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ABSTRACT

Self-supervised language and audio models effectively predict brain responses to
speech. However, while nonlinear approaches have become standard in vision en-
coding, speech encoding models still predominantly rely on linear mappings from
unimodal features. This linear approach fails to capture the complex integration
of auditory signals with linguistic information across widespread brain networks
during speech comprehension. Here, we introduce a nonlinear, multimodal pre-
diction model that combines audio and linguistic features from pre-trained mod-
els (e.g., Llama, Whisper). Our approach achieves a 17.2% and 17.9% improve-
ment in prediction performance (unnormalized and normalized correlation) over
traditional unimodal linear models, as well as a 7.7% and 14.4% improvement
over prior state-of-the-art models relying on weighted averaging of linear uni-
modal predictions. These substantial improvements not only represent a major
step towards future robust in-silico testing and improved decoding performance,
but also reveal distributed multimodal processing patterns across the cortex that
support key neurolinguistic theories including the Motor Theory of Speech Per-
ception, Convergence-Divergence Zone model, and embodied semantics. Overall,
our work highlights the often neglected potential of nonlinear and multimodal ap-
proaches to speech encoding, paving the way for future studies to embrace these
strategies in naturalistic neurolinguistics research.

1 INTRODUCTION

Speech encoding models, which predict voxel-wise cortical activity from naturalistic speech, are a
powerful tool for probing the neural processes of speech comprehension (Naselaris et al.,|2011}; Jain
& Huthl 2018; [LeBel et al., 2021; [Vaidya et al., 2022; |Goldstein et al.| [2022} |Tang et al., |2023).
They also enable important applications such as in-silico experiments to test brain function without
additional data (Wehbe et al.,|2016; [Bashivan et al.,|2019; Jain et al., |2024)) and the development of
decoding models for language comprehension (Tang et al.l 2023).

Most existing approaches rely on unimodal linearized models, where features from language (e.g.,
Llama;|Touvron et al.| (2023a)) or speech models (e.g., Whisper; Radford et al.| (2023))) are linearly
mapped to brain activity(Naselaris et al., |2011). Linearized models is efficient, work well with lim-
ited neuroscience datasets, and allow straightforward feature attribution. However, with the advent
of larger datasets(LeBel et al., |2023), more sophisticated modeling approaches are now feasible,
offering the potential to uncover new insights into neural speech processing.

One key direction is to capture the inherently multimodal nature of speech comprehension. The brain
integrates acoustic, linguistic, and motor information across distributed neural networks (McGetti-
gan et al.| 2012} |Ghazanfar & Schroeder, 2006). While some studies have combined linguistic and
visual features (Oota et al.| [2022; Wang et al., 2022} Scotti et al.| [2024), the integration of advanced
speech and language models remains largely unexplored. Recent work (Oota et al., [2023) shows
that speech models uniquely capture activity in early auditory regions, while text-based models bet-
ter explain late language regions—suggesting that their combination could yield richer insights into
neural language processing.
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A second direction is to use nonlinear mappings between model features and brain activity. While
nonlinear approaches are common in vision (Yang et al., 2023} |Chen et al., [2023}|Scotti et al.,|2024),
they remain rare in speech encoding. Prior work was limited to simplified paradigms with isolated
words (Bingel et al.|[2016; |Oota et al.}|2018)), rather than naturalistic continuous speech. More recent
studies have applied nonlinear models to unimodal speech features (Moussa et al.| [2024} |Vattikonda
et al.,[2025)) but multimodal nonlinear encoding remains unaddressed.

Nonlinear approaches face unique challenges in speech encoding compared to vision (Appendix [M])
Speech encoding requires predicting activity across 80k—90k cortical voxels (vs. ~15k in vision)
and capturing rapid temporal dynamics in continuous speech (LeBel et al.|2023)), unlike block-wise
visual paradigms (Allen et al., 2022)). Nonetheless, nonlinear mappings are often better suited for key
neuroscientific goals, including in-silico experimentation, testing feature relevance, and assessing
feature set contributions (Ivanova et al.,[2022). They can reveal organizational principles otherwise
hidden and substantially improve prediction accuracy—critical for robust in-silico testing (Jain et al.,
2024).

In this study, we address these gaps by introducing a nonlinear, multimodal encoding model that
integrates audio and semantic features extracted from advanced models such as Whisper and Llama.
Our contributions are as follows:

¢ We propose a nonlinear multimodal approach that improves prediction accuracy by
17.2% (unnormalized correlation) and 17.9% (normalized correlation) over the stan-
dard semantic linear baseline (Antonello et al., 2024), while surpassing previous state-of-
the-art linear-ensemble models by 7.7% and 14.4%. These gains, substantially larger than
typical advances in fMRI speech encoding (Appendix ??, enable more accurate in-silico
experiments and improved brain decoding.

* Through systematic comparisons, we show nonlinearity drives these improvements.
Linear models fail to capture the complex interactions between audio and language infor-
mation in LLM embeddings, whereas our nonlinear encoders model these interactions more
effectively and with fewer parameters. This demonstrates that incorporating both nonlin-
earity and multimodality is crucial for accurately modeling the brain’s speech processing
mechanisms.

¢ We introduce a RED-based clustering analysis that tracks neural responses over both
space and time. Nonlinear models achieve superior functional clustering compared to lin-
ear encoders and standard connectivity analysis, revealing previously hidden patterns of
brain organization and the spatiotemporal dynamics of language processing.

* Variance partitioning and prediction accuracy analysis show that multimodal integra-
tion is essential for speech encoding. Most regions rely on overlapping audio—semantic
information, with unique contributions varying hierarchically from sensory to higher-order
areas. This results extends neurolinguistic theories (Liberman et al., |1967; | Damasio} |1989;
Davis & Yeel [2021) by revealing how different brain regions jointly engage multiple as-
pects of speech input.

2 METHOD

2.1 MRI DATA

We used a public fMRI dataset (LeBel et al.|[2023) of three subjects listening to 20 hours of English
podcast. Training data included 95 stories across 20 scanning sessions (33,000 time points). Testing
used three held-out stories: one averaged across ten repetitions and two across five repetitions each,
with no session containing repeated stimuli. Voxels were normalized to zero mean and unit variance,
as in/Antonello et al.| (2024)).

2.2 FEATURE EXTRACTION

A brain encoding model predicts voxel-wise fMRI responses from stimulus features, providing a
framework to study how the brain represents language. In our study, the encoding model takes as
input semantic features from LLaMA and audio features from Whisper, enabling us to test how
linguistic and acoustic information jointly explain cortical activity.
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We extracted semantic features from LLaMA models (LLaMA-1: 7B-65B (Touvron et al., [2023al);
LLaMA-2: 7B (Touvron et al.,2023b); LLaMA-3: 8B (Dubey et al.,[2024))) and audio features from
Whisper models (Tiny-Large, including v2/v3; (Radford et all |2023)). All models were obtained
from Hugging Face (Wolf}2019) and run in half-precision (float16). LLaMA features were obtained
using a dynamically sized context window, while Whisper features were extracted from the encoder
using a 16s sliding window with 0.1s stride, ensuring audio-specific representations. Refer to |An-
tonello et al.| (2024) for further details.

Following |Antonello et al.|(2024) for fair comparison, we temporally aligned the hidden states from
the [ layer of the language or audio models with fMRI acquisition times using Lanczos interpola-
tion. To account for neural response delays, we concatenated representations from the four preceding
timepoints (2, 4, 6, and 8 seconds prior) for each TR (see Appendix . Unless stated otherwise,
we extracted semantic features from the 12th layer of Llama-7B and audio features from the final
encoder layer of Whisper Large V1, as performance plateaued beyond 7B parameters (for Llama
models), aligning with previous observations [Bonnasse-Gahot & Pallier; (2024) (see Appendix [F))

2.3  REPRESENTATIONS FOR FMRI DATA

The encoding model’s outputs correspond directly to voxel-level fMRI activity. We tested both full-
voxel prediction and dimensionality reduction, adopting PCA (512 components) for most analyses
to prevent overfitting, reduce redundancy, and maintain interpretability. Direct full-voxel mapping
is computationally prohibitive (e.g., 1.3B parameters for S1 vs. 8.4M with PCA) and redundant, as
many voxels are highly correlated and can be masked with minimal loss (Jabakhanji et al., 2022}
Lin et al.}[2022). PCA also enables reconstruction of predicted responses back into voxel space, pre-
serving neuroscientific interpretability. Formally, PCA was applied to the aggregate response matrix
Yos € RVm®XNwoweis to obtain Ypca € RN®*512 apd predictions YP‘%S/; were inverse-projected to
voxel space for evaluation against ground-truth Y, Further details are provided in Appendix

2.4 ENCODING MODEL

Going beyond linear approaches (Tang et al., 2023} [Huth et al., 2016; |de Heer et al.| |2017; |LeBel
et al., 2021; Jain & Huth, 2018; [Schrimpf et al., [2021) we systematically investigate a range of
encoding models varying in complexity and input modality to better capture complex relationships
between stimuli and neural responses. We explored combinations of different stimulus represen-
tations, encoder architectures, and response representations (see Table [T). The following encoder
architectures were used to assess the impact of complexity and nonlinearity (see Appendix [B.5)):

* Linear Regression (Linear): Following |/Antonello et al.|(2024), we used ridge regression.

* Multi-Layer Perceptron (MLP): MLP with a single hidden layer of 256 units.

* Multi-Layer Linear (MLLinear): MLP but without dropout, batch normalization, and with
the identity activation function. This model serves as a reduced-rank linear regression, help-
ing to isolate the effects of dimensionality reduction from nonlinearity.

* Delayed Interaction MLP (DIMLP): Used for multimodal cases, this MLP variant pro-
cesses each modality through separate 256-unit hidden layers before concatenation and fi-
nal linear projection. This allows nonlinear processing within each modality while limiting
cross-modal interaction to be linear, revealing the effects of nonlinear fusion of modalities.

2.5 NORMALIZED CORRELATION COEFFICIENT AND RELATIVE ERROR DIFFERENCE (RED)

Because fMRI data are inherently noisy, there exists a theoretical upper bound on explainable vari-
ance, known as the noise ceiling. We estimated this ceiling (CC,,x) for each voxel using the method
of [Schoppe et al| (2016) applied to ten repeated responses to the same test story (Appendix [B.2).
Model performance was then normalized by dividing the absolute correlation coefficient (CCys,
correlation between predicted and observed fMRI signals) by CCyax, yielding the normalized cor-
relation coefficient (CCpom). With 80,000 voxels, random noise can occasionally produce CC,p
<CCax, resulting in CCpor >1; to mitigate this, voxels with CCpx <0.25 were regularized to
0.25 during computation.

