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Abstract
Recent works have shown that the predictive accuracy of Bayesian deep learning models
exhibit substantial improvements when the posterior is raised to a 1/T power with T < 1.
In this work, we explore several possible reasons for this surprising behavior.

1. Introduction

Many different approaches have been suggested to integrate neural networks with the toolbox
of Bayesian inference (MacKay, 1992; Hinton and Camp, 1993; Neal, 1994; Graves, 2011;
Welling and Teh, 2011; Ritter et al., 2018). In such Bayesian neural networks, we have,
after training, not a single set of parameters w (weights), but an (approximate) posterior
distribution over w. Such a posterior distribution is very useful for many potential applica-
tions. For example, it enables uncertainty estimates over the network output; selection of
hyper-parameters and models; and guided data collection (active learning).

More recently, there is a growing interest in understanding the properties of tempered
posteriors, given by

pT (w|X,Y) ∝

{
(p (Y|X,w))1/T p (w) Partial tempering
(p (Y|X,w) p (w))1/T Full tempering

(1)

where (X,Y) is the observed dataset (input, output), p (Y|X,w) is the likelihood, p (w) is
the prior, and T is a ‘temperature’ parameter. This is motivated by the cold posterior effect,
studied recently byWenzel et al. (2020) and observed empirically in numerous previous works
on Bayesian deep learning (e.g. Li et al. (2016); Zhang et al. (2018, 2020); Ashukha et al.
(2020)). The observed effect is that in the posterior predictive distribution on input x

p (y|x,X,Y) =

∫
p (y|x,w) pT (w|X,Y) dw , (2)
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the use of T < 1 (with full tempering) commonly outperforms the standard, optimal
Bayesian estimator with T = 1 in terms of predictive test accuracy. Note that the 1/T
power in (1) with T < 1 artificially sharpens the posterior around models with high poste-
rior probability by overcounting the data by a factor of 1/T (apart from the prior sharpening
in the full tempering case). This result is surprising because, although many works argued
that tempered posteriors improve posterior inference for misspecified models (arguably the
case for neural network models), all these works required T > 1 (Jansen, 2013; Grünwald
et al., 2017; Miller and Dunson, 2018).1

In this work, we examine several possible reasons for the cold posterior effect. After
reviewing related works in Section 2, we consider first the possibility of a mismatch between
the true prior and the one we use in practice. We explore two types of prior mismatch. First,
in Section 3 we argue that good priors should be input-dependent, and show how this can
lead to the observed cold posterior. In Section 4 we examine a prior mismatch due to depth,
when the assumed model (student) is deeper than the actual model generating the labels
(teacher). Finally, we demonstrate in Section 5 that the cold posterior effect is feasible, even
without model mismatch in the case of a single teacher (the standard supervised learning
setting) in some relevant cases, e.g. with heavy-tailed posterior distributions. Existing
empirical evidence suggests the hypothesis of input-dependent priors to be most likely.

2. Related works

Recently Wenzel et al. (2020) conducted an extensive empirical and theoretical study of the
cold posterior effect, ruling out several candidate reasons, such as an inaccurate inference
method, or the non-formal likelihood functions used in deep learning models (e.g. data
augmentation, batch normalization).

The work by Adlam et al. (2020) studied the cold posterior effect in Gaussian pro-
cesses (GP) classification and regression, and argued that the high quality of the labels in
academic benchmarks is not reflected in the high observation noise (called aleatoric uncer-
tainty) assumed by the GP model. The effect of the 1/T power would be to reduce the
observation noise of the model, thus adequating the latter to the data. A problem in this
explanation for the regression case is that it requires an 1/T factor not only to affect the
observation noise, but also the GP kernel — and it remains unclear why this should be the
case. We provide an explanation of this simultaneous rescaling of noise and GP kernel in
Section 4 and in Appendices B.3 and B.4, via a depth mismatch between the data-generating
network and the one assumed for the model.

Anonymous (2021) formalizes the argument of Adlam et al. (2020) for classification by
showing that the data overcounting implied by the power of 1/T in the likelihood in (1) is
consistent with a training dataset that only includes examples for which 1/T human data
labelers have agreed on the same label. However, to validate this proposal it remains to be
seen if there is a cold-posterior effect when only a single labeler is used to create the dataset.
In Section 3 we provide an alternative explanation to the issue of likelihood normalization,
that still allows a single labeler to generate datasets with seemingly cold posteriors.

