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ABSTRACT

State-of-the-art natural language understanding classification models follow two-
stages: pre-training a large language model on an auxiliary task, and then fine-
tuning the model on a task-specific labeled dataset using cross-entropy loss. How-
ever, the cross-entropy loss has several shortcomings that can lead to sub-optimal
generalization and instability. Driven by the intuition that good generalization
requires capturing the similarity between examples in one class and contrasting
them with examples in other classes, we propose a supervised contrastive learning
(SCL) objective for the fine-tuning stage. Combined with cross-entropy, our pro-
posed SCL loss obtains significant improvements over a strong RoBERTa-Large
baseline on multiple datasets of the GLUE benchmark in few-shot learning settings,
without requiring specialized architecture, data augmentations, memory banks, or
additional unsupervised data. Our proposed fine-tuning objective leads to models
that are more robust to different levels of noise in the fine-tuning training data, and
can generalize better to related tasks with limited labeled data.

1 INTRODUCTION

State-of-the-art for most existing natural language processing (NLP) classification tasks is achieved
by models that are first pre-trained on auxiliary language modeling tasks and then fine-tuned on the
task of interest with cross-entropy loss (Radford et al., 2019; Howard & Ruder, 2018; Liu et al.,
2019; Devlin et al., 2019). Although ubiquitous, the cross-entropy loss – the KL-divergence between
one-hot vectors of labels and the distribution of model’s output logits – has several shortcomings.
Cross entropy loss leads to poor generalization performance (Liu et al., 2016; Cao et al., 2019), and
it lacks robustness to noisy labels (Zhang & Sabuncu, 2018; Sukhbaatar et al., 2015) or adversarial
examples (Elsayed et al., 2018; Nar et al., 2019). Effective alternatives have been proposed to modify
the reference label distributions through label smoothing (Szegedy et al., 2016; Müller et al., 2019),
Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), knowledge distillation (Hinton et al., 2015) or
self-training (Yalniz et al., 2019; Xie et al., 2020).

Fine-tuning using cross entropy loss in NLP also tends to be unstable across different runs (Zhang
et al., 2020; Dodge et al., 2020), especially when supervised data is limited, a scenario in which
pre-training is particularly helpful. To tackle the issue of unstable fine-tuning and poor generalization,
recent works propose local smoothness-inducing regularizers (Jiang et al., 2020) and regularization
methods inspired by the trust region theory (Aghajanyan et al., 2020) to prevent representation
collapse. Empirical evidence suggests that fine-tuning for more iterations, reinitializing top few
layers (Zhang et al., 2020), and using debiased Adam optimizer during fine-tuning (Mosbach et al.,
2020) can make the fine-tuning stage more stable.

Inspired by the learning strategy that humans utilize when given a few examples, we seek to find
the commonalities between the examples of each class and contrast them with examples from
other classes. We hypothesize that a similarity-based loss will be able to hone in on the important
dimensions of the multidimensional hidden representations hence lead to better few-shot learning
results and be more stable while fine-tuning pre-trained language models. We propose a novel
objective for fine-tuning that includes a supervised contrastive learning (SCL) term that pushes the
examples from the same class close and the examples from different classes further apart. The SCL
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term is similar to the contrastive objectives used in self-supervised representation learning across
image, speech, and video domains. (Sohn, 2016; Oord et al., 2018; Wu et al., 2018; Bachman et al.,
2019; Hénaff et al., 2019; Baevski et al., 2020; Conneau et al., 2020; Tian et al., 2020; Hjelm et al.,
2019; Han et al., 2019; He et al., 2020; Misra & Maaten, 2020; Chen et al., 2020a;b). Unlike these
methods, however, we use a contrastive objective for supervised learning of the final task, instead of
contrasting different augmented views of examples.

In few-shot learning settings (20, 100, 1000 labeled examples), the addition of the SCL term to the fine-
tuning objective significantly improves the performance on several natural language understanding
classification tasks from the popular GLUE benchmark (Wang et al., 2019) over the very strong
baseline of fine-tuning RoBERTa-Large with cross-entropy loss only. Furthermore, pre-trained
language models fine-tuned with our proposed objective are not only robust to noise in the fine-tuning
training data, but can also exhibit improved generalization to related tasks with limited labeled task
data. Our approach does not require any specialized network architectures (Bachman et al., 2019;
Hénaff et al., 2019), memory banks (Wu et al., 2018; Tian et al., 2020; Misra & Maaten, 2020), data
augmentation of any kind, or additional unsupervised data. To the best of our knowledge, our work is
the first to successfully integrate a supervised contrastive learning objective for fine-tuning pre-trained
language models. We empirically demonstrate that the new objective has desirable properties across
several different settings. Our contributions in this work are listed in the following:

• We propose a novel objective for fine-tuning pre-trained language models that includes a
supervised contrastive learning term, as described in Section 2.