To complement correlation-based metrics, we introduce the Relative Error Difference (RED), which
quantifies the temporal advantage of one feature set over another. For each voxel v at time ¢:
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Table 1: Performance of encoding models across modalities and architectures. Average voxelwise
r2 and normalized correlation coefficient (CCpopm) are reported for models using text, audio, or mul-
timodal inputs with different encoder architectures (Linear, MLLinear, DIMLP, MLP). MLLinear is
a linearized version of MLP, while DIMLP applies nonlinear processing within each modality but
combines modalities linearly. The baseline is the semantic linear model in |Antonello et al.| (2024).
Notably, MLP encoders consistently achieve the best performance with fewer parameters, under-
scoring the importance of nonlinearity and multimodal integration for accurate fMRI prediction. 72
is computed as |r| - .

modality 1 modality 2 encoder response  Avg r° Avg CChrorm #param
text audio MLP PCA 4.29% (+17.2%) 34.32% (+17.9%) 5.64M
text audio DIMLP PCA 4.18% (+14.2%)  32.59% (+11.9%) 5.7TM
text audio MLLinear PCA 4.10% (+12.0%) 32.41% (+11.3%) 5.64M
text audio Linear all voxels  4.10% (+12.0%)  31.36% (+7.7%) 1.72B
text audio Linear PCA 3.87% (+5.7%) 28.92% (-0.7%) 11.01M
text audio MLP all voxels  3.83% (+4.6%) 31.11% (+6.8%) 26.07M
text - MLP PCA 3.79% (+3.6%) 30.89% (+6.1%) 4.33M
text - MLLinear PCA 3.67% (+0.3%) 29.95% (+2.8%) 4.33M
text - Linear all voxels 3.66% (Baseline) 29.12% (Baseline) 1.31B
text - Linear PCA 3.56% (-2.7%) 26.88% (-7.7%) 8.39M
text - MLP all voxels  3.36% (-8.2%) 27.45% (-5.7%) 24.75M
audio - MLP PCA 3.01% (-17.8%) 29.01% (-0.4%) 1.44M
audio - MLP all voxels  2.89% (-21.0%) 28.21% (-3.1%) 21.87TM
audio - MLLinear PCA 2.89% (-21.0%) 27.50% (-5.6%) 1.44M
audio - Linear PCA 2.81% (-23.2%) 26.71% (-8.3%) 2.62M
audio - Linear all voxels  2.77% (-24.3%) 25.20% (-13.5%) 409.68M

RED(v,t) = |fi(v,t) — y(v,t)| — |f2(v,t) — y(v,t)| where fi(v,t) and fo(v,t) are predictions
from two feature sets (e.g., LLaMA vs. Whisper) and y(v, t) is the ground-truth fMRI signal. Pos-
itive RED values indicate better prediction by feature set 2. Unlike traditional voxel-wise analyses
that focus on spatial patterns (f(v)), RED preserves temporal dynamics (f (v, t)), enabling the joint
analysis of spatial and temporal organization of brain responses. We leverage RED in Section[3.1.2]
to cluster regions of interest based on semantic and audio processing dynamics.

3 RESULTS

We conduct experiments to evaluate the contributions of multimodality and nonlinearity in fMRI
speech encoding. The primary objective is to determine whether nonlinear integration of audio
and language representations provides measurable improvements over both the baseline (Antonello
et al., 2024)) and alternative encoding architectures. Model performance is assessed using variance
explained (r?) and normalized correlation coefficient (CCporm), as in prior works.

Table [T] summarizes the overall comparison. The nonlinear multimodal MLP encoder achieves the
highest performance, with 4.29% average r2 and 34.32% CCpom, corresponding to relative gains
of 17.2% and and 17.9% over the baseline semantic linear model (Antonello et al., 2024). No-
tably, these improvements substantially exceed the incremental advances typically reported in fMRI
speech encoding (Appendix [M.2)), despite using far fewer parameters (5.64M vs. 1.31B). The results
suggest that additive linear fusion fails to capture complex audio—language interactions, underscor-
ing the value of nonlinear multimodal modeling. In the following subsections, we analyze the spe-
cific contributions of nonlinearity (Section , investigate how nonlinear multimodal combination
drives improvements (Section @]) and demonstrate the benefits of multimodal fusion (Section @])

3.1 NONLINEAR ENCODERS
3.1.1 NONLINEARITY IS THE KEY DRIVER OF SUPERIOR ENCODING PERFORMANCE

We found that the MLP consistently outperformed linear models, indicating that nonlinear trans-
formations more effectively capture the mapping between neural activity and linguistic or acoustic
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Figure 1: Spatio-temporal clustering analysis: (a,b) functional connectivity matrix and hierarchi-
cal clustering dendrogram from raw fMRI correlations. (¢,d) Correlation matrices and dendrograms
from Relative Error Difference (RED) between semantic and audio MLP encoders. Matrix values
indicate regional similarity. Hierarchical clustering reveals brain region organization by response
profiles. The nonlinear models (d) show clearer functional groupings than both linear models (mod-
ularity Q : 0.155 vs. 0.145) (Figure[2T]e) and standard connectivity (c) (0.068). See Appendix [A]for
full abbreviation names.

features. To disentangle the role of nonlinearity from dimensionality reduction, we compared the
MLP with two controls: Linear (linear regression on PCA-reduced data) and MLLinear (an MLP
without nonlinear activations). Both performed similarly to or worse than the nonlinear MLP (Table
[I, confirming that performance gains are driven by nonlinearity rather than reduced dimensionality.

Moreover, MLPs provided a clear and consistent advantage over linear encoders across all layers of
both language and audio models (Figure[T4). This layer-wise robustness underscores that nonlinear
mapping captures meaningful representational structure regardless of depth. PCA preprocessing was
nonetheless essential: MLPs trained directly on raw voxels performed substantially worse, likely
due to overfitting (80-90k voxels vs. 512 PCA components). Together, these results demonstrate
that while dimensionality reduction enables tractable modeling, it is nonlinearity that fundamentally
drives superior encoding performance.

3.1.2 NONLINEARITY ENHANCES BRAIN-WIDE PREDICTIONS AND FUNCTIONAL
CLUSTERING

Nonlinear MLP models capture complex relationships in brain activity during speech comprehen-
sion more effectively than linear models. As shown in Figure [[, MLP encoders outperform linear
encoders across the cortex, with pronounced gains in semantic and auditory regions such as the
precuneus (PrCu) and lateral temporal cortex (LTC). Brain maps in Appendix and further
confirm these improvements, underscoring the critical role of nonlinear interactions in modeling
brain activity, particularly in higher-order language processing areas.

Hierarchical clustering analysis using RED between Whisper and LLaMA encoding models (Fig-
ure[I} Appendix[[.4) reinforces this advantage. Compared to linear models and traditional functional
connectivity, nonlinear encoders achieve superior grouping (modularity (): nonlinear 0.155, linear
0.145, FC 0.068). The MLP-based clustering (Figure[I]d) reveals coherent functional organization:
motor and somatosensory regions cluster by body part before merging into broader networks; visual
regions organize by function (OFA/FFA for faces; PPA/RSC for scenes); and speech-related areas
(sPMyv, Broca’s area, AC) align with the dorsal stream pathway. These results show that nonlinear
models capture structured spatiotemporal relationships in brain responses, consistent with estab-
lished principles of cortical organization.

3.2 NONLINEAR AND MULTIMODAL ENCODERS
3.2.1 NONLINEAR INTERACTIONS BETWEEN MODALITIES ENHANCE FMRI PREDICTIONS

To assess the role of nonlinear cross-modal interactions, we test Delayed Interaction MLP (DIMLP),
which processes audio and semantic features separately before a final linear fusion stage. This con-
trasts with MLP, which allows full nonlinear interactions across modalities, enabling the comparison
of within-modality nonlinearity (DIMLP) and cross-modal nonlinear interactions (MLP). As shown



Under review as a conference paper at ICLR 2026

mult linear - sem linear mult MLP - sem linear
8 sacpect Saase D ety ST €
mbre mhre
2 ey Prou e T o eere eeee iee sees eeee e e e+ e i oo eee iee e e eee eeee eee e eee
T LrRC {0 Bl A%y IO e,y 03 _see
: % @ \ it \
89 i ML ap SN 0 ¥iw S/
13 c A e oc’ oc ap i s
b, e 1re P b o . b Hue T g
23 - S = %
_ o _ b . 01
L O @ ) Lol 0 @D L) C
mult linear - audio linear mult MLP - audio linear < | O | | I | | Bl )
[ B o dw;é"‘ i, ST
Wiz weu . picu e ) e s
AR : teect s @deec Yiay & g f) -0.1
i e A & i
N AG 4 % Ty '
As e 0 AoR e ac o2 BB mult linear - sem linear  WEM mult linear - audio linear Others Somatosensory
Py e e o P B mult MLP - sem linear EER mult MLP - audio linear Motor Control Visual Related
2} &

AC Broca IFSFP sPMy PMvh SMHA SMFA FEF MIM MIH MIF SIM SIH SIF OFA EBA FFA PPA RSC
ROI

ram @& &G A e (R @ W)
I

Figure 2: Multimodality improves encoding performance. Panels (a—d) show voxelwise ACC g
for one subject, with warmer colors indicating regions where multimodal models outperform uni-
modal linear models. (a) Multimodal linear — Semantic linear: impact of adding audio features. (b)
Multimodal MLP — Semantic MLP: impact of adding audio features with nonlinearity. (¢) Multi-
modal linear — Audio linear: impact of adding semantic features. (d) Multimodal MLP — Audio
MLP: impact of adding semantic features with nonlinearity. (e¢) ROI-level Ar across all subjects,
with significant improvements marked by asterisks (*, p <0.05, FDR-corrected). Overall, multi-
modality yields widespread benefits across voxels and ROIs, with only a small minority showing
reduced predictions.

in Table [T} both DIMLP and MLP outperform linear models. DIMLP, incorporating only within-
modality nonlinearity, yields a 2.0% gain over the linear model (from 4.10% average 12 to 4.18%).
But the standard MLP, allowing full nonlinear interactions, achieves a further 2.6% gain (from 4.18%
to 4.29%). These results suggest that both forms of nonlinearity enhance encoding performance, but
cross-modal nonlinear interactions contribute most significantly.

This conclusion is further supported by voxelwise analysis (Appendix [K). While DIMLP improves
prediction accuracy across brain regions compared to linear models, standard MLP leads to fur-
ther, cortex-wide enhancements. This suggests nonlinear interactions between audio and semantic
features are essential for modeling neural representations underlying speech comprehension.

ROI-wise analysis (Figure [30) shows regional variation in nonlinearity’s benefits. Multimodal MLP
consistently matches or outperforms DIMLP and often surpasses linear models. Motor (e.g., M1M)
and somatosensory regions (e.g., SIM) benefit most from nonlinear cross-modal interactions, high-
lighting their role in complex multimodal processing during speech comprehension.

