
Published as a conference paper at ICLR 2024

ON DIFFERENTIALLY PRIVATE FEDERATED LINEAR
CONTEXTUAL BANDITS

Xingyu Zhou
Wayne State University, USA
Email: xingyu.zhou@wayne.edu

Sayak Ray Chowdhury
Microsoft Research, India
Email: t-sayakr@microsoft.com

ABSTRACT

We consider cross-silo federated linear contextual bandit (LCB) problem under dif-
ferential privacy, where multiple silos interact with their respective local users and
communicate via a central server to realize collaboration without sacrificing each
user’s privacy. We identify three issues in the state-of-the-art (Dubey & Pentland,
2020): (i) failure of claimed privacy protection, (ii) incorrect regret bound due to
noise miscalculation and (iii) ungrounded communication cost. To resolve these
issues, we take a two-step approach. First, we design an algorithmic framework
consisting of a generic federated LCB algorithm and flexible privacy protocols.
Then, leveraging the proposed framework, we study federated LCBs under two
different privacy constraints. We first establish privacy and regret guarantees under
silo-level local differential privacy, which fix the issues present in state-of-the-art
algorithm. To further improve the regret performance, we next consider shuffle
model of differential privacy, under which we show that our algorithm can achieve
nearly “optimal” regret without a trusted server. We accomplish this via two differ-
ent schemes – one relies on a new result on privacy amplification via shuffling for
DP mechanisms and another one leverages the integration of a shuffle protocol for
vector sum into the tree-based mechanism, both of which might be of independent
interest. Finally, we support our theoretical results with numerical evaluations over
contextual bandit instances generated from both synthetic and real-life data.

1 INTRODUCTION

We consider the classic cross-silo Federated Learning (FL) paradigm (Kairouz et al., 2021) applied
to linear contextual bandits (LCB). In this setting, a set of M local silos or agents (e.g., hospitals)
communicate with a central server to learn about the unknown bandit parameter (e.g., hidden vector
representing values of the user for different medicines). In particular, at each round t ∈ [T], each
local agent i ∈ [M] receives a new user (e.g., patient) with context information ct,i ∈ Ci (e.g., age,
gender, medical history), recommends an action at,i ∈ Ki (e.g., a choice of medicine), and then it
observes a real-valued reward yt,i (e.g., effectiveness of the prescribed medicine). In linear contextual
bandits, the reward yt,i is a linear function of the unknown bandit parameter θ∗ ∈ Rd corrupted by
i.i.d mean-zero observation noise ηt,i, i.e., yt,i = ⟨xt,i, θ

∗⟩ + ηt,i, where xt,i = ϕi(ct,i, at,i) and
ϕi : Ci×Ki → Rd is a known function that maps a context-action pair to a d-dimensional real-valued
feature vector. The goal of federated LCB is to minimize the cumulative group pseudo-regret defined

RM (T) =
∑M

i=1

∑T

t=1

[
max
a∈Ki

⟨ϕi(ct,i, a), θ
∗⟩ − ⟨xt,i, θ

∗⟩
]
.

To achieve the goal, as in standard cross-silo FL, the agents are allowed to communicate with the
central server following a star-shaped communication, i.e., each agent can communicate with the
server by uploading and downloading data, but agents cannot communicate with each other directly.
However, the communication process (i.e., both data and schedule) could also possibly incur privacy
leakage for each user t at each silo i, e.g., the sensitive context information ct,i and reward yt,i.

To address this privacy risk, we resort to differential privacy (Dwork & Roth, 2014), a principled
way to prove privacy guarantee against adversaries with arbitrary auxiliary information. In standard
cross-device FL, the notion of privacy is often the client-level DP, which protects the identity of
each participating client or device. However, it has limitations in cross-silo FL, where the protection

1

Published as a conference paper at ICLR 2024

Table 1: Summary of main results. ε > 0, δ ∈ (0, 1) are privacy parameters.