• We obtain strong improvements in the few-shot learning settings (20, 100, 1000 labeled
examples) as shown in Table 2, leading up to 10.7 points improvement on a subset of GLUE
benchmark tasks (SST-2, QNLI, MNLI) for the 20 labeled example few-shot setting, over a
very strong baseline – RoBERTa-Large fine-tuned with cross-entropy loss.

• We demonstrate that our proposed fine-tuning objective is more robust, in comparison
to RoBERTa-Large fine-tuned with cross-entropy loss, across augmented noisy training
datasets (used to fine-tune the models for the task of interest) with varying noise levels as
shown in Table 3 – leading up to 7 points improvement on a subset of GLUE benchmark
tasks (SST-2, QNLI, MNLI) across augmented noisy training datasets. We use a back-
translation model to construct the augmented noisy training datasets of varying noise levels
(controlled by the temperature parameter), as described in detail in Section 4.2.

• We show that the task-models fine-tuned with our proposed objective have improved gener-
alizability to related tasks despite having limited availability of labeled task data (Table 7).
This led to a 2.9 point improvement on Amazon-2 over the task model fine-tuned with
cross-entropy loss only. Moreover, it considerably reduced the variance across few-shot
training samples, when transferred from the source SST-2 sentiment analysis task model.

2 APPROACH

We propose a novel objective that includes a supervised contrastive learning term for fine-tuning
pre-trained language models. The loss is meant to capture the similarities between examples of the
same class and contrast them with the examples from other classes.

For a multi-class classification problem with C classes, we work with a batch of training examples of
size N, {xi, yi}i=1,...N . Φ(·) ∈ Rd denotes an encoder that outputs the l2 normalized final encoder
hidden layer before the softmax projection; Nyi

is the total number of examples in the batch that
have the same label as yi; τ > 0 is an adjustable scalar temperature parameter that controls the
separation of classes; yi,c denotes the label and ŷi,c denotes the model output for the probability of
the ith example belonging to the class c; λ is a scalar weighting hyperparameter that we tune for each
downstream task and setting. The overall loss is then given in the following:
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L = (1− λ)LCE + λLSCL (1)

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c · logŷi,c (2)

LSCL =

N∑
i=1

− 1

Nyi − 1

N∑
j=1

1i6=j1yi=yj log
exp (Φ(xi) · Φ(xj)/τ)∑N

k=1 1i 6=k exp (Φ(xi) · Φ(xk)/τ)
(3)

The overall loss is a weighted average of CE and the proposed SCL loss, as given in the equation (1).
The canonical definition of the multi-class CE loss that we use is given in equation (2). The novel
SCL loss is given in the equation (3).

This loss can be applied using a variety of encoders Φ(·) ∈ Rd – for example a ResNet for a
computer vision application or a pre-trained language model such as BERT for an NLP applica-
tion. In this work, we focus on fine-tuning pre-trained language models for single sentence and
sentence-pair classification settings. For single sentence classification, each example xi consists of
sequence of tokens prepended with the special [CLS] token xi = [[CLS], t1, t2, . . . , tL, [EOS]].
The length of sequence L is constrained such that L < Lmax. Similarly, for sentence-pair clas-
sification tasks, each example xi is a concatenation of two sequences of tokens [t1, t2, . . . tL]
and [s1, s2, . . . , sM ] corresponding to the sentences with special tokens delimiting them: xi =
[[CLS], t1, t2, . . . , tL, [SEP ], s1, s2, . . . , sM , [EOS]]. The length of concatenated sequences is con-
strained such that L+M < Lmax. In both cases, Φ(xi) ∈ Rd uses the embedding of [CLS] token as
the representation for example xi. These choices follow standard practices for fine-tuning pre-trained
language models for classification (Devlin et al., 2019; Liu et al., 2019).

Figure 1: Our proposed objective includes a cross-entropy term (CE) and a supervised contrastive
learning (SCL) term, and it is formulated to push examples from the same class close and examples
from different classes further apart. We show examples from the SST-2 sentiment analysis dataset
from the GLUE benchmark, where class A (shown in red) is negative movie reviews and class
B (shown in blue) is positive movie reviews. Although we show a binary classification case for
simplicity, the loss is generally applicable to any multi-class classification setting.

Empirical observations show that both l2 normalization of the encoded embedding representations
and an adjustable scalar temperature parameter τ improve performance. Lower temperature increases
the influence of examples that are harder to separate, effectively creating harder negatives. Using
hard negatives has been previously shown to improve performance in the context of margin-based
loss formulations such as triplet loss (Schroff et al., 2015). The empirical behavior of the adjustable
temperature parameter is consistent with the observations of previous work related to supervised
contrastive learning. (Chen et al., 2020a; Khosla et al., 2020).