1. Note that these works considered the partial tempering case, but we do not expect much difference
between the two cases in (1), as explained in Wenzel et al. (2020).

2



Why Cold Posteriors?

Additionally, note that all the above works explain the cold posterior effect as the result
of model misspecification. However, in Section 5 we show that the effect is also possible
without model misspecification.

3. Prior mismatch due to input-dependent prior leads to cold posterior

The notion of input-dependent priors is natural if we assume that the input data X (the
regressors) influence our prior knowledge of the model before any observations Y are made.
In such a case, the natural form of Bayes rule is

p (w|y,x) ∝ p (y|w,x) p (w|x) . (3)

While in Bayesian deep learning it is common to assume that weights and inputs are indepen-
dent i.e. p(w|x) = p(w), we argue that there is much to gain by allowing a data-dependent
prior. For example, in some cases, it was shown that learning the dependence of w on x
with non-predictive losses (using e.g. information theory objectives) reduces (Grandvalet
and Bengio, 2005) or obviates (Ji et al., 2019) the need to learn from the targets y.

In this section, we show that if the likelihood function is assumed of the form

pT (y|x,w) =
p (y|x,w)1/T∑
y′ p (y′|x,w)1/T

, (4)

then a particular X-dependent prior leads naturally to a tempered posterior. This form
of likelihood function was suggested in Wilson and Izmailov (2020); Wenzel et al. (2020).
However, with the standard Gaussian prior on the weights, this likelihood does not lead to
good performance.

We observe training data Y =
[
y1, · · · ,yN

]
,X =

[
x1, · · · ,xN

]
, where yi are one-hot

vectors representing categorical data. We denote by yi the index of the single element of yi
which is equal to one. Let {ui (x,w)}Ki=1 be the logits of the output of a neural network with
parameters vector w and input data x. Then the likelihood (4) for K-class classification
with class label y is

pT (y|x,w) =

[
exp (uy(x,w))∑K
j=1 exp (uj(x,w))

]1/T
∑K

i=1

[
exp (ui(x,w))∑K

j=1 exp (uj(x,w))

]1/T =
exp

(
uy(x,w)

T

)
∑K

i=1 exp
(
ui(x,w)

T

) . (5)

Assuming the following input-dependent prior distribution

p (w|X) ∝
N∏
n=1

 K∑
i=1

[
exp (ui (xn,w))∑K
j=1 exp (uj (xn,w))

]1/TN (w|0, TΣw)) . (6)

and applying Bayes’ rule

p (w|X,Y) =
p (Y|X,w) p (w|X)

p (Y|X)
, (7)
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the resulting log posterior is

log p (w|X,Y) =
1

T

N∑
n=1

log

[
exp (uyn (xn,w))∑K
j=1 exp (uj (xn,w))

]
+

1

T
log (N (w|0,Σw))) + C . (8)

Now we will show that (8) is equivalent to the tempered posterior distribution in the case
of classification. In the case of classification the commonly used likelihood function is

p (y|x,w) =
exp (uy (x,w))∑K
i=1 exp (ui (x,w))

(9)

and the commonly used prior is p (w) = N (w|0,Σw)). The fully tempered log posterior is

log p (w|X,Y) =
1

T

N∑
n=1

log

[
exp (uyn (xn,w))∑K
j=1 exp (uj (xn,w))

]
+

1

T
log (N (w|0,Σw))) + C , (10)

so (8) and (10) are equivalent. Note the particular input-dependent prior we propose in (6),
which has a sum over the K indices of yi. For T < 1 it has a similar flavor as the information
theory objectives mentioned above (Grandvalet and Bengio, 2005; Ji et al., 2019), encour-
aging the network to be confident in its most likely prediction when no label is observed. In
Appendix A we introduce the full generative model.

