ALIGNING THE BRAIN WITH LANGUAGE MODELS THROUGH A NONLINEAR AND MULTIMODAL APPROACH

Anonymous authorsPaper under double-blind review

ABSTRACT

Self-supervised language and audio models effectively predict brain responses to speech. However, while nonlinear approaches have become standard in vision encoding, speech encoding models still predominantly rely on linear mappings from unimodal features. This linear approach fails to capture the complex integration of auditory signals with linguistic information across widespread brain networks during speech comprehension. Here, we introduce a nonlinear, multimodal prediction model that combines audio and linguistic features from pre-trained models (e.g., Llama, Whisper). Our approach achieves a 17.2% and 17.9% improvement in prediction performance (unnormalized and normalized correlation) over traditional unimodal linear models, as well as a 7.7% and 14.4% improvement over prior state-of-the-art models relying on weighted averaging of linear unimodal predictions. These substantial improvements not only represent a major step towards future robust in-silico testing and improved decoding performance, but also reveal distributed multimodal processing patterns across the cortex that support key neurolinguistic theories including the Motor Theory of Speech Perception, Convergence-Divergence Zone model, and embodied semantics. Overall, our work highlights the often neglected potential of nonlinear and multimodal approaches to speech encoding, paying the way for future studies to embrace these strategies in naturalistic neurolinguistics research.

1 Introduction

Speech encoding models, which predict voxel-wise cortical activity from naturalistic speech, are a powerful tool for probing the neural processes of speech comprehension (Naselaris et al., 2011; Jain & Huth, 2018; LeBel et al., 2021; Vaidya et al., 2022; Goldstein et al., 2022; Tang et al., 2023). They also enable important applications such as in-silico experiments to test brain function without additional data (Wehbe et al., 2016; Bashivan et al., 2019; Jain et al., 2024) and the development of decoding models for language comprehension (Tang et al., 2023).

Most existing approaches rely on unimodal linearized models, where features from language (e.g., Llama; Touvron et al. (2023a)) or speech models (e.g., Whisper; Radford et al. (2023)) are linearly mapped to brain activity(Naselaris et al., 2011). Linearized models is efficient, work well with limited neuroscience datasets, and allow straightforward feature attribution. However, with the advent of larger datasets(LeBel et al., 2023), more sophisticated modeling approaches are now feasible, offering the potential to uncover new insights into neural speech processing.

One key direction is to capture the inherently multimodal nature of speech comprehension. The brain integrates acoustic, linguistic, and motor information across distributed neural networks (McGettigan et al., 2012; Ghazanfar & Schroeder, 2006). While some studies have combined linguistic and visual features (Oota et al., 2022; Wang et al., 2022; Scotti et al., 2024), the integration of advanced speech and language models remains largely unexplored. Recent work (Oota et al., 2023) shows that speech models uniquely capture activity in early auditory regions, while text-based models better explain late language regions—suggesting that their combination could yield richer insights into neural language processing.

A second direction is to use nonlinear mappings between model features and brain activity. While nonlinear approaches are common in vision (Yang et al., 2023; Chen et al., 2023; Scotti et al., 2024), they remain rare in speech encoding. Prior work was limited to simplified paradigms with isolated words (Bingel et al., 2016; Oota et al., 2018), rather than naturalistic continuous speech. More recent studies have applied nonlinear models to unimodal speech features (Moussa et al., 2024; Vattikonda et al., 2025) but multimodal nonlinear encoding remains unaddressed.

Nonlinear approaches face unique challenges in speech encoding compared to vision (Appendix M) Speech encoding requires predicting activity across 80k-90k cortical voxels (vs. $\sim 15k$ in vision) and capturing rapid temporal dynamics in continuous speech (LeBel et al., 2023), unlike block-wise visual paradigms (Allen et al., 2022). Nonetheless, nonlinear mappings are often better suited for key neuroscientific goals, including in-silico experimentation, testing feature relevance, and assessing feature set contributions (Ivanova et al., 2022). They can reveal organizational principles otherwise hidden and substantially improve prediction accuracy—critical for robust in-silico testing (Jain et al., 2024).

In this study, we address these gaps by introducing a nonlinear, multimodal encoding model that integrates audio and semantic features extracted from advanced models such as Whisper and Llama. Our contributions are as follows:

- We propose a nonlinear multimodal approach that improves prediction accuracy by 17.2% (unnormalized correlation) and 17.9% (normalized correlation) over the standard semantic linear baseline (Antonello et al., 2024), while surpassing previous state-of-the-art linear-ensemble models by 7.7% and 14.4%. These gains, substantially larger than typical advances in fMRI speech encoding (Appendix ??, enable more accurate in-silico experiments and improved brain decoding.
- Through systematic comparisons, we show nonlinearity drives these improvements.
 Linear models fail to capture the complex interactions between audio and language information in LLM embeddings, whereas our nonlinear encoders model these interactions more effectively and with fewer parameters. This demonstrates that incorporating both nonlinearity and multimodality is crucial for accurately modeling the brain's speech processing mechanisms.
- We introduce a RED-based clustering analysis that tracks neural responses over both space and time. Nonlinear models achieve superior functional clustering compared to linear encoders and standard connectivity analysis, revealing previously hidden patterns of brain organization and the spatiotemporal dynamics of language processing.
- Variance partitioning and prediction accuracy analysis show that multimodal integration is essential for speech encoding. Most regions rely on overlapping audio-semantic information, with unique contributions varying hierarchically from sensory to higher-order areas. This results extends neurolinguistic theories (Liberman et al., 1967; Damasio, 1989; Davis & Yee, 2021) by revealing how different brain regions jointly engage multiple aspects of speech input.

2 Method

2.1 MRI DATA

We used a public fMRI dataset (LeBel et al., 2023) of three subjects listening to 20 hours of English podcast. Training data included 95 stories across 20 scanning sessions (33,000 time points). Testing used three held-out stories: one averaged across ten repetitions and two across five repetitions each, with no session containing repeated stimuli. Voxels were normalized to zero mean and unit variance, as in Antonello et al. (2024).

2.2 FEATURE EXTRACTION

A brain encoding model predicts voxel-wise fMRI responses from stimulus features, providing a framework to study how the brain represents language. In our study, the encoding model takes as input semantic features from LLaMA and audio features from Whisper, enabling us to test how linguistic and acoustic information jointly explain cortical activity.

We extracted semantic features from LLaMA models (LLaMA-1: 7B–65B (Touvron et al., 2023a); LLaMA-2: 7B (Touvron et al., 2023b); LLaMA-3: 8B (Dubey et al., 2024)) and audio features from Whisper models (Tiny–Large, including v2/v3; (Radford et al., 2023)). All models were obtained from Hugging Face (Wolf, 2019) and run in half-precision (float16). LLaMA features were obtained using a dynamically sized context window, while Whisper features were extracted from the encoder using a 16s sliding window with 0.1s stride, ensuring audio-specific representations. Refer to Antonello et al. (2024) for further details.

Following Antonello et al. (2024) for fair comparison, we temporally aligned the hidden states from the l^{th} layer of the language or audio models with fMRI acquisition times using Lanczos interpolation. To account for neural response delays, we concatenated representations from the four preceding timepoints (2, 4, 6, and 8 seconds prior) for each TR (see Appendix B.3). Unless stated otherwise, we extracted semantic features from the 12th layer of Llama-7B and audio features from the final encoder layer of Whisper Large V1, as performance plateaued beyond 7B parameters (for Llama models), aligning with previous observations Bonnasse-Gahot & Pallier (2024) (see Appendix F)

2.3 Representations for FMRI data

The encoding model's outputs correspond directly to voxel-level fMRI activity. We tested both full-voxel prediction and dimensionality reduction, adopting PCA (512 components) for most analyses to prevent overfitting, reduce redundancy, and maintain interpretability. Direct full-voxel mapping is computationally prohibitive (e.g., 1.3B parameters for S1 vs. 8.4M with PCA) and redundant, as many voxels are highly correlated and can be masked with minimal loss (Jabakhanji et al., 2022; Lin et al., 2022). PCA also enables reconstruction of predicted responses back into voxel space, preserving neuroscientific interpretability. Formally, PCA was applied to the aggregate response matrix $Y_{\rm org} \in \mathbb{R}^{N_{\rm TR} \times N_{\rm voxels}}$ to obtain $Y_{\rm PCA} \in \mathbb{R}^{N_{\rm TR} \times 512}$, and predictions $\hat{Y}_{\rm PCA}^{\rm test}$ were inverse-projected to voxel space for evaluation against ground-truth $Y^{\rm test}$. Further details are provided in Appendix B.4.

2.4 ENCODING MODEL

Going beyond linear approaches (Tang et al., 2023; Huth et al., 2016; de Heer et al., 2017; LeBel et al., 2021; Jain & Huth, 2018; Schrimpf et al., 2021) we systematically investigate a range of encoding models varying in complexity and input modality to better capture complex relationships between stimuli and neural responses. We explored combinations of different stimulus representations, encoder architectures, and response representations (see Table 1). The following encoder architectures were used to assess the impact of complexity and nonlinearity (see Appendix B.5):

- Linear Regression (Linear): Following Antonello et al. (2024), we used ridge regression.
- Multi-Layer Perceptron (MLP): MLP with a single hidden layer of 256 units.
- Multi-Layer Linear (MLLinear): MLP but without dropout, batch normalization, and with
 the identity activation function. This model serves as a reduced-rank linear regression, helping to isolate the effects of dimensionality reduction from nonlinearity.
- Delayed Interaction MLP (DIMLP): Used for multimodal cases, this MLP variant processes each modality through separate 256-unit hidden layers before concatenation and final linear projection. This allows nonlinear processing within each modality while limiting cross-modal interaction to be linear, revealing the effects of nonlinear fusion of modalities.

2.5 NORMALIZED CORRELATION COEFFICIENT AND RELATIVE ERROR DIFFERENCE (RED)

Because fMRI data are inherently noisy, there exists a theoretical upper bound on explainable variance, known as the noise ceiling. We estimated this ceiling (CC_{max}) for each voxel using the method of Schoppe et al. (2016) applied to ten repeated responses to the same test story (Appendix B.2). Model performance was then normalized by dividing the absolute correlation coefficient (CC_{abs} , correlation between predicted and observed fMRI signals) by CC_{max} , yielding the normalized correlation coefficient (CC_{norm}). With 80,000 voxels, random noise can occasionally produce CC_{abs} < CC_{max} , resulting in $CC_{norm} > 1$; to mitigate this, voxels with $CC_{max} < 0.25$ were regularized to 0.25 during computation.

To complement correlation-based metrics, we introduce the Relative Error Difference (RED), which quantifies the temporal advantage of one feature set over another. For each voxel v at time t:

Table 1: Performance of encoding models across modalities and architectures. Average voxelwise r^2 and normalized correlation coefficient (CC_{norm}) are reported for models using text, audio, or multimodal inputs with different encoder architectures (Linear, MLLinear, DIMLP, MLP). MLLinear is a linearized version of MLP, while DIMLP applies nonlinear processing within each modality but combines modalities linearly. The baseline is the semantic linear model in Antonello et al. (2024). Notably, MLP encoders consistently achieve the best performance with fewer parameters, underscoring the importance of nonlinearity and multimodal integration for accurate fMRI prediction. r^2

modality 1	modality 2	encoder	response	Avg r^2	Avg CC_{norm}	#param
text	audio	MLP	PCA	4.29% (+17.2%)	34.32% (+17.9%)	5.64M
text	audio	DIMLP	PCA	4.18% (+14.2%)	32.59% (+11.9%)	5.77M
text	audio	MLLinear	PCA	4.10% (+12.0%)	32.41% (+11.3%)	5.64M
text	audio	Linear	all voxels	4.10% (+12.0%)	31.36% (+7.7%)	1.72B
text	audio	Linear	PCA	3.87% (+5.7%)	28.92% (-0.7%)	11.01M
text	audio	MLP	all voxels	3.83% (+4.6%)	31.11% (+6.8%)	26.07M
text	-	MLP	PCA	3.79% (+3.6%)	30.89% (+6.1%)	4.33M
text	-	MLLinear	PCA	3.67% (+0.3%)	29.95% (+2.8%)	4.33M
text	-	Linear	all voxels	3.66% (Baseline)	29.12% (Baseline)	1.31B
text	-	Linear	PCA	3.56% (-2.7%)	26.88% (-7.7%)	8.39M
text	-	MLP	all voxels	3.36% (-8.2%)	27.45% (-5.7%)	24.75M
audio	-	MLP	PCA	3.01% (-17.8%)	29.01% (-0.4%)	1.44M
audio	-	MLP	all voxels	2.89% (-21.0%)	28.21% (-3.1%)	21.87M
audio	-	MLLinear	PCA	2.89% (-21.0%)	27.50% (-5.6%)	1.44M
audio	-	Linear	PCA	2.81% (-23.2%)	26.71% (-8.3%)	2.62M
audio	-	Linear	all voxels	2.77% (-24.3%)	25.20% (-13.5%)	409.68M

RED $(v,t) = |f_1(v,t) - y(v,t)| - |f_2(v,t) - y(v,t)|$ where $f_1(v,t)$ and $f_2(v,t)$ are predictions from two feature sets (e.g., LLaMA vs. Whisper) and y(v,t) is the ground-truth fMRI signal. Positive RED values indicate better prediction by feature set 2. Unlike traditional voxel-wise analyses that focus on spatial patterns (f(v)), RED preserves temporal dynamics (f(v,t)), enabling the joint analysis of spatial and temporal organization of brain responses. We leverage RED in Section 3.1.2 to cluster regions of interest based on semantic and audio processing dynamics.

3 RESULTS

is computed as $|r| \cdot r$.

We conduct experiments to evaluate the contributions of multimodality and nonlinearity in fMRI speech encoding. The primary objective is to determine whether nonlinear integration of audio and language representations provides measurable improvements over both the baseline (Antonello et al., 2024) and alternative encoding architectures. Model performance is assessed using variance explained (r^2) and normalized correlation coefficient (CC_{norm}), as in prior works.

Table 1 summarizes the overall comparison. The nonlinear multimodal MLP encoder achieves the highest performance, with 4.29% average r^2 and 34.32% CC_{norm} , corresponding to relative gains of 17.2% and and 17.9% over the baseline semantic linear model (Antonello et al., 2024). Notably, these improvements substantially exceed the incremental advances typically reported in fMRI speech encoding (Appendix M.2), despite using far fewer parameters (5.64M vs. 1.31B). The results suggest that additive linear fusion fails to capture complex audio—language interactions, underscoring the value of nonlinear multimodal modeling. In the following subsections, we analyze the specific contributions of nonlinearity (Section 3.1), investigate how nonlinear multimodal combination drives improvements (Section 3.2) and demonstrate the benefits of multimodal fusion (Section 3.3).

3.1 Nonlinear encoders

3.1.1 Nonlinearity is the key driver of superior encoding performance

We found that the MLP consistently outperformed linear models, indicating that nonlinear transformations more effectively capture the mapping between neural activity and linguistic or acoustic

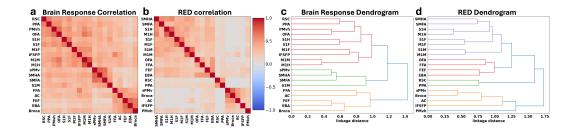


Figure 1: Spatio-temporal clustering analysis: (\mathbf{a},\mathbf{b}) functional connectivity matrix and hierarchical clustering dendrogram from raw fMRI correlations. (\mathbf{c},\mathbf{d}) Correlation matrices and dendrograms from Relative Error Difference (RED) between semantic and audio MLP encoders. Matrix values indicate regional similarity. Hierarchical clustering reveals brain region organization by response profiles. The nonlinear models (\mathbf{d}) show clearer functional groupings than both linear models (modularity $\mathbf{Q}: 0.155$ vs. 0.145) (Figure 21 \mathbf{e}) and standard connectivity (\mathbf{c}) (0.068). See Appendix A for full abbreviation names.

features. To disentangle the role of nonlinearity from dimensionality reduction, we compared the MLP with two controls: *Linear* (linear regression on PCA-reduced data) and *MLLinear* (an MLP without nonlinear activations). Both performed similarly to or worse than the nonlinear MLP (Table 1), confirming that performance gains are driven by nonlinearity rather than reduced dimensionality.

