
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH-SUPPORTED DYNAMIC ALGORITHM CONFIG-
URATION FOR MULTI-OBJECTIVE COMBINATORIAL
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (DRL) has been widely used for dynamic algorithm
configuration, especially for evolutionary algorithms, which benefit from adaptive
update of parameters during the algorithmic execution. However, applying DRL to
algorithm configuration for multi-objective combinatorial optimization (MOCO)
problems remains relatively unexplored. This paper presents a novel graph neural
network (GNN) based DRL to configure multi-objective evolutionary algorithms.
We model the dynamic algorithm configuration as a Markov decision process, rep-
resenting the convergence of solutions in the objective space by a graph, with their
embeddings learned by a GNN to enhance the state representation. Experiments
on diverse MOCO challenges indicate that our method outperforms traditional and
DRL-based algorithm configuration methods in terms of efficacy and adaptability.
It also exhibits advantageous generalizability across objective types and problem
sizes, and prospective applicability to different evolutionary algorithms.

1 INTRODUCTION

Selecting the right hyperparameters is crucial for the performance of optimization algorithms. Some
automated algorithm configuration (AC) methods (López-Ibáñez et al., 2016; Lindauer et al., 2022)
have been developed to identify well-performing configurations and reduce the need for labor-
intensive trial-and-error tuning. As the optimal parameter values may change throughout different
stages of the algorithmic deployment (Aleti, 2012), various dynamic algorithm configuration (DAC)
methods have been proposed in recent years (Biedenkapp et al., 2020; Adriaensen et al., 2022).
DAC adjusts the configuration of algorithms in real time, which is advantageous for algorithms
facing changes in the search space configuration during execution. This adaptability to update pa-
rameters is especially relevant to iterative algorithms, such as Evolutionary Algorithms (EAs), a
prominent class of Evolutionary Computation (EC) techniques for solving complex optimization
problems. The performance of EAs relies significantly on the precise adjustment of their parameters
and may require changes at various phases of the search process to maintain optimal performance.

Deep Reinforcement Learning (DRL) has been successfully used to control parameter values for var-
ious single-objective EC algorithms in different domains, as reported in the literature (Sharma et al.,
2019; Sun et al., 2021; Tan & Li, 2021). These approaches address the parameter configuration prob-
lem by modeling it as a contextual Markov decision process (MDP) (Biedenkapp et al., 2020). This
enables dynamic algorithm configuration to be approached as a sequential decision-making prob-
lem, enabling Reinforcement Learning (RL) to control algorithm configurations during search. Xue
et al. (2022) extend the existing DRL-based DAC approaches to tackle multi-objective optimization.
Although these methods have demonstrated their effectiveness in configuring parameters during the
search, their applications are primarily limited to (multi-objective) continuous optimization, such as
tuning hyperparameters of machine learning models, as in AutoML (Biedenkapp et al., 2020; Eimer
et al., 2021), and benchmarking continuous functions (Xue et al., 2022).

In this paper, we propose a DRL-based, dynamic algorithm configuration method designed specif-
ically for solving multi-objective combinatorial optimization problems (MOCOs). Most (multi-
objective) combinatorial optimization problems, such as machine scheduling, vehicle routing, and
resource allocation problems, are NP-hard, as they involve finding high-quality solutions in a large
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space of discrete decision variables. Hence, practical approaches for solving these problems typi-
cally rely on heuristics, among which EAs have been widely used in various COPs (Bartz-Beielstein
et al., 2014; Zhou et al., 2011).

We expect (and confirm with experiments in Section 4.1) that the existing DAC approach designed
for continuous optimization (i.e., MADAC (Xue et al., 2022)) may not work well on large-size, com-
plex COPs with many objectives, due to less smooth solution spaces and a wide range of objective
values of COPs. To tackle these challenges, our proposed method, called GS-MODAC, employs a
Graph Neural Network to capture the state of the search algorithm. Specifically, we take inspira-
tion from various convergence- and diversity–based metrics for multi-objective optimization, such
as the number of elite solutions, the spacing between solutions, the relative size of holes (gaps) in
the solution space, and hypervolume. With this, we expect that our method leverages the graph-
based representation to dynamically learn similar (yet advanced) features during the optimization
process to reflect the current state in the multiple objective planes. By representing the state space
as a graph, our method provides a state configuration independent of the number of objectives,
eliminating the need for practitioners to configure arbitrary state features manually. In addition, GS-
MODAC leverages a rewarding scheme designed to be incentivized toward Pareto optimal solutions
in a problem-agnostic manner, fostering generalizability between differently scaled COPs.

Experimentation demonstrates that GS-MODAC is better than state-of-art algorithm configuration
methods based on heuristics (irace) (López-Ibáñez et al., 2016), Bayesian Optimization (SMAC3)
(Lindauer et al., 2022), and a multi-agent DRL approach (MADAC) (Xue et al., 2022). We fur-
ther demonstrate that the proposed method can be applied to multiple Multi-Objective Evolutionary
Computation algorithms to solve different MOCOs from distinct problem domains featuring vary-
ing numbers of objectives. Also, the trained models can generalize to effectively solve instances of
larger sizes and more constrained problem variants, which were not observed in training.

Our study offers the following contributions:

1) We introduce GS-MODAC, a GNN and DRL-based method to dynamically control the parameter
configuration of MOEAs for solving MOCOs. This approach effectively addresses the limitations
of static algorithm configuration methods, achieving better convergence and more diverse solutions.

2) We propose a graph representation of solutions in the objective space, which is learned by graph
neural network and involved in the state. Based on the normalized objectives, we also present an
instance-agnostic reward function that applies to problems of different types and varying sizes.

3) We evaluate the proposed method on typical routing and scheduling problems and demonstrate its
promising generalizability to perform effectively on more constrained problem variants and larger
problem instances not encountered during training.

2 BACKGROUND AND RELATED WORK

Multi-Objective Optimization (MOO) and Combinatorial Optimization (MOCO). Combi-
natorial Optimization is concerned with finding the best solution from a finite set of feasible so-
lutions. These problems are characterized by their discrete nature, where the solutions can be
represented as integers, graphs, sets, or sequences. Multi-Objective Combinatorial Optimization
(MOCO) involves simultaneously optimizing multiple, often conflicting objectives for combinato-
rial optimization problems. The general formulation of MOCO can be expressed as minx∈X f(x) =
(f1(x), f2(x), . . . , fN (x)). Here, X denotes the set of feasible solutions, N is the number of objec-
tive functions to be optimized, and each fi(x) represents an objective function to be minimized.

Definition 1: Pareto Dominance. A solution x1 ∈ X dominates another solution x2 ∈ X (x1 ≺
x2) if and only if: fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , N}, and there exists at least one j ∈
{1, . . . , N} such that fj(x1) < fj(x2).

Definition 2: Pareto Optimality. A solution x∗ ∈ X is considered Pareto optimal if there is no
other solution x′ ∈ X satisfying x′ ≺ x∗. In other words, x∗ is Pareto optimal if it is not dominated
by any other solution in X .

Definition 3: Pareto Front. The objective of multi-objective optimization is to find the Pareto front,
which consists of all Pareto-optimal solutions: P = {x∗ ∈ X | ∄x′ ∈ X such that x∗ ≺ x′}. The
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corresponding Pareto front is defined as: F = {f(x) | x ∈ P}. The Pareto front consists of the
objective values of the Pareto set, where each f(x) represents a point in the objective space.