DP model Privacy cost in regret Communication Reference

Central-JDP Õ
(√

MT d3/4 log1/4(1/δ)√
ε

)
NA Shariff & Sheffet (2018)

Silo-level LDP Õ
(√

T (Md)3/4 log1/4(1/δ)√
ε

)
O(
√
MT) Theorem 5.1

SDP Õ
(√

MT d3/4 log1/4(1/δ)√
ε

)
O(
√
MT) Theorem 5.3 and 5.5

targets are users (e.g., patients) rather than participating silos or agents (e.g., hospitals). Also, in
order to adopt client-level DP to cross-silo FL, one needs the server and other silos to be trustworthy,
which is often not the case. Hence, recent studies (Lowy & Razaviyayn, 2021; Lowy et al., 2022; Liu
et al., 2022; Dobbe et al., 2018) on cross-silo federated supervised learning have converged to a new
privacy notion, which requires that for each silo, all of its communication during the entire process is
private (“indistinguishable”) with respect to change of one local user of its own. This allows one to
protect each user within each silo without trustworthy server and other silos. In this paper, we adapt
it to the setting of cross-silo federated contextual bandits and call it silo-level LDP1.

Dubey & Pentland (2020) adopt a similar but somewhat weaker notion of privacy called Federated
DP and takes the first step to tackle this important problem of private and federated linear contextual
bandits (LCBs). In fact, the performance guarantees presented by the authors are currently the
state-of-the-art for this problem. The proposed algorithm claims to protect the privacy of each user at
each silo. Furthermore, given a privacy budget ε > 0, the claimed regret bound is Õ(

√
MT/ε) with

only O(M log T) communication rounds, which matches the regret of a super-single agent that plays
for total MT rounds. Unfortunately, in spite of being the state-of-the-art, the aforementioned privacy,
regret and communication cost guarantees have fundamental gaps, as discussed below.

Our contributions: identify privacy, regret, communication gaps in state-of-the-art (Dubey &
Pentland, 2020). In Section 3, we first show that the algorithm in (Dubey & Pentland, 2020) could
leak privacy from the side channel of adaptive communication schedule, which depends on users’ non-
private local data. Next, we identify a mistake in total injected privacy noise in their regret analysis.
Accounting for this miscalculation, the correct regret bound would amount to Õ(M3/4

√
T/ε), which

is M1/4 factor higher than the claimed one, and doesn’t match regret performance of the super agent.
Finally, we observe that due to the presence of privacy noise, its current analysis for O(M log T)
communications no longer holds. To resolve these issues, we take the following two-step approach:

(i) design a generic algorithmic and analytical framework. In Section 4, we propose a generic
federated LCB algorithm along with a flexible privacy protocol. Our algorithm adopts a fixed-batch
schedule (rather than an adaptive one in Dubey & Pentland (2020)) that helps avoid privacy leakage
from the side channel, as well as subtleties in communication analysis. Our privacy protocol builds
on a distributed version of the celebrated tree-based algorithm (Chan et al., 2011; Dwork et al.,
2010), enabling us to provide different privacy guarantees in a unified way. We further show that our
algorithm enjoys a simple and generic analytical regret bound that only depends on the total amount
of injected privacy noise under the required privacy constraints.

(ii) prove regret guarantees under different privacy notions. We build upon the above framework
to study federated LCBs under two different privacy constraints. In Section 5.1, we consider silo-level
LDP (a stronger notion of privacy than Federated DP of Dubey & Pentland (2020)) and establish
privacy guarantee with a correct regret bound Õ(M3/4

√
T/ε) and communication cost O(

√
MT),

hence fixing the gaps in Dubey & Pentland (2020). Next, to match the regret of a super single agent,
we consider shuffle DP (SDP) (Cheu et al., 2019) in Section 5.2 and establish a regret bound of
Õ(
√
MT/ε). We provide two different techniques to achieve this – one that relies on a new result on

privacy amplification via shuffling for DP mechanisms and the other that integrates a shuffle protocol
for vector sums (Cheu et al., 2021) into the tree-based mechanism. See Table 1 for a summary.