Moreover, MLPs provided a clear and consistent advantage over linear encoders across all layers of both language and audio models (Figure 14). This layer-wise robustness underscores that nonlinear mapping captures meaningful representational structure regardless of depth. PCA preprocessing was nonetheless essential: MLPs trained directly on raw voxels performed substantially worse, likely due to overfitting (80–90k voxels vs. 512 PCA components). Together, these results demonstrate that while dimensionality reduction enables tractable modeling, it is nonlinearity that fundamentally drives superior encoding performance.

3.1.2 NONLINEARITY ENHANCES BRAIN-WIDE PREDICTIONS AND FUNCTIONAL CLUSTERING

Nonlinear MLP models capture complex relationships in brain activity during speech comprehension more effectively than linear models. As shown in Figure 1, MLP encoders outperform linear encoders across the cortex, with pronounced gains in semantic and auditory regions such as the precuneus (PrCu) and lateral temporal cortex (LTC). Brain maps in Appendix I.2 and I.3 further confirm these improvements, underscoring the critical role of nonlinear interactions in modeling brain activity, particularly in higher-order language processing areas.

Hierarchical clustering analysis using RED between Whisper and LLaMA encoding models (Figure 1, Appendix I.4) reinforces this advantage. Compared to linear models and traditional functional connectivity, nonlinear encoders achieve superior grouping (modularity Q: nonlinear 0.155, linear 0.145, FC 0.068). The MLP-based clustering (Figure 1 d) reveals coherent functional organization: motor and somatosensory regions cluster by body part before merging into broader networks; visual regions organize by function (OFA/FFA for faces; PPA/RSC for scenes); and speech-related areas (sPMv, Broca's area, AC) align with the dorsal stream pathway. These results show that nonlinear models capture structured spatiotemporal relationships in brain responses, consistent with established principles of cortical organization.

3.2 Nonlinear and multimodal encoders

3.2.1 Nonlinear interactions between modalities enhance fMRI predictions

To assess the role of nonlinear cross-modal interactions, we test Delayed Interaction MLP (DIMLP), which processes audio and semantic features separately before a final linear fusion stage. This contrasts with MLP, which allows full nonlinear interactions across modalities, enabling the comparison of within-modality nonlinearity (DIMLP) and cross-modal nonlinear interactions (MLP). As shown

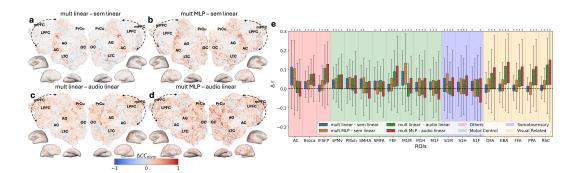


Figure 2: Multimodality improves encoding performance. Panels (**a–d**) show voxelwise ΔCC_{norm} for one subject, with warmer colors indicating regions where multimodal models outperform unimodal linear models. (**a**) Multimodal linear – Semantic linear: impact of adding audio features. (**b**) Multimodal MLP – Semantic MLP: impact of adding audio features with nonlinearity. (**c**) Multimodal linear – Audio linear: impact of adding semantic features. (**d**) Multimodal MLP – Audio MLP: impact of adding semantic features with nonlinearity. (**e**) ROI-level Δr across all subjects, with significant improvements marked by asterisks (*, p <0.05, FDR-corrected). Overall, multimodality yields widespread benefits across voxels and ROIs, with only a small minority showing reduced predictions.

in Table 1, both DIMLP and MLP outperform linear models. DIMLP, incorporating only within-modality nonlinearity, yields a 2.0% gain over the linear model (from 4.10% average r² to 4.18%). But the standard MLP, allowing full nonlinear interactions, achieves a further 2.6% gain (from 4.18% to 4.29%). These results suggest that both forms of nonlinearity enhance encoding performance, but cross-modal nonlinear interactions contribute most significantly.

This conclusion is further supported by voxelwise analysis (Appendix K). While DIMLP improves prediction accuracy across brain regions compared to linear models, standard MLP leads to further, cortex-wide enhancements. This suggests nonlinear interactions between audio and semantic features are essential for modeling neural representations underlying speech comprehension.

ROI-wise analysis (Figure 30) shows regional variation in nonlinearity's benefits. Multimodal MLP consistently matches or outperforms DIMLP and often surpasses linear models. Motor (e.g., M1M) and somatosensory regions (e.g., S1M) benefit most from nonlinear cross-modal interactions, highlighting their role in complex multimodal processing during speech comprehension.

3.3 MULTIMODAL ENCODERS

3.3.1 MULTIMODALITY REVEALS WIDESPREAD CORTICAL INTEGRATION

Our analysis shows that multimodality not only increases prediction accuracy across the cortex but also explains brain activity more effectively through joint audio-semantic processing. Improvements are brain-wide and extend well beyond modality-specific regions. Figure 2 (a,b) shows that adding audio features enhances predictions not only in auditory areas but also in primary motor and somatosensory regions, as well as the paracentral lobule between mPFC and Precuneus (PrCu), and parts of occipital cortex (OC). These effects highlight the widespread impact of auditory information. Conversely, Figure 2 (c,d) shows that adding semantic features improves predictions across most cortical regions, with the exception of some auditory cortex (AC) areas. This suggests that semantic processing exerts broad influence on neural activity, extending well beyond classical language regions.

These widespread improvements are further amplified by nonlinearity. Comparing Figure 2 (b) with (a), and (d) with (c), shows that MLP models not only strengthen effects seen with linear encoders but also unlock hidden gains in higher-order regions such as the LTC, mPFC, and OC. Variance partitioning analysis (Appendix L.2) reveals that most explained variance arises from joint audio-semantic contributions, while unique effects are dominated by semantic features, with audio contributing less across most regions. These results suggest that nonlinearity enables multimodal

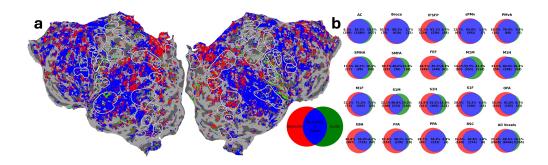


Figure 3: Visualization of most dominant feature type in brain activity predictions from variance partitioning analysis. (a) Voxel-wise plots from a single subject (S1) and (b) ROI-wise Venn diagrams showing which feature type (semantic: red, audio: green, joint: blue) explains the largest variance for each significantly predicted voxel (q(FDR) < 0.01) using MLP encoders. ROI results are aggregated across subjects with numbers indicating voxel percentages and counts.

models to capture richer cross-modal integration, with semantics providing the primary source of unique information in brain-wide processing.

To further characterize representational dominance, we assigned each voxel to its most predictive modality. Joint audio-semantic features dominated cortical representations (Figure 3 **a**, shown for subject S1, with all subjects in Appendix L.3). This pattern is consistent across subjects: Rol-wise analysis (Figure 3 **b**) shows that semantic, audio, and joint features accounted for 21.4%, 10.1%, and 68.5% of significantly predicted voxels, respectively (subject-wise results in Appendix L.4).

Our findings both align with and extend prior multimodal language studies. Unlike Antonello et al. (2024), who reported localized auditory-driven improvements in AC and M1M, we observed cortexwide gains. Methodological differences may explain this discrepancy: they used multiple Whisper layers, potentially introducing redundancy, and employed linear stacked regression, which limits modality interaction; in contrast, our approach leverages the final layer and direct concatenation, enabling richer integration (Appendix C). Our results also refine understanding of modality-specific contributions. Consistent with Oota et al. (2023), semantic models capture information beyond low-level acoustic features. Yet we find that audio models—though contributing less overall—provide meaningful complementary signals across multiple regions. This is evidenced by improved prediction accuracy and nonzero unique variance in our voxel-wise analyses, which likely capture finegrained audio contributions that may be averaged out in the ROI-level analyses of Oota et al. (2023). Taken together, these patterns highlight distributed joint processing across the cortex, consistent with the Convergence-Divergence Zone theory (Damasio, 1989), which posits that semantic information is integrated from multiple modalities across widespread cortical regions.

3.3.2 Multimodal fusion supports and extends neurolinguistic theories

Building on the brain-wide improvements observed, regions of interest (ROI) analyses reveal how multimodal integration supports and extends established neurolinguistic theories.

Speech related regions (AC, Broca, sPMv, M1M)

Our results highlight a systematic organization of speech processing along the auditory dorsal pathway, a core component of the dual-stream model of language processing (Hickok & Poeppel, 2007). This pathway, extending from the auditory cortex (AC) through Broca's area and the superior ventral premotor speech area (sPMv) to the primary motor cortex, shows distinct patterns of multimodal integration at successive stages.

In early AC, voxel-wise variance partitioning shows that unique contributions from audio features dominate (Figure 3), reinforcing its role in processing low-level acoustic information. However, processing in broader AC regions shows a shift to joint audio-semantic representations, with 83.3% of significantly predicted voxels showing joint audio-semantic representation. The improved performance from adding auditory features (Figures 2 a, b) supports this hierarchical pattern, with earlier AC areas showing greater gains.

Moving along the dorsal pathway to Broca's area and sPMv, we find predominant joint feature attribution (88.2% and 84.8% of voxels respectively) with improved predictions from the addition of either modality. This multimodal integration aligns with these regions' role in speech planning and articulatory control—processes that require integrating acoustic targets with semantic content and motor programs (Gough et al., 2005; Nixon et al., 2004; de Heer et al., 2017; Glanz et al., 2018).

At the terminus of the dorsal pathway, the mouth region in primary motor cortex (M1M) shows a strong contribution from auditory features, exceeding even AC, consistent with its role in executing speech articulation (32.4% of voxels) (Figure 3 b). This strong auditory presence in motor areas is further supported by substantial performance improvements when adding auditory features, reinforcing previous findings from Wu et al. (2014) that highlight the coupling between auditory and motor processes in speech production.

These findings extend our understanding of speech model representations. Our variance partitioning results align with previous findings that semantic models primarily predict AC activity by capturing low-level speech features (Oota et al., 2023). Our analysis also reveal some voxels show unique semantic contributions, and audio models capture distinct brain features beyond the typical scope of language models. The observed semantic contribution in AC, sPMv and Broca's area aligns with prior findings (de Heer et al., 2017) and may be a general mechanism for language processing.

Motor and somatosensory areas: embodied speech processing

The addition of audio or semantic features improved predictions in motor control (green) and somatosensory processing (blue) ROIs (Figure 2 e). Improvements vary: some ROIs benefit from semantic features (e.g., frontal eye field (FEF)), others from audio features (e.g., primary mouth motor cortex (M1M)), and some from both. Furthermore, variance partitioning analysis reveals that motor and somatosensory regions show unique contributions from both modalities in M1M, audio features uniquely explain 32.4% of the variance while semantic features explain 14.1%, with 53.5% jointly explained. Similar patterns emerge across motor areas (SMHA, SMFA, FEF, M1H, M1F) and somatosensory regions (S1M, S1H, S1F), suggesting these regions process unique auditory and semantic information absent from their overlapping features.

These findings align with the Motor Theory of Speech Perception (Liberman et al., 1967; 1952; Poeppel & Assaneo, 2020), which posits that motor regions simulate articulatory movements necessary for speech production, aiding comprehension. In particular, improvements from the addition of and the unique contribution from auditory features align with research showing tight coupling between auditory and motor-sensory processing (Skipper et al., 2005; Wu et al., 2014; Wilson et al., 2004).

These findings suggest semantic information shapes activity within somatosensory regions, indicating broader involvement in speech comprehension than previously recognized. This aligns with embodied semantic memory theory, where concept understanding is grounded in sensorimotor experiences (Binder & Desai, 2011). Our results match Nagata et al. (2022)'s evidence that sensorimotor cortex processes both concrete and abstract word semantics. The enhancements in these motor and sensory areas are more pronounced with MLP models, underscoring nonlinear interactions between auditory and semantic information. We explore this further in Section 3.2.

Higher-order visual areas: multimodal semantic representations

Adding semantic features enhances fMRI prediction accuracy in high-level visual areas like OFA (Pitcher et al., 2011), EBA (Downing et al., 2001), FFA (Kanwisher et al., 1997), PPA (Epstein & Kanwisher, 1998), and RSC (Vann et al., 2009) (Figure 2 e). Variance partitioning (Figure 3 b) shows these ROIs have largest contributions from semantic and joint features, suggesting text-derived semantics provide substantial predictive information for visual regions beyond audio features alone.

This finding matches studies showing visual and linguistic stimuli with similar semantic content elicit similar brain responses (Huth et al., 2012; 2016; Tang et al., 2024; Deniz et al., 2019; Devereux et al., 2013; Fairhall & Caramazza, 2013; Popham et al., 2021). These results support the convergence-divergence-zone theory (Popham et al., 2021; Damasio et al., 1996; 2004; Damasio, 1989), which posits semantic information from multiple modalities integrates across the cortex, forming unified representations. This suggests the brain constructs modality-independent semantics using information from vision, language, and other senses (Tang et al., 2023; Binder & Desai, 2011; Tang et al., 2024; Martin, 2016).

Our study also provides novel evidence for auditory modality's contribution to this unified semantic representation. Variance partitioning (Figure 3 b) shows auditory information accounts for 5% of voxels in higher visual area ROIs. Adding audio features resulted in significant performance increases in these ROIs (Figure 2 e), suggesting auditory information, such as tone of voice and environmental sounds, may provide unique semantic context not fully captured by visual or linguistic features alone.

The consistent observation that multimodal fusion, particularly with nonlinear models, enhances prediction accuracy emphasizes the brain's use of complex, nonlinear computations to combine information from different modalities for a holistic understanding of language. Subject-wise ROI prediction differences are visualized in Figure 27 (Appendix J.3).

4 DISCUSSION AND CONCLUSION

This study underscores the transformative potential of nonlinear multimodal approaches to speech encoding for advancing our understanding of speech comprehension in the brain. While nonlinear approaches have become standard in vision encoding models Yang et al. (2023); Scotti et al. (2024); Chen et al. (2023), their application to language has faced unique challenges due to the dynamic, cortex-wide nature of speech comprehension. Our approach overcomes these challenges, achieving a 14.4% increase in mean normalized correlation compared to previous state-of-the-art models (Antonello et al., 2024), while more importantly revealing previously hidden functional organization patterns.

A key finding is that nonlinear models provide more nuanced insights into neural activity, outperforming linear approaches across all network layers, with gains driven by nonlinearity rather than dimensionality reduction alone. The benefits of nonlinear encoding are showcased in our RED analysis, which reveals improved hierarchical clustering of brain regions, with higher modularity (0.155) than linear models (0.145) and traditional connectivity measures (0.068).

Our second key finding illustrates how multimodal encoding approaches expose aspects of neural computation that may be overlooked in unimodal models. By systematically comparing unimodal and multimodal predictions across the cortex, we discovered widespread cross-modal integration patterns. Through ROI-wise analyses of both variance partitioning and performance improvements, we provide support for key neurolinguistic theories including the Motor Theory of Speech Perception (Liberman et al., 1967), Convergence-Divergence Zone model (Damasio, 1989), and embodied semantics (Davis & Yee, 2021), and ventral aspect of the dual stream hypothesis (Hickok & Poeppel, 2007) highlighting the brain's reliance on distributed multimodal fusion.

Our nonlinear encoding approach has two main limitations. First, insufficient dataset size currently constrains model complexity, leading to overfitting when adding hidden layers or using RNNs and Transformers (Appendix D). Given data scaling benefits in linear encoders (Antonello et al., 2024) and how a large dataset such as the Natural Scenes Dataset (Allen et al., 2022) enabled deep learning breakthroughs in visual encoding and decoding (Adeli et al., 2023; Scotti et al., 2024), larger language fMRI datasets are needed to fully harness the potential of deep learning and drive further advancements. Second, while nonlinear encoders offer strong performance gains, they create new interpretability challenges. While variance partitioning and RED-based clustering offer preliminary insights, further innovations such as RSA (Kriegeskorte et al., 2008) and novel feature attribution (Oota et al., 2023) are necessary. Moreover, nonlinear models offer unique interpretative possibilities, as shown by (Yang et al., 2023) in memory vision encoding.