4. Prior mismatch due to depth leads to cold posterior

In this section, we show that the cold posterior effect also occurs when the network used as
a model (‘student network’) is deeper than the data-generating network (‘teacher network’).
To avoid inexact inference methods, we focus on models with closed-form solutions for the
Bayesian optimal estimator to demonstrate this effect. We focus here first on deep and
wide linear models, and extend the results to neural network Gaussian process (NNGP) and
neural tangent kernel (NTK) with ReLU activation functions in Appendices B.3 and B.4.

We observe training data (xi, yi) ∈ Rd × R for i = 1, . . . , N from a model

xi ∼ N (0,Σ) , εi ∼ N
(
0, σ2

)
, yi =

(
L∏
l=1

Wl

)
xi + εi ,

where Wl ∈ Rnl×nl−1 , n0 = d , nL = 1 , and the samples are drawn independently. We
consider the case of an infinite width network. The prior distribution of W l

ij is N
(

0, σ2
w

nl−1

)
i.i.d. In the linear case, the neural network is equivalent to a linear predictor. Thus, to
calculate the Bayesian predictor we only need the posterior of z =

∏L
l=1 Wl. To calculate

the Bayesian estimator of z we only need to find its prior distribution. According to the
central limit theorem (see Appendix B.1 for additional details) the prior distribution of the
equivalent linear model z is given by N

(
0, σ

2L
w
d I
)
. Thus, we can calculate the fully tempered

posterior distribution of z

p (z|Y,X) ∝ [p (Y|X, z) p (z|X)]
1
T ∝ exp

(
−1

2Tσ2

N∑
n=1

(
yn − z>xn

)2)
exp

(
−d

2TLσ2Lw
z>z

)
.

4



Why Cold Posteriors?

The posterior distribution of z is equivalent to the posterior of Bayesian linear regression
with prior variance TLσ2L

w
d and noise variance Tσ2, therefore the estimator is

ŷ (x) = E (y|x,Y,X) =
1

σ2
Y>X

(
d

TL−1σ2Lw
I +

1

σ2
X>X

)−1
x . (11)

As can be seen from (11), changing the temperature T is equivalent to changing the variance
of the prior distribution. We demonstrate the effect of the prior mismatch on the optimal
temperature using a wide linear neural network with Lt layers as a teacher network, and
a wide linear neural network with Ls layers as a student network. Therefore, we get prior
mismatch if Lt 6= Ls. In this case, the tempered posterior can compensate for the prior
mismatch, and the optimal temperature is (see Appendix B.2 for the full derivation)

Topt = σ
2
(

Lt−Ls
Ls−1

)
w .

The average MSE is presented in figure 1 (see Appendix B.5 for implementation details).
The results demonstrate that for σw > 1 (as used in Wenzel et al. (2020)) we get the
cold posterior effect when using a student network deeper than the teacher network. In
Appendix B.3 and B.4 we show that this phenomenon also occurs in non-linear models
(neural network Gaussian process (NNGP) and neural tangent kernel (NTK) with ReLU
activation functions).
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Figure 1: Average MSE for 10000 Monte Carlo samples of training sets. (a) prior model -
4 layers, true prior model - 2 layers. (b) prior model - 4 layers, true prior model - 4 layers.
(c) prior model - 2 layers, true prior model - 4 layers.

The hypothesis in this section that the cold posterior effect originates from prior mis-
match due to depth (the student network is deeper than the teacher network) implies a
simple prediction: in a model which does not use bias, changing the variance of the prior
is equivalent to changing the depth of the model. Assuming the hypothesis is correct, we
should observe less cold posterior effect when we change the variance of the prior distribu-
tion (we do not expect much difference when we do use bias term). However, Wenzel et al.
(2020) (in section 5.2) examines the effect of prior variance on the cold posterior effect.
The experiment shows that the cold posterior effect is present for all tested choices of the
prior variance. This seems to contradict the hypothesis’s prediction. On the other hand,
this type of prior mismatch is likely to occur since in Bayesian deep learning we usually use
over-parameterized models along with Gaussian prior.
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5. Cold posterior effect without model mismatch