3.3 MULTIMODAL ENCODERS

3.3.1 MULTIMODALITY REVEALS WIDESPREAD CORTICAL INTEGRATION

Our analysis shows that multimodality not only increases prediction accuracy across the cortex but
also explains brain activity more effectively through joint audio-semantic processing. Improvements
are brain-wide and extend well beyond modality-specific regions. Figure 2] (a,b) shows that adding
audio features enhances predictions not only in auditory areas but also in primary motor and so-
matosensory regions, as well as the paracentral lobule between mPFC and Precuneus (PrCu), and
parts of occipital cortex (OC). These effects highlight the widespread impact of auditory informa-
tion. Conversely, Figure 2] (c,d) shows that adding semantic features improves predictions across
most cortical regions, with the exception of some auditory cortex (AC) areas. This suggests that
semantic processing exerts broad influence on neural activity, extending well beyond classical lan-
guage regions.

These widespread improvements are further amplified by nonlinearity. Comparing Figure 2] (b) with
(a), and (d) with (c), shows that MLP models not only strengthen effects seen with linear encoders
but also unlock hidden gains in higher-order regions such as the LTC, mPFC, and OC. Variance
partitioning analysis (Appendix [C.2) reveals that most explained variance arises from joint au-
dio—semantic contributions, while unique effects are dominated by semantic features, with audio
contributing less across most regions. These results suggest that nonlinearity enables multimodal
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Figure 3: Visualization of most dominant feature type in brain activity predictions from variance
partitioning analysis. (a) Voxel-wise plots from a single subject (S1) and (b) ROI-wise Venn di-
agrams showing which feature type (semantic: red, audio: green, joint: blue) explains the largest
variance for each significantly predicted voxel (¢(FDR) < 0.01) using MLP encoders. ROI results
are aggregated across subjects with numbers indicating voxel percentages and counts.

models to capture richer cross-modal integration, with semantics providing the primary source of
unique information in brain-wide processing.

To further characterize representational dominance, we assigned each voxel to its most predictive
modality. Joint audio—semantic features dominated cortical representations (Figure 3] a, shown for
subject S1, with all subjects in Appendix [C.3). This pattern is consistent across subjects: Rol-wise
analysis (Figure El b) shows that semantic, audio, and joint features accounted for 21.4%, 10.1%,
and 68.5% of significantly predicted voxels, respectively (subject-wise results in Appendix [C:4).

Our findings both align with and extend prior multimodal language studies. Unlike [Antonello et al.|
(2024), who reported localized auditory-driven improvements in AC and M1M, we observed cortex-
wide gains. Methodological differences may explain this discrepancy: they used multiple Whisper
layers, potentially introducing redundancy, and employed linear stacked regression, which limits
modality interaction; in contrast, our approach leverages the final layer and direct concatenation,
enabling richer integration (Appendix [C). Our results also refine understanding of modality-specific
contributions. Consistent withOota et al.| (2023)), semantic models capture information beyond low-
level acoustic features. Yet we find that audio models—though contributing less overall—provide
meaningful complementary signals across multiple regions. This is evidenced by improved predic-
tion accuracy and nonzero unique variance in our voxel-wise analyses, which likely capture fine-
grained audio contributions that may be averaged out in the ROI-level analyses of (2023).
Taken together, these patterns highlight distributed joint processing across the cortex, consistent with
the Convergence-Divergence Zone theory [1989), which posits that semantic information
is integrated from multiple modalities across widespread cortical regions.

3.3.2 MULTIMODAL FUSION SUPPORTS AND EXTENDS NEUROLINGUISTIC THEORIES

Building on the brain-wide improvements observed, regions of interest (ROI) analyses reveal how
multimodal integration supports and extends established neurolinguistic theories.

Speech related regions (AC, Broca, sPMv, M1M)

Our results highlight a systematic organization of speech processing along the auditory dorsal path-
way, a core component of the dual-stream model of language processing (Hickok & Poeppell, [2007).
This pathway, extending from the auditory cortex (AC) through Broca’s area and the superior ven-
tral premotor speech area (sSPMv) to the primary motor cortex, shows distinct patterns of multimodal
integration at successive stages.

In early AC, voxel-wise variance partitioning shows that unique contributions from audio features
dominate (Figure[3), reinforcing its role in processing low-level acoustic information. However, pro-
cessing in broader AC regions shows a shift to joint audio-semantic representations, with 83.3% of
significantly predicted voxels showing joint audio-semantic representation. The improved perfor-
mance from adding auditory features (Figures [2]a, b) supports this hierarchical pattern, with earlier
AC areas showing greater gains.
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Moving along the dorsal pathway to Broca’s area and sPMyv, we find predominant joint feature
attribution (88.2% and 84.8% of voxels respectively) with improved predictions from the addition
of either modality. This multimodal integration aligns with these regions’ role in speech planning
and articulatory control—processes that require integrating acoustic targets with semantic content
and motor programs (Gough et al., 2005; [Nixon et al., 2004;|de Heer et al.,|2017}|Glanz et al.,|2018)).

At the terminus of the dorsal pathway, the mouth region in primary motor cortex (M1M) shows a
strong contribution from auditory features, exceeding even AC, consistent with its role in executing
speech articulation (32.4% of voxels) (Figure |3| b). This strong auditory presence in motor areas
is further supported by substantial performance improvements when adding auditory features, rein-
forcing previous findings from |Wu et al.| (2014) that highlight the coupling between auditory and
motor processes in speech production.

These findings extend our understanding of speech model representations. Our variance partitioning
results align with previous findings that semantic models primarily predict AC activity by capturing
low-level speech features (Oota et al., [2023). Our analysis also reveal some voxels show unique
semantic contributions, and audio models capture distinct brain features beyond the typical scope
of language models. The observed semantic contribution in AC, sPMv and Broca’s area aligns with
prior findings (de Heer et al., 2017) and may be a general mechanism for language processing.

Motor and somatosensory areas: embodied speech processing

The addition of audio or semantic features improved predictions in motor control (green) and so-
matosensory processing (blue) ROIs (Figure 2] e). Improvements vary: some ROIs benefit from se-
mantic features (e.g., frontal eye field (FEF)), others from audio features (e.g., primary mouth motor
cortex (M1M)), and some from both. Furthermore, variance partitioning analysis reveals that motor
and somatosensory regions show unique contributions from both modalities in M1M, audio fea-
tures uniquely explain 32.4% of the variance while semantic features explain 14.1%, with 53.5%
jointly explained. Similar patterns emerge across motor areas (SMHA, SMFA, FEF, M1H, MI1F)
and somatosensory regions (S1M, S1H, S1F), suggesting these regions process unique auditory and
semantic information absent from their overlapping features.

These findings align with the Motor Theory of Speech Perception (Liberman et al., [1967; [1952;
Poeppel & Assaneo, [2020), which posits that motor regions simulate articulatory movements nec-
essary for speech production, aiding comprehension. In particular, improvements from the addition
of and the unique contribution from auditory features align with research showing tight coupling
between auditory and motor-sensory processing (Skipper et al.l 2005; Wu et al., 2014} Wilson et al.|
2004).

These findings suggest semantic information shapes activity within somatosensory regions, indi-
cating broader involvement in speech comprehension than previously recognized. This aligns with
embodied semantic memory theory, where concept understanding is grounded in sensorimotor expe-
riences (Binder & Desail [2011). Our results match|Nagata et al.| (2022)’s evidence that sensorimotor
cortex processes both concrete and abstract word semantics. The enhancements in these motor and
sensory areas are more pronounced with MLP models, underscoring nonlinear interactions between
auditory and semantic information. We explore this further in Section 3.2}

Higher-order visual areas: multimodal semantic representations

Adding semantic features enhances fMRI prediction accuracy in high-level visual areas like OFA
(Pitcher et al., 2011}, EBA (Downing et al., 2001), FFA (Kanwisher et al. [1997), PPA (Epstein &
Kanwisher, |1998]), and RSC (Vann et al.,[2009) (Figuree). Variance partitioning (Figureb) shows
these ROIs have largest contributions from semantic and joint features, suggesting text-derived se-
mantics provide substantial predictive information for visual regions beyond audio features alone.

This finding matches studies showing visual and linguistic stimuli with similar semantic content
elicit similar brain responses (Huth et al., 2012; 2016; [Tang et al., 2024} Deniz et al.| [2019; |De-
vereux et al.| 2013} |[Fairhall & Caramazza) 2013} [Popham et al.| [2021). These results support the
convergence-divergence-zone theory (Popham et al.| [2021}; [Damasio et al., [1996} 2004} Damasio),
1989), which posits semantic information from multiple modalities integrates across the cortex,
forming unified representations. This suggests the brain constructs modality-independent semantics
using information from vision, language, and other senses (Tang et al., 2023; |Binder & Desai, 2011}
Tang et al.l 2024; Martin, [2016)).
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Our study also provides novel evidence for auditory modality’s contribution to this unified seman-
tic representation. Variance partitioning (Figure [3]b) shows auditory information accounts for 5%
of voxels in higher visual area ROIs. Adding audio features resulted in significant performance
increases in these ROIs (Figure [2]e), suggesting auditory information, such as tone of voice and en-
vironmental sounds, may provide unique semantic context not fully captured by visual or linguistic
features alone.

The consistent observation that multimodal fusion, particularly with nonlinear models, enhances
prediction accuracy emphasizes the brain’s use of complex, nonlinear computations to combine
information from different modalities for a holistic understanding of language. Subject-wise ROI
prediction differences are visualized in Figure [27] (Appendix [J.3).

4 DISCUSSION AND CONCLUSION

This study underscores the transformative potential of nonlinear multimodal approaches to speech
encoding for advancing our understanding of speech comprehension in the brain. While nonlinear
approaches have become standard in vision encoding modelgYang et al.|(2023); |Scotti et al.| (2024);
Chen et al.| (2023), their application to language has faced unique challenges due to the dynamic,
cortex-wide nature of speech comprehension. Our approach overcomes these challenges, achieving
a 14.4% increase in mean normalized correlation compared to previous state-of-the-art models (An-
tonello et al.| 2024)), while more importantly revealing previously hidden functional organization
patterns.

A key finding is that nonlinear models provide more nuanced insights into neural activity, outper-
forming linear approaches across all network layers, with gains driven by nonlinearity rather than
dimensionality reduction alone. The benefits of nonlinear encoding are showcased in our RED anal-
ysis, which reveals improved hierarchical clustering of brain regions, with higher modularity (0.155)
than linear models (0.145) and traditional connectivity measures (0.068).

Our second key finding illustrates how multimodal encoding approaches expose aspects of neural
computation that may be overlooked in unimodal models. By systematically comparing unimodal
and multimodal predictions across the cortex, we discovered widespread cross-modal integration
patterns. Through ROI-wise analyses of both variance partitioning and performance improvements,
we provide support for key neurolinguistic theories including the Motor Theory of Speech Percep-
tion (Liberman et al., |1967), Convergence-Divergence Zone model (Damasiol|1989), and embodied
semantics (Davis & Yee,|2021)), and ventral aspect of the dual stream hypothesis (Hickok & Poeppel,
2007) highlighting the brain’s reliance on distributed multimodal fusion.