In conclusion, our study demonstrates that while linear and unimodal approaches have provided valuable insights in speech encoding research, nonlinear multimodal encoding models reveal important aspects of neural speech processing that complement these established methods. Addressing dataset size and model interpretability limitations will be key to advancing brain aligned AI, enabling models that better reflect the hierarchical and distributed nature of neural processing.

REFERENCES

Hossein Adeli, Sun Minni, and Nikolaus Kriegeskorte. Predicting brain activity using transformers. *bioRxiv*, pp. 2023–08, 2023.

- Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2623–2631, 2019.
 - Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle, Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126, 2022.
 - Richard Antonello, Aditya Vaidya, and Alexander Huth. Scaling laws for language encoding models in fmri. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Khai Loong Aw and Mariya Toneva. Training language models to summarize narratives improves brain alignment. *arXiv preprint arXiv:2212.10898*, 2022.
 - Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. *Science*, 364(6439):eaav9436, 2019.
 - Jeffrey R Binder and Rutvik H Desai. The neurobiology of semantic memory. *Trends in cognitive sciences*, 15(11):527–536, 2011.
 - Joachim Bingel, Maria Barrett, and Anders Søgaard. Extracting token-level signals of syntactic processing from fmri-with an application to pos induction. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 747–755, 2016.
 - Laurent Bonnasse-Gahot and Christophe Pallier. fmri predictors based on language models of increasing complexity recover brain left lateralization. *arXiv* preprint arXiv:2405.17992, 2024.
 - Charlotte Caucheteux, Alexandre Gramfort, and Jean-Rémi King. Evidence of a predictive coding hierarchy in the human brain listening to speech. *Nature human behaviour*, 7(3):430–441, 2023.
 - Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the brain: Conditional diffusion model with sparse masked modeling for vision decoding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22710–22720, 2023.
 - Antonio R Damasio. The brain binds entities and events by multiregional activation from convergence zones. *Neural computation*, 1(1):123–132, 1989.
 - Hanna Damasio, Thomas J Grabowski, Daniel Tranel, Richard D Hichwa, and Antonio R Damasio. A neural basis for lexical retrieval. *Nature*, 380(6574):499–505, 1996.
 - Hanna Damasio, Daniel Tranel, Thomas Grabowski, Ralph Adolphs, and Antonio Damasio. Neural systems behind word and concept retrieval. *Cognition*, 92(1-2):179–229, 2004.
 - Charles P Davis and Eiling Yee. Building semantic memory from embodied and distributional language experience. Wiley Interdisciplinary Reviews: Cognitive Science, 12(5):e1555, 2021.
 - Wendy A de Heer, Alexander G Huth, Thomas L Griffiths, Jack L Gallant, and Frédéric E Theunissen. The hierarchical cortical organization of human speech processing. *Journal of Neuroscience*, 37(27):6539–6557, 2017.
 - Fatma Deniz, Anwar O Nunez-Elizalde, Alexander G Huth, and Jack L Gallant. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. *Journal of Neuroscience*, 39(39):7722–7736, 2019.
 - Barry J Devereux, Alex Clarke, Andreas Marouchos, and Lorraine K Tyler. Representational similarity analysis reveals commonalities and differences in the semantic processing of words and objects. *Journal of Neuroscience*, 33(48):18906–18916, 2013.
 - Paul E Downing, Yuhong Jiang, Miles Shuman, and Nancy Kanwisher. A cortical area selective for visual processing of the human body. *Science*, 293(5539):2470–2473, 2001.

- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
- Russell Epstein and Nancy Kanwisher. A cortical representation of the local visual environment.

 Nature, 392(6676):598–601, 1998.
 - Scott L Fairhall and Alfonso Caramazza. Brain regions that represent amodal conceptual knowledge. *Journal of Neuroscience*, 33(25):10552–10558, 2013.
 - Asif A Ghazanfar and Charles E Schroeder. Is neocortex essentially multisensory? *Trends in cognitive sciences*, 10(6):278–285, 2006.
 - Olga Glanz, Johanna Derix, Rajbir Kaur, Andreas Schulze-Bonhage, Peter Auer, Ad Aertsen, and Tonio Ball. Real-life speech production and perception have a shared premotor-cortical substrate. *Scientific reports*, 8(1):8898, 2018.
 - Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for language processing in humans and deep language models. *Nature neuroscience*, 25(3):369–380, 2022.
 - Patricia M Gough, Anna C Nobre, and Joseph T Devlin. Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. *Journal of Neuroscience*, 25(35): 8010–8016, 2005.
 - Gregory Hickok and David Poeppel. The cortical organization of speech processing. *Nature reviews neuroscience*, 8(5):393–402, 2007.
 - Alexander G Huth, Shinji Nishimoto, An T Vu, and Jack L Gallant. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. *Neuron*, 76(6):1210–1224, 2012.
 - Alexander G Huth, Wendy A De Heer, Thomas L Griffiths, Frédéric E Theunissen, and Jack L Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex. *Nature*, 532 (7600):453–458, 2016.
 - Anna A Ivanova, Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik. Beyond linear regression: mapping models in cognitive neuroscience should align with research goals. *arXiv* preprint arXiv:2208.10668, 2022.
 - Rami Jabakhanji, Andrew D Vigotsky, Jannis Bielefeld, Lejian Huang, Marwan N Baliki, Giandomenico Iannetti, and A Vania Apkarian. Limits of decoding mental states with fmri. *Cortex*, 149:101–122, 2022.
 - Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fmri. *Advances in neural information processing systems*, 31, 2018.
 - Shailee Jain, Vy A Vo, Leila Wehbe, and Alexander G Huth. Computational language modeling and the promise of in silico experimentation. *Neurobiology of Language*, 5(1):80–106, 2024.
 - Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform face area: A module in human extrastriate cortex specialized for face perception. *The Journal of Neuroscience*, 17(11): 4302–4311, 1997.
 - Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2:249, 2008.
 - Mathis Lamarre, Catherine Chen, and Fatma Deniz. Attention weights accurately predict language representations in the brain. *bioRxiv*, pp. 2022–12, 2022.
 - Amanda LeBel, Shailee Jain, and Alexander G Huth. Voxelwise encoding models show that cerebellar language representations are highly conceptual. *Journal of Neuroscience*, 41(50):10341–10355, 2021.

- Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal, Jerry Tang, Lixiang Xu, and Alexander G Huth. A natural language fmri dataset for voxelwise encoding models. *Scientific Data*, 10(1):555, 2023.
 - Alvin M Liberman, Pierre Delattre, and Franklin S Cooper. The role of selected stimulus-variables in the perception of the unvoiced stop consonants. *The American journal of psychology*, pp. 497–516, 1952.
 - Alvin M Liberman, Franklin S Cooper, Donald P Shankweiler, and Michael Studdert-Kennedy. Perception of the speech code. *Psychological review*, 74(6):431, 1967.
 - Sikun Lin, T Sprague, and AK Singh. Redundancy and dependency in brain activities. *Shared Visual Representations in Human & Machine Intelligence*, 2022.
 - I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
 - Alex Martin. Grapes—grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. *Psychonomic bulletin & review*, 23:979–990, 2016.
 - Carolyn McGettigan, Andrew Faulkner, Irene Altarelli, Jonas Obleser, Harriet Baverstock, and Sophie K Scott. Speech comprehension aided by multiple modalities: behavioural and neural interactions. *Neuropsychologia*, 50(5):762–776, 2012.
 - Juliette Millet and Jean-Remi King. Inductive biases, pretraining and fine-tuning jointly account for brain responses to speech. *arXiv preprint arXiv:2103.01032*, 2021.
 - Omer Moussa, Dietrich Klakow, and Mariya Toneva. Improving semantic understanding in speech language models via brain-tuning. *arXiv preprint arXiv:2410.09230*, 2024.
 - Keisuke Nagata, Naoto Kunii, Seijiro Shimada, Shigeta Fujitani, Megumi Takasago, and Nobuhito Saito. Spatiotemporal target selection for intracranial neural decoding of abstract and concrete semantics. *Cerebral Cortex*, 32(24):5544–5554, 2022.
 - Thomas Naselaris, Kendrick N Kay, Shinji Nishimoto, and Jack L Gallant. Encoding and decoding in fmri. *Neuroimage*, 56(2):400–410, 2011.
 - Philip Nixon, Jenia Lazarova, Iona Hodinott-Hill, Patricia Gough, and Richard Passingham. The inferior frontal gyrus and phonological processing: an investigation using rtms. *Journal of cognitive neuroscience*, 16(2):289–300, 2004.
 - Subba Reddy Oota, Naresh Manwani, and Raju S Bapi. fmri semantic category decoding using linguistic encoding of word embeddings. In *Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, Proceedings, Part III 25*, pp. 3–15. Springer, 2018.
 - Subba Reddy Oota, Jashn Arora, Vijay Rowtula, Manish Gupta, and Raju S Bapi. Visio-linguistic brain encoding. *arXiv preprint arXiv:2204.08261*, 2022.
 - Subba Reddy Oota, Emin Çelik, Fatma Deniz, and Mariya Toneva. Speech language models lack important brain-relevant semantics. *arXiv* preprint arXiv:2311.04664, 2023.
 - F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
 - David Pitcher, Vincent Walsh, and Bradley Duchaine. The role of the occipital face area in the cortical face perception network. *Experimental brain research*, 209:481–493, 2011.
 - David Poeppel and M Florencia Assaneo. Speech rhythms and their neural foundations. *Nature reviews neuroscience*, 21(6):322–334, 2020.

- Sara F Popham, Alexander G Huth, Natalia Y Bilenko, Fatma Deniz, James S Gao, Anwar O Nunez-Elizalde, and Jack L Gallant. Visual and linguistic semantic representations are aligned at the border of human visual cortex. *Nature neuroscience*, 24(11):1628–1636, 2021.
- Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, pp. 28492–28518. PMLR, 2023.
- Oliver Schoppe, Nicol S Harper, Ben DB Willmore, Andrew J King, and Jan WH Schnupp. Measuring the performance of neural models. *Frontiers in computational neuroscience*, 10:10, 2016.
- Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative modeling converges on predictive processing. *Proceedings of the National Academy of Sciences*, 118(45):e2105646118, 2021.
- Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the mind's eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural Information Processing Systems*, 36, 2024.
- Jeremy I Skipper, Howard C Nusbaum, and Steven L Small. Listening to talking faces: motor cortical activation during speech perception. *Neuroimage*, 25(1):76–89, 2005.
- Jerry Tang, Amanda LeBel, Shailee Jain, and Alexander G Huth. Semantic reconstruction of continuous language from non-invasive brain recordings. *Nature Neuroscience*, 26(5):858–866, 2023.
- Jerry Tang, Meng Du, Vy Vo, Vasudev Lal, and Alexander Huth. Brain encoding models based on multimodal transformers can transfer across language and vision. *Advances in Neural Information Processing Systems*, 36, 2024.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
- Aditya R Vaidya, Shailee Jain, and Alexander Huth. Self-supervised models of audio effectively explain human cortical responses to speech. In *International Conference on Machine Learning*, pp. 21927–21944. PMLR, 2022.
- Seralynne D Vann, John P Aggleton, and Eleanor A Maguire. What does the retrosplenial cortex do? *Nature reviews neuroscience*, 10(11):792–802, 2009.
- Nishitha Vattikonda, Aditya R Vaidya, Richard J Antonello, and Alexander G Huth. Brainwavlm: Fine-tuning speech representations with brain responses to language. *arXiv* preprint arXiv:2502.08866, 2025.
- Aria Y Wang, Kendrick Kay, Thomas Naselaris, Michael J Tarr, and Leila Wehbe. Incorporating natural language into vision models improves prediction and understanding of higher visual cortex. *BioRxiv*, pp. 2022–09, 2022.
- Leila Wehbe, Alexander G Huth, Fatma Deniz, J Gao, Marie-Luise Kieseler, and Jack L Gallant. Bold predictions: Automated simulation of fmri experiments. *NeurIPS Demonstr. Track*, 2016.
- Stephen M Wilson, Ayşe Pinar Saygin, Martin I Sereno, and Marco Iacoboni. Listening to speech activates motor areas involved in speech production. *Nature neuroscience*, 7(7):701–702, 2004.
- T Wolf. Huggingface's transformers: State-of-the-art natural language processing. *arXiv* preprint *arXiv*:1910.03771, 2019.

Zhe-Meng Wu, Ming-Li Chen, Xi-Hong Wu, and Liang Li. Interaction between auditory and motor systems in speech perception. *Neuroscience bulletin*, 30:490–496, 2014.
Huzheng Yang, James Gee, and Jianbo Shi. Memory encoding model. *arXiv preprint arXiv:2308.01175*, 2023.

APPENDIX TABLE OF CONTENTS

1	Introduction	1
•	Introduction	
2	Method	2
	2.1 MRI data	2
	2.2 Feature extraction	2
	2.3 Representations for fMRI data	3
	2.4 Encoding model	3
	2.5 Normalized correlation coefficient and Relative Error Difference (RED)	3
3	Results	4
	3.1 Nonlinear encoders	4
	3.1.1 Nonlinearity is the key driver of superior encoding performance	4
	3.1.2 Nonlinearity enhances brain-wide predictions and functional clustering	5
	3.2 Nonlinear and multimodal encoders	5 5
	3.3 Multimodal encoders	6
	3.3.1 Multimodality reveals widespread cortical integration	6
	3.3.2 Multimodal fusion supports and extends neurolinguistic theories	7
4	Discussion and conclusion	9
1	Discussion and conclusion	9
4	Abbreviations of Brain Areas and Regions of Interest (ROIs)	16
D	Dataila of implementation	17
)	Details of implementation B.1 Llama feature extraction strategy	17
	B.2 Noise ceiling (CC_{max}) and normalized correlation (CC_{norm}) calculation	17
	B.3 Resampling the hidden state of LLMs to fMRI time points	17
	B.4 Representations for fMRI response using PCA	17
	B.5 Details of encoding models	18
C	Comparison with stacked regression model of Antonello et al. (2024)	18
)	Results of more complex nonlinear models	20
E	Performance of multimodal MLP model when mixing different layers	20
F	Scaling LLM and audio models does not necessarily lead to better encoders	20
G	Context size speech models influence encoder performance	21
Н	Performance of various encoding models using different inputs	22
	H.1 Voxelwise r values from different encoding mdoels and stimuli	22
	H.2 ROI-wise r values from different encoding models and stimuli	27
	H.3 Voxelwise CC_{norm} values from different encoding mdoels and stimuli	28
I	Improvements from nonlinearity	32
_	I.1 Layerwise performance increases from MLP	32
	I.2 Voxelwise improvements from MLP (r analysis)	32
	I.3 Voxelwise improvements from MLP (CC_{norm} analysis)	35
	I.4 Better spatio-temporal compartmentalization of brain function	36
J	Improvements from multimodality	38
-	J.1 Voxelwise improvements from multimodality (r analysis)	38
	J.2 Voxelwise improvements from multimodality (CC_{norm} analysis)	41
	J.3 ROI predictions improvements from multimodality	42

K	Improvements from nonlinearity and multimodality K.1 Voxelwise improvements from DIMLP, and additional improvements from MLP (<i>r</i>	44
	analysis)	44
	K.2 Voxelwise improvements from DIMLP, and additional improvements from MLP	
	$(CC_{norm} \text{ analysis})$	44
	model	45
L	Variance partitioning analysis	48
	L.1 Summary of variance partitioning results	48 48
	L.3 Largest variance partitioning for each voxel	55
	L.4 Variance partitioning Venn diagram	58
M	Unique challenges in speech encoding and contextualizing model performance	61
	 M.1 Challenges of speech encoding compared to vision encoding M.2 Typical improvement magnitudes in fMRI speech encoding studies 	61 61
N	Licenses of the assets	62
	A	`
A	ABBREVIATIONS OF BRAIN AREAS AND REGIONS OF INTEREST (ROIS)
Br	ain Areas are abbreviated as follows:	
	• AC: Auditory Cortex	
	• AG: Angular Gyrus	
	LPFC: Lateral Prefrontal Cortex	
	LTC: Lateral Temporal Cortex	
	• mPFC: Medial Prefrontal Cortex	
	• OC: Occipital Cortex	
	• PrCu: Precuneus	
Τh	e ROIs are abbreviated as follows:	
	• AC: Auditory Cortex	
	• AG: Angular Gyrus	
	• Broca: Broca's Area	
	• EBA: Extrastriate Body Area	
	• FFA: Fusiform Face Area	
	• FEF: Frontal Eye Field	
	• IFSFP: Inferior Frontal Sulcus Face Patch	
	LPFC: Lateral Prefrontal Cortex	
	LTC: Lateral Temporal Cortex	
	• M1F: Primary Motor Cortex - Foot	
	• M1H: Primary Motor Cortex - Hand	
	• M1M: Primary Motor Cortex - Mouth	
	• mPFC: Medial Prefrontal Cortex	
	• OC: Occipital Cortex	
	•	
	OFA: Occipital Face Area PMyh: Ventral Premotor Hand Area	
	• PIVIVII: VENITAL PTEMOIOT HAND ATEA	

• PPA: Parahippocampal Place Area

• PrCu: Precuneus

 • RSC: Retrosplenial Cortex

• S1F: Primary Somatosensory Cortex - Foot

• S1H: Primary Somatosensory Cortex - Hand

• S1M: Primary Somatosensory Cortex - Mouth

• sPMv: Superior Ventral Premotor Speech Area

• SMFA: Supplementary Motor Foot Area

• SMHA: Supplementary Motor Hand Area

B DETAILS OF IMPLEMENTATION

B.1 LLAMA FEATURE EXTRACTION STRATEGY

Llama feature extraction was done in a dynamical window size manner for efficiency. Initially, the context window grew incrementally as tokens were added, up to a maximum of 512 tokens, after which the window was reset to a new context of 256 tokens. This approach avoided memory overheads associated with processing the entire tokenized text while maintaining sufficient contextual information for accurate semantic representation.