In this section, we will demonstrate that when the prior and the posterior distributions
are heavy-tailed, using tempered posterior with T < 1 is optimal with high probability, in
the setting of supervised learning. In this setting, we use a given dataset (e.g. CIFAR-10,
ImagNet) to estimate the label for a new unlabeled data, which is equivalent in the Bayesian
setting to have a fixed X and only one sample of the teacher network to generate y. To make
a clear demonstration we consider an extreme case of heavy-tailed distribution where for
every sampled dataset T < 1 is outperforming the optimal Bayesian estimator. Let consider
the case where the prior and the posterior distributions of the parameter are equal to the
distribution of an absolute value of a Cauchy random variable. In the case of linear model,
the Bayesian estimator is ŷ = ŵx, where

ŵ (T ) ∝
∫ ∞
−∞
|w| 1

(1 + w2)1/T
dw =

{
∞ if T = 1
T

1−T if T < 1
. (12)

Therefore, for a single dataset the MSE is2

MSE (w∗) = (w∗ − ŵ (T ))2 + σ2 =

{
∞ if T = 1

const if T < 1
. (13)

Meaning that for every sampled dataset the Bayesian estimator with T < 1 outperforms
the optimal Bayesian estimator. In Appendix C.1 we demonstrate that heavy-tailed prior
and posterior distributions exist in the case of narrow and deep neural network and show
that with high probability T < 1 is optimal. In Appendix C.3 we also demonstrate similar
results for a bi-modal distribution.

However, if we sample correctly from such posterior distributions (which have rare events
with high error) then we expect that only a few predictions would have a high error, while
most would be correct. In contrast, when we examined the SG-MCMC samples (see Ap-
pendix C.4) obtained in Wenzel et al. (2020) we found that all of the predictions of the
Bayesian ensemble had high error. This seems to contradict the hypothesis in this section,
and suggest that some model misspecification is necessary to generate the cold posterior
effect.

6. Conclusions

In this work, we suggested and examined several hypotheses to explain the cold posterior
effect. In the case of classification we can construct a new likelihood function with tempered
soft-max (Hinton et al., 2015) using temperatures T < 1. We suggested a specific input-
dependent prior which leads naturally to a tempered posterior. Next, we considered a prior
mismatch due to a deeper student network than the teacher network. We show that prior
mismatch due to network depth results in the cold posterior effect, both for linear and
non-linear models. Lastly, we demonstrated that in the setting of supervised learning (with
only one sample of the teacher network) the cold posterior effect is feasible. We conclude,
based on existing empirical observations, that the most likely explanation is the hypothesis
of input-dependent prior.

2. Assuming Gaussian noise with variance of σ2 and x ∼ N (0, 1).
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Appendix A. Derivations for section 3

In this section, we present a generative model which implies an input-dependent prior.
Defining r (x) as some distribution (of a single sample x in the input space), and

gi (w,x) = r (x)

[
exp (ui (x,w))∑K
j=1 exp (uj (x,w))

]1/T

gi (w) =

∫
gi (w,x) dx ,

we find the following generative model implies the input dependent prior:

p (w) =
(
∑K

i=1 gi (w))NN (w|0, TΣw)∫
(
∑K

i=1 gi (w))NN (w|0, TΣw) dw
(14)

p (y|w) =
gy (w)∑K
j=1 gj (w)

(15)

p (x|y,w) =
gy (w,x)

gy (w)
. (16)

Note that though the marginal prior p (w) is dependent on the number of training data N ,
such dependence was considered in previous works (e.g. Mattingly et al. (2018)).

Appendix B. Derivations and implementation details for section 4

B.1. Calculation of the prior distribution of z - wide linear network

According to an extension of the Central Limit Theorem (CLT), derived in Theorem 4 in
Matthews et al. (2018), the pre-activation of each layer (for any linear or sub-linear activation
function) converge in distribution to a multivariate Gaussian as the layer widths n1, ..., nL−1
are taken to infinity in any order (with n0, nL finite). For linear activations, this also implies
also that z is Gaussian. The first and second moments of z are:

E (zi) = 0 (17)

E (zizj) = E

 NL−1∑
aL−1=1

· · ·
n1∑
a1=1

WL
1,aL−1

WL−1
aL−1,aL−2

· · ·W 1
a1,i

nL−1∑
bL−1=1

· · ·
n1∑
b1=1

WL
1,bL−1

WL−1
bL−1,bL−2

· · ·W 1
b1,j

 (18)