Related work. In standard multi-armed bandits, where rewards are only sensitive data, different DP
models including central (Mishra & Thakurta, 2015; Azize & Basu, 2022; Sajed & Sheffet, 2019),

1It appears under different names in prior work, e.g., silo-specific sample-level DP (Liu et al., 2022), inter-silo
record-level DP (Lowy & Razaviyayn, 2021).

2

Published as a conference paper at ICLR 2024

local (Ren et al., 2020) and distributed (Chowdhury & Zhou, 2022a; Tenenbaum et al., 2021), have
been studied. In linear contextual bandits, where both contexts and rewards are sensitive, there is a line
of work under central (Shariff & Sheffet, 2018), local (Zheng et al., 2020) and shuffle (Chowdhury &
Zhou, 2022b; Garcelon et al., 2022; Tenenbaum et al., 2023) models of DP. Li et al. (2022); Hanna
et al. (2022) study linear bandits without contexts protection. Dubey & Pentland (2020) is the first to
consider federated LCBs under item-level privacy while Huang et al. (2023) study user-level privacy
under some distributional assumptions; see Appendix A. Federated or distributed LCBs without
privacy have also been studied (Wang et al., 2020; He et al., 2022a; Huang et al., 2021), where a
common goal is to achieve the regret of a super single agent that plays MT rounds while keeping
communication cost minimal. Lowy & Razaviyayn (2021); Liu et al. (2022) study private cross-silo
federated learning under supervised setting, whereas we focus on the sequential learning setting.

2 DIFFERENTIAL PRIVACY IN FEDERATED LCBS

We now formally introduce differential privacy in cross-silo federated contextual bandits. Let a
dataset Di at each silo i be given by a sequence of T unique users U1,i, . . . , UT,i. Each user Ut,i is
identified by her context information ct,i as well as reward responses she would give to all possible
actions recommended to her. We say two datasets Di and D′

i at silo i are adjacent if they differ
exactly in one participating user, i.e., Uτ,i ̸= U ′

τ,i for some τ ∈ [T] and Us,i = U ′
s,i for all s ̸= τ .

Silo-level local differential privacy (LDP). Consider a multi-round, cross-silo federated learning
algorithm Q. At each round t, each silo i communicates a randomized message Zt

i of its data Di to
the server, which may depend (due to collaboration) on previous randomized messages Z1

j , . . . , Z
t−1
j

from all other silos j ̸= i. We allow Zt
i to be empty if there is no communication at round t. Let

Zi = (Z1
i , . . . , Z

T
i) denote the full transcript of silo i’s communications with the server over T rounds

andQi the induced local mechanism in this process. Note that Zi is a realization of random messages
generated according to the local mechanismQi. We denote by Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , ZM)
the full transcripts of all but silo i. We assume that Zi is conditionally independent of Dj for all
j ̸= i given Di and Z−i. With this notation, we have the following definition of silo-level LDP.

Definition 2.1 (Silo-level LDP). A cross-silo federated learning algorithm Q with M silos is said to
be (εi, δi)i∈M silo-level LDP if for each silo i∈ [M], it holds that

P
[
Qi(Zi∈Ei|Di,Z−i)

]
≤eεiP

[
Qi(Zi∈Ei|D′

i,Z−i)
]
+δi ,

for all adjacent datasets Di and D′
i, and for all events Ei in the range of Qi. If εi = ε and δi = δ for

all i ∈ [M], we simply say Q is (ε, δ)-silo-level LDP.