Our nonlinear encoding approach has two main limitations. First, insufficient dataset size currently
constrains model complexity, leading to overfitting when adding hidden layers or using RNNs and
Transformers (Appendix [D). Given data scaling benefits in linear encoders (Antonello et al., 2024)
and how a large dataset such as the Natural Scenes Dataset (Allen et al.| [2022) enabled deep learn-
ing breakthroughs in visual encoding and decoding (Adeli et al., 2023} [Scotti et al., |2024), larger
language fMRI datasets are needed to fully harness the potential of deep learning and drive further
advancements. Second, while nonlinear encoders offer strong performance gains, they create new
interpretability challenges. While variance partitioning and RED-based clustering offer preliminary
insights, further innovations such as RSA (Kriegeskorte et al.| [2008) and novel feature attribution
(Oota et al., 2023) are necessary. Moreover, nonlinear models offer unique interpretative possibili-
ties, as shown by (Yang et al.l 2023)) in memory vision encoding.

In conclusion, our study demonstrates that while linear and unimodal approaches have provided
valuable insights in speech encoding research, nonlinear multimodal encoding models reveal im-
portant aspects of neural speech processing that complement these established methods. Addressing
dataset size and model interpretability limitations will be key to advancing brain aligned Al, enabling
models that better reflect the hierarchical and distributed nature of neural processing.
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A ABBREVIATIONS OF BRAIN AREAS AND REGIONS OF INTEREST (ROIS)

Brain Areas are abbreviated as follows :

* AC: Auditory Cortex

* AG: Angular Gyrus

e LPFC: Lateral Prefrontal Cortex
e LTC: Lateral Temporal Cortex

* mPFC: Medial Prefrontal Cortex
* OC: Occipital Cortex

e PrCu: Precuneus

The ROISs are abbreviated as follows :

e AC: Auditory Cortex

* AG: Angular Gyrus

* Broca: Broca’s Area

* EBA: Extrastriate Body Area

* FFA: Fusiform Face Area

* FEF: Frontal Eye Field

 IFSFP: Inferior Frontal Sulcus Face Patch
* LPFC: Lateral Prefrontal Cortex

* LTC: Lateral Temporal Cortex

e M1F: Primary Motor Cortex - Foot

* M1H: Primary Motor Cortex - Hand

* M1M: Primary Motor Cortex - Mouth
* mPFC: Medial Prefrontal Cortex

* OC: Occipital Cortex

* OFA: Occipital Face Area

* PMvh: Ventral Premotor Hand Area
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* PPA: Parahippocampal Place Area

* PrCu: Precuneus

* RSC: Retrosplenial Cortex

* S1F: Primary Somatosensory Cortex - Foot

* S1H: Primary Somatosensory Cortex - Hand

* SIM: Primary Somatosensory Cortex - Mouth
e sPMyv: Superior Ventral Premotor Speech Area
* SMFA: Supplementary Motor Foot Area

* SMHA: Supplementary Motor Hand Area

B DETAILS OF IMPLEMENTATION

B.1 LLAMA FEATURE EXTRACTION STRATEGY

Llama feature extraction was done in a dynamical window size manner for efficiency. Initially, the
context window grew incrementally as tokens were added, up to a maximum of 512 tokens, after
which the window was reset to a new context of 256 tokens. This approach avoided memory over-
heads associated with processing the entire tokenized text while maintaining sufficient contextual
information for accurate semantic representation.

B.2 NOISE CEILING (CC),42) AND NOCMALIZED CORRELATION (CC},0rm) CALCULATION
NP )71
SPxN ’

where N is the number of repeats (10 in our case), /N P is the noise power or unexplainable variance,
and SP is the amount of variance that could be explained by an ideal predictive model.

For each voxel, the maximum correlation coefficient is estimated as CClar = (/1 +

B.3 RESAMPLING THE HIDDEN STATE OF LLMS TO FMRI TIME POINTS

After giving the language/audio model the same input as the subject, we temporally aligned the hid-
den states of its /" layer corresponding to a given i token (last token of the i word for language

models), H; (S¢kk<iy) € R noda (aggregate shape of RVeten X for the whole story where Niggen 1S

the number of tokens/words), to the fMRI acquisition times (TR times) using Lanczos interpolation,
obtaining an extracted feature of size RV Xdiwde], where Nty is the number of tokens (or number of
words for language models) for each story and d', 4, is the dimension of the /™ hidden layer. We
constructed the feature corresponding to a given n' TR (2n seconds in physical time) by concate-

nating the representations from four previous TRs (2, 4, 6, 8 seconds before ¢ in physical time) to

get a vector of shape Rédnoaa for every n'" TR, which we denote as H'}' (S {t|t<2n})- H' denotes the
additional resampling and concatenation done after applying the model, H. We used four previous
time delays (2, 4, 6, 8 seconds) to account for the delay between the stimuli and brain response and
to provide past stimuli information to the model. (Our process is identical to that of |Antonello et al.
(2024), ensuring that the same input was given, ensuring fair comparison.

B.4 REPRESENTATIONS FOR FMRI RESPONSE USING PCA

To an aggregate fMRI response, Yog € RN Noweis e applied PCA with 8192 maximum compo-
nents along the voxel dimension using scikit-learn (Pedregosa et al.|[2011), yielding an approximate
projection matrix, W & RMwowesXNs192 Given Npca number of principal components to consider,
we take the top Npca components to get Wpca € R Mo XNeca and train the encoding model
to predict the reduced dimension PCA projection of the data, Ypca = YoreWpca € RV X Neca
During evaluation, the trained model outputs a reduced dimension representation of the data,
YP%SA € RNmwesxNeea  where Nygest denotes the number of timepoints (TRs) in the test story.
This is reconstructed back the the original voxel space by applying an inverse of the projection

matrix, Y = Yl,‘gslt\WgC 4 € RNmwxXNwes - which is later compared with the ground truth,
ylest ¢ RNTR—‘C.VI X Nyoxels .
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It should be noted that due to the high dimensionality of the data, incremental PCA was used, in
place of regular PCA.

B.5 DETAILS OF ENCODING MODELS
The encoding model architecture is as follows:

* Linear Regression (Linear): Ridge regression. Following |Antonello et al.| (2024), ridge
regression with bootstrapping (n = 3) was used to estimate the optimal regularization
parameters (alphas) for each voxel. The training data was divided into chunks of length 20,
with 25% used for held-out validation in each bootstrap iteration. The best alpha values
were averaged across iterations, and the final model was trained on the full training dataset
using these alphas.

* Multi-Layer Perceptron (MLP): MLP with a single hidden layer of 256 units, applying
batch normalization and dropout to prevent overfitting. The hyperbolic tangent (tanh) was
used as the activation function.

* Multi-Layer Linear (MLLinear): MLP but without dropout, batch normalization, and with
the identity activation function.

* Delayed Interaction MLP (DIMLP): MLP variant processes. Each modality through sepa-
rate 256-unit hidden layers before concatenation and final linear projection.

We implemented encoding models using PyTorch. We employed the AdamW optimizer (Loshchilov,
2017) with a batch size of 128 and Mean Absolute Error (MAE) as the loss function to mitigate ex-
cessively penalizing random signal fluctuations. Our training regime consisted of 200 epochs with
early stopping (patience = 10) based on validation loss, and we applied batch normalization with a
momentum of 0.1. For robust evaluation, we implemented 5-fold cross-validation, averaging predic-
tions across the five models for our final results. Hyperparameter optimization was conducted using
Optuna (Akiba et al.l 2019)), which performed 70 trials to determine optimal values for the dropout
rate (0.1 to 0.3), learning rate (10> to 10~1), and weight decay (5 x 107 to 10~ 1).

Ridge regression was performed using a CPU node with 96 cores (Intel(R) Xeon(R) Gold 6240R
CPU @ 2.40GHz) and 512 GB of RAM. Running the audio and language models and training
encoding models was done using a GPU node with 8 H100 80GB GPUs.

C COMPARISON WITH STACKED REGRESSION MODEL OF /ANTONELLO
ET AL. (2024)

To establish the effectiveness of our nonlinear multimodal approach, we conduct a detailed compari-
son with the current state-of-the-art stacked regression model (Antonello et al.,2024)). Their method
combines semantic and audio predictions through stacked regression followed by voxel-selection,
where they decide what model to use (stacked regression or semantic linear) for each voxel based on
a validation dataset. Their results are compared here and not in Table[T|due to their use of only parts
of the test stories as validation, barring computation of the “Avg r2” value in Table 1| For accurate
comparison, we obtain and use their published model weights and features.

The evaluation protocols differ specifically for the stacked regression (SR) model: while all models
(including those in |Antonello et al.| (2024)) primarily report performance using three test stories
(Table [I), SR uniquely requires using two of these test stories for validation-based voxel selection
and only using the story “wheretheressmoke” for final testing.

Also, following the identification of an error in the original evaluation protocol through community
feedback, we corrected the methodology for fair comparison. Note that CC,, values remain con-
sistent with Table([T]as they were originally computed using only the “wheretheressmoke” story due
to the unavailability of test repeats for the other two stories.

To ensure fair comparison with SR, we additionally evaluate all models using their single-story
protocol in Table [2| reporting both CCyom and a story-specific Avg r2 (single story) metric to
distinguish from our three-story evaluation. We found CC,,,m,, provides more stable comparisons than
r2 in this context, as the reduced number of timepoints (251 versus 790) makes 2 more susceptible
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Table 2: Comparing encoding performance across different models using the single test story evalu-
ation protocol. Values show normalized correlation coefficient (C'C,,;-1,) and story-specific r? (Avg
r2 (story))(distinguishing from Table s three-story evaluation (Avg 72)). SR refers to the previous
state-of-the-art stacked regression model (Antonello et al., 2024), which combines LLM and audio
predictions through weighted averaging. Two masking approaches are used: 1) “mask,” - their pre-
computed validation-based voxel selection mask, and 2) “mask” - our computed masks that retain
voxels showing validation improvements. For “mask”, Linear+Mask indicates creating and apply-
ing a mask based on multimodal linear vs semantic linear performance, while MLP+Mask does the
same using MLP models. semanticy denotes features from LLAMA-30B’s 18th layer used in SR,
while our models uses features from the 12th layer of LLAMA-7B. All approaches are evaluated
using identical test data for fair comparison and 72 is computed as || * r.