Relationship to Self-Supervised Contrastive Learning Self-supervised contrastive learning has
shown success in learning powerful representations, particularly in the computer vision domain. (Chen
et al., 2020a; He et al., 2020; Tian et al., 2020; Mnih & Kavukcuoglu, 2013; Gutmann & Hyvärinen,
2012; Kolesnikov et al., 2019) Self-supervised learning methods do not require any labeled data;
instead they sample a mini batch from unsupervised data and create positive and negative examples
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from these samples using strong data augmentation techniques such as AutoAugment (Cubuk et al.,
2019) or RandAugment (Cubuk et al., 2020) for computer vision. Positive examples are constructed
by applying data augmentation to the same example (cropping, flipping, etc. for an image), and
negative examples are simply all the other examples in the sampled mini batch. Intuitively, self-
supervised contrastive objectives are learning representations that are invariant to different views of
positive pairs; while maximizing the distance between negative pairs. The distance metric used is
often the inner product or the Euclidean distance between vector representations of the examples.

For a batch of size N, self-supervised contrastive loss is defined as:

Lself =

2N∑
i=1

− log
exp (Φ(x′2i−1) · Φ(x′2i)/τ)∑2N

k=1 1i 6=k exp (Φ(x′i) · Φ(x′k)/τ)
(4)

where Φ(·) ∈ Rd denotes an encoder that outputs the l2 normalized final encoder hidden layer before
the softmax projection; τ > 0 is a scalar temperature parameter. A is defined as a data augmentation
block that generates two randomly generated augmented examples, x′2i and x′2i−1 from the original
example xi: A({xi, yi}i=1,...N ) = {x′i, y′i}i=1,...2N . As an example, A can be RandAugment for a
computer vision application; or it could be a back-translation model for an NLP application.

3 RELATED WORK

Traditional Machine Learning and Theoretical Understanding Several works have analyzed
the shortcomings of the widely adopted cross-entropy loss, demonstrating that it leads to poor
generalization performance due to poor margins (Liu et al., 2016; Cao et al., 2019), and lack of
robustness to noisy labels (Zhang & Sabuncu, 2018; Sukhbaatar et al., 2015) or adversarial examples
(Elsayed et al., 2018; Nar et al., 2019). On the other hand, there has been a body of work that has
explored the performance difference for classifiers trained with discriminative (i.e., optimizing for
p(y|x), where y is the label and x is the input) losses such as cross-entropy loss and generative
losses (i.e. optimizing for p(x|y)). Ng & Jordan (2001) show that classifiers trained with generative
losses can outperform their counterparts trained with discriminative losses in the context of Logistic
Regression and Naive Bayes. Raina et al. (2003) show that a hybrid discriminative and generative
objective outperforms both solely discriminative and generative approaches. In the context of
contrastive learning, Saunshi et al. (2019) propose a theoretical framework for analyzing contrastive
learning algorithms through hypothesizing that semantically similar points are sampled from the
same latent class, which allows showing formal guarantees on the quality of learned representations.