Definition 4: Hypervolume Indicator. The Hypervolume (HV) indicator is a widely used metric
for assessing performance in multi-objective optimization problems, providing a comprehensive
evaluation of both convergence and diversity, even without knowledge of the exact Pareto front
(Zitzler & Thiele, 1998). For a Pareto front F in the objective space, the HV with respect to a fixed
reference point r ∈ RN is defined as:

HVr(F) = µ

 ⋃
f(x)∈F

[f(x), r]

 (1)

where µ denotes the Lebesgue measure, representing the N -dimensional volume, and [f(x), r] refers
to an N -dimensional cube: [f(x), r] = [f1(x), r1]× [fN (x), rN ], which spans the region in the N -
dimensional objective space between a point on the Pareto front and a fixed reference point r.

Algorithm Configuration. Algorithm Configuration (AC) involves determining optimal parame-
ter configurations for an algorithm to maximize performance across various inputs. Dynamic Algo-
rithm Configuration (DAC) extends AC by adjusting parameters during the optimization process to
enhance performance (Biedenkapp et al., 2020). Unlike static configurations, DAC aims to balance
exploration and exploitation, increasing the likelihood of finding high-quality solutions. According
to Karafotias et al. (2014), it can be classified into three types: 1) Deterministic, which changes
parameter configurations based on a predetermined rule, often using a time-varying schedule (Sun
et al., 2020); 2) Self-adaptive, integrating parameter adjustments into the search process, allowing
parameters to evolve alongside solutions (Michalewicz et al., 2000); and 3) Adaptive parameter
control, which adjusts parameters based on search feedback, using credit assignment and operator
selection to optimize performance (Aleti & Moser, 2016).

Machine Learning methods such as Bayesian Optimization and Artificial Neural Networks have
been used to tune parameters by predicting parameter performances based on training instances (
Lessmann et al. (2011); Biswas et al. (2021); Centeno-Telleria et al. (2021)). In recent years, there
has been a significant focus on using Reinforcement Learning (RL) for dynamic algorithm con-
figuration, especially for controlling parameters in evolutionary algorithms (EAs). RL enables the
learning of dynamic policies that adapt to the evolving state of the problem. In contrast to tradi-
tional optimization methods, which typically rely on fixed parameters and lack the ability to adjust
based on the context, RL allows agents to continuously interact with the environment and update
their decision-making strategy as new information becomes available. This ability to adjust over
time makes it particularly well-suited for problems where the optimal solution evolves or depends
on changing conditions (Biedenkapp et al., 2020). In ECs, different parameter configurations can
be treated as a set of actions, and when a configuration set leads to improved solutions, a reward
is given to the RL agent. Recent research has demonstrated the effectiveness of RL in control-
ling the parameters of EAs. For example, Q-learning has been applied to adapt each generation’s
crossover and mutation rates to solve a vehicle routing problem (Quevedo et al., 2021). Similarly,
an EA has been hybridized with state–action–reward–state–action (SARSA) and Q-Learning to con-
trol crossover and mutation rates for the Flexible Job Shop Scheduling Problem (Chen et al., 2020).
There has also been an increasing interest in using Deep Reinforcement Learning (DRL). Examples
are the employment of a Double Deep Q-Network (DDQN) agent to select parameters in Differ-
ential Evolution (DE) (Sharma et al., 2019) or a Policy Gradient method (Sun et al., 2021). Sev-
eral works have extended RL-based DAC methods to address multi-objective optimization (Huang
et al., 2020; Tian et al., 2022; Reijnen et al., 2022; Han et al., 2023). However, applying DRL in
multi-objective optimization presents several challenges. Many existing approaches rely on man-
ually configured features derived from convergence and fitness landscapes, such as the number of
elite solutions, solution spacing, the relative size of gaps in the solution space, and hypervolume,
to define the states in the MDP. This process is labor-intensive and often suboptimal. Additionally,
managing high-dimensional configured state spaces and optimizing for multi-objectives complicates
the learning process (Yang et al.). Moreover, most studies focus on search operator selection, typi-
cally configured as discretized actions, and are often trained and demonstrated on simple continuous
optimization problems and standard benchmark functions (Ma et al., 2024).

The closest work to ours is Xue et al. (2022), where the authors propose MADAC for tuning param-
eters in a multi-objective evolutionary algorithm (MOEA). The work utilizes value-decomposition
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Figure 1: The GS-MODAC framework. The DRL agent chooses actions to configure the next iter-
ation of the algorithmic search based on the learned graph embedding of the state. Nodes represent
the normalized objectives of solutions at a given iteration of the search on multiple objective planes.
The graph is constructed by interconnecting the normalized objective points in the different Pareto
fronts, creating a structured visualization of the solution space. The actions are performed in the en-
vironment, which in response returns the next generation of solutions, the next state, and the reward.

networks (VDN) (Sunehag et al., 2017), a typical multi-agent RL method, to identify the optimal
settings for different categories of parameters. The work incorporates information from the spe-
cific problem instance, the ongoing optimization process, and the evolving population of solutions.
The reward function incentivizes improvement, offering rewards for discovering better solutions
and greater rewards for further advancements in later stages. The limitation of MADAC is that it
typically includes information on convergences, objectives, and population-based metrics based on
arbitrary hand-defined and tuned state features. This reliance on manually selected features can
lead to suboptimal results, as the chosen features may not adequately capture the complexity of
the environment. To address this, we propose a novel DRL-based approach for the dynamic con-
figuration of parameters in MOEAs aimed at solving Multi-objective Combinatorial Optimization
problems. Instead of relying on arbitrarily defined features, our approach involves mapping the ob-
jective spaces to graph structures and utilizing Graph Neural Networks (GNNs) to aggregate node
features as states. This method allows for a more comprehensive and adaptive representation of
the state space, scalable to multiple objective problems, potentially enhancing the performance and
robustness of the evolutionary algorithms.

3 THE METHOD

This section presents our proposed method, GS-MODAC (Graph-Supported Multi-Objective Dy-
namic Algorithm Configuration). GS-MODAC employs a Graph Neural Network (GNN) to capture
the state of the search algorithm and Deep Reinforcement Learning (DRL) to configure the next
search iteration in solving MOCOs. Graphs offer a powerful means of representing structured and
informative embeddings, with the flexibility to scale to different sizes. GNNs, in particular, have
demonstrated significant versatility and effectiveness across diverse graph-related tasks due to their
ability to model complex graph structures and extract meaningful representations (Zhou et al., 2020).
In this work, we leverage GNNs to extract the graph state, enabling the DRL agent to make more in-
formed and effective decisions based on the iterative search’s current state. By representing the state
space as a graph, our method utilizes a state configuration independent of the number of objectives,
bypassing the need for practitioners to customize state representations for any number of objectives
manually. We illustrate the overview of GS-MODAC in Figure 1.

3.1 MDP FORMULATION FOR GS-MODAC

GS-MODAC is built upon the foundation of Dynamic Algorithm Configuration (DAC) principles
(Biedenkapp et al., 2020), dynamically adjusting parameter configuration of EAs during their op-
timization processes. This process can be formulated as a contextual Markov Decision Process
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(MDP) MI , with shared action and state spaces, but with different transition and reward functions
for each instance i in a set I . Each Mi corresponds to the MDP of a specific problem instance i,
encapsulating the state space S, action space A, state transition function Ti, and reward function Ri.

In the context of GS-MODAC, given a target algorithm with the space of its configuration hyper-
parameters Θ, a policy π maps the state s ∈ S to action a ∈ A (i.e., hyperparameter configuration
θ ∈ Θ). The primary objective is training the policy to enhance the algorithmic performance across
a diverse set of instances, minimizing the expected cost function c(π, i) across instances i ∈ I . To
further facilitate generalizability, we define a shared reward function R to consistently measure per-
formance improvement across different problem instances. This shared reward function R ensures
that the policy learns to optimize the performance of the target algorithm to make it generalize well
across various instances rather than overfitting to specific instances. We introduce the components
composed within the MDP of GS-MODAC as follows.