Roughly speaking, a silo-level LDP algorithm protects the privacy of each individual user (e.g.,
patient) within each silo in the sense that an adversary (which could either be the central server or
other silos) cannot infer too much about any individual’s sensitive information (e.g., context and
reward) or determine whether an individual participated in the learning process.2

Remark 2.2 (Federated DP vs. Silo-level LDP). Dubey & Pentland (2020) consider a privacy notion
called Federated DP (Fed-DP in short). As summarized in Dubey & Pentland (2020), Fed-DP requires
“the action chosen by any agent must be sufficiently impervious (in probability) to any single pair
(x, y) from any other agent”. Both silo-level LDP and Fed-DP are item-level DP as the neighboring
relationship is defined by differing in one participating user. The key here is to note that silo-level DP
implies Fed-DP by the post-processing property of DP, and thus it is a stronger notion of privacy. In
fact, Dubey & Pentland (2020) claim to achieve Fed-DP by relying on privatizing the communicated
data from each silo. However, as we shall see in Section 3, its proposed algorithm fails to privatize the
adaptive synchronization schedule, which is the key reason behind privacy leakage in their algorithm.

Shuffle differential privacy (SDP). Another common DP notion for FL is SDP (Cheu et al., 2019),
which has been widely studied in supervised learning (Lowy & Razaviyayn, 2021; Girgis et al., 2021;
Lowy et al., 2022) to match the centralized utility performance. Motivated by this, we adapt it to
FL-LCBs. Specifically, each silo i ∈ [M] first applies a local randomizerR to its raw local data and
sends the randomized output to a shuffler S. The shuffler S permutes all the messages from all M
silos uniformly at random and sends those to the central server. Roughly speaking, SDP requires

2This is a notion of item-level DP. A comparison with standard local DP, central (joint)-DP and shuffle DP
for single-agent LCBs is presented in Appendix G.2.

3

Published as a conference paper at ICLR 2024

all the messages sent by the shuffler to be private (“indistinguishable”) with respect to a single user
change among all MT users. This item-level DP is defined formally as follows.
Definition 2.3 (SDP). Consider a cross-silo federated learning algorithm Q that induces a (random-
ized) mechanismM whose output is the collection of all messages sent by the shuffler during the
entire learning process. Then, the algorithm Q is said to be (ε, δ)-SDP if

P
[
M(D) ∈ E

]
≤ eε P

[
M(D′) ∈ E

]
+ δ ,

for all E in the range ofM and for all adjacent datasets D = (D1, . . . , DM) and D′ = (D′
1, . . . , D

′
M)

such that
∑M

i=1

∑T
t=1 1{Ut,i ̸=U ′

t,i} = 1.

3 PRIVACY, REGRET AND COMMUNICATION GAPS IN STATE-OF-THE-ART

Gap in privacy analysis. We take a two-step approach to demonstrate the privacy issue in Dubey &
Pentland (2020). To start with, we argue that Algorithm 1 in Dubey & Pentland (2020) fails to achieve
silo-level LDP due to privacy leakage through the side channel of communication schedule (i.e., when
agents communicate with the server). The key issue is that the adaptive communication schedule
in the algorithm depends on users’ non-private data. This fact can be utilized by an adversary or
malicious silo j to infer another silo i’s users’ sensitive information, which violates the requirement
of silo-level LDP. In that algorithm, all silos synchronously communicate with the server if

∃ some silo i ∈ [M] : f(Xi, Z) > 0 , (1)
where f is some function, Xi is non-private local data of silo i since the last synchronization and Z
is all previously synchronized data. Crucially, the form of f and the rule (1) are public information,
known to all silos even before the algorithm starts. This local and non-private data-dependent
communication rule in (1) causes privacy leakage, as illustrated below with a toy example.
Example 3.1 (Privacy leakage). Consider two silos i and j following Algorithm 1 in Dubey &
Pentland (2020). After the first round, Xi is the data of the first user in silo i (say Alice), Xj is the
data of the first user in silo j (say Bob) and Z is zero. Let communication is triggered at the end of
first round and assume f(Xj , 0) ≤ 0. Since the rule (1) is public, silo j can infer that f(Xi, 0) > 0,
i.e. the communication is triggered by silo i. Since f is also public knowledge, silo j can utilize this
to infer some property of Xi. Hence, by observing only the communication signal (even without
looking at the data), silo j can infer sensitive data of Alice. In fact, the specific form of f in Dubey &
Pentland (2020) allows silo j to infer context information of Alice (details in Appendix B).