=

nL−1∑
aL−1=1

· · ·
n1∑
a1=1

nL−1∑
bL−1=1

· · ·
n1∑
b1=1

δaL−1,bL−1

σ2w
nL−1

δaL−2,bL−2

σ2w
nL−2

· · · δi,j
σ2w
n0

(19)

= δi,j
σ2Lw
n0

(20)
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Therefore, according to the CLT theorem the prior distribution of z is

p (z|X) =

(
d

2πσ2Lw

)d/2
exp

(
− d

2σ2Lw
z>z

)
. (21)

B.2. Calculation of the optimal temperature - prior mismatch in wide linear
network

The MSE of the Bayesian optimal estimator is

MSE = E(x,y)

[
(y − ŷ (x))2 |X,Y

]
= Ez

[
E(x,y)

[
(y (z)− ŷ (x))2 |z,X,Y

]
|X,Y

]
(22)

= Ez

[
E(x,y)

[(
z>x + ε− ẑ>x

)2
|z,X,Y

]
|X,Y

]
(23)

= Ez

[
σ2 +

1

N
‖z− ẑ‖2 |X,Y

]
(24)

where

ẑ =
1

σ2

(
d

TLs−1σ2Ls
w

I +
1

σ2
X>X

)−1
X>Y . (25)

The posterior distribution of z is

p (z|X,Y) = N

(
1

σ2

(
d

σ2Lt
w

I +
1

σ2
X>X

)−1
X>Y,

(
d

σ2Lt
w

I +
1

σ2
X>X

)−1)
(26)

therefore,

MSE = σ2 +
1

N
Tr

((
d

σ2Lt
w

I +
1

σ2
X>X

)−1)

+
1

N

∥∥∥∥∥ 1

σ2

(
d

TLs−1σ2Ls
w

I +
1

σ2
X>X

)−1
X>Y − 1

σ2

(
d

σ2Lt
w

I +
1

σ2
X>X

)−1
X>Y

∥∥∥∥∥
2

.

(27)

As can be seen, the optimal temperature is

Topt = σ
2
(

Lt−Ls
Ls−1

)
w . (28)

B.3. Neural Network Gaussian Process (NNGP)

At initialization, neural networks are equivalent to NNGP infinite-width limit (de G. Matthews
et al., 2018). Due to the non-linearity of NNGP we can no longer obtain the optimal tem-
perature analytically. However, we numerically demonstrate that prior mismatch due to
deeper prior than the true prior leads to cold posterior effect.

We observe training data (xi, yi) ∈ Rd × R for i = 1, . . . , N from a model

xi ∼ N (0,Σ) , εi ∼ N
(
0, σ2

)
, yi = f (xi) + εi , (29)
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where (Cho and Saul, 2009; de G. Matthews et al., 2018)

f (x) ∼ GP
(
0,KL−1 (x,x)

)
(30)

K l
(
x,x′

)
= σ2b +

σ2w
2π

√
K l−1 (x,x)K l−1 (x′,x′)

(
sin θl−1x,x′ +

(
π − θl−1x,x′

)
cos θl−1x,x′

)
(31)

θlx,x′ = cos−1

(
K l (x,x′)√

K l (x,x)K l (x′,x′)

)
(32)

K0
(
x,x′

)
= σ2b + σ2w

(
x · x′

d

)
(33)

and the samples are drawn independently. We define the feature matrix X and the label
vector Y as follows

X =
[
x1 x2 · · · xN

]> ∈ RN×d, Y =
[
y1 y2 · · · yN

]> ∈ RN . (34)

we can write the joint distribution[
Y
y

]
∼ N

(
0,

[
KL−1 (X,X) + σ2I KL−1 (X,x)

KL−1 (x,X) KL−1 (x,x) + σ2

])
. (35)

So the predictive distribution is given by

p (y|x,X,Y) = N
(
y|µy, σ2y

)
, (36)

where

µy = KL−1 (x,X)
(
KL−1 (X,X) + σ2I

)−1
Y (37)

σ2y = KL−1 (x,x) + σ2 −KL−1 (x,X)
(
KL−1 (X,X) + σ2I

)−1
KL−1 (X,x) (38)