B.2 Noise ceiling (CC_{max}) and nocmalized correlation (CC_{norm}) calculation

For each voxel, the maximum correlation coefficient is estimated as $CC_{max} = (\sqrt{1 + \frac{NP}{SP \times N}})^{-1}$, where N is the number of repeats (10 in our case), NP is the noise power or unexplainable variance, and SP is the amount of variance that could be explained by an ideal predictive model.

B.3 RESAMPLING THE HIDDEN STATE OF LLMS TO FMRI TIME POINTS

After giving the language/audio model the same input as the subject, we temporally aligned the hidden states of its l^{th} layer corresponding to a given i^{th} token (last token of the i^{th} word for language models), $H_l^i(S_{\{k|k\leq i\}})\in\mathbb{R}^{d_{\text{model}}^l}$ (aggregate shape of $\mathbb{R}^{N_{\text{token}}\times d_{\text{model}}^l}$ for the whole story where N_{token} is the number of tokens/words), to the fMRI acquisition times (TR times) using Lanczos interpolation, obtaining an extracted feature of size $\mathbb{R}^{N_{\text{TR}}\times d_{\text{model}}^l}$, where N_{TR} is the number of tokens (or number of words for language models) for each story and d_{model}^l is the dimension of the l^{th} hidden layer. We constructed the feature corresponding to a given n^{th} TR (2n seconds in physical time) by concatenating the representations from four previous TRs (2, 4, 6, 8 seconds before t in physical time) to get a vector of shape $\mathbb{R}^{4d_{\text{model}}^l}$ for every n^{th} TR, which we denote as $H_l^m(S_{\{t|t\leq 2n\}})$. $H_l^m(S_{\{t|t\leq 2n\}})$ and to provide past stimuli information to the model. (Our process is identical to that of Antonello et al. (2024), ensuring that the same input was given, ensuring fair comparison.

B.4 REPRESENTATIONS FOR FMRI RESPONSE USING PCA

To an aggregate fMRI response, $Y_{\rm org} \in \mathbb{R}^{N_{\rm TR} \times N_{\rm voxels}}$, we applied PCA with 8192 maximum components along the voxel dimension using scikit-learn (Pedregosa et al., 2011), yielding an approximate projection matrix, $W \in \mathbb{R}^{N_{\rm voxels} \times N_{\rm 8192}}$. Given $N_{\rm PCA}$ number of principal components to consider, we take the top $N_{\rm PCA}$ components to get $W_{\rm PCA} \in \mathbb{R}^{N_{\rm voxels} \times N_{\rm PCA}}$, and train the encoding model to predict the reduced dimension PCA projection of the data, $Y_{\rm PCA} = Y_{\rm org}W_{\rm PCA} \in \mathbb{R}^{N_{\rm TR} \times N_{\rm PCA}}$. During evaluation, the trained model outputs a reduced dimension representation of the data, $\hat{Y}_{\rm PCA} \in \mathbb{R}^{N_{\rm TR-test} \times N_{\rm PCA}}$, where $N_{\rm TR-test}$ denotes the number of timepoints (TRs) in the test story. This is reconstructed back the the original voxel space by applying an inverse of the projection matrix, $\hat{Y}^{\rm test} = \hat{Y}^{\rm test}_{\rm PCA}W_{PCA}^T \in \mathbb{R}^{N_{\rm TR-test} \times N_{\rm voxels}}$, which is later compared with the ground truth, $Y^{\rm test} \in \mathbb{R}^{N_{\rm TR-test} \times N_{\rm voxels}}$.

It should be noted that due to the high dimensionality of the data, incremental PCA was used, in place of regular PCA.

B.5 Details of encoding models

The encoding model architecture is as follows:

- Linear Regression (Linear): Ridge regression. Following Antonello et al. (2024), ridge regression with bootstrapping (n=3) was used to estimate the optimal regularization parameters (alphas) for each voxel. The training data was divided into chunks of length 20, with 25% used for held-out validation in each bootstrap iteration. The best alpha values were averaged across iterations, and the final model was trained on the full training dataset using these alphas.
- *Multi-Layer Perceptron (MLP):* MLP with a single hidden layer of 256 units, applying batch normalization and dropout to prevent overfitting. The hyperbolic tangent (tanh) was used as the activation function.
- Multi-Layer Linear (MLLinear): MLP but without dropout, batch normalization, and with the identity activation function.
- Delayed Interaction MLP (DIMLP): MLP variant processes. Each modality through separate 256-unit hidden layers before concatenation and final linear projection.

We implemented encoding models using PyTorch. We employed the AdamW optimizer (Loshchilov, 2017) with a batch size of 128 and Mean Absolute Error (MAE) as the loss function to mitigate excessively penalizing random signal fluctuations. Our training regime consisted of 200 epochs with early stopping (patience = 10) based on validation loss, and we applied batch normalization with a momentum of 0.1. For robust evaluation, we implemented 5-fold cross-validation, averaging predictions across the five models for our final results. Hyperparameter optimization was conducted using Optuna (Akiba et al., 2019), which performed 70 trials to determine optimal values for the dropout rate (0.1 to 0.3), learning rate (10^{-5} to 10^{-1}), and weight decay (5×10^{-5} to 10^{-1}).

Ridge regression was performed using a CPU node with 96 cores (Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz) and 512 GB of RAM. Running the audio and language models and training encoding models was done using a GPU node with 8 H100 80GB GPUs.

C COMPARISON WITH STACKED REGRESSION MODEL OF ANTONELLO ET AL. (2024)

To establish the effectiveness of our nonlinear multimodal approach, we conduct a detailed comparison with the current state-of-the-art stacked regression model (Antonello et al., 2024). Their method combines semantic and audio predictions through stacked regression followed by voxel-selection, where they decide what model to use (stacked regression or semantic linear) for each voxel based on a validation dataset. Their results are compared here and not in Table 1 due to their use of only parts of the test stories as validation, barring computation of the "Avg r^2 " value in Table 1. For accurate comparison, we obtain and use their published model weights and features.

The evaluation protocols differ specifically for the stacked regression (SR) model: while all models (including those in Antonello et al. (2024)) primarily report performance using three test stories (Table 1), SR uniquely requires using two of these test stories for validation-based voxel selection and only using the story "wheretheressmoke" for final testing.

Also, following the identification of an error in the original evaluation protocol through community feedback, we corrected the methodology for fair comparison. Note that CC_{norm} values remain consistent with Table 1 as they were originally computed using only the "wheretheressmoke" story due to the unavailability of test repeats for the other two stories.

To ensure fair comparison with SR, we additionally evaluate all models using their single-story protocol in Table 2, reporting both CC_{norm} and a story-specific **Avg** r^2 (**single story**) metric to distinguish from our three-story evaluation. We found CC_{norm} provides more stable comparisons than r^2 in this context, as the reduced number of timepoints (251 versus 790) makes r^2 more susceptible

Table 2: Comparing encoding performance across different models using the single test story evaluation protocol. Values show normalized correlation coefficient (CC_{norm}) and story-specific r^2 (Avg r^2 (story))(distinguishing from Table 1's three-story evaluation (Avg r^2)). SR refers to the previous state-of-the-art stacked regression model (Antonello et al., 2024), which combines LLM and audio predictions through weighted averaging. Two masking approaches are used: 1) "mask," - their precomputed validation-based voxel selection mask, and 2) "mask" - our computed masks that retain voxels showing validation improvements. For "mask", Linear+Mask indicates creating and applying a mask based on multimodal linear vs semantic linear performance, while MLP+Mask does the same using MLP models. semantic, denotes features from LLAMA-30B's 18th layer used in SR,

while our models uses features from the 12th layer of LLAMA-7B. All approaches are evaluated

using identical test data for fair comparison and r^2 is computed as |r| * r.

modality 1	modality 2	encoder	response	Avg r^2 (single story)	Avg CC_{norm}
semantic	audio	MLP	PCA	5.13% (+7.7%)	34.32 % (+14.4%)
semantic	audio	MLP + mask	PCA	5.02% (+5.5%)	33.33% (+11.0%)
semantic	audio	DIMLP	PCA	4.93% (+3.6%)	32.59% (+8.6%)
semantic	audio	MLLinear	PCA	5.00% (+5.1%)	32.41% (+8.0%)
semantic	audio	$MLP + mask_A$	PCA	4.77% (+0.2%)	31.70% (+5.6%)
semantic	audio	Linear	all voxels	4.92% (+3.4%)	31.36% (+4.5%)
semantic	audio	MLP	all voxels	4.54% (-4.5%)	31.11% (+3.6%)
semantic	audio	Linear + mask	all voxels	4.90% (+2.9%)	31.09% (+3.6%)
$semantic_A$	audio	$SR + mask_A$	all voxels	4.76% (Baseline)	30.02% (Baseline)
semantic	audio	Linear	PCA	4.48% (-5.8%)	28.92% (-3.7%)
semantic	-	MLP	PCA	4.58% (-3.7%)	30.89% (+2.9%)
semantic	-	MLLinear	PCA	4.59% (-3.6%)	29.95% (-0.2%)
$semantic_A$	-	Linear	all voxels	4.60% (-3.3%)	29.84% (-0.6%)
semantic	-	Linear	all voxels	4.50% (-5.4%)	29.12% (-3.0%)
semantic	-	MLP	all voxels	3.97% (-16.6%)	27.45% (-8.6%)
semantic	-	Linear	PCA	4.15% (-12.8%)	26.88% (-10.4%)
audio	-	MLP	PCA	3.83% (-19.6%)	29.01% (-3.4%)
audio	-	MLP	all voxels	3.67% (-22.8%)	28.21% (-6.0%)
audio	-	MLLinear	PCA	3.66% (-23.1%)	27.50% (-8.4%)
audio	-	Linear	PCA	3.54% (-25.6%)	26.71% (-11.0%)
audio	-	Linear	all voxels	3.46% (-27.3%)	25.20% (-16.0%)

to noisy voxels compared to CC_{norm} that accounts for these noisy voxels. This stability is reflected in the closer alignment between CC_{norm} and r^2 rankings in Table 1 compared to Table 2. Therefore, we sort Table 2 with respect to the CC_{norm} .

Also, while their approach uses LLAMA-30B's 18th layer (denoted as semantic_A), we demonstrate competitive performance using LLAMA-7B features, consistent with our finding that encoding performance roughly plateaus beyond 7B parameters (Appendix F). For comprehensive comparison, we implement both their pre-computed validation-based voxel selection mask ("mask_A", created using an unspecified significance threshold) and our simpler approach ("mask") that retains voxels showing any validation set improvement.

Table 2 demonstrates several key results about our multimodal nonlinear approach. Our multimodal MLP achieves 34.32% CC_{norm} without masking, representing a 14.4% improvement over the baseline stacked regression model, though the Avg r^2 (story) improvement is more modest at 7.7%.

Our multimodal linear encoder also outperforms stacked regression by 4.5%, supporting our hypothesis that direct concatenation enables more effective modality interaction compared to weighted averaging of unimodal predictions. The performance hierarchy (MLP > Linear > SR) suggests that both architectural choices - direct multimodal fusion and nonlinearity - contribute independently to improved predictions.

Interestingly, validation-based masking did not improve performance for either our linear or MLP models, regardless of whether using our mask or the precomputed mask_A from previous work. This suggests our models learn effective feature selection implicitly, determining when to leverage or ignore audio features for specific voxels without explicit masking. The benefit of removing masking also likely stems from our models' ability to learn voxel-specific feature importance through direct

access to input data, combined with the inherent noise in validation masks due to the limited number of timepoints.

These results demonstrate that enabling direct interaction between modalities through concatenation, combined with nonlinear processing, provides a more robust approach than previous methods relying on weighted averaging and explicit feature selection.

D RESULTS OF MORE COMPLEX NONLINEAR MODELS

Table 3: Encoding performance of various nonlinear semantic encoders compared to other models. The table presents the average r^2 and normalized correlation coefficients (CC_{norm}) along with percentage changes relative to the baseline Linear model. Deep MLP refers to an MLP with two hidden layers, while MLP is an MLP with one hidden layer.

modality 2	encoder	response	Avg r^2	Avg CC_{norm}
-	MLP	PCA	3.79% (+3.6%)	30.89% (+6.1%)
-	Linear	all voxels	3.66% (Baseline)	29.12% (Baseline)
-	LSTM	PCA	3.33% (-9.0%)	26.95% (-7.46%)
-	GRU	PCA	3.21% (-12.3%)	26.15% (-10.2%)
-	DeepMLP	PCA	3.05% (-16.7%)	27.45% (-5.73%)
-	RNN	PCA	2.99% (-18.0%)	25.42% (-12.7%)
-	Transformer	PCA	2.82% (-23.0%)	27.97% (-3.95%)
	- - - -	- MLP - Linear - LSTM - GRU - DeepMLP - RNN	- MLP PCA - Linear all voxels - LSTM PCA - GRU PCA - DeepMLP PCA - RNN PCA	- MLP PCA 3.79% (+3.6%) - Linear all voxels 3.66% (Baseline) - LSTM PCA 3.33% (-9.0%) - GRU PCA 3.21% (-12.3%) - DeepMLP PCA 3.05% (-16.7%) - RNN PCA 2.99% (-18.0%)

We explored a range of more complex nonlinear models, as detailed in Table 3. Specifically, we evaluated LSTM, GRU, RNN, and Transformer architectures, each configured with a single layer. The hidden dimensions for these models were determined by experimenting with sizes of 256, 512, 768, and 1024, selecting the dimension that yielded the best performance.

All models received inputs consisting of four timepoints, consistent with the MLP model, which concatenates these timepoints. For the recurrent models (LSTM, GRU, RNN), the final predictions were generated by applying a linear projection to a weighted pooling of the outputs corresponding to the four input timepoints. In the case of the Transformer model, we utilized learnable positional embeddings along with full self-attention mechanisms, and the final prediction was obtained by linearly projecting the output of the last token.

Additionally, we examined the DeepMLP model, an extension of the standard MLP with two hidden layers instead of one.

Our results indicate that while the MLP with a single hidden layer outperforms linear models, introducing greater complexity—such as recurrenct models or additional hidden layers—leads to overfitting and decreased performance.