modality 1 modality 2 encoder response  Avg 7~ (single story) Avg CChrorm
semantic audio MLP PCA 5.13% (+7.7%) 34.32% (+14.4%)
semantic audio MLP + mask PCA 5.02% (+5.5%) 33.33% (+11.0%)
semantic audio DIMLP PCA 4.93% (+3.6%) 32.59% (+8.6%)
semantic audio MLLinear PCA 5.00% (+5.1%) 32.41% (+8.0%)
semantic audio MLP + masky PCA 4.77% (+0.2%) 31.70% (+5.6%)
semantic audio Linear all voxels  4.92% (+3.4%) 31.36% (+4.5%)
semantic audio MLP all voxels  4.54% (-4.5%) 31.11% (+3.6%)
semantic audio Linear + mask  all voxels 4.90% (+2.9%) 31.09% (+3.6%)
semantic 4 audio SR + mask 4 all voxels  4.76% (Baseline) 30.02% (Baseline)
semantic audio Linear PCA 4.48% (-5.8%) 28.92% (-3.7%)
semantic - MLP PCA 4.58% (-3.7%) 30.89% (+2.9%)
semantic - MLLinear PCA 4.59% (-3.6%) 29.95% (-0.2%)
semantica - Linear all voxels  4.60% (-3.3%) 29.84% (-0.6%)
semantic - Linear all voxels  4.50% (-5.4%) 29.12% (-3.0%)
semantic - MLP all voxels  3.97% (-16.6%) 27.45% (-8.6%)
semantic - Linear PCA 4.15% (-12.8%) 26.88% (-10.4%)
audio - MLP PCA 3.83% (-19.6%) 29.01% (-3.4%)
audio - MLP all voxels  3.67% (-22.8%) 28.21% (-6.0%)
audio - MLLinear PCA 3.66% (-23.1%) 27.50% (-8.4%)
audio - Linear PCA 3.54% (-25.6%) 26.71% (-11.0%)
audio - Linear all voxels  3.46% (-27.3%) 25.20% (-16.0%)

to noisy voxels compared to CC,oy, that accounts for these noisy voxels. This stability is reflected
in the closer alignment between CCjom and 72 rankings in Table compared to Table 2| Therefore,
we sort Table[Z] with respect to the CCom.

Also, while their approach uses LLAMA-30B’s 18th layer (denoted as semantic, ), we demonstrate
competitive performance using LLAMA-7B features, consistent with our finding that encoding per-
formance roughly plateaus beyond 7B parameters (Appendix [F). For comprehensive comparison,
we implement both their pre-computed validation-based voxel selection mask (“mask,”, created
using an unspecified significance threshold) and our simpler approach (“mask”) that retains voxels
showing any validation set improvement.

Table 2] demonstrates several key results about our multimodal nonlinear approach. Our multimodal
MLP achieves 34.32% CC,om Without masking, representing a 14.4% improvement over the base-
line stacked regression model, though the Avg 2 (story) improvement is more modest at 7.7%.

Our multimodal linear encoder also outperforms stacked regression by 4.5%, supporting our hy-
pothesis that direct concatenation enables more effective modality interaction compared to weighted
averaging of unimodal predictions. The performance hierarchy (MLP > Linear > SR) suggests that
both architectural choices - direct multimodal fusion and nonlinearity - contribute independently to
improved predictions.

Interestingly, validation-based masking did not improve performance for either our linear or MLP
models, regardless of whether using our mask or the precomputed mask, from previous work. This
suggests our models learn effective feature selection implicitly, determining when to leverage or
ignore audio features for specific voxels without explicit masking. The benefit of removing masking
also likely stems from our models’ ability to learn voxel-specific feature importance through direct
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access to input data, combined with the inherent noise in validation masks due to the limited number
of timepoints.

These results demonstrate that enabling direct interaction between modalities through concatenation,
combined with nonlinear processing, provides a more robust approach than previous methods relying
on weighted averaging and explicit feature selection.

D RESULTS OF MORE COMPLEX NONLINEAR MODELS

Table 3: Encoding performance of various nonlinear semantic encoders compared to other models.
The table presents the average r? and normalized correlation coefficients (C'C),opm) along with
percentage changes relative to the baseline Linear model. Deep MLP refers to an MLP with two
hidden layers, while MLP is an MLP with one hidden layer.

modality 1 modality 2 encoder response  Avg 2 Avg CChorm
semantic - MLP PCA 3.79% (+3.6%) 30.89% (+6.1%)
semantic - Linear all voxels 3.66% (Baseline) 29.12% (Baseline)
semantic - LSTM PCA 3.33% (-9.0%) 26.95% (-7.46%)
semantic - GRU PCA 3.21% (-12.3%) 26.15% (-10.2%)
semantic - DeepMLP PCA 3.05% (-16.7%) 27.45% (-5.73%)
semantic - RNN PCA 2.99% (-18.0%) 25.42% (-12.7%)
semantic - Transformer PCA 2.82% (-23.0%) 27.97% (-3.95%)

We explored a range of more complex nonlinear models, as detailed in Table (3| Specifically, we
evaluated LSTM, GRU, RNN, and Transformer architectures, each configured with a single layer.
The hidden dimensions for these models were determined by experimenting with sizes of 256, 512,
768, and 1024, selecting the dimension that yielded the best performance.

All models received inputs consisting of four timepoints, consistent with the MLP model, which
concatenates these timepoints. For the recurrent models (LSTM, GRU, RNN), the final predictions
were generated by applying a linear projection to a weighted pooling of the outputs corresponding
to the four input timepoints. In the case of the Transformer model, we utilized learnable positional
embeddings along with full self-attention mechanisms, and the final prediction was obtained by
linearly projecting the output of the last token.

Additionally, we examined the DeepMLP model, an extension of the standard MLP with two hidden
layers instead of one.

Our results indicate that while the MLP with a single hidden layer outperforms linear models, intro-
ducing greater complexity—such as recurrenct models or additional hidden layers—leads to over-
fitting and decreased performance.

E PERFORMANCE OF MULTIMODAL MLP MODEL WHEN MIXING DIFFERENT
LAYERS

We observe in Figure ] that integrating the best performing layers from each modality results in the
best performing multimodal model.

F SCALING LLM AND AUDIO MODELS DOES NOT NECESSARILY LEAD TO
BETTER ENCODERS

Previous research by |Antonello et al.| (2024) found that increasing the size of large language models
(LLMs) and audio models, such as scaling OPT from 125M to 175B parameters or Whisper from
8M to 637M parameters, enhanced encoding performance. However, performance gains plateaued
for larger models like LLAMA-33B and OPT-175B, which they attributed to overfitting from larger
hidden sizes.

Building on these findings, our study delves deeper into the scaling trends and offers a refined per-
spective on their implications for brain encoding models. For audio models, we confirm a positive
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Figure 4: Heatmap showing average 72 values for different combinations of LLAMA and Whis-
per layer depths using an MLP encoder. Darker colors represent higher performance, with the best
results obtained when the best layers in the respective uni-modal encoding models were used.

correlation between model size and performance, as shown in Figure [3] (d). However, this scal-
ing effect does not hold for language models. Specifically, LLAMA-7B, LLAMA-13B, LLAMA-
33B, and LLAMA-65B exhibit comparable encoding performance, as shown in Figure [3] (b). This
suggests diminishing returns beyond 7 billion parameters, a finding consistent with prior work by
[Bonnasse-Gahot & Pallier| (2024), which reported performance plateaus for LLMs larger than 3
billion parameters.

We also evaluated the impact of scaling training data by examining newer versions of LLAMA and
Whisper (e.g., LLAMA-1, LLAMA-2, LLAMA-3; Whisper v1, v2, v3). Despite larger datasets,
newer versions did not yield significant performance improvements for either audio or semantic en-
coding models. This indicates that advancements in self-supervised learning (SSL) tasks, such as
better next-token prediction, do not necessarily translate to more effective features for brain encod-
ing. In essence, SSL improvements do not directly enhance brain-aligned representations.

In conclusion, our findings highlight two key points: (1) scaling language models beyond 7 billion
parameters does not substantially improve encoding performance, and (2) increasing training data
or using newer model versions does not enhance brain encoding feature extractors. These results

challenge the assumption that simply scaling feature extractors, as proposed by |Antonello et al.
(2024), will lead to better encoding models.

G CONTEXT SIZE SPEECH MODELS INFLUENCE ENCODER PERFORMANCE

Figure [6] illustrates the impact of varying the context size (window size) of the Whisper model on
encoding performance when using linear encoders, as explored in (2023). The results in-
dicate that a 16-second window size, which was used as the default throughout our study, delivers the
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Figure 5: Encoder performance across different LLAMA and Whisper model variants, using linear
regression applied to the full set of voxels. Panel (a) compares LLAMA models of various archi-
tectures (LLAMA-2 and LLAMA-3) with 7B and 8B parameters. Panel (b) presents performance
across different LLAMA models of increasing sizes, from 7B to 65B. Panels (c) and (d) show the
performance for different Whisper model variants, including comparisons between Whisper Large
versions (c) and different model sizes (d), from Whisper Tiny to Whisper Large. Performance is
measured in terms of average 72, plotted against normalized layer depth.

best performance. This outcome aligns with expectations, as the selected window size is consistent
with the recommendations from |Antonello et al.| (2024).

H PERFORMANCE OF VARIOUS ENCODING MODELS USING DIFFERENT
INPUTS

H.1 VOXELWISE r VALUES FROM DIFFERENT ENCODING MDOELS AND STIMULI

Figures[7] [8] and 0] each represent the voxelwise correlation (r) values using various encoders and
inputs for subjects S1, S2, and S3, respectively.
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Figure 6: Encoder performance across different Whisper Large models with varying window size,
using linear regression applied to the full set of voxels.
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Figure 7: Voxelwise r values for Subject S1 across different input modalities and encoding models.
Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare
Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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Figure 8: Voxelwise r values for Subject S2 across different input modalities and encoding models.
Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare
Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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Figure 9: Voxelwise r values for Subject S3 across different input modalities and encoding models.
Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns compare
Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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H.2 ROI-WISE r» VALUES FROM DIFFERENT ENCODING MODELS AND STIMULI

Figure |10/ shows the r value for different encoding models and stimuli averaged across subjects.
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Figure 10: Box plot showing 7 across different regions of interest (ROIs), where the r values are
aggregated over all subjects. multi refers to multimodal, and sem refers to semantic encoders. ROIs
are grouped and color-coded by their functions.

H.3 VOXELWISE CC,prm VALUES FROM DIFFERENT ENCODING MDOELS AND STIMULI

Figures [TT} [T2] and[I3|each represent the normalized voxelwise correlation (C'Clyopr,) values using
various encoders and inputs for subjects S1, S2, and S3, respectively.
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Figure 11: Voxelwise C'C), -, values for Subject S1 across different input modalities and encoding
models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns
compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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Figure 12: Voxelwise C'Cl,orm values for Subject S2 across different input modalities and encoding
models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns
compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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Figure 13: Voxelwise C'C), 0, values for Subject S3 across different input modalities and encoding
models. Rows show audio-only (a,b), semantic-only (c,d), and multimodal (e,f) inputs. Columns
compare Linear (left) and MLP (right) encoders. Warmer colors indicate higher prediction accuracy.
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I IMPROVEMENTS FROM NONLINEARITY

I.1 LAYERWISE PERFORMANCE INCREASES FROM MLP

Figure [T4] shows that MLP improves encoding performance for both language and audio models,
regardless of what layer is used for the MLP encoding model.
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Figure 14: Average voxel-wise r2 values, computed as the mean across three subjects, for each layer
of the (a) language (LLAMAT7B) and (b) audio (Whisper Large) models. Comparisons are shown
between the MLP and linear encoders, and dashed black lines indicate the best performance for
linear encoders

1.2 VOXELWISE IMPROVEMENTS FROM MLP (r ANALYSIS)

Figures[T3][16] and[T7]each represent the performance improvements in voxelwise correlation values
for semantic, audio, and multimodal inputs, respectively, for each subject.
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Figure 15: Encoding model performance improvements. (a-c) Voxelwise Ar (MLP performance
minus linear performance) for semantic input for subjects S1, S2, S3, respectively. Positive values

indicate MLP outperformance.
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Figure 16: Encoding model performance improvements. (a-c) Voxelwise Ar (MLP performance
minus linear performance) for audio input for subjects S1, S2, S3, respectively. Positive values

indicate MLP outperformance.