The equivalent of cold posterior in GP is obtain using tempered kernel and tempered noise
in the training set (without tempered noise in the test data point) and we obtain

ŷ = KL−1
T (x,X)

(
KL−1
T (X,X) + Tσ2I

)−1
Y (39)

Similar to the previous subsection, we demonstrate the effect of the prior mismatch on the
optimal temperature using a Gaussian process with neural network kernel with Lt layers as
a teacher network, and a Gaussian process with neural network kernel with Ls layers as a
student network. The MSE of the Bayesian optimal estimator is

MSE = E(x,y)

[
(y − ŷ (x))2 |X,Y

]
= Ex

[
Ey
[
(y − ŷ (x))2 |x,X,Y

]]
(40)

= Ex

[
σ2y (x) + (µy (x)− ŷ (x))2

]
. (41)

The average MSE is presented in figure 2 (See Appendix B.5 for implementation details).
Similar to the case of a wide linear neural network, the results demonstrate that when using
a student network which is deeper than the teacher network we get the cold posterior effect.

11



Why Cold Posteriors?

0 0.5 1 1.5 2 2.5
Temperature T

1.15

1.2

1.25

1.3

1.35

Lo
ss

E
m

pi
ric

al
op

tim
al

(a)

0 0.5 1 1.5 2 2.5
Temperature T

2

2.2

2.4

2.6

2.8

3

3.2

Lo
ss

E
m

pi
ric

al
op

tim
al

(b)

0 2 4 6
Temperature T

2

2.2

2.4

2.6

2.8

3

Lo
ss

E
m

pi
ric

al
op

tim
al

(c)

Figure 2: The average MSE for 100 Monte Carlo samples of training sets. (a) prior model -
3 hidden layers, true prior model - 1 hidden layers. (b) prior model - 3 hidden layers, true
prior model - 3 hidden layers. (c) prior model - 1 hidden layers, true prior model - 3 hidden
layers.

B.4. Neural Tangent Kernel (NTK)

Neural networks trained using continuous gradient descent on MSE loss are equivalent to
NTK in the infinite-width limit (Jacot et al., 2018). Similar to the case of NNGP we
numerically demonstrate that prior mismatch due to deeper prior than the true prior leads
to cold posterior effect. In the case of NTK, the derivation of the optimal Bayesian estimator
and the MSE is similar to the case of NNGP except for the kernel function. In this case,
the kernel function is given by3 (Cho and Saul, 2009; Jacot et al., 2018; Bietti and Mairal,
2019)

f (x) ∼ GP
(
0,KL−1 (x,x)

)
(42)

K l
(
x,x′

)
= Σl

(
x,x′

)
+K l−1 (x,x′) σ2w

2π

(
π − θl−1x,x′

)
(43)

Σl
(
x,x′

)
=
σ2w
2π

√
Σl−1 (x,x) Σl−1 (x′,x′)

(
sin θl−1x,x′ +

(
π − θl−1x,x′

)
cos θl−1x,x′

)
(44)

θlx,x′ = cos−1

(
Σl (x,x′)√

Σl (x,x) Σl (x′,x′)

)
(45)

K0
(
x,x′

)
= Σ0

(
x,x′

)
= σ2w

(
x · x′

d

)
. (46)

The average MSE is presented in figure 3 (see Appendix B.5 for implementation details).
Similar to the case of NNGP, the results demonstrate that when using a student network
which is deeper than the teacher network we get the cold posterior effect.

B.5. Implementation details

B.5.1. DEEP AND WIDE LINEAR NETWORK

We use a wide linear network with Lteacher as a teacher network and a a wide linear network
with Lstudent as a student network. For both we use prior of N

(
0, σ2w

)
with σw = 1.4.

3. Without the bias.
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Figure 3: The average MSE for 100 Monte Carlo samples of training sets. (a) prior model -
3 hidden layers, true prior model - 1 hidden layers. (b) prior model - 3 hidden layers, true
prior model - 3 hidden layers. (c) prior model - 1 hidden layers, true prior model - 3 hidden
layers.