E PERFORMANCE OF MULTIMODAL MLP MODEL WHEN MIXING DIFFERENT LAYERS

We observe in Figure 4 that integrating the best performing layers from each modality results in the best performing multimodal model.

F SCALING LLM AND AUDIO MODELS DOES NOT NECESSARILY LEAD TO BETTER ENCODERS

Previous research by Antonello et al. (2024) found that increasing the size of large language models (LLMs) and audio models, such as scaling OPT from 125M to 175B parameters or Whisper from 8M to 637M parameters, enhanced encoding performance. However, performance gains plateaued for larger models like LLAMA-33B and OPT-175B, which they attributed to overfitting from larger hidden sizes.

Building on these findings, our study delves deeper into the scaling trends and offers a refined perspective on their implications for brain encoding models. For audio models, we confirm a positive

1107

1108

1109 1110 1111

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128 1129

1130 1131

1132

1133

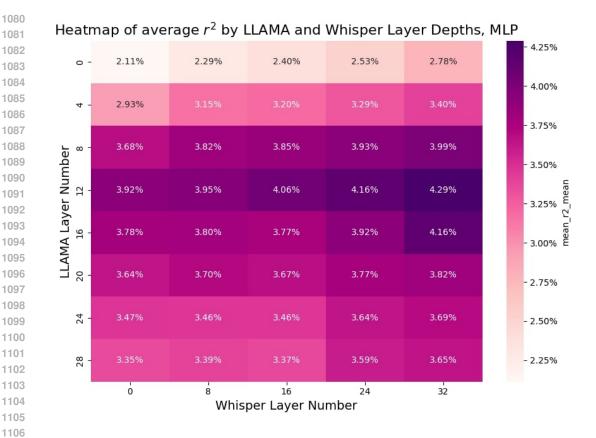


Figure 4: Heatmap showing average r^2 values for different combinations of LLAMA and Whisper layer depths using an MLP encoder. Darker colors represent higher performance, with the best results obtained when the best layers in the respective uni-modal encoding models were used.

correlation between model size and performance, as shown in Figure 5 (d). However, this scaling effect does not hold for language models. Specifically, LLAMA-7B, LLAMA-13B, LLAMA-33B, and LLAMA-65B exhibit comparable encoding performance, as shown in Figure 5 (b). This suggests diminishing returns beyond 7 billion parameters, a finding consistent with prior work by Bonnasse-Gahot & Pallier (2024), which reported performance plateaus for LLMs larger than 3 billion parameters.

We also evaluated the impact of scaling training data by examining newer versions of LLAMA and Whisper (e.g., LLAMA-1, LLAMA-2, LLAMA-3; Whisper v1, v2, v3). Despite larger datasets, newer versions did not yield significant performance improvements for either audio or semantic encoding models. This indicates that advancements in self-supervised learning (SSL) tasks, such as better next-token prediction, do not necessarily translate to more effective features for brain encoding. In essence, SSL improvements do not directly enhance brain-aligned representations.

In conclusion, our findings highlight two key points: (1) scaling language models beyond 7 billion parameters does not substantially improve encoding performance, and (2) increasing training data or using newer model versions does not enhance brain encoding feature extractors. These results challenge the assumption that simply scaling feature extractors, as proposed by Antonello et al. (2024), will lead to better encoding models.

CONTEXT SIZE SPEECH MODELS INFLUENCE ENCODER PERFORMANCE

Figure 6 illustrates the impact of varying the context size (window size) of the Whisper model on encoding performance when using linear encoders, as explored in Oota et al. (2023). The results indicate that a 16-second window size, which was used as the default throughout our study, delivers the

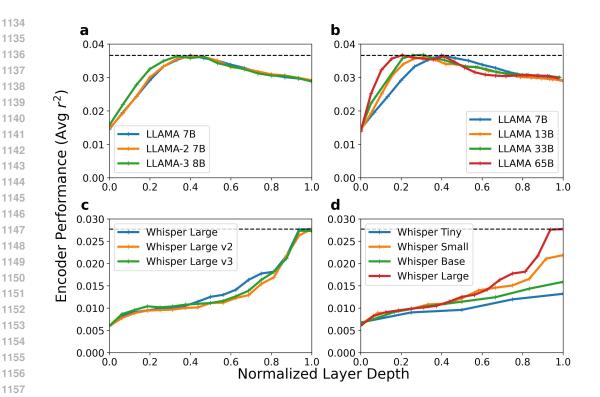


Figure 5: Encoder performance across different LLAMA and Whisper model variants, using linear regression applied to the full set of voxels. Panel (a) compares LLAMA models of various architectures (LLAMA-2 and LLAMA-3) with 7B and 8B parameters. Panel (b) presents performance across different LLAMA models of increasing sizes, from 7B to 65B. Panels (c) and (d) show the performance for different Whisper model variants, including comparisons between Whisper Large versions (c) and different model sizes (d), from Whisper Tiny to Whisper Large. Performance is measured in terms of average r^2 , plotted against normalized layer depth.

best performance. This outcome aligns with expectations, as the selected window size is consistent with the recommendations from Antonello et al. (2024).

H PERFORMANCE OF VARIOUS ENCODING MODELS USING DIFFERENT INPUTS

H.1 Voxelwise r values from different encoding mdoels and stimuli

Figures 7, 8, and 9 each represent the voxelwise correlation (r) values using various encoders and inputs for subjects S1, S2, and S3, respectively.

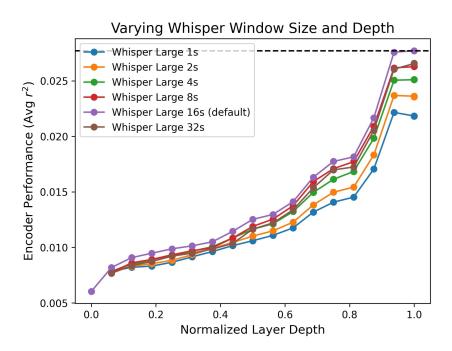


Figure 6: Encoder performance across different Whisper Large models with varying window size, using linear regression applied to the full set of voxels.

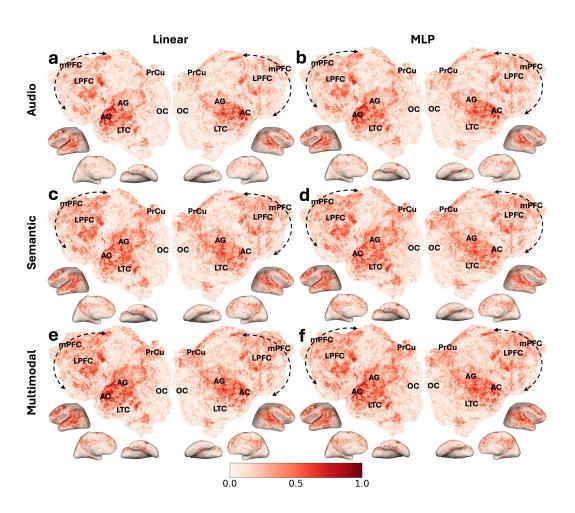


Figure 7: Voxelwise r values for Subject S1 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

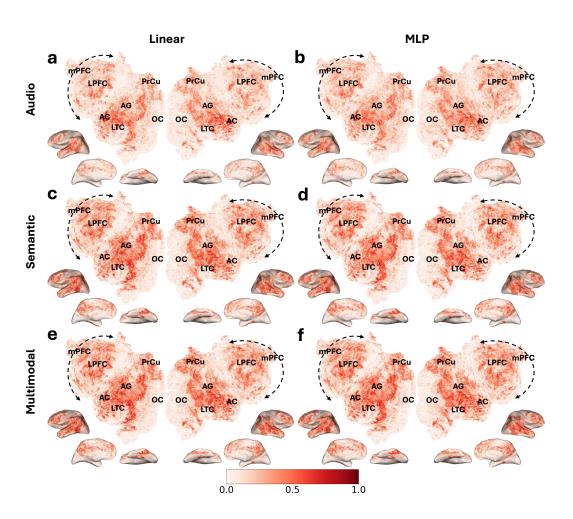


Figure 8: Voxelwise r values for Subject S2 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

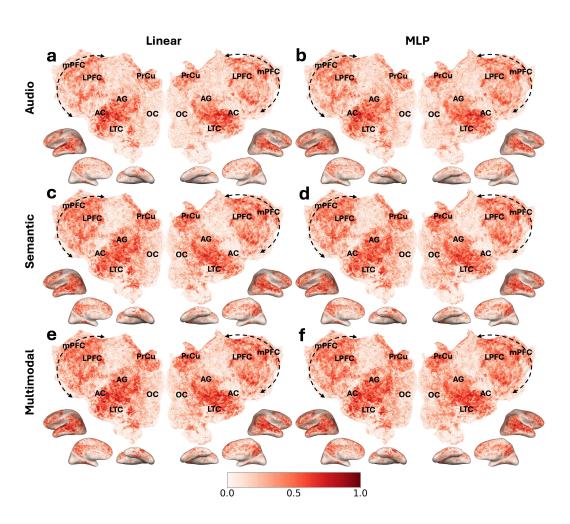


Figure 9: Voxelwise r values for Subject S3 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

H.2 ROI-WISE r VALUES FROM DIFFERENT ENCODING MODELS AND STIMULI

Figure 10 shows the r value for different encoding models and stimuli averaged across subjects.

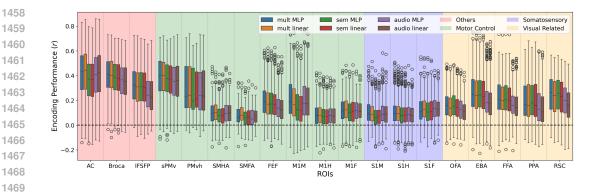


Figure 10: Box plot showing r across different regions of interest (ROIs), where the r values are aggregated over all subjects. multi refers to multimodal, and sem refers to semantic encoders. ROIs are grouped and color-coded by their functions.

H.3 VOXELWISE CC_{norm} values from different encoding mdoels and stimuli

Figures 11, 12, and 13 each represent the normalized voxelwise correlation (CC_{norm}) values using various encoders and inputs for subjects S1, S2, and S3, respectively.

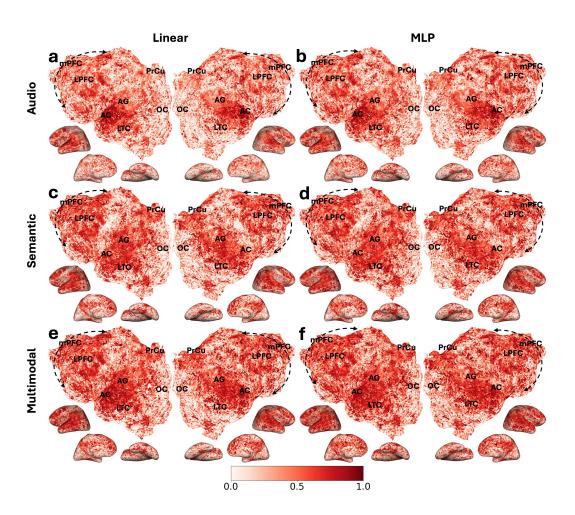


Figure 11: Voxelwise CC_{norm} values for Subject S1 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

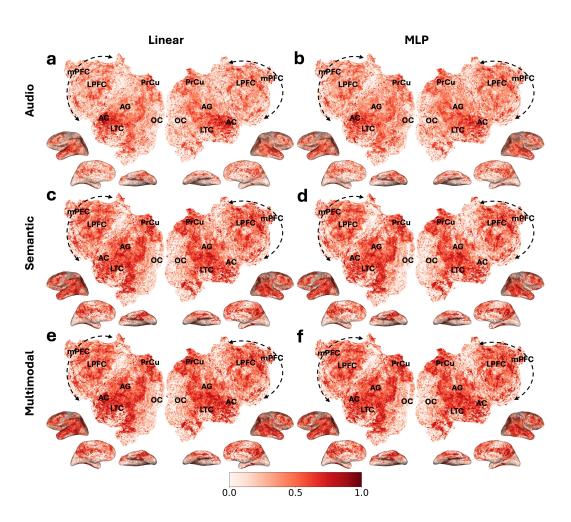


Figure 12: Voxelwise CC_{norm} values for Subject S2 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

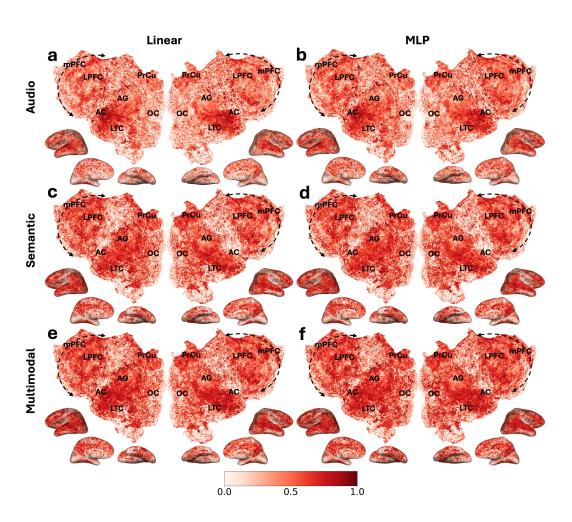


Figure 13: Voxelwise CC_{norm} values for Subject S3 across different input modalities and encoding models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.

I IMPROVEMENTS FROM NONLINEARITY

I.1 LAYERWISE PERFORMANCE INCREASES FROM MLP

Figure 14 shows that MLP improves encoding performance for both language and audio models, regardless of what layer is used for the MLP encoding model.

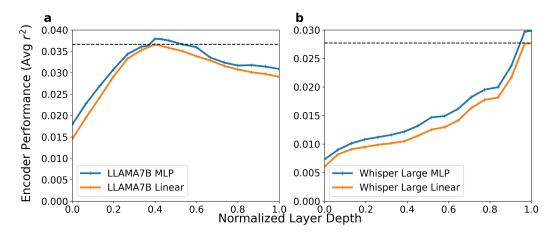


Figure 14: Average voxel-wise r^2 values, computed as the mean across three subjects, for each layer of the (a) language (LLAMA7B) and (b) audio (Whisper Large) models. Comparisons are shown between the MLP and linear encoders, and dashed black lines indicate the best performance for linear encoders

I.2 VOXELWISE IMPROVEMENTS FROM MLP (r ANALYSIS)

Figures 15, 16, and 17 each represent the performance improvements in voxelwise correlation values for semantic, audio, and multimodal inputs, respectively, for each subject.

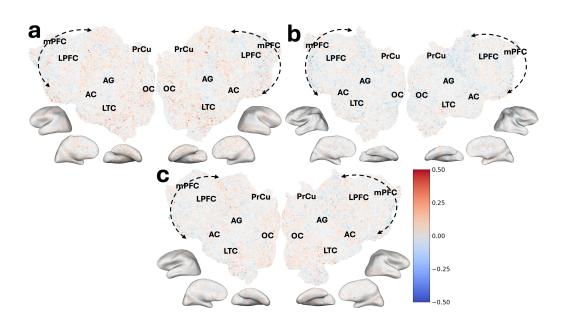


Figure 15: Encoding model performance improvements. (a-c) Voxelwise Δr (MLP performance minus linear performance) for semantic input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

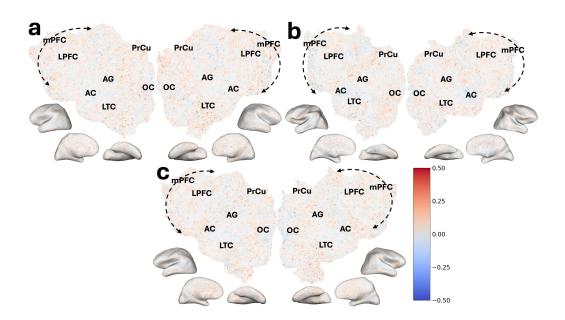


Figure 16: Encoding model performance improvements. (a-c) Voxelwise Δr (MLP performance minus linear performance) for audio input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

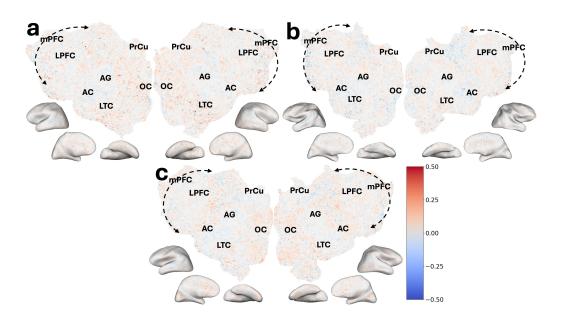


Figure 17: Encoding model performance improvements. (a-c) Voxelwise Δr (MLP performance minus linear performance) for multimodal input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

I.3 VOXELWISE IMPROVEMENTS FROM MLP (CC_{norm} ANALYSIS)

Figures 19, 18, and 20 each represent the performance improvements in voxelwise CC_{norm} values for semantic, audio, and multimodal inputs, respectively, for each subject. The improvements are more pronounced with CC_{norm} compared to r as noise is taken into account.