States. The state space S provides a DRL agent with information on the current status of the search
algorithm, aiding in selecting the best action for the next iteration. In the context of DAC, several
studies have attempted to create a state configuration that accurately represents the convergence
process and generalizes to unexplored problem instances (Sharma et al., 2019; Sun et al., 2020;
Xue et al., 2022). These configurations typically include convergence information, objective values,
and population diversity metrics. In contrast to the literature, we innovatively propose mapping
objective spaces to graphs and leveraging GNNs to dynamically learn state representations. The
graph transformation of objective space is illustrated in ‘state configuration’ in Figure 1.

This transformation involves interconnecting normalized objective points in the different Pareto
fronts to create a structured visualization of the solution space and eliminates the need for manual
state space design, a process known to be cumbersome and suboptimal. To ensure the state configu-
ration is independent of the magnitude of objective values, we normalize the solution space relative
to a reference point that is defined by the worst observed objective values in the first population
of solutions. In doing so, we provide a state configuration that effectively represents the algorith-
mic convergence and the diversity of solution performances, potentially generalizing to problem
instances with varying objective magnitudes. An additional feature vector is correspondingly in-
cluded, containing the normalized number of generations that have been passed by, representing the
remaining budget available for the search.

Actions. The action space A consists of multiple continuous values, each associated with an evolu-
tionary algorithm parameter to be controlled. These values are normalized between -1 and 1, defined
based on the recommended values from rules of thumb for EA tuning (Coello et al., 2007).

Transitions. The transition function outlines the dynamics of the search algorithm and is led by
interactions between the agent and the problem environment. In the context of GS-MODAC, each
interaction (step) with the environment serves as a search iteration. Given state st, an agent takes a
action at, and the probability of moving to state st+1 is denoted as T (st+1|st, at). Unlike the state,
action, and reward spaces (in the scope of this work), the transition function is contingent upon the
specific instance i ∈ I .

Rewards. The reward function is critical in guiding policy learning. In multi-objective optimiza-
tion, the rewarding system should encourage algorithmic convergence towards the optimal Pareto
front. However, the evolving towards the Pareto front often turns increasingly demanding along
search steps. The early search stages typically allow for swift gains, while the later stages require
substantially more effort. In light of this, we design rewards for enhancing the evolvement of the
Pareto front in the latter.

In specific, we design the reward function as follows: At each iteration t, we assess whether the
hypervolume of the population HVcurrent exceeds the best previously observed hypervolume HVbest.
If HVcurrent > HVbest, we compute the percentage improvements, i.e., ∆current and ∆best, and then
calculate the reward as the difference between the squared improvements. In this way, we magnify
the rewards for larger improvements in later stages, encouraging significant evolvement of the Pareto
front. The reward is defined as:

rt =

{
∆2

current −∆2
best if HVcurrent > HVbest

0 otherwise

where ∆current and ∆best are calculated as follows:
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∆current =

(
HVcurrent −HVinitial

HVideal −HVinitial

)
× 100, ∆best =

(
HVbest −HVinitial

HVideal −HVinitial

)
× 100

Hypervolumes are calculated using a nadir point, defined by the worst-case values of objectives
in the initial population of solutions. The ideal hypervolume HVideal is computed using this nadir
point, along with an ideal point, which is approximated by running the underlying evolutionary
algorithm one-time with a higher budget (e.g., doubled). It is worth noting that our reward function
is instance-agnostic and thus applicable to different instances of varying sizes and complexities. We
empirically observe that the reward function performs consistently well on different problems and
delivers outstanding generalizability of trained models.

3.2 GRAPH-BASED POLICY LEARNING AND TRAINING ALGORITHM

The agent, parameterized as a policy network, interacts with the environment by taking the current
state as input, inferring an action, and collecting rewards based on the chosen action. The policy is
then updated using the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) to
train the parameterized policy. PPO is a widely used and highly effective policy gradient algorithm
that utilizes a probability ratio between policies to maximize the improvement of the current policy
without the risk of performance collapse. In our case, the agent utilizes a neural network that first
processes the graph-based state representation through two Graph Convolutional Network (GCN)
layers (Kipf & Welling, 2016). These layers are designed to extract and aggregate node embeddings
(i.e., representations) effectively, capturing the essential structural information within the graph.
Then, a global mean pooling operation is applied to average the node embeddings, producing a
single embedding across the entire graph. The embedding is concatenated with an additional feature
vector containing specific search budget information. The enriched embedding is finally fed into a
linear layer to predict the mean values of action distributions. We have performed an ablation study
in Appendix E, where we evaluate and test the setup and verify the effectiveness of our approach.

3.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM DEPLOYMENT

Exact methods can achieve the accurate Pareto set in Multi-Objective Combinatorial Optimization
(MOCO). However, the computational demands of these methods tend to increase exponentially
with problem complexity, which often makes them impractical for large-scale applications. As a
more feasible alternative, heuristic methods, particularly multi-objective evolutionary algorithms
(MOEAs), are popular in practice due to their ability to effectively approximate Pareto fronts in
a computationally efficient manner. In this work, we demonstrate GS-MODAC by applying it to
two widely used algorithms: 1) NSGA-ii (Deb et al., 2002), which implements a non-dominated
sorting mechanism with a crowding distance metric to preserve solution diversity throughout search,
ensuring comprehensive exploration of the Pareto front; and 2) Multi-Objective Particle Swarm
Optimization (MOPSO) (Coello & Lechuga, 2002), a swarm intelligence algorithm, which adjusts
positions of particles by tracking both individual best locations and the best discoveries in the swarm.
It integrates an archive to store non-dominated solutions to effectively cover the Pareto front.

4 EXPERIMENTS

Problems. We apply our proposed method to two multi-objective combinatorial optimization prob-
lems: Flexible Job Shop Scheduling Problem (FJSP) and Capacitated Vehicle Routing Problem
(CVRP). The FJSP involves scheduling multiple jobs, each composed of various operations, onto
a set of machines. The operations of each job must be completed in a specific sequence, with
each operation featuring a predefined processing time on specific machines. Based on the literature
(Tamssaouet et al., 2022), we focus on minimizing Makespan, Balanced Workload, Average Flow-
time, Total Workload, and Maximum Flowtime. We refer to the variants of FJSP as the Bi-, Tri- and
Penta-FJPS, solving the first 2, first 3, and all 5 objectives, respectively. CVRP involves determin-
ing optimal routes for a fleet of vehicles to serve a set of customers. Each customer has a specific
demand, and each vehicle has a capacity limit that must not be exceeded. The objectives are to
minimize the total travel distances and the longest route. We refer to the CVRP problem composed
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of these two objectives as the Bi-CVRP problem. Please refer to Appendix A for a comprehensive
discussion of FJSP and CVRP, including the constraints and objectives addressed in this work.

Instance generation. For FJSP, we generate train and test instances for three distinct problem
sizes: 1) 5 jobs and 5 machines (5j5m), 2) 10 jobs and 5 machines (10j5m), and 3) 25 jobs and
5 machines (25j5m), following the instance generation configuration of Song et al. (2022). We
generate 200 instances for each problem configuration, consisting of 100 instances for training and
100 for testing. Each instance contains a varying number of operations per job, ranging from 4 to
8, and the processing time for each operation falls between 2 and 20 time units. The same instance
sets are used for the experiments with 2, 3, or 5 objectives. For CVRP, we generate 3 distinct sizes
of 100, 200, and 500 customers, according to the instance generation method in da Costa et al.
(2021). We create 200 instances per problem size using random 2-dimensional coordinates for each
customer and the depot in the 0 to 1 range. Each customer has a random demand between 1 and 9,
and the vehicles have a capacity of 40 units.