This example shows that Algorithm 1 in Dubey & Pentland (2020) does not satisfy silo-level LDP,
implying their proof for Fed-DP guarantee via post-processing of silo-level LDP does not hold.
However, it does not imply that this algorithm fails to satisfy Fed-DP, which is a weaker notion than
silo-level LDP. Nevertheless, by leveraging Example 3.1, one can show that this algorithm indeed
fails to guarantee Fed-DP. To see this, recall the definition of Fed-DP from Remark 2.2. In the context
of Example 3.1, it translates to silo j selecting similar actions for its users when a single user in silo i
changes. Specifically, if the first user in silo i changes from Alice to say, Tracy, Fed-DP mandates
that all T actions suggested by silo j to its local T users remain “indistinguishable”. This, in turn,
implies that the communicated data from silo i must remain “indistinguishable” at silo j for each
t∈ [T]. This is because the actions at silo j are chosen deterministically based on its local data as well
as on the communicated data from silo i, and the local data at silo j remains unchanged. However, in
Algorithm 1 of Dubey & Pentland (2020), the communicated data from silo i is not guaranteed to
remain “indistinguishable” as synchronization depends on non-private local data (Xi in (1)). In other
words, without additional privacy noise added to Xi in (1), the change from Alice to Tracy could
affect the existence of synchronization at round t ≥ 1. Consequently, under these two neighboring
situations (e.g. Alice vs. Tracy), the communicated data from silo i could differ significantly at round
t+ 1. As a result, the action chosen at round t+ 1 in silo j can be totally different violating Fed-DP.
This holds true even if silo i injects noise while communicating its data (as done in Dubey & Pentland
(2020)) due to a large change of non-private communicated data (see Appendix B for details).

Gaps in regret and communication analysis. We now turn to regret and communication analysis
of Dubey & Pentland (2020), which has fundamental gaps that lead to incorrect conclusions in
the end. First, the reported privacy cost in regret bound is Õ(

√
MT/ε) (ignoring dependence on

dimension d), which leads to the conclusion that federated LCBs across M silos under silo-level
LDP can achieve the same order of regret as in the centralized setting (i.e., when a super single agent

4

Published as a conference paper at ICLR 2024

Algorithm 1 Private-FedLinUCB

1: Parameters: Batch size B ∈ N, regularization λ > 0, confidence radii {βt,i}t∈[T],i∈[M], feature
map ϕi : Ci ×Ki → Rd, privacy protocol P = (R,S,A)

2: Initialize: Wi = 0, Ui = 0 for all agents i ∈ [M], W̃syn = 0, Ũsyn = 0
3: for t=1, . . . , T do
4: for each agent i = 1, . . . ,M do
5: Receive context ct,i; compute Vt,i = λI + W̃syn +Wi and θ̂t,i = V −1

t,i (Ũsyn + Ui)

6: Play action at,i=argmaxa∈Ki
⟨ϕi(ct,i,a), θ̂t,i⟩+βt,i∥ϕi(ct,i,a)∥V −1

t,i
; observe reward yt,i

7: Set xt,i=ϕi(ct,i, at,i), Ui = Ui + xt,iyt,i and Wi = Wi + xt,ix
⊤
t,i

8: end for
9: if tmod B = 0 then

10: // Local randomizer R at all agents i ∈ [M]
11: Send randomized messages Rbias

t,i = Rbias(Ui) and Rcov
t,i = Rcov(Wi) to S

12: // Third party S
13: Shuffle (or, not) all messages Sbias

t = S({Rbias
t,i }i∈[M]) and Scov

t = S({Rcov
t,i }i∈[M])

14: // Analyzer A at the server

15: Compute private synchronized statistics Ũsyn = Abias(Sbias
t) and W̃syn = Acov(Scov

t)
16: // All agents i ∈ [M]