We use as an train set N = 100 samples of (x, y) where x ∈ Rd and d = 100, in addition
x ∼ N

(
0, 1

N I
)
. The additive noise sampled from N

(
0, σ2

)
where σ = 1.

B.5.2. GAUSSIAN PROCESSES

For both NNGP and NTK we use a Gaussian process with kernel of Lteacher layers as a
teacher and a Gaussian process with neural network kernel of Lstudent layers as a student.
For both teacher and student we use prior of N

(
0, σ2w

)
with σw = 2.6674 and σb = 0. We

use as an train set N = 100 samples of (x, y) where x ∈ Rd and d = 100, in addition
x ∼ N

(
0, 1

N I
)
. The additive noise sampled from N

(
0, σ2

)
where σ = 1.

Appendix C. Derivations for section 5

C.1. Scalar Neural Network

Let consider the case of scalar neural network model with an absolute value activation
function.

y =

 L∏
j=1

|wj |

 |x|+ ε, ε ∼ N
(
0, σ2

)
, (47)

where w ∈ RL and L� 1. The prior distribution of w is

p (w) = N
(
w|0, σ2wId

)
. (48)

To calculate the Bayesian predictor we only need the posterior of z =
∏L
j=1 |wj |. According

to the central limit theorem (CLT), the distribution of z is approximately (see Appendix
C.2 for additional details)

z ∼ Lognormal
(
µz, σ

2
z

)
(49)

13
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where

µz = LE (log (|wi|)) , σ2z = LVar (log (|wi|)) . (50)

For simplicity, we assume that no training data is observed. In the case of tempered posterior
the the Bayesian optimal estimator is

ẑ = T
L
2 exp

(
µz +

σ2z
2

)
. (51)

The sampled parameter is most likely to be around the mode of the distribution

z∗ ≈ exp
(
µz − σ2z

)
. (52)

Thus, with high probability for a single dataset the optimal temperature is

Topt ≈ exp

(
−σ

2
z

L

)
= exp (−Var (log (|wi|))) < 1 . (53)

C.2. Calculation of the prior distribution of z - scalar network

For large enough L the distribution of the sample average of w̃j = log (|wj |) is approximately

1

L

L∑
j=1

log (|wj |) ∼ N
(
µw̃,

σ2w̃
L

)
, (54)

Therefore the distribution of z is approximately

z ∼ Lognormal
(
µz, σ

2
z

)
(55)

where

µz = LE (log (|wi|)) , σ2z = LVar (log (|wi|)) . (56)

C.3. Bi-modal distribution

Another example of distribution where with high probability T < 1 is outperforming the
optimal Bayesian estimator is the Bernoulli distribution with p ≈ 1. Let consider the
following model

x ∼ N (0, 1) , ε ∼ N
(
0, σ2

)
, y = f (x,w) + ε . (57)

In addition, we assume that the prior distribution and the posterior distribution of the
parameter are Bernoulli distribution. Therefore, the tempered posterior distribution is

w ∼ Bern (qT ) , (58)

where

qT =
1

1 + (p−1 − 1)1/T
. (59)
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In this case the Bayesian optimal estimator is

ŷ = qT f (x, 1) + (1− qT ) f (x, 0) . (60)

Therefore, for a single data set we obtain

MSE (w∗) = Ex (f (x,w∗)− ŷ)2 + σ2 (61)

= σ2 + Ex (f (x, 0)− f (x, 1))2
{

(1− qT )2 if w∗ = 1

q2T if w∗ = 0
. (62)

For example, if we have a prior distribution with p(w = 1) = 0.99 then the sampled param-
eter is most likely to be w∗ = 1. Therefore, with high probability the optimal temperature
is T = 0 since then qT = 1 and MSE (w∗) = σ2.

C.4. SG-MCMC samples for T = 1

In this subsection, we present the SG-MCMC samples obtained in the experiment of ResNet-
20 on CIFAR-10 (Wenzel et al., 2020). As can be seen from figure 4, all of the predictions of
the optimal Bayesian ensemble (T = 1) have high error compared to the Bayesian ensemble
with T = 0.01 and the SGD baseline.
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Figure 4: The histogram of the test accuracy of the SG-MCMC samples for T = 1 and
T = 0.01. The number of samples is 28.
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