Baselines. To show the performance of our proposed dynamic algorithm configuration method on
solving multi-objective FJSP and CVPR, we use NSGAii as a base algorithm, whose values have
been configured with rules of thumb, configuring the crossover parameter as 0.7 and the mutation
parameter as 0.02 (Coello et al., 2007). Additionally, as shown in Appendix C, we empirically
validate that our method effectively configures MOPSO, a swarm intelligence-based approach. We
compare the proposed GS-MODAC against three algorithm configuration methods for tuning NS-
GAii parameters: two widely used static AC methods, SMAC3 (Lindauer et al., 2022) and irace
(López-Ibáñez et al., 2016), and a recent RL-based DAC approach, MADAC (Xue et al., 2022).

SMAC3 is a hyperparameter tuning method that combines Bayesian optimization and random for-
est regression. For the tuning, we use the generated test instances for each given instance size.
Bayesian optimization is used to draw parameter configurations from the defined parameter config-
uration ranges and evaluate them on the provided tuning instances over 10.000 runs of the NSGAii
configured algorithm, lasting between 5 to 14 hours for the Bi-CVRP instances and between 8 to 40
hours for the FJSP-variants. We also use the Iterated Race (irace) tuning method, which employs an
iterative racing procedure. In each iteration (or ‘race’), the worst-performing configurations are re-
placed with new ones, optimizing settings based on a set of given instances. irace was tuned with the
same budget as the BO tuning method, taking between 3 and 12 hours for Bi-CVRP problem con-
figurations and 5 to 20 hours for the FJSP-based variants, respectively. Since MADAC is designed
to select discrete actions, we discretize the parameter space of NSGAii with 10 actions between 0.6
and 1.0 as crossover rate and between 0 and 0.1 for the mutation rate (in line with rules-of-thumb
for EA parameter configurations (Coello et al., 2007)).

Training. We trained GS-MODAC for each problem configuration with randomly generated
problem-instance sizes. The actions space for NSGAii is defined as two continuous actions with
ranges ⟨0.6, 1.0⟩ and ⟨0.0, 0.1⟩ for the NSGAii crossover and mutation rates. The training process
involved 1.000,000 steps for the scheduling problems and 2.500.000 steps for the routing, configured
with 50 generations of search and a population size of 50. It was conducted on a Processor Intel(R)
Core(TM) i7-6920HQ CPU @ 2.90GHz with 8.0GB of RAM and five parallel environments. The
training duration varied for different-sized instance sets, taking around 11, 15, and 26 hours for
the Bi-CVRP problem configurations and between 5 hours and 3 days for the different configured
FJSP-based problems, where training on large instances with more objectives is more expensive.
The training process spans 2000 epochs with 500 steps per epoch. The model parameters are set
following Schulman et al. (2017), and network layers are configured with 64 nodes. The MADAC
baseline model is trained according to Xue et al. (2022), taking between 2 and 8 hours for Bi-CVRP
and 12 and 60 hours for the FJSP-based variants.

Testing. After training, the GS-MODAC agent is ready to be applied to tune the parameters of NS-
GAii to solve unseen problem instances. Each experiment is performed by running each algorithm
10 times on 100 test instances for comparison. The evaluation is based on three metrics: average
hypervolume (mean), best hypervolume (max), and standard deviation (std), which are computed
by averaging all test instances for each problem. Hypervolumes are calculated using predefined ref-
erence points for each instance to ensure a fair comparison. The paper highlights the highest mean
and max hypervolumes in bold and underlined values that significantly outperform all other methods
using the Wilcoxon rank-sum test (p < 0.05).
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Table 1: Performance comparison of different methods in solving 100 instances of various problems
of varying sizes 10 times, based on the mean found hypervolume (mean), the best-found hypervol-
ume (max), and the standard deviation (std).

Bi-FJSP - 5j5m Bi-FJSP - 10j5m Bi-FJSP - 25j5m
Method mean max std mean max std mean max std
NSGAii 1.87×104 2.02×104 1.21×103 3.82×104 4.11×104 2.29×103 9.41×104 9.93×104 4.84×103

irace 1.92×104 2.04×104 1.06×103 3.90×104 4.11×104 1.95×103 9.52×104 9.97×104 4.03×103

SMAC3 1.91×104 2.04×104 1.09×103 3.89×104 4.13×104 2.19×103 9.51×104 9.97×104 4.46×103

MADAC 1.82×104 1.95×104 7.53×102 3.69×104 3.98×104 4.47×103 9.24×104 9.72×104 3.09×103

GS-MODAC 1.92×104 2.04×104 1.07×103 3.92×104 4.15×104 1.97×103 9.54×104 10.0×104 4.40×103

Tri-FJSP - 5j5m Tri-FJSP - 10j5m Tri-FJSP - 25j5m
Method mean max std mean max std mean max std
NSGAii 2.06×106 2.22×106 1.32×105 5.53×106 5.95×106 3.09×105 2.05×107 2.18×107 1.13×106

irace 2.11×106 2.26×106 1.16×105 5.47×106 5.82×106 2.65×105 2.07×107 2.20×107 1.07×106

SMAC3 2.09×106 2.25×106 1.23×105 5.65×106 6.05×106 2.91×105 2.07×107 2.20×107 1.01×106

MADAC 1.99×106 2.14×106 8.86×104 5.39×106 5.87×106 5.97×105 2.09×107 2.20×107 1.97×106

GS-MODAC 2.10×106 2.25×106 1.16×105 5.70×106 6.09×106 2.99×105 2.14×107 2.27×107 1.09×106

Penta-FJSP - 5j5m Penta-FJSP - 10j5m Penta-FJSP - 25j5m
Method mean max std mean max std mean max std
NSGAii 6.01×1010 6.48×1010 3.70×109 3.96×1011 4.31×1011 2.42×1010 5.08×1012 5.48×1012 2.75×1011

irace 6.08×1010 6.49×1010 2.98×109 4.03×1011 4.38×1011 2.35×1010 5.18×1012 5.63×1012 2.92×1011

SMAC3 6.08×1010 6.50×1010 3.29×109 3.97×1011 4.29×1011 2.24×1010 4.95×1012 5.33×1012 2.71×1011

MADAC 5.82×1010 6.28×1010 2.72×109 3.91×1011 4.29×1011 4.36×1010 5.1×1012 5.74×1012 5.01×1011

GS-MODAC 6.15×1010 6.58×1010 3.40×109 4.16×1011 4.52×1011 2.40×1010 5.62×1012 6.07×1012 3.20×1011

Bi-CVRP - 100 Bi-CVRP - 200 Bi-CVRP - 500
Method mean max std mean max std mean max std
NSGAii 1.34×102 1.47×102 7.84 1.56×102 1.72×102 9.05 2.27×102 2.48×102 1.27×101

irace 1.34×102 1.48×102 8.02 1.57×102 1.72×102 9.53 2.27×102 2.48×102 1.26×101

SMAC3 1.34×102 1.46×102 7.89 1.57×102 1.73×102 9.59 2.27×102 2.51×102 1.42×101

MADAC 1.35×102 1.49×102 8.01 1.61×102 1.76×102 9.22 2.33×102 2.54×102 1.29×101

GS-MODAC 1.35×102 1.48×102 7.95 1.60×102 1.76×102 9.50 2.35×102 2.59×102 1.41×101

4.1 EXPERIMENTAL RESULTS

We have formulated research questions to evaluate the performance of GS-MODAC. Specifically,
these questions assess GS-MODAC’s effectiveness compared to existing methods, its ability to gen-
eralize to previously unseen instances of varying sizes, its adaptability to more complex problem
variants, and its scalability across different objectives.