Contrastive Learning There has been several recent investigations for the use of contrastive ob-
jectives for self-supervised, semi-supervised, and supervised learning methods, primarily in the
computer vision domain. Chen et al. (2020a) propose a framework for contrastive learning of vi-
sual representations without specialized architectures or a memory bank, and show state-of-the-art
results on ImageNet ILSVRC-2012 (Russakovsky et al., 2015) – outperforming previous methods
for self-supervised, semi-supervised and transfer learning. Similarly, Khosla et al. (2020) propose
a supervised contrastive loss that outperforms cross entropy loss and gets state-of-the-art results
on ImageNet on both ResNet-50 and ResNet-200 (He et al., 2016) with AutoAugment (Cubuk
et al., 2019) data augmentation. They also show increased robustness on the ImageNet-C dataset
(Hendrycks & Dietterich, 2019), and demonstrate that supervised contrastive loss is less sensitive to
different hyperparameter settings for optimizers or data augmentations compared to the cross-entropy
loss. Liu & Abbeel (2020) propose a hybrid discriminative-generative training of energy-based
models where they approximate the generative term with a contrastive loss using large batch sizes and
show improved classification accuracy of WideResNet-28-10 (Zagoruyko & Komodakis, 2016) on
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) datasets, outperforming state-of-the-art discriminative
and generative classifiers. They also demonstrate improved performance for WideResNet-28-10 on
robustness, out-of-distribution detection, and calibration, compared to other state-of-the-art gener-
ative and hybrid models. Finally, Fang & Xie (2020) propose pre-training language models using
a self-supervised contrastive learning objective at the sentence level using back-translation as the
augmentation method, followed by fine-tuning by predicting whether two augmented sentences
originate from the same sentence – demonstrating improvements over fine-tuning BERT on a subset
of GLUE benchmark tasks.
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Stability and Robustness of Fine-tuning Pre-trained Language Models There has been recent
works on analyzing the stability and robustness of fine-tuning pre-trained language models, since
they have been shown to overfit to the labeled task data while fine-tuning and hence fail to generalize
to unseen data when there is limited labeled data for the task (Aghajanyan et al., 2020). To improve
the generalization performance, Jiang et al. (2020) propose a local smoothness-inducing regularizer
to manage the complexity of the model and a Bregman proximal point optimization method, an
instance of trust-region methods, to prevent aggressive updating of the model during fine-tuning.
They show state-of-the-art performance on GLUE, SNLI (Bowman et al., 2015), SciTail (Khot
et al., 2018), and ANLI (Nie et al., 2020) natural language understanding benchmarks. Similarly,
Aghajanyan et al. (2020) propose a regularized fine-tuning procedure inspired by trust-region theory
that replaces adversarial objectives with parametric noise sampled from normal or uniform distribution
in order to prevent representation collapse during fine-tuning for better generalization performance,
without hurting the performance. They show improved performance on a range of natural language
understanding and generation tasks including DailyMail/CNN (Hermann et al., 2015), Gigaword
(Napoles et al., 2012), Reddit TIFU (Kim et al., 2019), and the GLUE benchmark. There has
also been some empirical analysis that suggests fine-tuning for more epochs, reinitializing top few
layers (Zhang et al., 2020) instead of only the classification head, and using debiased Adam optimizer
instead of BERTAdam (Devlin et al., 2019) during fine-tuning (Mosbach et al., 2020) can make the
fine-tuning procedure more stable across different runs.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND TRAINING DETAILS

We use datasets from the GLUE natural language understanding benchmark (Wang et al., 2019) for
evaluation. We include both single sentence classification tasks and sentence-pair classification tasks
to test whether our hypothesis is generally applicable across tasks. We summarize each dataset based
on their main task, domain, number of training examples, and number of classes in Table 1.

In our few-shot learning experiments, we sample half of the original validation set of the GLUE
benchmark and use it as our test set, and sample ∼500 examples for our validation set from the
original GLUE validation set, both taking the label distribution of the original validation set into
account. For each task, we want the validation set to be small enough to avoid easy overfitting on
the validation set, and big enough to avoid high-variance when early-stopping at various epochs for
the few-shot learning experiments. For full dataset experiments, such as the ones shown in Table 5,
Table 6, Table 8, and Table 9, we sample a validation set from the original training set of the GLUE
benchmark based on the size of the original validation set of GLUE, and report our test results on the
original validation set of GLUE.

We run each experiment with 10 different seeds, and report the average test accuracy, standard
deviation, along with p-values with respect to the baseline. We pick the best hyperparameter
combination based on the average validation accuracy across 10 seeds. For few-shot learning
experiments, such as the ones shown in Table 2, Table 3, and Table 10, we sample 10 different
training set samples based on the total number of examples N specified from the original training set
of the GLUE benchmark, taking the label distribution of the original training set into account. We
report the average and the standard deviation of the test accuracies of the top 3 models based on their
validation accuracies out of 10 random training set samples. Best hyperparameter combination is
picked based on the average validation accuracy of the top 3 models. The reason why we focus on the
top 3 models for this setting is that we would like to reduce the variance across training set samples.

We use fairseq Ott et al. (2019) library and the open-source RoBERTa-Large model for all of our
experiments. During all the fine-tuning runs, we use Adam optimizer with a learning rate of 1e-5,
batch size of 16 (unless specified otherwise), and dropout rate of 0.1. For each experiment that includes
the SCL term, we conduct a grid-based hyperparameter sweep for λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}
and τ ∈ {0.1, 0.3, 0.5, 0.7}. We observe that models with best test accuracies across all experimental
settings overwhelmingly use the hyperparameter combination τ = 0.3 and λ = 0.9.
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Dataset Task Domain #Train #Classes
SST-2 sentiment analysis movie reviews 67k 2
CoLA grammatical correctness linguistic publications 8.5k 2
MRPC paraphrase news 3.7k 2
RTE textual entailment news/Wikipedia 2.5k 2
QNLI question answering/textual entailment Wikipedia 105k 2
MNLI textual entailment multi-domain 393k 3

Table 1: GLUE Benchmark datasets used for evaluation.