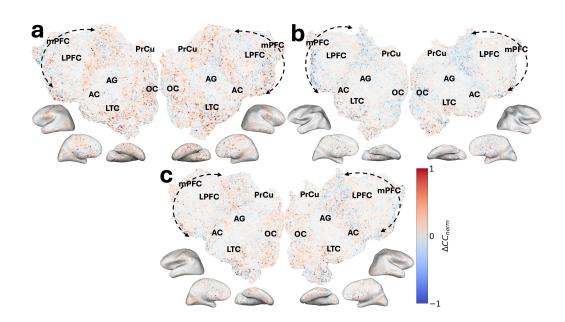


Figure 18: Encoding model performance improvements. (a-c) Voxelwise ΔCC_{norm} (MLP performance minus linear performance) for semantic input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

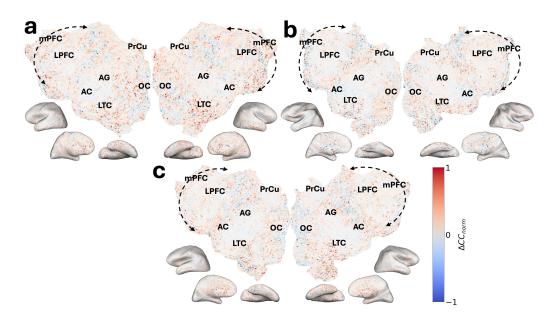


Figure 19: Encoding model performance improvements. (a-c) Voxelwise ΔCC_{norm} (MLP performance minus linear performance) for audio input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

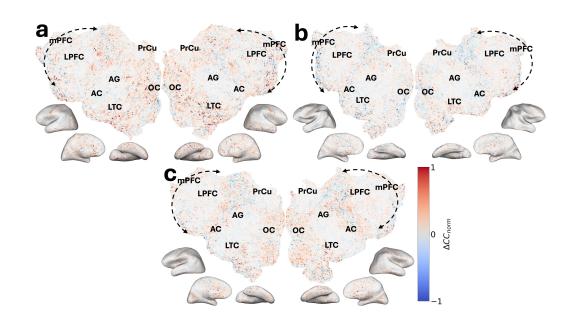


Figure 20: Encoding model performance improvements. (a-c) Voxelwise ΔCC_{norm} (MLP performance minus linear performance) for multimodal input for subjects S1, S2, S3, respectively. Positive values indicate MLP outperformance.

I.4 BETTER SPATIO-TEMPORAL COMPARTMENTALIZATION OF BRAIN FUNCTION

To compare the performance between Whisper and LLAMA models, we define the Relative Error Difference (RED) for each voxel v at time t as:

$$RED(v,t) = |f_{semantic}(v,t) - y(v,t)| - |f_{audio}(v,t) - y(v,t)|$$

where $f_{\text{semantic}}(v,t)$ is the prediction from the semantic encoding model for voxel v at time t, $f_{\text{audio}}(v,t)$ is the prediction from the audio encoding model for voxel v at time t, and y(v,t) represents the true value at voxel v and time t. A positive RED value indicates that the audio model outperforms the semantic model at that specific voxel and time, while a negative value indicates that the semantic model performs better.

In this analysis, we computed the RED between Whisper and LLAMA models for each voxel v at a given time t. For each region of interest (ROI), the average RED is calculated as:

$$\text{RED}_{\text{ROI}}(t) = \frac{1}{N} \sum_{v \in \text{ROI}} \text{RED}(v, t)$$

Where N is the number of voxels in the ROI. The correlation matrices were then computed over these ROI time series for both linear and nonlinear (MLP) encoders (Figure 21 (b, c)). A high correlation between two ROIs indicates that their semantic/audio processing temporal dynamics are similar over time.

For comparison, functional connectivity (FC) was also computed using the average fMRI signal for each voxel (Figure 21 a). Hierarchical clustering was then performed on the correlation matrices, producing the dendrograms in panels (d-f).

As shown in Figure 21, panel (d) does not exhibit meaningful compartmentalization, indicating that the ROIs are not functionally clustered based on FC. However, the correlation matrices derived from RED (panels b, c) demonstrate clear block-diagonal structures, suggesting better functional compartmentalization. The dendrograms in panels (e, f) show that the ROIs cluster according to

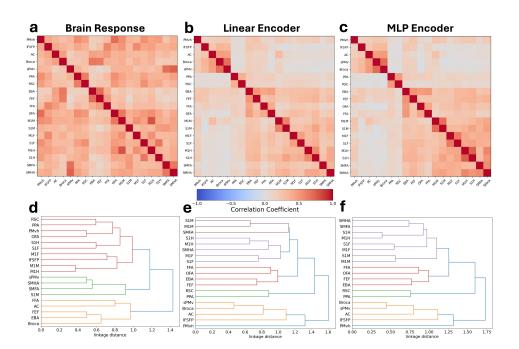


Figure 21: Spatio-temporal clustering based on Relative Error Difference (RED) between semantic and audio encoding models. Panels (a-c) display correlation matrices representing the temporal relationships between regions of interest (ROIs). For consistency, all the ROIs in (a,b,c) are ordered according to the most optimal ordering for (c). Panel (a) shows the functional connectivity (FC) matrix, calculated from the average fMRI signals. Panel (b) presents the correlation matrix from Relative Error Difference between Whisper and LLAMA using linear encoders, while panel (c) uses nonlinear (MLP) encoders, showing better functional compartmentalization with stronger block-diagonal structures. Panels (d-f) depict hierarchical clustering dendrograms derived from the correlation matrices in panels (a-c). Panel (d), based on FC, shows no clear compartmentalization of ROIs. Panel (e), based on linear encoders, show almost perfect functional clustering, though with inaccuracies (e.g., SMFA clustered with S1M/M1M). Panel (f), based on nonlinear (MLP) encoders, achieves better functional clustering, correctly grouping motor-related regions. The modularity Q values confirm this improvement: FC (a) scored 0.068, linear encoders (b) scored 0.145, and nonlinear encoders (c) scored 0.155, highlighting the advantage of nonlinear encoders for functional organization.

their functional roles, where the somatosensory and motor areas, visual areas, and auditory areas are grouped (even lower levels are grouped well (M1H/S1H, M1M/S1M, M1F/S1F, SMHA/SMFA, Broca/sPMv are grouped)) with nonlinear (MLP) models (f) achieving more accurate clustering than linear models (e). Specifically, panel (e) incorrectly clusters SMFA with S1M and M1M, whereas panel (f) correctly clusters SMHA and SMFA together before clustering them with other sensory and motor-related regions.

This study presents a novel approach, as it is the first to use fMRI speech encoding models to group ROIs based not only on spatial dynamics but also on their temporal processing dynamics. Traditionally, voxel-wise functional classification or grouping has been the norm in fMRI analysis, focusing solely on static (spatial) relationships. However, here with the help of fMRI encoders, we incorporate both spatial and temporal information, allowing for a more comprehensive, dynamic view of brain function, especially in the context of semantic and auditory encoding.

In summary, using nonlinear (MLP) models leads to better functional compartmentalization. In fact, modularity Q values further confirm this: FC (a) scored 0.068, linear encoders (b) scored 0.145, and nonlinear encoders (c) scored 0.155, highlighting the improved functional clustering achieved with better encoders.

J IMPROVEMENTS FROM MULTIMODALITY

J.1 VOXELWISE IMPROVEMENTS FROM MULTIMODALITY (r ANALYSIS)

This section shows the subject-wise plots of voxelwise Δr between multimodal linear/MLP and semantic/audio linear models (Figure 23, Figure 24). We observe consistent patterns of improvement when using multimodal models. For direct comparison with Figure 2 (which plots ΔCC_{norm}), we provide here the provide the equivalent plot with Δr in Figure 22.

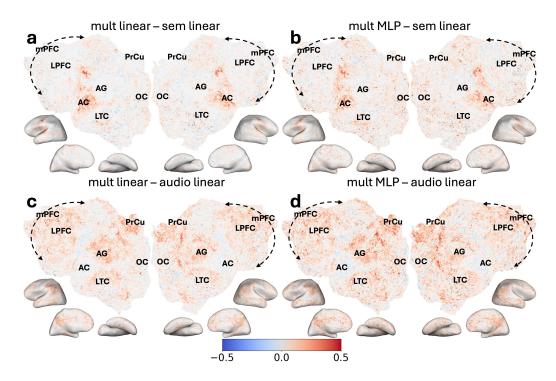


Figure 22: Multimodality improvement (Δr) in encoding models. Panels (a)-(d) display voxelwise Δr values of a single subject (S1), with warmer colors indicating regions where multimodal models outperform linear models. mut, sem, each refer to multimodal and semantic encoders.

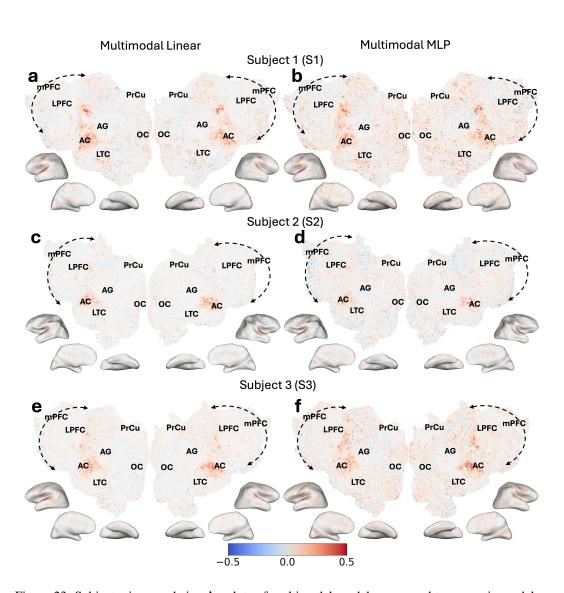


Figure 23: Subject-wise voxelwise Δr plots of multimodal models compared to semantic models. Panels (a-f) display voxelwise Δr values comparing multimodal and unimodal models across three subjects. Panels a, c, e show the difference between multimodal linear and semantic linear models, while panels b, d, f compare multimodal MLP and semantic linear models. Each row represents a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal linear models in prediction accuracy. The spatial patterns highlight enhanced encoding performance in key areas associated with semantic and auditory processing, such as the medial prefrontal cortex (mPFC), angular gyrus (AG), precuneus (PrCu), and lateral temporal cortex (LTC), emphasizing the benefits of multimodal models in capturing complex brain activity.

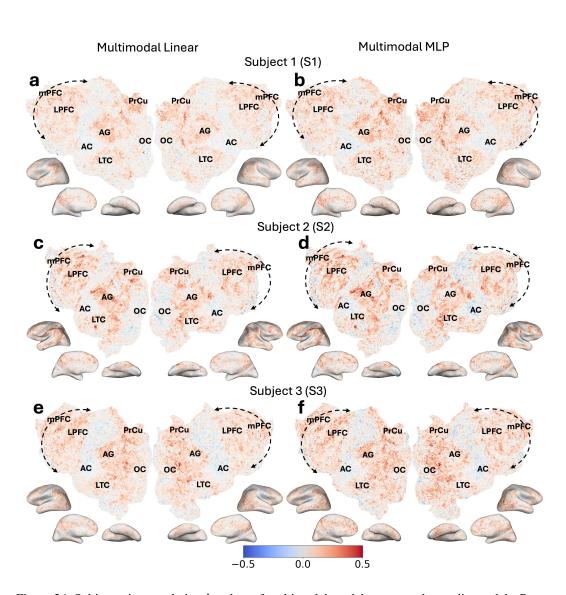


Figure 24: Subject-wise voxelwise Δr plots of multimodal models compared to audio models. Panels (a-f) display voxelwise Δr values comparing multimodal and unimodal models across three subjects. Panels a, c, e show the difference between multimodal linear and audio linear models, while panels b, d, f compare multimodal MLP and audio linear models. Each row represents a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal linear models in prediction accuracy.

J.2 VOXELWISE IMPROVEMENTS FROM MULTIMODALITY (CC_{norm} ANALYSIS)

This section shows the subject-wise plots of voxelwise ΔCC_{norm} between multimodal linear/MLP and semantic/audio linear models (Figure 26, Figure 26). We observe consistent patterns of improvement when using multimodal models. The improvements are more noticable with CC_{norm} compared to r as noise is taken into account.

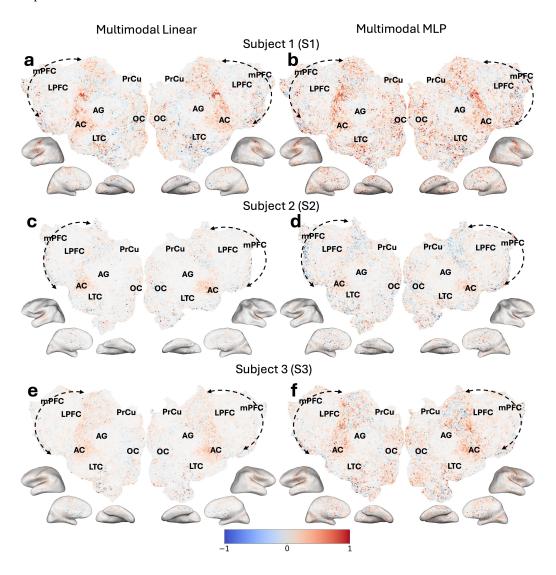


Figure 25: Subject-wise voxelwise ΔCC_{norm} plots of multimodal models compared to semantic models. Panels (a-f) display voxelwise ΔCC_{norm} values comparing multimodal and unimodal models across three subjects. Panels a, c, e show the difference between multimodal linear and semantic linear models, while panels b, d, f compare multimodal MLP and semantic linear models. Each row represents a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal linear models in prediction accuracy.

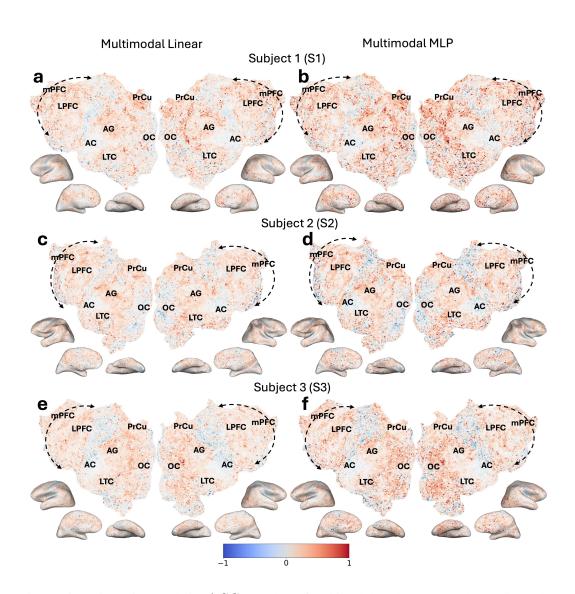


Figure 26: Subject-wise voxelwise ΔCC_{norm} plots of multimodal models compared to audio models. Panels (a-f) display voxelwise ΔCC_{norm} values comparing multimodal and unimodal models across three subjects. Panels a, c, e show the difference between multimodal linear and audio linear models, while panels b, d, f compare multimodal MLP and audio linear models. Each row represents a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal linear models in prediction accuracy.