33



Under review as a conference paper at ICLR 2026

a_ - N e coees
pPFC . v mPFC mPFC >
:I grie PrCu PrCu. LPFC \‘ '{ iPee PrCu PrCu LPFC mP?(z
1
b AG - AG ! X AG AG L
AC oc ocC AC & « AC oc oc Ac x
LTC " e — et e
& ; oy N 7 . G2
. » B - & —_—
) ) Y. 3
) ‘ P P \
L‘* \33 (é/ ‘\“?-’/) (/—\\—f _)-) GlETD ) \
c - P 0.50
S ~
mPFC S
/  LPEC PrCu PrCu LPFC mP?(i
i 1 0.25
\ 1
\ AG AG g
. AC oc oc AC  «

- LTc LTc
<« s é B -0.25

P
L.:V“ \-& % o -0.50

Figure 17: Encoding model performance improvements. (a-c) Voxelwise Ar (MLP performance

minus linear performance) for multimodal input for subjects S1, S2, S3, respectively. Positive values
indicate MLP outperformance.
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1.3  VOXELWISE IMPROVEMENTS FROM MLP (CC, oy ANALYSIS)

Figures [T9] [T8] and 20| each represent the performance improvements in voxelwise C'Cl,prm, values
for semantic, audio, and multimodal inputs, respectively, for each subject. The improvements are

more pronounced with C'C,,,,-,, compared to r as noise is taken into account.
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Figure 18: Encoding model performance improvements. (a-c) Voxelwise ACCY, o (MLP perfor-
mance minus linear performance) for semantic input for subjects S1, S2, S3, respectively. Positive

values indicate MLP outperformance.
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Figure 19: Encoding model performance improvements. (a-c) Voxelwise ACCl,opm (MLP perfor-
mance minus linear performance) for audio input for subjects S1, S2, S3, respectively. Positive

values indicate MLP outperformance.
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Figure 20: Encoding model performance improvements. (a-c) Voxelwise ACC),prm (MLP perfor-
mance minus linear performance) for multimodal input for subjects S1, S2, S3, respectively. Positive
values indicate MLP outperformance.

1.4 BETTER SPATIO-TEMPORAL COMPARTMENTALIZATION OF BRAIN FUNCTION

To compare the performance between Whisper and LLAMA models, we define the Relative Error
Difference (RED) for each voxel v at time ¢ as:

RED(”& t) = |fsemamic(va t) - y(v, t)| - |faudi0(va t) - y(v, t)|

where fiemanic (v, t) is the prediction from the semantic encoding model for voxel v at time ¢,
Saudio(v, t) is the prediction from the audio encoding model for voxel v at time ¢, and y(v, t) rep-
resents the true value at voxel v and time ¢. A positive RED value indicates that the audio model
outperforms the semantic model at that specific voxel and time, while a negative value indicates that
the semantic model performs better.

In this analysis, we computed the RED between Whisper and LLAMA models for each voxel v at a
given time ¢. For each region of interest (ROI), the average RED is calculated as:

1
REDgor(t) = - > RED(v,t)
vEROI

Where N is the number of voxels in the ROI. The correlation matrices were then computed over
these ROI time series for both linear and nonlinear (MLP) encoders (Figure [21] (b, ¢)). A high
correlation between two ROIs indicates that their semantic/audio processing temporal dynamics are
similar over time.

For comparison, functional connectivity (FC) was also computed using the average fMRI signal for
each voxel (Figure [21] a). Hierarchical clustering was then performed on the correlation matrices,
producing the dendrograms in panels (d-f).

As shown in Figure[2T] panel (d) does not exhibit meaningful compartmentalization, indicating that
the ROIs are not functionally clustered based on FC. However, the correlation matrices derived
from RED (panels b, ¢) demonstrate clear block-diagonal structures, suggesting better functional
compartmentalization. The dendrograms in panels (e, f) show that the ROIs cluster according to
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a Brain Response b Linear Encoder C MLP Encoder

Figure 21: Spatio-temporal clustering based on Relative Error Difference (RED) between seman-
tic and audio encoding models. Panels (a-c) display correlation matrices representing the temporal
relationships between regions of interest (ROIs). For consistency, all the ROIs in (a,b,c) are or-
dered according to the most optimal ordering for (c). Panel (a) shows the functional connectivity
(FC) matrix, calculated from the average fMRI signals. Panel (b) presents the correlation matrix
from Relative Error Difference between Whisper and LLAMA using linear encoders, while panel
(c) uses nonlinear (MLP) encoders, showing better functional compartmentalization with stronger
block-diagonal structures. Panels (d-f) depict hierarchical clustering dendrograms derived from the
correlation matrices in panels (a-c). Panel (d), based on FC, shows no clear compartmentalization of
ROIs. Panel (e), based on linear encoders, show almost perfect functional clustering, though with in-
accuracies (e.g., SMFA clustered with SIM/M1M). Panel (f), based on nonlinear (MLP) encoders,
achieves better functional clustering, correctly grouping motor-related regions. The modularity Q
values confirm this improvement: FC (a) scored 0.068, linear encoders (b) scored 0.145, and non-
linear encoders (c) scored 0.155, highlighting the advantage of nonlinear encoders for functional
organization.

their functional roles, where the somatosensory and motor areas, visual areas, and auditory areas
are grouped (even lower levels are grouped well (M1H/S1H, MIM/SIM, M1F/S1F, SMHA/SMFA,
Broca/sPMyv are grouped)) with nonlinear (MLP) models (f) achieving more accurate clustering than
linear models (e). Specifically, panel (e) incorrectly clusters SMFA with SIM and M 1M, whereas
panel (f) correctly clusters SMHA and SMFA together before clustering them with other sensory
and motor-related regions.

This study presents a novel approach, as it is the first to use fMRI speech encoding models to
group ROIs based not only on spatial dynamics but also on their temporal processing dynamics.
Traditionally, voxel-wise functional classification or grouping has been the norm in fMRI analysis,
focusing solely on static (spatial) relationships. However, here with the help of fMRI encoders, we
incorporate both spatial and temporal information, allowing for a more comprehensive, dynamic
view of brain function, especially in the context of semantic and auditory encoding.

In summary, using nonlinear (MLP) models leads to better functional compartmentalization. In fact,
modularity Q values further confirm this: FC (a) scored 0.068, linear encoders (b) scored 0.145, and
nonlinear encoders (c) scored 0.155, highlighting the improved functional clustering achieved with
better encoders.
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J IMPROVEMENTS FROM MULTIMODALITY

J.1 VOXELWISE IMPROVEMENTS FROM MULTIMODALITY (7 ANALYSIS)

This section shows the subject-wise plots of voxelwise Ar between multimodal linear/MLP and
semantic/audio linear models (Figure[23] Figure[24). We observe consistent patterns of improvement
when using multimodal models. For direct comparison with Figure |Z| (which plots ACChorm), We
provide here the provide the equivalent plot with Ar in Figure 22]
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Figure 22: Multimodality improvement (Ar) in encoding models. Panels (a)-(d) display voxelwise
Ar values of a single subject (S1), with warmer colors indicating regions where multimodal models
outperform linear models. mut, sem, each refer to multimodal and semantic encoders.

38



Under review as a conference paper at ICLR 2026

Multimodal Linear

a _----»
FC

,WP PrCu

1 LPFC

1

' AG

\
4
AG ocC

C s -
r}'rPFC
1 LPFC PrCu
I
\
‘\ AG
LY AC oc
e LTC
—
y.
e _---»
mPFC
,/  LPFC PrCu
I
X AG
‘.  AC oc
- LTC
)
,//

‘oc

PrCu

AG
ocC

LTC

@& (D

PrCu
AG

LTC

PrCu

AG
ocC
LTC

@

"AC

“IAC

Multimodal MLP
Subject 1 (S1)

b _.---
.

«-o
FC
mPFC ,mp . PrCu PrCu
LPFC .V % age
1
1 '\
,’ by AG AG

‘AC g oc' oC

A -
L &

LTC

e

-0.5 0.0 0.5

Subject 2 (S2)
-
- = 2% i g~
mPFC
LPFC mP?(z ] LPFC PrCu PrCu LPFC mP?C:
1 : /'
/) % AG AG L
»
« b AC oc ocC ‘AC ~
LTC LTC
pa— &= e
\ /[ . ) \
<) ( .l . ) AL
Subject 3 (S3)
=< f P ==~
~
mPFC
LPFC '"P}(f /  LPFC PrCu PrCu LPFC '“P}?
1 I 1
! u " ae AG 2 it !
/ \ % & 7
oc oc IAC
) LTC —
52 3 £
Ve \\\
,«5 L\ o) @ —20)

Figure 23: Subject-wise voxelwise Ar plots of multimodal models compared to semantic models.
Panels (a-f) display voxelwise Ar values comparing multimodal and unimodal models across three
subjects. Panels a, c, e show the difference between multimodal linear and semantic linear models,
while panels b, d, f compare multimodal MLP and semantic linear models. Each row represents a
different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in
panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal
linear models in prediction accuracy. The spatial patterns highlight enhanced encoding performance
in key areas associated with semantic and auditory processing, such as the medial prefrontal cortex
(mPFC), angular gyrus (AG), precuneus (PrCu), and lateral temporal cortex (LTC), emphasizing the
benefits of multimodal models in capturing complex brain activity.
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Figure 24: Subject-wise voxelwise Ar plots of multimodal models compared to audio models. Pan-
els (a-f) display voxelwise Ar values comparing multimodal and unimodal models across three
subjects. Panels a, c, e show the difference between multimodal linear and audio linear models,
while panels b, d, f compare multimodal MLP and audio linear models. Each row represents a dif-
ferent subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in panels
e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal linear
models in prediction accuracy.
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J.2  VOXELWISE IMPROVEMENTS FROM MULTIMODALITY (C'C},0r-m ANALYSIS)

This section shows the subject-wise plots of voxelwise ACC,, oy, between multimodal linear/MLP
and semantic/audio linear models (Figure [26] Figure 26). We observe consistent patterns of im-
provement when using multimodal models. The improvements are more noticable with C'C},ppp,
compared to r as noise is taken into account.
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Figure 25: Subject-wise voxelwise ACCy,orm plots of multimodal models compared to semantic
models. Panels (a-f) display voxelwise AC'C), o, values comparing multimodal and unimodal mod-
els across three subjects. Panels a, ¢, e show the difference between multimodal linear and semantic
linear models, while panels b, d, f compare multimodal MLP and semantic linear models. Each row
represents a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject
3 (S3) in panels e-f. Warmer colors indicate regions where the multimodal models outperform the
unimodal linear models in prediction accuracy.