RQ1: How does GS-MODAC perform compared to the base algorithm NSGAii and three AC
baseline methods for various problem types and sizes of objectives?

Table 1 presents the performances of various methods, including the mean average performance,
mean best-found solution, and the standard deviations for each method on two different problem
types. The results highlight the effectiveness of GS-MODAC in controlling evolutionary parameters,
achieving the best average and best-found solutions. For the smallest instance size in two-objective
problems (Bi-), the baseline methods perform competitively, with the MADAC and irace config-
ured baselines finding comparable mean and max solutions. However, GS-MODAC consistently
excels in problem configurations with larger objective spaces, such as problems with more objec-
tives and larger combinatorial search spaces (large instances configurations). This is particularly
evident in the FJSP problem configurations with five objectives (Penta-), where GS-MODAC finds
significantly better solutions than all baselines regarding mean and max found solutions. Specifi-
cally, for the Penta-FJSP problem configurations with 25 jobs and 5 machines, GS-MODAC’s mean
and maximum solutions are 8.2% and 5.7% better, respectively, than the best-performing baselines
(irace and MADAC) and 10.6% and 10.8% better than the vanilla configured NSGAii method.

Additionally, Figures 2a and 2b illustrate that the GS-MODAC method converges significantly faster
to find the optimal hypervolume for a Tri-FJSP with 10 jobs and 5 machines. It achieves a better-
converged hypervolume, reaching superior minimum values for each objective, and is more widely
spread across the different objective axes. Similar convergence patterns were observed for other
instances, demonstrating the robustness of the GS-MODAC method. In Appendix D, we provide
further analysis using alternative metrics to demonstrate GS-MODAC’s ability to converge to the
true Pareto front while maintaining a diverse set of high-quality solutions.
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(a) (b)

Figure 2: Comparison of GS-MODAC, SMAC3, and NSGAii solution methods: (a) Average con-
vergence rates and (b) Pareto front distributions.

RQ2: How well do the trained GS-MODAC models generalize to previously unseen instances
of varying sizes?

We assess the ability of the trained GS-MODAC models to solve previously unseen instances of
different sizes. The results of this evaluation are presented in Table 2. The rows present the instance
sizes on which the model is trained, and the columns show the instance sizes on which trained
models are evaluated. We found that the models trained on smaller instances and deployed on larger
instances experienced a slight decline in performance but still managed to achieve performance
comparable to the best-performing baseline (MADAC) while outperforming the other baselines.
Moreover, models trained on diverse instance sizes can effectively learn a robust, well-performing,
all-around policy. The results suggest that our models could generalize and solve problem instances
beyond the size on which they were trained.

Table 2: Generalizability of the trained models to solve unseen instances of different sizes.

Bi-CVRP - 100 Bi-CVRP - 200 Bi-CVRP - 500
Method mean max std mean max std mean max std
NSGAii 1.34×102 1.47×102 7.84 1.56×102 1.72×102 9.05 2.27×102 2.48×102 1.27×101

GS-MODAC - 100 1.35×102 1.48×102 7.95 1.59×102 1.75×102 9.25 2.32×102 2.55×102 1.31×101

GS-MODAC - 200 1.35×102 1.48×102 8.22 1.60×102 1.76×102 9.50 2.33×102 2.56×102 1.36×101

GS-MODAC - 500 1.33×102 1.47×102 8.52 1.60×102 1.75×102 9.33 2.35×102 2.59×102 1.41×101

GS-MODAC - all sizes 1.34×102 1.48×102 7.97 1.59×102 1.74×102 9.03 2.33×102 2.59×102 1.41×101

RQ3: How effectively can the trained GS-MODAC models adapt to solve previously unseen,
more complex variants of problems? We assess the ability of the trained GS-MODAC models
to solve previously unseen instances of two different, more complicated problem variants. These
problems extend the Bi-, Tri- and Penta- objective FJSP with assembly constraints and sequence-
dependent setup times, including additional precedence constraints between jobs and setup times
operations on machines subject to the scheduling sequence. We test the proposed method on two
variants of assembly scheduling, so-called ’DAFJS’ and ’YFJS’ scheduling problems as provided in
Birgin et al. (2014), which have been extended with sequence-dependent setup times. The results,
shown in Table 3, indicate that GS-MODAC trained on DAFJS-SDST demonstrates superior per-
formance in most cases, except for the mean HV in the Penta-objective variant. Furthermore, the
model configuration trained on the 10j5m problem variants effectively transfers to more complex
problem scenarios. Notably, GS-MODAC trained on the 10j5m configurations outperforms all other
baselines specifically tailored to the DAFJS and YFJS problem variants.

RQ4: How effectively does the GS-MODAC model trained on a specific set of objectives adapt
to different objectives than those encountered during training? We test the ability of the trained
models to solve different variants of FJSP problems configured to optimize for objectives different
from those explored in training. The problem we tested on (Bi-FJSP*) was configured to optimize
for A and B, while the models were trained to optimize the C and D objectives, respectively. From
table 4, it is clear that the trained models can be transferred to other configurations of the problem,
finding solutions of similar or better quality than the configured baselines, with a similar perfor-
mance gap as observed for two objective problem variants displayed in Table 1.
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Table 3: Generalizability of trained models to solve instances of more complex problem variants.

Bi-DAFJS-SDST Tri-DAFJS-SDST Penta-DAFJS-SDST
Method mean max std mean max std mean max std
NSGAii 1.32×106 1.41×106 7.93×104 3.46×108 3.75×108 2.01×107 8.19×1014 8.92×1014 4.89×1013

irace 1.41×106 1.47×106 5.60×104 3.49×108 3.75×108 1.86×107 8.10×1014 8.76×1014 3.97×1013

SMAC3 1.40×106 1.48×106 7.08×104 3.37×108 3.64×108 1.94×107 8.26×1014 9.01×1014 4.76×1013

GS-MODAC - FJSP-10j5m 1.42×106 1.50×106 6.30×104 3.68×108 3.94×108 2.02×107 9.11×1014 9.93×1014 5.48×1013

GS-MODAC - DAFJS-SDST 1.43×106 1.51×106 6.48×104 3.73×108 4.00×108 2.25×107 9.05×1014 1.00×1015 6.45×1013

Bi-YFJS-SDST Tri-YFJS-SDST Penta-YFJS-SDST
Method mean max std mean max std mean max std
NSGAii 3.75×106 4.02×106 2.48×105 3.86×109 4.15×109 2.14×108 2.37×1017 2.60×1017 1.99×1016

irace 4.02×106 4.24×106 1.78×105 3.87×109 4.13×109 1.98×108 2.38×1017 2.60×1017 2.98×1016

SMAC3 4.03×106 4.26×106 1.79×105 3.90×109 4.13×109 2.05×108 2.43×1017 2.65×1017 1.90×1016

GS-MODAC - FJSP-10j5m 4.10×106 4.41×106 2.49×105 4.17×109 4.53×109 2.64×108 2.69×1017 2.90×1017 1.43×1016

GS-MODAC - YFJS-SDST 4.20×106 4.43×106 2.00×105 4.17×109 4.55×109 3.48×108 2.65×1017 2.95×1017 2.46×1016

Table 4: Comparing the generalizability of the trained models to solve problem configuration to
optimize different objectives that were not optimized in training.