4.2 CONSTRUCTING AUGMENTED NOISY TRAINING DATASETS

Machine learning researchers or practitioners often do not know how noisy their datasets are, as input
examples might be corrupted or ground truth labeling might not be perfect. Therefore, it is preferable
to use robust training objectives that can get more information out of datasets of different noise levels,
even where there is limited amount of labeled data. We construct augmented noisy training datasets
(used to fine-tune the pre-trained language models for the task of interest) of different noise levels
using a back-translation model (Edunov et al., 2018), where we increase the temperature parameter
to create more noisy examples. Back-translation refers to the procedure of translating an example
in language A into language B and then translating it back to language A, and it is a commonly
used data augmentation procedure for NLP applications, as the new examples obtained through
back-translation provide targeted inductive bias to the model while preserving the meaning of the
original example. Specifically, we use WMT’18 English-German and German-English translation
models, use random sampling to get more diverse examples, and employ and augmentation ratio of
1:3 for supervised examples:augmented examples. We observe that employing random sampling with
a tunable temperature parameter is critical to get diverse paraphrases for the supervised examples,
consistent with the previous work (Edunov et al., 2018; Xie et al., 2019), since commonly used beam
search results in very regular sentences that do not provide diversity to the existing data distribution.
We keep the validation and test sets same with the experiments shown in Table 2.

5 ANALYSIS AND RESULTS

5.1 GLUE BENCHMARK FEW-SHOT LEARNING RESULTS

We proposed adding the SCL term inspired by the learning strategy of humans when they are given
few examples. In Table 2, we report our few-shot learning results on SST-2, QNLI, and MNLI from
the GLUE benchmark with 20, 100, 1000 labeled training examples. Details of the experimental
setup are explained in Section 4. We use a very strong baseline of fine-tuning RoBERTa-Large
with cross-entropy loss. We observe that the SCL term improves performance over the baseline
significantly across all datasets and data regimes, leading to 10.7 points improvement on QNLI, 3.4
points improvement on MNLI, and 2.2 points improvement on SST-2, where we have 20 labeled
examples for fine-tuning. This shows that our proposed objective is effective both for binary single
sentence classification such as sentiment analysis; and sentence pair classification tasks such as
textual entailment and paraphrasing – when we are given only few labeled examples for the task. We
see that as we increase the number of labeled examples, performance improvement over the baseline
decreases, leading to 1.9 points improvement on MNLI for 100 examples and 0.6 points improvement
on QNLI for 1000 examples. We also would like to acknowledge that improvements over the baseline
when N=1000 on both SST-2 and MNLI are not statistically significant. In addition, we conduct
an ablation study where we investigate the importance of l2 normalization and temperature scaling
where we replace SCL loss with CE loss but keep the l2 normalization and temperature scaling, as
shown in Table 10 in the Appendix under the method name CE+CE.

In Figure 2, we show tSNE plots of the learned representations of the CLS embeddings on SST-2 test
set when RoBERTa-Large is fine-tuned with 20 labeled examples, comparing CE with and without
the SCL term. We can clearly see that the SCL term enforces more compact clustering of examples
with the same label; while the distribution of the embeddings learned with CE is close to random.
We include a more detailed comparison for CE and CE+SCL showing learned representations of
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examples as tSNE plots, where we have 20, 100 labeled examples and full dataset respectively for
fine-tuning in Figure 3 in the Appendix.

Model Loss N SST-2 QNLI MNLI
RoBERTaLarge CE 20 85.9±2.1 65.0±2.0 39.3±2.5
RoBERTaLarge CE + SCL 20 88.1±3.3 75.7±4.8 42.7±4.6

p-value 5e-10 1e-46 1e-8

RoBERTaLarge CE 100 91.1±1.3 81.9±0.4 59.2±2.1
RoBERTaLarge CE + SCL 100 92.8±1.3 82.5±0.4 61.1±3.0

p-value 3e-17 1e-20 2e-4

RoBERTaLarge CE 1000 94.0±0.6 89.2±0.6 81.4±0.2
RoBERTaLarge CE + SCL 1000 94.1±0.5 89.8±0.4 81.5±0.2

p-value 0.6 1e-12 0.5

Table 2: Few-shot learning test results on the GLUE benchmark where we have N=20,100,1000
labeled examples for training. Reported results are the mean and the standard deviation of the test
accuracies of the top 3 models based on validation accuracy out of 10 random training set samples,
along with p-values for each experiment.

Figure 2: tSNE plots of the learned CLS embeddings on the SST-2 test set in the few-shot learning
setting of having 20 labeled examples to fine-tune on – comparing RoBERTa-Large fine-tuned with
CE only (left) and with our proposed objective CE+SCL (right) for the SST-2 sentiment analysis task.
Blue: positive examples; red: negative examples.

