrid mechanism. IEEE Transactions on Industrial Informatics, 2024.

David Escudero Garcı́a and Noemi DeCastro-Garcia. Optimal feature configuration for dynamic
malware detection. Computers & Security, 105:102250, 2021.

David Escudero Garcı́a, Noemı́ DeCastro-Garcı́a, and Angel Luis Muñoz Castañeda. An effec-
tiveness analysis of transfer learning for the concept drift problem in malware detection. Expert
Systems with Applications, 212:118724, 2023.

Mohana Gopinath and Sibi Chakkaravarthy Sethuraman. A comprehensive survey on deep learning
based malware detection techniques. Computer Science Review, 47:100529, 2023.

Raden Budiarto Hadiprakoso, Herman Kabetta, and I Komang Setia Buana. Hybrid-based malware
analysis for effective and efficiency android malware detection. In 2020 International Conference
on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pp. 8–12. IEEE, 2020.

Pascal Maniriho, Abdun Naser Mahmood, and Mohammad Jabed Morshed Chowdhury. Api-
maldetect: Automated malware detection framework for windows based on api calls and deep
learning techniques. Journal of Network and Computer Applications, 218:103704, 2023.

Anam Mehtab, Waleed Bin Shahid, Tahreem Yaqoob, Muhammad Faisal Amjad, Haider Abbas,
Hammad Afzal, and Malik Najmus Saqib. Addroid: rule-based machine learning framework for
android malware analysis. Mobile Networks and Applications, 25:180–192, 2020.

Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

Ya Pan, Xiuting Ge, Chunrong Fang, and Yong Fan. A systematic literature review of android
malware detection using static analysis. IEEE Access, 8:116363–116379, 2020.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. Learning and generalization characteristics
of the random vector functional-link net. Neurocomputing, 6(2):163–180, 1994.

Asma Razgallah, Raphaël Khoury, Sylvain Hallé, and Kobra Khanmohammadi. A survey of mal-
ware detection in android apps: Recommendations and perspectives for future research. Computer
Science Review, 39:100358, 2021.

Durmuş Özkan Şahin, Oğuz Emre Kural, Sedat Akleylek, and Erdal Kılıç. A novel permission-
based android malware detection system using feature selection based on linear regression. Neural
Computing and Applications, pp. 1–16, 2023.

Kamran Shaukat, Suhuai Luo, and Vijay Varadharajan. A novel deep learning-based approach for
malware detection. Engineering Applications of Artificial Intelligence, 122:106030, 2023.

Vikas Sihag, Ashawani Swami, Manu Vardhan, and Pradeep Singh. Signature based malicious be-
havior detection in android. In International Conference on Computing Science, Communication
and Security, pp. 251–262. Springer, 2020.

Priyanka Singh, Samir Kumar Borgohain, and Jayendra Kumar. Performance enhancement of svm-
based ml malware detection model using data preprocessing. In 2022 2nd International Con-
ference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), pp. 1–4.
IEEE, 2022.

Dmitry Tanana. Behavior-based detection of cryptojacking malware. In 2020 Ural symposium on
biomedical engineering, radioelectronics and information technology (USBEREIT), pp. 0543–
0545. IEEE, 2020.

Zhiqiang Wang, Qian Liu, and Yaping Chi. Review of android malware detection based on deep
learning. IEEE Access, 8:181102–181126, 2020.

Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai Jin. Homdroid: detecting android covert
malware by social-network homophily analysis. In Proceedings of the 30th acm sigsoft interna-
tional symposium on software testing and analysis, pp. 216–229, 2021.

10


	Introduction
	Related Work and Background
	Android Malware
	Existing Methods
	Broad Learning System

	Problem Statement
	Proposed Method
	Experiment
	Datasets
	Baselines
	Settings
	Result

	Conclusion