J.3 ROI PREDICTIONS IMPROVEMENTS FROM MULTIMODALITY

This section shows the ROI-wise improvements from using multimodal models (Figure 27)

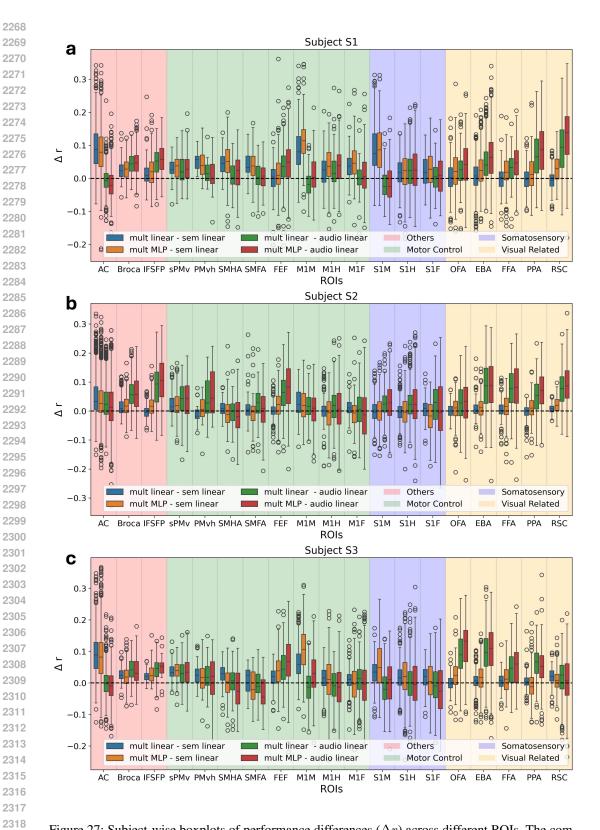


Figure 27: Subject-wise boxplots of performance differences (Δr) across different ROIs. The comparisons are made between different stimuli and encoding models: multimodal linear and multimodal MLP (mult MLP) models are compared against semantic (sem) and audio linear models. The ROIs are grouped into functional categories.

K IMPROVEMENTS FROM NONLINEARITY AND MULTIMODALITY

K.1 VOXELWISE IMPROVEMENTS FROM DIMLP, AND ADDITIONAL IMPROVEMENTS FROM MLP (r ANALYSIS)

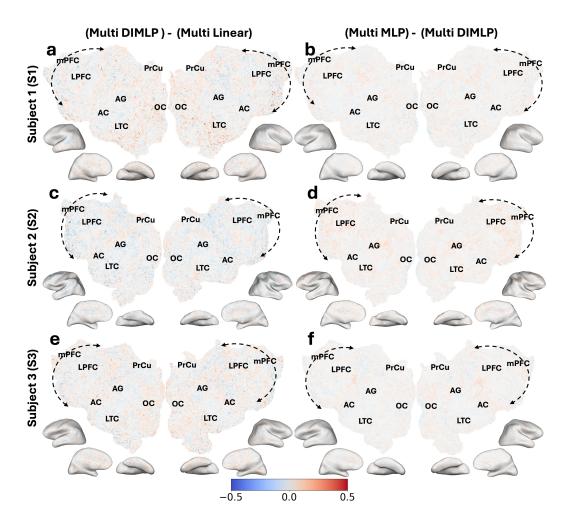


Figure 28: Nonlinearity Enhances Multimodal fMRI Predictions. Panels (a, c, e) show the voxelwise Δr values (DIMLP minus linear model), illustrating the improvements achieved through nonlinear processing within each modality, while largely limiting cross-modal interactions. Panels (b, d, f) display voxelwise Δr values (Multi MLP minus Multi DIMLP), highlighting the additional benefits of allowing nonlinear interactions between modalities ("Multi" denotes Multimodal). Each row represents the same subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the nonlinear models outperform linear models.

K.2 VOXELWISE IMPROVEMENTS FROM DIMLP, AND ADDITIONAL IMPROVEMENTS FROM MLP (CC_{norm} ANALYSIS)

Figure 29 shows the voxel-wise performance improvements in voxelwise CC_{norm} values when incorporating nonlinear interactions. The improvements are more pronouned with CC_{norm} compared to r as noise is taken into account.

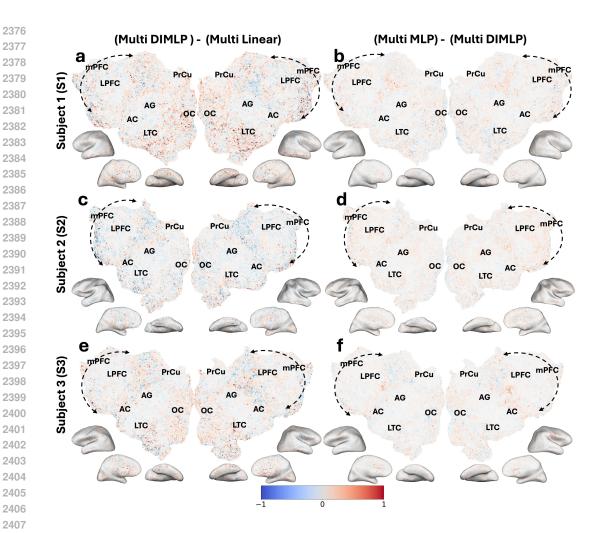


Figure 29: Nonlinearity Enhances Multimodal fMRI Predictions. Panels (a, c, e) show the voxelwise ΔCC_{norm} values (DIMLP minus linear model), illustrating the improvements achieved through nonlinear processing within each modality, while largely limiting cross-modal interactions. Panels (b, d, f) display voxelwise ΔCC_{norm} values (Multi MLP minus Multi DIMLP), highlighting the additional benefits of allowing nonlinear interactions between modalities ("Multi" denotes Multimodal). Each row represents the same subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the nonlinear models outperform linear models.

K.3 ROI-WISE IMPROVEMENTS OF MULTIMODAL DIMLP AND MLP FROM MULTIMODAL LINEAR MODEL

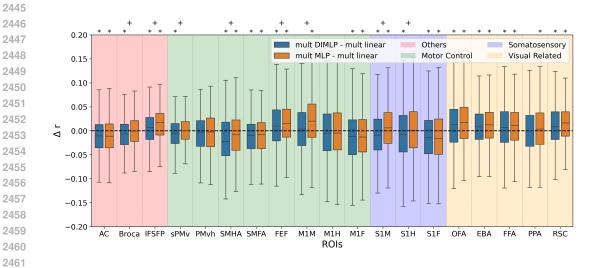


Figure 30: Box plot showing Δr across ROIs, where the Δr values are aggregated over all subjects. *multi* refers to multimodal, and *sem* refers to semantic encoders, and *DIMLP* refers to Delayed Interaction MLP, where only a *linear* interaction between modalities is allowed. The ROIs are color-coded by function. Regions where $\Delta r > 0$ with a p-value less than 0.05 are indicated by * symbols. Additionally, + symbols denote ROIs where there is a statistically significant difference (p-value < 0.05) between the two models based on a pairwise t-test. Voxelwise and ROI-wise plots for each subjects can be found in Figure 28 (Appendix), and Figure 31 (Appendix), respectively.

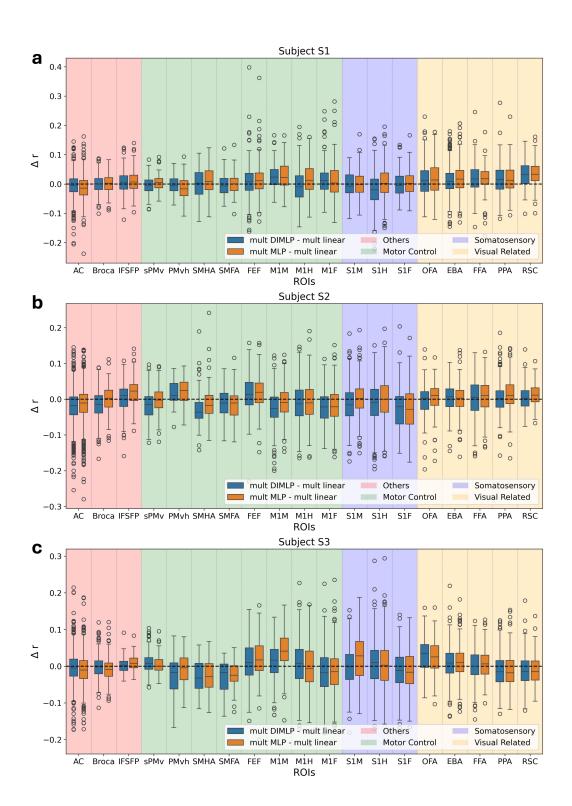


Figure 31: Subject-wise boxplots of voxel-wise differences (Δr) across different ROIs. The comparisons are made between different encoding models: multimodal MLP and multimodal DIMLP models are compared against multimodal linear models. The ROIs are grouped into functional categories.

L VARIANCE PARTITIONING ANALYSIS

To quantify the unique contributions of different feature spaces in our nonlinear multimodal encoding models, we employed a variance partitioning analysis similar to de Heer et al. (2017). This approach allowed us to determine how much variance could be uniquely explained by each feature versus that explained by a multiple features. We estimated both the fraction of variance explained by each feature space individually and the fraction that might be equally well explained by combinations of feature spaces.

We show our variance partitioning analysis results in three complementary ways: 1) voxel-wise variance partition results (Appendix L.2), 2) voxel-wise plots showing the largest variance partition for each voxel (Appendix L.3), and 3) ROI-wise Venn diagrams illustrating the distribution of variance explained across different brain regions (Appendix L.4).

For this analysis, we fit models with all possible combinations of feature spaces: two single-feature models (audio and semantic), one model combining both features (semantic-audio), and examined the distribution of variance explained within brain regions. This allowed us to decompose the total explained variance into three components: variance uniquely explained by audio features, variance uniquely explained by semantic features, and variance jointly explained by both feature spaces.

L.1 SUMMARY OF VARIANCE PARTITIONING RESULTS

Looking at the results of Appendix L.2, we observe that joint variance dominates across most cortical regions, contrasting with de Heer et al. (2017) where semantic only features showed greater dominance. This difference likely stems from our feature choices - whereas de Heer et al. (2017) used spectral and articulatory features that primarily contained information relevant mostly only to auditory cortex, our use of Whisper features provides richer auditory representations that enable better predictions beyond traditional auditory regions. This finding aligns with our earlier argument (Section 3.3.2) that multiple modalities jointly contribute to neural computations across the cortex rather than having one modality dominate.

The dominance pattern of joint variance is consistent both within and near AC, with a notable exception in early auditory regions where audio features show unique contributions. This hierarchical organization suggests that while early AC predominantly processes pure acoustic information, later AC regions integrate both semantic and auditory features for higher-level speech processing. The unique contribution of audio features in early AC is noteworthy as it suggests preservation of modality-specific processing at early sensory stages despite using rich Whisper features.

Also, Appendix L.3 reveals distinct spatial patterns in feature representation across cortical regions. The prefrontal cortex exhibits mixed dominance patterns, showing both joint semantic-audio representation and semantic-only areas. While early auditory cortex shows expected unique audio contributions, we also observe audio-specific representation in motor-sensory mouth areas (M1M, S1M), though this pattern varies across subjects.

The ROI-wise analysis in Appendix L.4 reveals that joint semantic-audio features dominate cortical representation, accounting for approximately 65% of significantly predicted voxels across the entire cortex. Core language-processing regions (AC, Broca's area, sPMv) show particularly strong joint representation (around 80 to 90%), supporting our hypothesis that speech comprehension relies on integrated multimodal processing. This integration is consistently observed across subjects, though some ROIs (e.g., PMvh in Subject S2 with only 14 voxels) have insufficient data for reliable interpretation. The transition from linear to MLP encoders increases the total number of significantly predicted voxels while maintaining similar representation patterns, indicating that nonlinear encoding primarily enhances prediction accuracy rather than fundamentally altering feature representation structure.

L.2 VARIANCE PARTITIONING OF VARIOUS MODELS

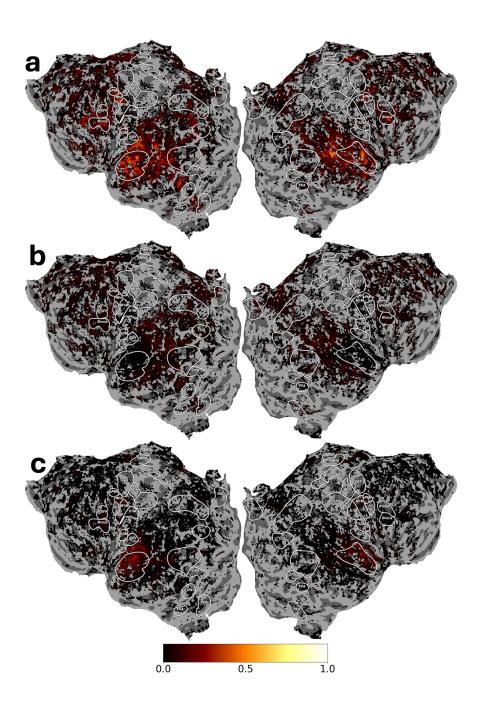


Figure 32: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S1 using linear models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

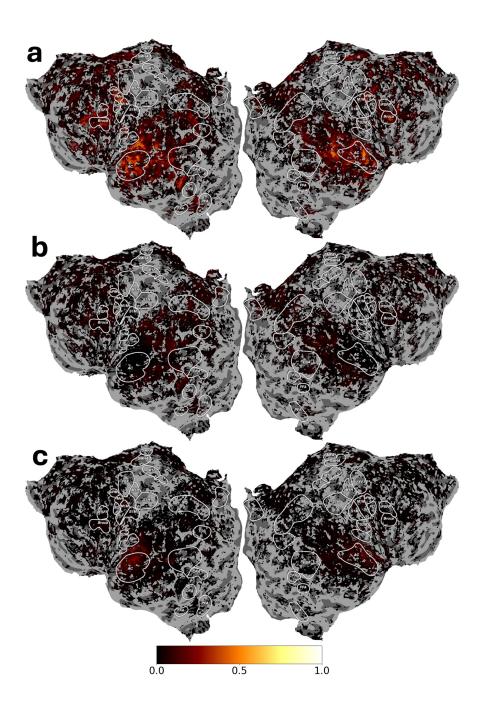


Figure 33: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S1 using MLP models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

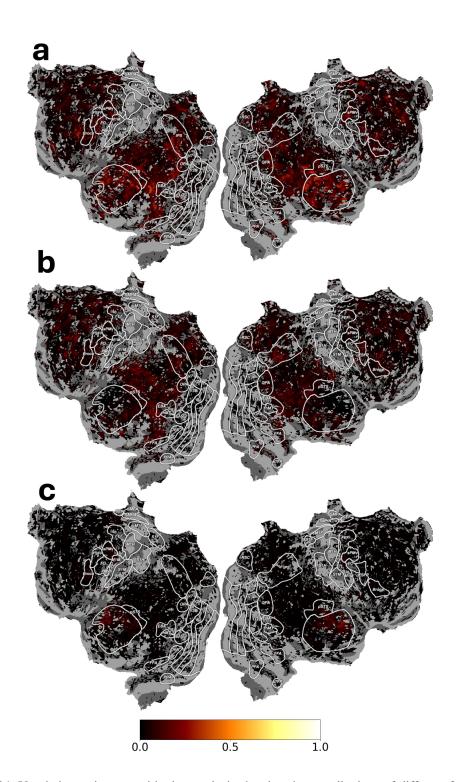


Figure 34: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S2 using linear models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