5.2 ROBUSTNESS ACROSS AUGMENTED NOISY TRAINING DATASETS

In Table 3, we report our results on augmented noisy training sets with varying levels of noise. We
have 100 labeled examples for fine-tuning for each task, and we augment their training sets with
noisy examples using a back-translation model, as described in detail in Section 4.2. Note that we
use the back-translation model to simulate training datasets of varying noise levels and not as a
method to boost model performance. Experimental setup follows what is described in Section 4 for
few-shot learning experiments. T is the temperature for the back-translation model used to augment
the training sets, and higher temperature corresponds to more noise in the augmented training set.

We observe consistent improvements over the RoBERTa-Large baseline with our proposed objective
across all datasets across all noise levels, with 0.4 points improvement on SST-2, 2.5 points improve-
ment on QNLI, and 7 points improvement on MNLI on average across augmented training sets. The
improvement is particularly significant for inference tasks (QNLI, MNLI) when the noise levels are
higher (higher temperature), leading to 7.7 points improvement on MNLI when T=0.7, and 4.2 points
improvement on QNLI when T=0.9. We show some samples of the augmented examples used in this
robustness experiment in Table 4. For T=0.3, examples mostly stay the same with minor changes in
their phrasing, while for T=0.9, some grammatical mistakes and factual errors are introduced.
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Dataset Loss Original T=0.3 T=0.5 T=0.7 T=0.9 Average
SST-2 CE 91.1±1.3 92.0±1.3 91.4±1.0 91.7±1.3 90.0±0.5 91.3±1.2
SST-2 CE + SCL 92.8±1.3 92.6±0.9 91.5±1.0 91.2±0.6 91.5±1.0 91.7±1.0
QNLI CE 81.9±0.4 81.1±2.3 80.0±2.9 78.9±3.7 75.9±4.0 79.0±3.5
QNLI CE + SCL 82.5±0.4 82.7±1.9 81.9±2.5 81.3±0.6 80.1±2.5 81.5±2.0
MNLI CE 59.2±2.1 54.0±1.1 55.3±2.4 54.6±2.2 47.0±1.8 52.7±3.9
MNLI CE + SCL 61.1±3.0 61.2±2.3 62.1±0.9 62.3±1.1 53.0±2.1 59.7±4.3

Table 3: Results on the GLUE benchmark for robustness across noisy augmented training sets.
Average shows the average performance across augmented training sets.

Dataset Type Sentence
SST-2 Original As possibly the best actor working in movies today.
SST-2 Augmented (T=0.3) As perhaps the best actor who now stars in films.

SST-2 Original The young stars are too cute; the story and ensuing complications are too manipulative.
SST-2 Augmented (T=0.9) The babies are too cute, the image and complications that follow too manipulative.

QNLI Original Brain tissue is naturally soft, but can be stiffened with what liquid?
QNLI Augmented (T=0.3) Brain tissue is omitted naturally, but with what fluid it can be stiffened?

QNLI Original In March 1968, CBS and Sony formed CBS/Sony Records, a Japanese business joint venture.
QNLI Augmented (T=0.9) CBS was founded by CBS and Sony Records in March 1962, a Japanese company.

MNLI Original However, the link did not transfer the user to a comment box particular to the rule at issue.
MNLI Augmented (T=0.3) However, the link did not send the user to a comment field specifically for the rule.

MNLI Original Tenants could not enter the apartment complex due to a dangerous chemical spill.
MNLI Augmented (T=0.9) Tenants were banned from entering the medical property because of a blood positive substance.

Table 4: Sample of augmented examples with different noise levels for the robustness experiment
shown in Table 3. Higher temperature (T) corresponds to more noise in the augmented training set.

5.3 GLUE BENCHMARK FULL DATASET RESULTS

In Table 5, we report results using our proposed objective on six downstream tasks from the GLUE
benchmark. We use a very strong baseline of fine-tuning RoBERTa-Large with cross-entropy loss,
which is currently the standard practice for the state-of-the-art NLP classification models. Details of
the experimental setup are explained in Section 4.

We observe that adding the SCL term to the objective improves the performance over the RoBERTa-
Large baseline that lead to 3.1 points improvement on MRPC, 3.5 points improvement on QNLI,
and an average improvement of 1.2 points across all 6 datasets. We conduct these experiments
to investigate the effect of the SCL term in high-data regimes, as we observe that it’s effective in
few-shot learning settings. We acknowledge that only MRPC and QNLI results are statistically
significant, and we report the results on the other datasets as a finding for the sake of completeness.