Bi-FJSP* - 5j5m Bi-FJSP* - 10j5m Bi-FJSP* - 25j5m
Method mean max std mean max std mean max std
NSGAii 3.49×103 3.57×103 4.05×101 9.64×103 9.88×103 1.31×102 3.93×104 3.98×104 2.57×102

irace 3.50×103 3.58×103 4.53×101 9.66×103 9.91×103 1.48×102 3.92×104 3.97×104 2.62×102

SMAC3 3.50×103 3.58×103 4.60×101 9.61×103 9.87×103 1.58×102 3.92×104 3.97×104 3.24×102

GS-MODAC 3.51×103 3.58×103 3.97×101 9.66×103 9.93×103 1.60×102 3.93×104 3.98×104 2.42×102

5 CONCLUSION

This paper presents a Graph-Supported Multi-Objective Dynamic Algorithm Configuration (GS-
MODAC) method, leveraging a GNN and DRL to configure Evolutionary Algorithms for multi-
objective combinatorial optimization problems dynamically. We model the state space by a graph to
capture the convergence dynamics more effectively and propose an instance-agnostic reward func-
tion that is applicable to diverse problem types and sizes. Empirical results demonstrate that GS-
MODAC outperforms traditional and DRL-based configuration methods, achieving better efficacy
and adaptability. Additionally, it generalizes well to larger and more constrained problem instances
not seen during training. In future work, we plan to explore advanced GNNs for Pareto front repre-
sentations and apply specialized RL algorithms for contextual MDPs.
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Stützle. The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43–58, 2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zeyuan Ma, Hongshu Guo, Yue-Jiao Gong, Jun Zhang, and Kay Chen Tan. Toward automated
algorithm design: A survey and practical guide to meta-black-box-optimization. arXiv preprint
arXiv:2411.00625, 2024.

Zbigniew Michalewicz, David B Fogel, and Thomas Bèack. Evolutionary Computation. Vol. 2,
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A TEST PROBLEM CONFIGURATIONS

The Flexible Job Shop Scheduling Problem (FJSP) is a popular scheduling problem where
multiple jobs, each composed of several operations that must be completed in a specific order,
must be scheduled to a set of machines. The problem contains a set of n independent jobs
J = {J1, J2, . . . , Jn} and m independent machines M = {M1,M2, . . . ,Mm}, which together
for an n ×m Flexible Job Shop Scheduling Problem (FJSP). Each job Ji consists operations Oi,j ,
where Oi,j represents the j-th operation of the i-th job. These operations must be executed in se-
quence, meaning Oi,j+1 may only start after Oi,j is completed. The processing time for operation
Oi,j on machine Mk is denoted as ti,j,k and is known in advance. Each machine Mk can process
only one operation at a time, and operations cannot be interrupted (no preemption). The start and
completion times for operation Oi,j are denoted as Si,j and Ci,j respectively, while Ok is the set of
operations assigned to on machine Mk.

This work focuses on five key minimization objectives commonly used in scheduling:

• Makespan: The total time required to complete all jobs, represented as Cmax =
maxi=1,...,n Ci,j .

• Balance Workload: The disparity in workload distribution across machines, represented as
Wbal = Wmax −Wmin, where Wmin = mink=1,...,m

∑
(i,j)∈Ok

ti,j,k.

• Average flowtime: The average time duration jobs take from start to completion Favg =
1
n

∑n
i=1(Ci,last − Si,first).

• Total Workload: The cumulative sum of processing times for all jobs, defined as Wtotal =∑m
k=1

∑
(i,j)∈Ok

ti,j,k.

• Maximum flowtime: Denoting the longest time any job spends in the system from start to
completion, defined as Fmax = maxi=1,...,n(Ci,last − Si,first).

The Capacitated Vehicle Routing Problem (CVRP) is concerned with a fleet of vehicles that
must deliver goods from a central depot to a set of customer locations while satisfying capacity
constraints. The problem contains a set of n customer locations C = {C1, C2, . . . , Cn}, a depot
location C0, and m identical vehicles. Each location Ci has a demand qi representing the quantity
of goods that need to be delivered to that particular customer. Each vehicle has a capacity of Q,
representing the maximum total demand it can serve in a single route. Each vehicle k can serve a
demand of

∑n
i=1 qi × yik ≤ Q, where yik is a binary decision variable indicating whether vehicle k

serves customer i. The distance matrix D is defined as dij , containing the distances between all pairs
of locations, including customer locations and the depot, encapsulating the travel costs or distances
associated with moving from one location to another.

The objectives considered in this work are to minimize the total distance traveled by all vehicles and
the longest route:

• Total Travel Distance: Dtotal =
∑m

k=1

∑n
i=1

∑n
j=1 dij × xijk

• Longest Route: Dmax = maxmk=1

∑n
i=1

∑n
j=1 dij × xijk

B MULTI-OBJECTIVE ALGORITHMS FOR MOCO

NSGAii for FJSP. To assess the efficacy of the proposed approach for FJSP, we devise a multi-
objective Genetic Algorithm (GA) formulation inspired by Zhang et al. (2011). The solutions entail
two integral components: Machine Selection and Operation Sequence. The first allocates oper-
ations to machines, while the second establishes the precedence of operations on the designated
machines. Illustrated in Figure 3, a value of ’4’ in the initial position of Machine Selection indicates
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Figure 3: Chromosome Representation FJSP MOGA (Zhang et al., 2011)

the scheduling of operation O1,1 on the fourth machine alternative. Subsequently, the Operation
Sequence component arranges this operation as second, after O2,1.

The population is initialized using Global, Local, and Random Methods. Global Method assigns
operations to machines sequentially, minimizing the total processing times of individual machines.
Local Method minimizes the max machine processing times for individual jobs. Random Method
allocates operations to machines randomly. The Operation Sequence is initialized randomly for all
methods. Crossover is applied to the Machine Selection component using two-point and uniform
crossover while precedence-preserving order-based crossover (POX) is applied to the Operation
Sequence component. POX preserves relative scheduling positions for a randomly selected set of
jobs and reschedules the remaining operations according to the other crossovered individual solu-
tion. We generate 60% of the initial population using Global Method, 30% using Local Method,
and 10% using Random Method. Machine Selection crossovers are in 50% two-point and 50%
uniform crossover. To solve the multi-objective FJSP variant using the GA formulation from Zhang
et al. (2011), we employ Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for selection (Deb
et al., 2002).

NSGAii for CVRP. Subsequently, we apply a multi-objective Genetic Algorithm (GA) formulation
to assess the efficacy of the proposed approach for CVRP. The solutions are initialized with random
routes, where each solution is represented as a list of values corresponding to the sequence in which
customers are visited in the CVRP.

The selected parents undergo crossover and mutation to produce offspring, using ordered crossover
and a shuffle mutation; crossoign over two segments from two selected parent solutions, and ran-
domly swapping elements within solutions with a given probability. The next generation is formed
by selecting individuals from the combined population based on their rank (front) and crowding dis-
tance. The algorithm prioritizes individuals from lower fronts and those with higher crowding dis-
tances to ensure a diverse and high-quality population. Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) is applied for the selection (Deb et al., 2002).

MOPSO for CVRP. We define a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm
for the Capacitated Vehicle Routing Problem (CVRP). In this algorithm, solutions (particles) are
initialized with random routes, represented as a list of random values where each value corresponds
to a customer in the CVRP. Each particle also has associated velocities that represent changes in
these routes. The initial fitness values for each particle are calculated by sorting the customers based
on the values in the particle’s position to determine the routes. Each particle’s personal best solution
is recorded, and all the best-found solutions are stored in a separate list.