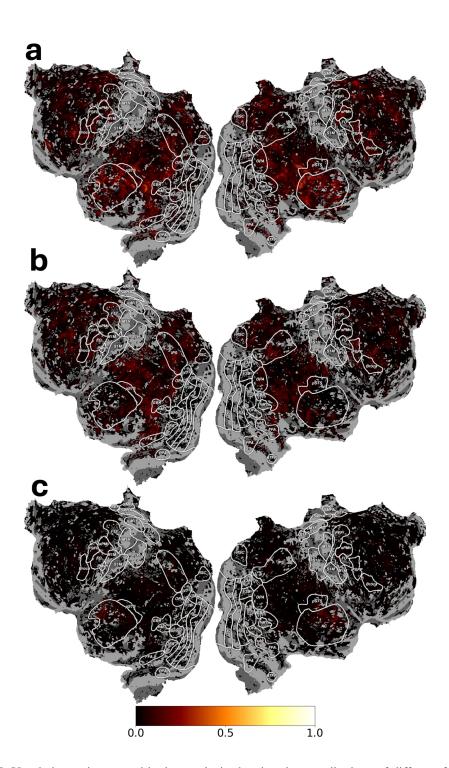


Figure 35: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S2 using MLP models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

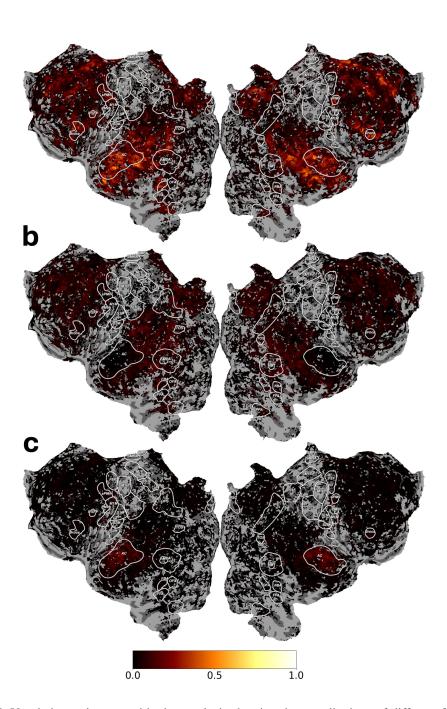


Figure 36: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S3 using linear models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

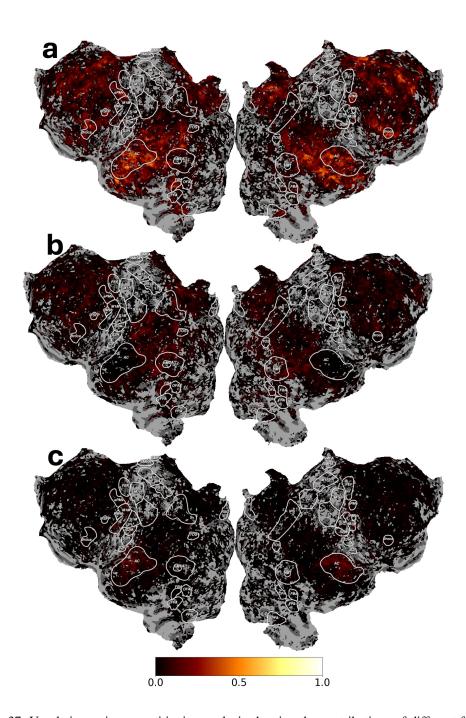


Figure 37: Voxelwise variance partitioning analysis showing the contributions of different feature types to prediction accuracy for a subject S3 using MLP models. The flatmaps display (a) variance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic features, and (c) variance uniquely explained by audio features. Values shown are normalized correlations (CC_{norm}) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).

L.3 LARGEST VARIANCE PARTITIONING FOR EACH VOXEL

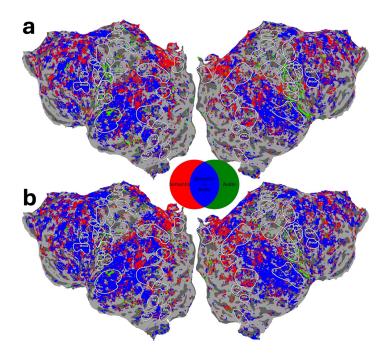


Figure 38: Voxelwise analysis showing the largest variance explained by each feature type for all significantly predicted voxels (q(FDR) < 0.01) for subject S1. The flatmaps display which feature partition (semantic in red, audio in green, or their combination in blue) best explains the variance in each cortical voxel using (a) linear and (b) MLP encoders, with outlined regions indicating key functional areas.

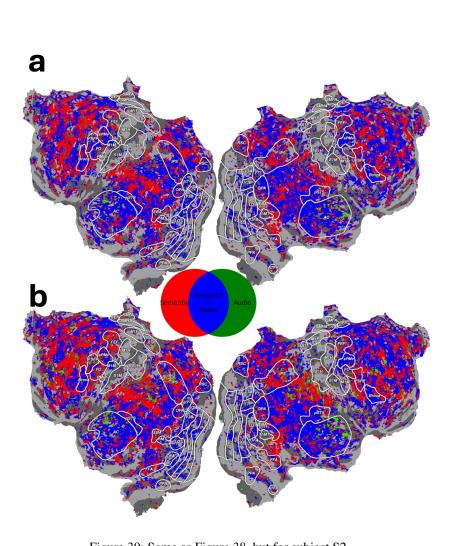


Figure 39: Same as Figure 38, but for subject S2

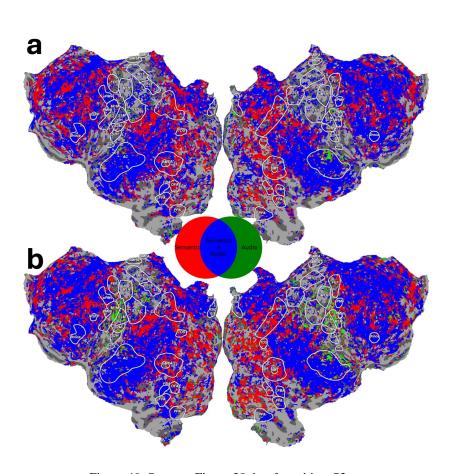


Figure 40: Same as Figure 38, but for subject S3

VARIANCE PARTITIONING VENN DIAGRAM

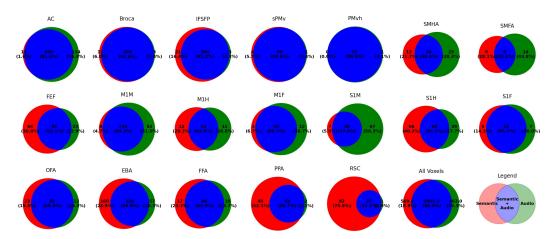


Figure 41: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S1, using linear encoder. Each diagram displays the unique and shared variance explained by semantic features (red), audio features (green), and their overlap (blue). Values indicate the number of significantly predicted voxels and their percentages. Only the voxels that was predicted statistically significantly (q(FDR) < 0.01) was used in the analysis

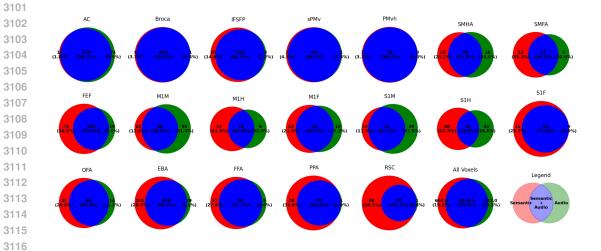


Figure 42: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S1, using MLP encoder. Refer to Fig 41 for more detail.

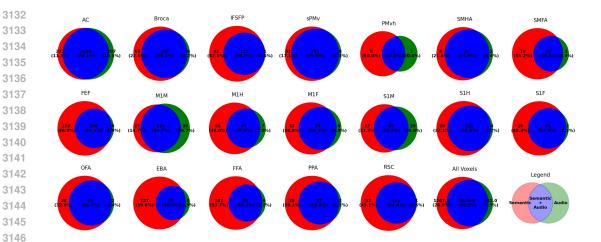


Figure 43: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S2, using linear encoder. Refer to Fig 41 for more detail.

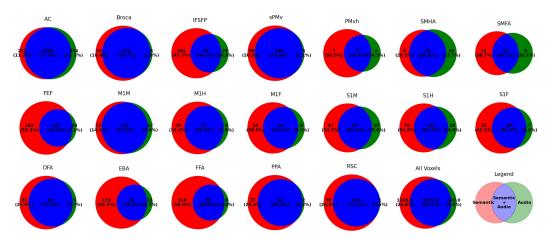


Figure 44: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S2, using MLP encoder.Refer to Fig 41 for more detail.

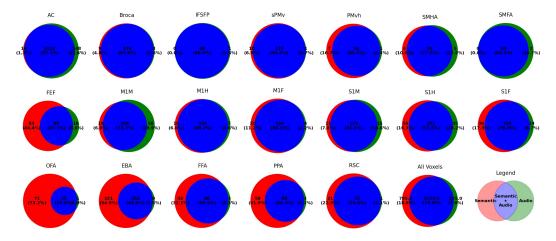


Figure 45: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S3, using linear encoder. Refer to Fig 41 for more detail.

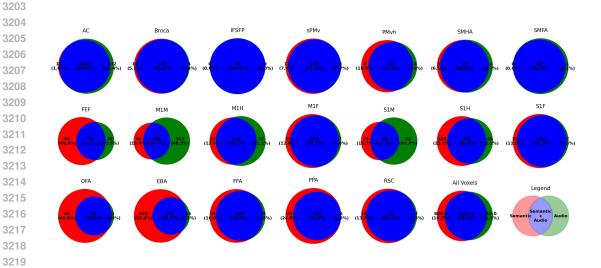


Figure 46: Venn diagrams showing the distribution of explained variance across different brain regions of interest (ROIs) for subject S3, using MLP encoder. Refer to Fig 41 for more detail.

M Unique challenges in speech encoding and contextualizing model performance

Here we analyze the fundamental methodological disparities between vision and language encoding in neuroscientific research. We first examine the unique challenges of language encoding compared to vision encoding, highlighting why nonlinear models have been difficult to implement in language neuroscience, and how our work begins to address these longstanding methodological barriers. We then contextualize the magnitude of our performance improvements by conducting a comparative analysis with established benchmarks from recent literature.

M.1 CHALLENGES OF SPEECH ENCODING COMPARED TO VISION ENCODING

Table 4: Comparison of vision and speech encoding datasets (from Allen et al. (2022) and LeBel et al. (2023)).

ct al. (2023)).			
Characteristic	Natural Scenes Dataset (Vision) Allen et al. (2022)	Lebel et al. Language Dataset LeBel et al. (2023)	
Stimulus Presentation	4 seconds per image (3s image, 1s gap)	2 seconds, \sim 5 words spoken	
Voxel Prediction Space	\sim 15k voxels (occipital areas)	80–90k voxels (whole cortex)	
Data Collection	30–40 hours per subject	20 hours per subject	
Prediction Complexity	Primarily perceptual	Cortex-wide, including higher- order semantic areas	
Number of Subjects	8	3	
Spatial/Temporal Resolution	1.8mm × 1.8 mm × 1.8 mm, 1.6 s	2.6 mm $\times 2.6$ mm, 2 s	
Field Strength (Tesla)	7T	3T	

While vision encoding has long benefitted from nonlinear models, speech encoding presents unique challenges, as illustrated by the stark differences between the Natural Scenes Dataset (NSD) Allen et al. (2022) and the Lebel et al. Language Dataset LeBel et al. (2023), as outlined in Table 4.

The temporal dynamics of stimulus presentation fundamentally differ between these datasets. NSD presents visual stimuli for 4 seconds (3 seconds of image presentation with a 1-second gap), whereas the Lebel et al. Language Dataset captures linguistic stimuli over 2 seconds, with approximately 5 words spoken during that interval. This rapid and continuous linguistic information flow creates significant complexity in encoding neural representations.

The prediction space for these datasets also reveals substantial methodological challenges. NSD focuses on predicting neural activity in approximately 15,000 voxels primarily within occipital areas, which are predominantly perceptual. In contrast, the Lebel et al. Language Dataset requires predicting 80-90,000 voxels across the entire cortex, encompassing higher-order semantic areas. Predicting neural activity in non-perceptual, higher-level regions like the prefrontal cortex introduces considerable noise and computational complexity.

Data collection further highlights the intrinsic difficulties. While NSD collected 30-40 hours of data per subject with 8 participants and high-resolution 7T imaging, the Lebel et al. Language Dataset gathered 20 hours from only 3 subjects using lower-resolution 3T imaging. These constraints make developing sophisticated encoding models particularly challenging for language processing.

These fundamental differences underscore why nonlinear encoding models, which have become standard in vision research Yang et al. (2023); Scotti et al. (2024), have been difficult to implement in language neuroscience. Our work represents a critical step towards bridging this methodological gap.

M.2 Typical improvement magnitudes in fMRI speech encoding studies

To contextualize the improvements reported in our study, we present a comprehensive comparison of typical improvement magnitudes (Δr) observed in leading fMRI speech encoding research. This analysis demonstrates that nonlinearity reveals a wealth of information contained within the language and speech model embeddings.

Table 5: Comparison of typical improvement ranges (Δr) in language fMRI encoding studies

Study	Analysis Type	Typical Δr Range	Notes
		ROI-wise Analysis	
Caucheteux et al.	ROI-wise	-0.005 to 0.015	"Forecast score" in Fig. 2(f)
(2023)			
Lamarre et al.	ROI-wise	0.025 to 0.050	For AC, Broca, sPMv ROIs (no statistical
(2022)			testing)
Millet & King	ROI-wise	0 to 0.015	From Fig. 3(D)
(2021)			
Our Study	ROI-wise	0.025 to 0.075	AC: 0.06, Broca: 0.025-0.050, IFSFP:
·			0.050-0.075
Voxel-wise Analysis			
Aw & Toneva	Voxel-wise	-0.2 to 0.2	From Fig. 4
(2022)			-
Jain & Huth (2018)	Voxel-wise	-0.2 to 0.2	From Fig. 3
Millet & King	Voxel-wise	-0.008 to 0.008	Varied ranges (-0.06 to 0.06 also) reported
(2021)			
Caucheteux et al.	Voxel-wise	0.004 to 0.020	Relative gains of 0-5%
(2023)			
Our Study	Voxel-wise	-0.5 to 0.5	17.2% average voxelwise r^2 improvement over baseline

This comparative analysis reveals two critical insights. First, analyzing and deriving conclusions from modest Δr improvements is standard practice in the language fMRI encoding field. Second, our improvements are substantially larger than those typically reported in comparable studies. Notably, while influential works like Caucheteux et al. (2023) report ROI-wise Δr values ranging from -0.005 to 0.015, our study demonstrates much larger improvements in key regions like the Auditory Cortex (0.06), Broca's area (0.025-0.050), and IFSFP (0.050-0.075).

For voxel-wise analyses, our improvements (Appendix J.1 and Figure 22) span a wider range (-0.5 to 0.5) than other studies, with a substantial 17.2% increase in average r^2 compared to semantic-only linear models. Subject-wise analyses in Figure 27 reveal even more pronounced effects in some ROIs, with Δr values exceeding 0.100.

In all the studies referenced above, even modest ROI-wise and voxel-wise improvements played pivotal roles in deriving significant scientific conclusions. Given that our improvements are more pronounced by comparison, we believe our research provides robust empirical evidence for the benefits of nonlinear, multimodal approaches in language encoding models.

N LICENSES OF THE ASSETS

LeBel et al. fMRI dataset: We use the fMRI dataset from LeBel et al. LeBel et al. (2023). This dataset is licensed under the Creative Commons Zero (CCO) license. It can be accessed at https://openneuro.org/datasets/ds003020/versions/3.0.0.

Llama models: Llama models: We use Llama models spanning Llama-1 (7B, 13B, 33B, 65B) Touvron et al. (2023a), Llama-2 (7B) Touvron et al. (2023b), and Llama-3 (8B) Dubey et al. (2024). All models were accessed via Hugging Face at https://huggingface.co/meta-llama and were used under Meta Llama Community Licenses, which permit research use but restrict redistribution and commercial applications.

Whisper models: We use Whisper models Radford et al. (2023) from OpenAI, released under the MIT License. This license allows free use, modification, and distribution with minimal restrictions. The models were accessed via Hugging Face at https://huggingface.co/docs/transformers/en/model_doc/whisper.