We hypothesize larger batch sizes lead to better performance, but we leave that for future work as that
requires additional engineering effort. We show evidence for this hypothesis in our ablation studies
that we show in Table 6, where we conduct the full dataset experiments for CE+SCL with the same
experimental setup described here for Table 5 on SST-2, CoLA, QNLI, and MNLI for batch sizes
16, 64, and 256 using RoBERTa-Base. We observe that as we increase the batch size, performance
improves significantly across all datasets. Specifically, we observe 0.3 points improvement on SST-2,
0.8 points improvement on CoLA, 0.4 points improvement on QNLI, and 1.3 points improvement on
MNLI, when we increase the batch size from 16 to 256 for CE+SCL. We also investigate the effect
of SCL term in the overall training speed, and we measure that with average updates per second
metric, shown in Table 6. For batch size 16, the batch size we use throughout the paper across all
experimental settings, effect of SCL is negligible – decreasing average updates per second from 15.9
to 15.08. As we increase the batch size, effect of SCL to training speed becomes more significant –
decreasing average updates per second from 2.46 to 1.54 for batch size 256. In addition, we conduct
an ablation study where we investigate the importance of l2 normalization and temperature scaling
where we replace SCL loss with CE loss but keep the normalization and scaling (denoted as CE+CE)
both for full dataset results in Table 8, and for batch size ablation in Table 9 in the Appendix.
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Model Loss SST-2 CoLA MRPC RTE QNLI MNLI Avg
RoBERTaLarge CE 96.0±0.4 86.0±0.5 86.4±2.4 85.5±1.8 90.4±0.8 88.4±1 88.8
RoBERTaLarge CE + SCL 96.3±0.4 86.1±0.8 89.5±0.9 85.7±0.5 93.9±0.7 88.6±0.7 90

p-value 0.07 0.63 0.01 0.06 0.01 0.16

Table 5: Test results on the validation set of GLUE benchmark. We compare fine-tuning RoBERTa-
Large with CE with and without SCL. Best hyperparameter configuration picked based on average
validation accuracy. We report average accuracy across 10 seeds for the model with best hyperparam-
eter configuration, its standard deviation, and p-values.

Model Loss Bsz SST-2 CoLA QNLI MNLI Avg ups/sec
RoBERTaBase CE 16 94.1±0.5 83.3±0.7 88.2±0.8 84±0.6 15.9
RoBERTaBase CE + SCL 16 94.9±0.6 83.7±0.9 92.5±0.4 85.3±0.5 15.08

RoBERTaBase CE 64 94.2±0.4 83.3±0.5 89.2±0.5 84±0.4 8.43
RoBERTaBase CE + SCL 64 94.7±0.2 83.8±0.6 92.6±0.5 85.7±0.7 7.44

RoBERTaBase CE 256 94.1±0.4 84±0.5 90±0.7 84.4±0.6 2.46
RoBERTaBase CE + SCL 256 95.2±0.3 84.5±0.5 92.9±0.3 86.6±0.6 1.54

Table 6: Ablation study on performance and training speed shown as average updates per second
(Avg ups/sec) for fine-tuning RoBERTa-Base with respect to the batch size (Bsz).

5.4 GENERALIZATION ABILITY OF TASK MODELS

In this experiment, we first fine-tune RoBERTa-Large on SST-2 using its full training set and get
a task model with and without SCL term. Then, we transfer this task model to two related single
sentence sentiment analysis binary classification tasks for the movie reviews domain – Amazon-2
and Yelp-2 (Zhang et al., 2015). For both, we sample 20 labeled examples for each class, and follow
the few-shot learning experimental setup described in Section 4. In Table 7, we demonstrate that
using the SCL term for both source (SST-2) and target domains (Amazon-2, Yelp-2) lead to better
generalization ability, with 2.9 points improvement on Amazon-2 and 0.4 points improvement on
Yelp-2 along with significant reduction in variance across training set samples.

Model Loss N Amazon-2 Yelp-2
RoBERTaLarge CE 40 87.4±6.4 90.8±2.2
RoBERTaLarge CE + SCL 40 90.3±0.6 91.2±0.4

Table 7: Generalization of the SST-2 task model (fine-tuned using the full training set) to related
tasks (Amazon-2, Yelp-2) where there are 20 labeled examples for each class.

6 CONCLUSION

We propose a supervised contrastive learning objective for fine-tuning pre-trained language models
and demonstrate significant improvements over a strong RoBERTa-Large baseline on multiple
datasets of the GLUE benchmark in the few-shot learning settings. We also show that our proposed
objective leads to models that are more robust to different levels of noise in the training data and can
generalize better to related tasks with limited labeled task data. Currently, data augmentation methods
in NLP and their effects on the downstream tasks are neither as effective nor as well understood
as their counterparts in the computer vision domain. In future work, we plan to study principled
and automated data augmentation techniques for NLP that would allow extending our supervised
contrastive learning objective to both semi-supervised and self-supervised learning settings.
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I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-
supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6022–6031, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. ArXiv, abs/1605.07146, 2016.