In each generation of the search, the positions and velocities of the particles are updated based on
their personal best and a global best chosen from the Pareto front (randomly selected when mul-
tiple best solutions are available). The velocity update formula incorporates cognitive coefficients
(ϕ1), social coefficients (ϕ2), and an inertia weight. Initially, random coefficients (u1 and u2) are
generated for each particle dimension to balance exploration and exploitation. The velocity update
consists of two components: one influenced by the particle’s personal best and the other by the
global best from the Pareto front. The velocity for each particle dimension is calculated using these
components, scaled by the respective random coefficients and adjusted by the inertia weight. The
updated velocity is clamped within predefined minimum (min) and maximum (max) bounds to re-
main within valid bounds. The particle’s new position is determined by adding the updated velocity
to the current position. Finally, each position is clamped to remain within valid bounds, typically
between 0 and 1, ensuring the particle stays within the feasible solution space.

After the update, the fitness of the particles is evaluated. The particles’ personal bests and the list
of best solutions are updated using non-dominated sorting to retrieve Pareto-optimal solutions. A
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selection mechanism based on Pareto dominance (using NSGA-II) is applied to maintain a diverse
and optimal set of solutions in the population. For this work, we configure the vanilla MOPSO
algorithm for CVRP with the following parameters: social and cognitive coefficients are configured
as 2.0, an inertia weight of 0.9, and we use a population size of 50 particles for 50 generations. GS-
MODAC is configured to tune the social and cognitive coefficients between 1 and 3 and the inertia
weight factor between 0.6 and 0.9.

C ALTERNATIVE MOEA RESULTS

We show another instantiation of the proposed GS-MODAC method, where the DRL agent dynam-
ically configures the parameters of a multi-objective PSO (MOPSO) algorithm. Table 5 shows GS-
MODAC can effectively improve the performance of MOPSO, achieving better results on solving
the two-objective CVRP problems with sizes 20, 50, and 100.

Table 5: Performance comparison of the proposed method for dynamic algorithm configuration of
Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm.

Bi-CVRP - 20
Method: mean max std
MOPSO 3.21×101 3.75×101 3.47
GS-MODAC 3.28×101 3.77×101 3.20

Bi-CVRP - 50
Method mean max std
MOPSO 5.82×101 6.90×101 5.65
GS-MODAC 6.27×101 8.08×101 9.73

Bi-CVRP - 100
Method mean max std
MOPSO 8.67×101 9.75×101 5.87
GS-MODAC 1.06×102 1.46×102 2.42×101

D ALTERNATIVE PERFORMANCE METRICS

We further evaluate performances using additional metrics commonly employed in multi-objective
optimization research: Inverted Generational Distance (IGD), Inverted Generational Distance Plus
(IGD+), and the number of non-dominated solutions. These results are gathered using the same
setup as in the paper for the J25m5 scheduling problem with 2,3 and 5 objectives. The results, shown
in Table 6, highlight the effectiveness of GS-MODAC, as it finds a significantly higher number of
“best” solutions (max) and achieves lower IGD+ values.

In terms of IGD, GS-MODAC outperforms the baseline methods in the experiments with more
objectives. It is important to note that while IGD provides valuable insights into the proximity of
solutions to the Pareto front, it is sensitive to the distribution of solutions and more subject to outliers.
In contrast, IGD+ is less sensitive to these factors, making it a more reliable measure for evaluating
the overall quality and diversity of solutions. Therefore, the consistently lower IGD+ values across
multiple objectives achieved by GS-MODAC highlight its ability to converge to the true Pareto front
while maintaining a diverse set of high-quality solutions.

E ABLATION STUDY

An ablation study was conducted to account for the performance of the different components of the
proposed method. As a first ablation, we trained GS-MODAC without the additional feature vector
containing the normalized remaining search budget. Table 7 shows that, without this vector, the
performance of the proposed method decreased on average with 0.8%, 3.2%, and 1.7%, respectively,
for 2, 3, and 5 objectives for solving the scheduling problem with the 25j5m instances. Another
ablation was conducted with only one GCN layer. This resulted in an average performance decrease
of 1.7%, 3.2%, and 3.4% for 2, 3 and 5 objectives.
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Table 6: Additional Performance Metrics: Inverted Generational Distance (IGD), Inverted Genera-
tion Distance Plus (IGD+), and nr. of non-dominated solutions.

Bi-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGAii 19.07 8.47 11.49 15.79 4.05 12.25 5.06 8.78 2.11
irace 15.66 7.23 8.41 11.23 2.52 9.10 4.92 8.07 1.94
SMAC3 15.13 6.99 7.75 15.13 6.99 7.75 4.99 8.26 1.98
GS-MODAC 15.77 7.41 9.10 9.82 1.25 10.10 6.81 20.69 5.80

Tri-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGAii 22.20 15.77 6.00 18.09 10.11 6.78 36.29 54.10 10.18
irace 19.23 13.44 6.09 12.29 5.36 6.83 35.30 51.29 10.06
SMAC3 19.19 13.07 6.13 11.24 3.83 7.02 35.25 52.95 9.81
GS-MODAC 20.63 13.86 6.77 8.40 2.46 6.79 36.64 54.83 11.07

Penta-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGAii 28.58 23.42 4.19 21.18 14.18 4.70 172.20 223.14 32.46
irace 23.97 19.88 4.09 13.67 7.38 4.78 203.94 263.34 40.22
SMAC3 26.10 21.16 4.46 17.17 9.91 5.22 185.93 243.54 35.94
GS-MODAC 23.82 19.08 5.06 8.71 3.25 5.03 231.13 311.21 52.14

Table 7: Ablation study, comparing GS-MODAC configured without additional feature vector and
with one configured GCN layer.

Bi-FJSP - 25j5m Tri-FJSP - 25j5m Penta-FJSP - 25j5m
mean max std mean max std mean max std

MADAC 9.24×104 9.72×104 3.09×103 2.09×107 2.20×107 1.97×106 5.1×1012 5.74×1012 5.01×1011
GS-MODAC (No feature) 9.47×104 9.92×104 4.21×103 2.07×107 2.21×107 1.10×106 5.53×1012 6.02×1012 3.42×1011
GS-MODAC (One GCN) 9.38×104 9.88×104 4.87×103 2.07×107 2.19×107 1.02×106 5.49×1012 5.98×1012 3.37×1011
GS-MODAC 9.54×104 10.0×104 4.40×103 2.14×107 2.27×107 1.09×106 5.62×1012 6.07×1012 3.20×1011

In addition, we adapted GS-MODAC for the Penta-FJSP - 25j5m problem by replacing the GCN
layers with Transformers and Graph Attention Networks (GAT). The results presented in Table 8
indicate that Transformers are a viable alternative, with average performance being only 0.3% lower
than GCN and its best-found solutions only 0.5% worse. The performance difference of GAT layers
is more substantial, with an average degradation of 1.4%.

Table 8: Comparison of different network architectures (GCN, Transformer, GAT) for GS-MODAC.

Penta-FJSP - 25j5m
mean max std

GCN 5.62×1012 6.07×1012 3.20×1011

transformer 5.61×1012 6.04×1012 3.60×1011

GAT 5.54×1012 6.04×1012 3.35×1011

F COMPARISON TO END-TO-END METHOD P-MOCO

We compare GS-MODAC with P-MOCO (Lin et al., 2022), a commonly used learning-based ap-
proach for Pareto set learning, and NHDE-P (Chen et al., 2024), a recent enhancement to P-MOCO
that incorporates neural heuristics with diversity enhancement (NHDE). NHDE-P leverages graph
attention mechanisms to capture relationships between the instance graph and the Pareto front, pro-
viding improved guidance for methods like P-MOCO. It is important to note that P-MOCO and
NHDE-P feature a specialized network structure tailored to simple TSP and CVRP. Therefore, they
cannot address scheduling problems such as FJSP. Hence, we compare with these methods to solve
CVRP with 2 objectives. We followed the training details provided in Lin et al. (2022) and Chen
et al. (2024) for P-MOCO and NHDE-P and trained all methods on the same set of instances of size
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100. Their performance was evaluated according to the setup outlined in Section 4, using the same
instances and reference points. The results, shown in Table 9, compare the best HV values obtained,
in alignment with the setup from Lin et al. (2022) and Chen et al. (2024).