41



Under review as a conference paper at ICLR 2026

Multimodal Linear Multimodal MLP
Subject 1 (S1)

-~ " £~y
pPFC - ' NSRS
P o PrCu ‘) mPF\Q
“1:°. 7 LPFC - LPFC

X )
S
I

Subject 2 (S2)
c. ’a—-b B — :,’4-‘b>‘
»‘:"ch e B Gt S0 :n;?c erc :»"“\"P c
JE" LPFC, PrCu Prc}l. PRA g 4 ; '-PFCV ik v." “
T e e T
£ & g ! A
\~/" v “ "ﬁ " & el
/ .‘ » N P \ / HizA N
Subject 3 (S3)
4—“7~\ £

~
LPFC "‘P?’?

Figure 26: Subject-wise voxelwise AC'C),orm plots of multimodal models compared to audio mod-
els. Panels (a-f) display voxelwise ACC, o values comparing multimodal and unimodal models
across three subjects. Panels a, c, e show the difference between multimodal linear and audio linear
models, while panels b, d, f compare multimodal MLP and audio linear models. Each row represents
a different subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject 3 (S3) in
panels e-f. Warmer colors indicate regions where the multimodal models outperform the unimodal
linear models in prediction accuracy.

J.3 ROI PREDICTIONS IMPROVEMENTS FROM MULTIMODALITY

This section shows the ROI-wise improvements from using multimodal models (Figure 27)
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Figure 27: Subject-wise boxplots of performance differences (Ar) across different ROIs. The com-
parisons are made between different stimuli and encoding models: multimodal linear and multi-
modal MLP (mult MLP) models are compared against semantic (sem) and audio linear models. The
ROIs are grouped into functional categories.
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K IMPROVEMENTS FROM NONLINEARITY AND MULTIMODALITY

K.1 VOXELWISE IMPROVEMENTS FROM DIMLP, AND ADDITIONAL IMPROVEMENTS FROM
MLP (r ANALYSIS)
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Figure 28: Nonlinearity Enhances Multimodal fMRI Predictions. Panels (a, c, €) show the voxelwise
Ar values (DIMLP minus linear model), illustrating the improvements achieved through nonlinear
processing within each modality, while largely limiting cross-modal interactions. Panels (b, d, f)
display voxelwise Ar values (Multi MLP minus Multi DIMLP), highlighting the additional bene-
fits of allowing nonlinear interactions between modalities (“Multi” denotes Multimodal). Each row
represents the same subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels c-d, and Subject
3 (S3) in panels e-f. Warmer colors indicate regions where the nonlinear models outperform linear
models.

K.2 VOXELWISE IMPROVEMENTS FROM DIMLP, AND ADDITIONAL IMPROVEMENTS FROM
MLP (CC}0rm ANALYSIS)

Figure |7_§| shows the voxel-wise performance improvements in voxelwise C'C}, -, Values when in-

corporating nonlinear interactions. The improvements are more pronouned with C'C, o, compared
to 7 as noise is taken into account.
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Figure 29: Nonlinearity Enhances Multimodal fMRI Predictions. Panels (a, c, €) show the voxelwise
ACCorm values (DIMLP minus linear model), illustrating the improvements achieved through
nonlinear processing within each modality, while largely limiting cross-modal interactions. Panels
(b, d, f) display voxelwise ACC,ppm values (Multi MLP minus Multi DIMLP), highlighting the
additional benefits of allowing nonlinear interactions between modalities (“Multi” denotes Multi-
modal). Each row represents the same subject: Subject 1 (S1) in panels a-b, Subject 2 (S2) in panels
c-d, and Subject 3 (S3) in panels e-f. Warmer colors indicate regions where the nonlinear models

outperform linear models.

K.3 ROI-WISE IMPROVEMENTS OF MULTIMODAL DIMLP AND MLP FROM MULTIMODAL

LINEAR MODEL
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Figure 30: Box plot showing Ar across ROIs, where the Ar values are aggregated over all subjects.
multi refers to multimodal, and sem refers to semantic encoders, and DIMLP refers to Delayed
Interaction MLP, where only a linear interaction between modalities is allowed. The ROIs are color-
coded by function. Regions where Ar > 0 with a p-value less than 0.05 are indicated by * symbols.
Additionally, + symbols denote ROIs where there is a statistically significant difference (p-value <
0.05) between the two models based on a pairwise t-test. Voxelwise and ROI-wise plots for each
subjects can be found in Figure 28] (Appendix), and Figure 3] (Appendix), respectively.
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Figure 31: Subject-wise boxplots of voxel-wise differences (Ar) across different ROIs. The com-
parisons are made between different encoding models: multimodal MLP and multimodal DIMLP
models are compared against multimodal linear models. The ROIs are grouped into functional cate-
gories.
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L VARIANCE PARTITIONING ANALYSIS

To quantify the unique contributions of different feature spaces in our nonlinear multimodal en-
coding models, we employed a variance partitioning analysis similar to|de Heer et al|(2017). This
approach allowed us to determine how much variance could be uniquely explained by each feature
versus that explained by a multiple features. We estimated both the fraction of variance explained
by each feature space individually and the fraction that might be equally well explained by combi-
nations of feature spaces.

We show our variance partitioning analysis results in three complementary ways: 1) voxel-wise vari-
ance partition results (Appendix [L.2)), 2) voxel-wise plots showing the largest variance partition for
each voxel (Appendix [L.3)), and 3) ROI-wise Venn diagrams illustrating the distribution of variance
explained across different brain regions (Appendix [L.4).

For this analysis, we fit models with all possible combinations of feature spaces: two single-feature
models (audio and semantic), one model combining both features (semantic-audio), and examined
the distribution of variance explained within brain regions. This allowed us to decompose the total
explained variance into three components: variance uniquely explained by audio features, variance
uniquely explained by semantic features, and variance jointly explained by both feature spaces.

L.1 SUMMARY OF VARIANCE PARTITIONING RESULTS

Looking at the results of Appendix we observe that joint variance dominates across most cor-
tical regions, contrasting with [de Heer et al.[| (2017) where semantic only features showed greater
dominance. This difference likely stems from our feature choices - whereas [de Heer et al.| (2017)
used spectral and articulatory features that primarily contained information relevant mostly only to
auditory cortex, our use of Whisper features provides richer auditory representations that enable
better predictions beyond traditional auditory regions. This finding aligns with our earlier argument
(Section [3.3.2)) that multiple modalities jointly contribute to neural computations across the cortex
rather than having one modality dominate.

The dominance pattern of joint variance is consistent both within and near AC, with a notable ex-
ception in early auditory regions where audio features show unique contributions. This hierarchi-
cal organization suggests that while early AC predominantly processes pure acoustic information,
later AC regions integrate both semantic and auditory features for higher-level speech processing.
The unique contribution of audio features in early AC is noteworthy as it suggests preservation of
modality-specific processing at early sensory stages despite using rich Whisper features.

Also, Appendix [L.3|reveals distinct spatial patterns in feature representation across cortical regions.
The prefrontal cortex exhibits mixed dominance patterns, showing both joint semantic-audio repre-
sentation and semantic-only areas. While early auditory cortex shows expected unique audio contri-
butions, we also observe audio-specific representation in motor-sensory mouth areas (M1M, S1M),
though this pattern varies across subjects.

The ROI-wise analysis in Appendix [L.4]reveals that joint semantic-audio features dominate cortical
representation, accounting for approximately 65% of significantly predicted voxels across the entire
cortex. Core language-processing regions (AC, Broca’s area, sSPMv) show particularly strong joint
representation (around 80 to 90%), supporting our hypothesis that speech comprehension relies on
integrated multimodal processing. This integration is consistently observed across subjects, though
some ROIs (e.g., PMvh in Subject S2 with only 14 voxels) have insufficient data for reliable in-
terpretation. The transition from linear to MLP encoders increases the total number of significantly
predicted voxels while maintaining similar representation patterns, indicating that nonlinear encod-
ing primarily enhances prediction accuracy rather than fundamentally altering feature representation
structure.

L.2 VARIANCE PARTITIONING OF VARIOUS MODELS
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Figure 32: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S1 using linear models. The flatmaps display (a) vari-
ance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic
features, and (c) variance uniquely explained by audio features. Values shown are normalized corre-
lations (C'Cl, o) for voxels where the joint model achieved significant prediction (¢(FDR) < 0.01).
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Figure 33: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S1 using MLP models. The flatmaps display (a) variance
jointly explained by audio and semantic features, (b) variance uniquely explained by semantic fea-
tures, and (c) variance uniquely explained by audio features. Values shown are normalized correla-
tions (C'Cy,orm) for voxels where the joint model achieved significant prediction (q(FDR) < 0.01).
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Figure 34: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S2 using linear models. The flatmaps display (a) vari-
ance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic
features, and (c) variance uniquely explained by audio features. Values shown are normalized corre-
lations (C'Clyorm ) for voxels where the joint model achieved significant prediction (¢(FDR) < 0.01).
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Figure 35: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S2 using MLP models. The flatmaps display (a) variance
jointly explained by audio and semantic features, (b) variance uniquely explained by semantic fea-
tures, and (c) variance uniquely explained by audio features. Values shown are normalized correla-
tions (C'Cy,or-m) for voxels where the joint model achieved significant prediction (¢(FDR) < 0.01).
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Figure 36: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S3 using linear models. The flatmaps display (a) vari-
ance jointly explained by audio and semantic features, (b) variance uniquely explained by semantic
features, and (c) variance uniquely explained by audio features. Values shown are normalized corre-
lations (C'Clyorm ) for voxels where the joint model achieved significant prediction (¢(FDR) < 0.01).
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Figure 37: Voxelwise variance partitioning analysis showing the contributions of different feature
types to prediction accuracy for a subject S3 using MLP models. The flatmaps display (a) variance
jointly explained by audio and semantic features, (b) variance uniquely explained by semantic fea-
tures, and (c) variance uniquely explained by audio features. Values shown are normalized correla-
tions (C'Ch,orm) for voxels where the joint model achieved significant prediction (¢(FDR) < 0.01).
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L.3 LARGEST VARIANCE PARTITIONING FOR EACH VOXEL