12

http://proceedings.mlr.press/v97/saunshi19a.html
https://openreview.net/forum?id=rJ4km2R5t7


Published as a conference paper at ICLR 2021
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A APPENDIX

Figure 3: tSNE plots of learned CLS embedding on SST-2 test set where we have 20, 100 labeled
examples, and full dataset respectively, comparing CE with and without SCL term. Blue: positive
examples; red: negative examples.

Model Loss SST-2 CoLA MRPC RTE QNLI MNLI Avg
RoBERTaLarge CE 96.0±0.4 86.0±0.5 86.4±2.4 85.5±1.8 90.4±0.8 88.4±1 88.8

RoBERTaLarge CE + SCL 96.3±0.4 86.1±0.8 89.5±0.9 85.7±0.5 93.9±0.7 88.6±0.7 90
p-value 0.07 0.63 0.01 0.06 0.01 0.16

RoBERTaLarge CE + CE 96±0.4 86.3±0.4 89±1 84.9±1 93.9±0.8 89±1 89.9
p-value 0.39 0.13 0.01 0.1 0.01 0.12

RoBERTaLarge Khosla et al. (2020) 96±0.3 86.7±1 89.3±1.2 85.2±1 92.4±0.7 88.8±0.9 89.7
p-value 0.4 0.42 0.01 0.22 0.01 0.13

Table 8: Test results on the validation set of GLUE benchmark. We compare fine-tuning RoBERTa-
Large with CE with and without SCL, CE+CE and the two-stage method of Khosla et al. (2020). Best
hyperparameter configuration is picked based on the average validation accuracy. We report average
accuracy across 10 seeds for the model with the best hyperparameter configuration, its standard
deviation, and p-values. CE+CE refers to the case where we replace SCL loss with the CE loss but
keep l2 normalization and temperature scaling.
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Model Loss Bsz SST-2 CoLA QNLI MNLI Avg ups/sec
RoBERTaBase CE 16 94.1±0.5 83.3±0.7 88.2±0.8 84±0.6 15.9
RoBERTaBase CE + SCL 16 94.9±0.6 83.7±0.9 92.5±0.4 85.3±0.5 15.08
RoBERTaBase CE + CE 16 94.8±0.7 83.6±0.4 91.6±0.5 85±0.3 15.25

RoBERTaBase CE 64 94.2±0.4 83.3±0.5 89.2±0.5 84±0.4 8.43
RoBERTaBase CE + SCL 64 94.7±0.2 83.8±0.6 92.6±0.5 85.7±0.7 7.44
RoBERTaBase CE + CE 64 94.6±0.7 83.5±0.6 92.1±0.8 85±0.8 7.64

RoBERTaBase CE 256 94.1±0.4 84±0.5 90±0.7 84.4±0.6 2.46
RoBERTaBase CE + SCL 256 95.2±0.3 84.5±0.5 92.9±0.3 86.6±0.6 1.54
RoBERTaBase CE + CE 256 94.3±0.5 83.5±0.3 91.9±0.4 84.6±0.8 1.77

Table 9: Ablation on performance and fine-tuning speed shown as average updates per second (Avg
ups/sec) for fine-tuning RoBERTa-Base with respect to the batch size (Bsz). CE+CE refers to the
case where we replace SCL loss with the CE loss but keep l2 normalization and temperature scaling.

Model Loss N SST-2 QNLI MNLI
RoBERTaLarge CE 20 85.9±2.1 65.0±2.0 39.3±2.5

RoBERTaLarge CE + SCL 20 88.1±3.3 75.7±4.8 42.7±4.6
p-value 5e-10 1e-46 1e-8

RoBERTaLarge CE + CE 20 86.5±2.2 75.1±3.5 40.8±3.7
p-value 0.03 4e-68 3e-4

RoBERTaLarge CE 100 91.1±1.3 81.9±0.4 59.2±2.1

RoBERTaLarge CE + SCL 100 92.8±1.3 82.5±0.4 61.1±3.0
p-value 3e-17 1e-20 2e-4

RoBERTaLarge CE + CE 100 91.7±0.5 81.7±0.5 56±4.0
p-value 1e-4 3e-4 2e-8

RoBERTaLarge CE 1000 94.0±0.6 89.2±0.6 81.4±0.2

RoBERTaLarge CE + SCL 1000 94.1±0.5 89.8±0.4 81.5±0.2
p-value 0.6 1e-12 0.5

RoBERTaLarge CE + CE 1000 94±0.7 89.3±1 81.2±0.2
p-value 0.78 0.06 0.12

Table 10: Few-shot learning test results on the GLUE benchmark where we have N=20,100,1000
labeled examples for fine-tuning. Reported results are the mean and the standard deviation of the
test accuracies of the top 3 models based on the validation accuracy out of 10 random training set
samples, along with p-values for each experiment. CE+CE refers to the case where we replace SCL
loss with the CE loss but keep l2 normalization and temperature scaling.
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