Table 9: Comparison of Hypervolume (HV) values achieved by NSGAii, and by P-MOCO, NHDE-
P, and GS-MODAC (all trained on size 100) for Bi-CVRP instances of varying sizes.

Bi-CVRP - 20 Bi-CVRP - 50 Bi-CVRP - 100
NSGAii 42.86 151.24 363.87

P-MOCO 34.71 152.83 438.06
NHDE-P 41.31 152.97 446.13

GS-MODAC 45.18 152.87 366.63

The results indicate that both P-MOCO and NHDE-P perform better than GS-MODAC when trained
and tested on instances of size 100, which is expected since both methods learn policies tailored
to specific instances. However, in terms of generalizability, P-MOCO is inferior to GS-MODAC,
as seen in the performances on Bi-CVRP-20 and Bi-CVRP-50. This indicates that GS-MODAC
has significantly better generalization capability than P-MOCO, which is somewhat overfitted to a
specific size used in training. NHDE-P shows stronger performance and generalizability capabilities
than P-MOCO, yet falls short when tested on the smallest instance size. Additionally, we also
observe that GS-MODAC outperforms NSGAii when generalizing to different sizes.

To further assess robustness, we tested models trained on size-100 instances against instances gener-
ated from a normal distribution (mean 0.3, standard deviation 0.1) with 5% outliers, differing from
the uniform distribution used for training. The results demonstrate that GS-MODAC consistently
outperforms P-MOCO across all sizes, indicating its superior generalization capability. Unlike P-
MOCO, which tends to overfit not only to a specific problem size but also to the distribution of
training instances, GS-MODAC shows robust performance across different instance distributions.
Although NHDE-P achieves the best results for the largest instance configuration, its performance
on smaller instances, while better than P-MOCO, falls short compared to GS-MODAC. Addition-
ally, GS-MODAC keeps surpassing NSGAii in the generalization to various instance distributions
and sizes.

Table 10: Performances in terms of Hypervolume (HV) on Bi-CVRP instances with different distri-
butions and outliers, compared to the training instances.

Bi-CVRP - 20 Bi-CVRP - 50 Bi-CVRP - 100
NSGAii 59.34 192.64 455.80

P-MOCO 51.05 186.35 454.76
NHDE-P 57.75 192.20 462.91

GS-MODAC 59.55 194.47 458.46

G ALTERNATIVE SOLUTION CRITERIA IN REWARD FUNCTION

We have updated our reward function to optimize for Inverted Generational Distance (IGD) instead
of hypervolume. Apart from the fact that IGD is a minimization objective, the reward function’s
structure remains unchanged. We set IGDideal as 0 and calculate IGD using an approximated
Pareto front generated through a single GA search with double the usual search budget. The results,
shown in Table 11, demonstrate the effectiveness of GS-MODAC with this IGD function for various
performance metrics. Specifically, it consistently outperforms NSGAii. However, compared to the
original HV-based reward function, we do not observe significant improvement in performance.

H OBJECTIVES GENERALIZABILITY OF GS-MODAC

We assessed GS-MODAC’s ability to transfer knowledge from objectives A/B to C/D. We argue this
capability stems from the algorithm’s capacity to capture and generalize patterns in the graph state
space, leveraging latent structural or topological similarities. To understand what GS-MODAC has
learned, we compared the graph state spaces for objectives A/B and C/D in Figure 4. The figure
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Table 11: Reward Function Comparison: GS-MODAC using hypervolume-based (GS-MODAC (HV)) and
Inverted Generation Distance (GS-MODAC (IGD)) rewarding.

Bi-FJSP - 25j5m
HV mean HV max HV std IGD mean IGD min IGD std

NSGAii 9.41×104 9.93×104 4.84×103 19.07 8.47 11.49
GS-MODAC (HV) 9.54×104 10.0×104 4.40×103 15.77 7.41 9.10
GS-MODAC (IGD) 9.48×104 9.94×104 4.26×103 16.07 7.57 8.90

Tri-FJSP - 25j5m
HV mean HV max HV std IGD mean IGD min IGD std

NSGAii 2.05×107 2.18×107 1.13×106 22.20 15.77 6.00
GS-MODAC (HV) 2.14×107 2.27×107 1.09×106 20.63 13.86 6.77
GS-MODAC (IGD) 2.13×107 2.26×107 1.94×106 20.49 13.59 6.37

Penta-FJSP - 25j5m
HV mean HV max HV std IGD mean IGD min IGD std

NSGAii 5.08×1012 5.48×1012 2.75×1011 28.58 23.42 4.19
GS-MODAC (HV) 5.62×1012 6.07×1012 3.20×1011 23.82 19.08 5.06
GS-MODAC (IGD) 5.65×1012 6.10×1012 3.37×1011 24.10 19.32 5.04

illustrates the states and actions over time (every 10 iterations) of a model trained on A/B when
applied to solve the same problem instance under both objective configurations.

From the figure, it can be observed that the graph representations for A/B and C/D share visual
similarities but also reveal distinct differences. Both configurations exhibit similar patterns during
the search: solutions are initially scattered across the objective space at iteration 0 and converge
toward the bottom-left corner. Note that the normalization applied to generate these graphs depends
solely on the min and max bounds obtained during the search at that point, with no future information
or approximated objectives used. However, we observe that the convergence pattern differs. For
A/B, the algorithm converges faster toward solutions that perform well for both objectives. For
C/D, solutions are more dispersed across objective scales, reflecting the competing nature of the
objectives. Action selection also varies between configurations. For A/B, the model favors lower
crossover rates and relies more on mutation, while for C/D, it employs higher crossover rates to
enable more extensive exploration. The graph states can explain this: A/Bs solutions that are more
similar in objective values seem to benefit from more local exploration, while C/D’s competing
objectives demand broader exploration. This indicates GS-MODAC’s ability to adapt its strategy
based on the specific characteristics of the state of the search highlighted in the graph despite being
trained on the same problem with different configured objectives.

I COMPLEXITY ANALYSIS

We profiled GS-MODAC to assess its computational complexity, focusing on graph state configu-
ration and policy network inference. Results show the actor’s inference time is 0.13 seconds, and
state extraction takes 0.2 seconds, together accounting for 2.0% of the total time for the smallest
scheduling problem instances. For larger problems, this proportion decreases significantly as solu-
tion evaluations dominate computation. Despite a slight overhead, its substantial performance gains
justify GS-MODAC’s minimal additional cost.

Bi-FJSP - 5j5m Penta-FJSP - 5j5m Bi-FJSP - 25j5m Penta-FJSP - 25j5m
Total Inference Time 15.09s 15.46s 305s 302s

Total State Configuration Time 0.18s 0.21s 0.23s 0.22s
Total Policy Inference Time 0.12s 0.12s 0.14s 0.13s
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(a) (b)

Figure 4: Comparison of different state patterns and the actions sampled by GS-MODAC, trained
on objectives A/B, when deployed to: (a) objectives A/B and (b) objective C/D.
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