Figure 38: Voxelwise analysis showing the largest variance explained by each feature type for all
significantly predicted voxels (¢(FDR) < 0.01) for subject S1. The flatmaps display which feature
partition (semantic in red, audio in green, or their combination in blue) best explains the variance
in each cortical voxel using (a) linear and (b) MLP encoders, with outlined regions indicating key
functional areas.
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Figure 39: Same as Figure [38] but for subject S2
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Figure 40: Same as Figure[38] but for subject S3
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L.4 VARIANCE PARTITIONING VENN DIAGRAM
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Figure 41: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S1, using linear encoder. Each diagram displays the unique and
shared variance explained by semantic features (red), audio features (green), and their overlap (blue).
Values indicate the number of significantly predicted voxels and their percentages. Only the voxels
that was predicted statistically significantly (¢(FDR) < 0.01) was used in the analysis
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Figure 42: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S1, using MLP encoder. Refer to Fig [41] for more detail.
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Figure 43: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S2, using linear encoder. Refer to Fig A1) for more detail.
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Figure 44: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S2, using MLP encoder.Refer to Fig A1) for more detail.
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Figure 45: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S3, using linear encoder. Refer to Fig A1) for more detail.
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Figure 46: Venn diagrams showing the distribution of explained variance across different brain re-
gions of interest (ROIs) for subject S3, using MLP encoder. Refer to Fig[#1] for more detail.
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M UNIQUE CHALLENGES IN SPEECH ENCODING AND CONTEXTUALIZING
MODEL PERFORMANCE

Here we analyze the fundamental methodological disparities between vision and language encoding
in neuroscientific research. We first examine the unique challenges of language encoding compared
to vision encoding, highlighting why nonlinear models have been difficult to implement in language
neuroscience, and how our work begins to address these longstanding methodological barriers. We
then contextualize the magnitude of our performance improvements by conducting a comparative
analysis with established benchmarks from recent literature.

M.1 CHALLENGES OF SPEECH ENCODING COMPARED TO VISION ENCODING

Table 4: Comparison of vision and speech encoding datasets (from |Allen et al.| (2022)) and |LeBel

et al] (2023)).

Characteristic
Stimulus Presentation

Voxel Prediction Space
Data Collection

Natural Scenes Dataset (Vision)
Allen et al.[(2022)

4 seconds per image (3s image, 1s
gap)

~15k voxels (occipital areas)
30-40 hours per subject

Lebel et al. Language Dataset
LeBel et al.| (2023)
2 seconds, ~5 words spoken

80-90k voxels (whole cortex)
20 hours per subject

Prediction Complexity Primarily perceptual Cortex-wide, including higher-
order semantic areas

Number of Subjects 8 3

Spatial/Temporal ~ Resolu- 1.8mm x 1.8mm x 1.8mm, 1.6s 2.6mm x 2.6mm x 2.6mm, 2s

tion

Field Strength (Tesla) 7T 3T

While vision encoding has long benefitted from nonlinear models, speech encoding presents unique
challenges, as illustrated by the stark differences between the Natural Scenes Dataset (NSD) |Allen
et al|(2022) and the Lebel et al. Language Dataset|LeBel et al.| (2023), as outlined in Table 4]

The temporal dynamics of stimulus presentation fundamentally differ between these datasets. NSD
presents visual stimuli for 4 seconds (3 seconds of image presentation with a 1-second gap), whereas
the Lebel et al. Language Dataset captures linguistic stimuli over 2 seconds, with approximately 5
words spoken during that interval. This rapid and continuous linguistic information flow creates
significant complexity in encoding neural representations.

The prediction space for these datasets also reveals substantial methodological challenges. NSD fo-
cuses on predicting neural activity in approximately 15,000 voxels primarily within occipital areas,
which are predominantly perceptual. In contrast, the Lebel et al. Language Dataset requires predict-
ing 80-90,000 voxels across the entire cortex, encompassing higher-order semantic areas. Predicting
neural activity in non-perceptual, higher-level regions like the prefrontal cortex introduces consider-
able noise and computational complexity.

Data collection further highlights the intrinsic difficulties. While NSD collected 30-40 hours of data
per subject with 8 participants and high-resolution 7T imaging, the Lebel et al. Language Dataset
gathered 20 hours from only 3 subjects using lower-resolution 3T imaging. These constraints make
developing sophisticated encoding models particularly challenging for language processing.

These fundamental differences underscore why nonlinear encoding models, which have become
standard in vision research |Yang et al.| (2023); |Scotti et al.| (2024), have been difficult to implement
in language neuroscience. Our work represents a critical step towards bridging this methodological

gap.

M.2 TYPICAL IMPROVEMENT MAGNITUDES IN FMRI SPEECH ENCODING STUDIES

To contextualize the improvements reported in our study, we present a comprehensive compari-
son of typical improvement magnitudes (Ar) observed in leading fMRI speech encoding research.

This analysis demonstrates that nonlinearity reveals a wealth of information contained within the
language and speech model embeddings.
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Table 5: Comparison of typical improvement ranges (Ar) in language fMRI encoding studies

Study Analysis Type = Typical Ar Range Notes
ROI-wise Analysis
Caucheteux et al. ROI-wise -0.005 to 0.015 “Forecast score” in Fig. 2(f)
(2023)
Lamarre et _all ROI-wise 0.025 to 0.050 For AC, Broca, sPMv ROIs (no statistical
(2022) testing)
Millet &  Kingl ROI-wise 0t00.015 From Fig. 3(D)
(2021)
Our Study ROI-wise 0.025 to 0.075 AC: 0.06, Broca: 0.025-0.050, IFSFP:
0.050-0.075
Voxel-wise Analysis
Aw & Toneval Voxel-wise -0.2t00.2 From Fig. 4
(2022)
Jain & Huth|(2018)  Voxel-wise -0.2t00.2 From Fig. 3
Millet & Kingl Voxel-wise -0.008 to 0.008 Varied ranges (-0.06 to 0.06 also) reported
(2021)
Caucheteux et al. Voxel-wise 0.004 to 0.020 Relative gains of 0-5%
(2023)
Our Study Voxel-wise -0.5t0 0.5 17.2% average voxelwise r> improve-

ment over baseline

This comparative analysis reveals two critical insights. First, analyzing and deriving conclusions
from modest Ar improvements is standard practice in the language fMRI encoding field. Second,
our improvements are substantially larger than those typically reported in comparable studies. No-
tably, while influential works like|Caucheteux et al.|(2023)) report ROI-wise Ar values ranging from
-0.005 to 0.015, our study demonstrates much larger improvements in key regions like the Auditory
Cortex (0.06), Broca’s area (0.025-0.050), and IFSFP (0.050-0.075).

For voxel-wise analyses, our improvements (Appendix [J.I] and Figure 22) span a wider range (-0.5
to 0.5) than other studies, with a substantial 17.2% increase in average > compared to semantic-
only linear models. Subject-wise analyses in Figure[27]reveal even more pronounced effects in some
ROIs, with Ar values exceeding 0.100.

In all the studies referenced above, even modest ROI-wise and voxel-wise improvements played
pivotal roles in deriving significant scientific conclusions. Given that our improvements are more
pronounced by comparison, we believe our research provides robust empirical evidence for the ben-
efits of nonlinear, multimodal approaches in language encoding models.

N LICENSES OF THE ASSETS

LeBel et al. fMRI dataset: We use the fMRI dataset from LeBel et al. |[LeBel et al.| (2023). This
dataset is licensed under the Creative Commons Zero (CCO) license. It can be accessed athttps:
//openneuro.org/datasets/ds003020/versions/3.0.0.

Llama models: Llama models: We use Llama models spanning Llama-1 (7B, 13B, 33B, 65B)|Tou-
vron et al.[(2023a), Llama-2 (7B) Touvron et al.|(2023b), and Llama-3 (§B)|Dubey et al.| (2024). All
models were accessed via Hugging Face at https://huggingface.co/meta-1lamaland
were used under Meta Llama Community Licenses, which permit research use but restrict redistri-
bution and commercial applications.

Whisper models: We use Whisper models [Radford et al.| (2023)) from OpenAl, released under the
MIT License. This license allows free use, modification, and distribution with minimal restric-
tions. The models were accessed via Hugging Face at https://huggingface.co/docs/
transformers/en/model_doc/whisper.

62


https://openneuro.org/datasets/ds003020/versions/3.0.0
https://openneuro.org/datasets/ds003020/versions/3.0.0
https://huggingface.co/meta-llama
https://huggingface.co/docs/transformers/en/model_doc/whisper
https://huggingface.co/docs/transformers/en/model_doc/whisper

	Introduction
	Method
	MRI data
	Feature extraction
	Representations for fMRI data
	Encoding model
	Normalized correlation coefficient and Relative Error Difference (RED)

	Results
	Nonlinear encoders
	Nonlinearity is the key driver of superior encoding performance
	Nonlinearity enhances brain-wide predictions and functional clustering

	Nonlinear and multimodal encoders
	Nonlinear interactions between modalities enhance fMRI predictions

	Multimodal encoders
	Multimodality reveals widespread cortical integration
	Multimodal fusion supports and extends neurolinguistic theories


	Discussion and conclusion
	Abbreviations of Brain Areas and Regions of Interest (ROIs)
	Details of implementation
	Llama feature extraction strategy
	Noise ceiling (CCmax) and nocmalized correlation (CCnorm) calculation
	Resampling the hidden state of LLMs to fMRI time points 
	Representations for fMRI response using PCA
	Details of encoding models

	Comparison with stacked regression model of huthscaling
	Results of more complex nonlinear models
	Performance of multimodal MLP model when mixing different layers
	Scaling LLM and audio models does not necessarily lead to better encoders
	Context size speech models influence encoder performance
	Performance of various encoding models using different inputs
	Voxelwise r values from different encoding mdoels and stimuli
	ROI-wise r values from different encoding models and stimuli
	Voxelwise CCnorm values from different encoding mdoels and stimuli

	Improvements from nonlinearity
	Layerwise performance increases from MLP
	Voxelwise improvements from MLP (r analysis)
	Voxelwise improvements from MLP (CCnorm analysis)
	Better spatio-temporal compartmentalization of brain function

	Improvements from multimodality
	Voxelwise improvements from multimodality (r analysis)
	Voxelwise improvements from multimodality (CCnorm analysis)
	ROI predictions improvements from multimodality

	Improvements from nonlinearity and multimodality
	Voxelwise improvements from DIMLP, and additional improvements from MLP (r analysis)
	Voxelwise improvements from DIMLP, and additional improvements from MLP (CCnorm analysis)
	ROI-wise improvements of multimodal DIMLP and MLP from multimodal linear model

	Variance partitioning analysis
	Summary of variance partitioning results
	Variance partitioning of various models
	Largest variance partitioning for each voxel
	Variance partitioning Venn diagram

	Unique challenges in speech encoding and contextualizing model performance
	Challenges of speech encoding compared to vision encoding
	Typical improvement magnitudes in fMRI speech encoding studies

	Licenses of the assets