17: Receive W̃syn and Ũsyn from the server and reset Wi = 0, Ui = 0
18: end if
19: end for

plays MT rounds). However, in the proposed analysis, the total amount of injected privacy noise is
miscalculated. In particular, variance of total noise needs to be Mσ2 rather than the proposed value
of σ2. This is due to the fact that each silo injects Gaussian noise with variance σ2 when sending out
local data which amounts to total Mσ2 noise at the server. Accounting for this correction, the cost of
privacy becomes Õ(M3/4

√
T/ε), which is O(M1/4) factor worse than the claimed one. Hence, we

conclude that Algorithm 1 in Dubey & Pentland (2020) cannot achieve the same order of regret as
in centralized setting. Second, the proposed analysis to show O(log T) communication rounds for
the data-adaptive schedule (1) under privacy constraint essentially follows from the non-private one
of Wang et al. (2020). Unfortunately, due to privacy noise, this direct approach no longer holds, and
hence the reported logarithmic cost stands ungrounded (details in Appendix B).

4 OUR APPROACH

To address the issues in Dubey & Pentland (2020), we introduce a generic algorithm for private,
federated linear contextual bandits (Algorithm 1) and a flexible privacy protocol (Algorithm 2). This
helps us (a) derive correct privacy, regret, and communication results under silo-level LDP (and hence
under Fed-DP) (Section 5.1), and (b) achieve the same order of regret as in centralized setting under
SDP (Section 5.2). Throughout the paper, we make the following standard assumptions in LCBs.
Assumption 4.1 (Boundedness (Shariff & Sheffet, 2018)). The rewards are bounded, i.e., yt,i ∈ [0, 1]
for all t ∈ [T] and i ∈ [M]. Moreover, ∥θ∗∥2 ≤ 1 and supc,a ∥ϕi(c, a)∥2 ≤ 1 for all i ∈ [M].

4.1 ALGORITHM: PRIVATE FEDERATED LINUCB

We build upon the celebrated LinUCB algorithm (Abbasi-Yadkori et al., 2011) by adopting a fixed-
batch schedule for synchronization among agents and designing a privacy protocol P (Algorithm 2)
for both silo-level LDP and SDP . At each round t, each agent i recommends an action at,i to each
local user following optimism in the face of uncertainty principle. First, the agent computes a local
estimate θ̂t,i based on all available data to her, which includes previously synchronized data from all
agents as well as her own new local data (line 5 of Algorithm 1). Then, the action at,i is selected
based on the LinUCB decision rule (line 6), where a proper radius βt,i is chosen to balance between
exploration and exploitation. After observing the reward yt,i, each agent accumulates her own local
data (bias vector xt,iyt,i and covariance matrix xt,ix

⊤
t,i) and stores them in Ui and Wi, respectively

5

Published as a conference paper at ICLR 2024

Algorithm 2 P , a privacy protocol used in Algorithm 1

1: Procedure: Local RandomizerR at each agent
2: //Input: stream data (γ1, . . . , γK), ε>0, δ∈(0, 1]
3: for k=1, . . . ,K do
4: Express k in binary form: k =

∑
j Binj(k) · 2j

5: Find index of first one ik=min{j : Binj(k)=1}
6: Compute p-sum αik =

∑
j<ik

αj+γk
7: Output α̂k=αik+N (0,σ2

0I)
8: end for
9: Procedure: Analyzer A at server

10: //Input : data from S : (α̂k,1, . . . , α̂k,M), k∈ [K]
11: for k=1, . . . ,K do
12: Express k in binary and find index of first one ik
13: Add noisy p-sums of all agents: α̃ik =

∑M
i=1 α̂k,i

14: Output: s̃k =
∑

j:Binj(k)=1 α̃j

15: end for

1

2

3

4

5

6

7

8

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Σ[1,8]

Σ[1,4]

Σ[1,2] Σ[3,4] Σ[5,6] Σ[7,8]

Σ[5,8]

Figure 1: Illustration of the tree-based
algorithm. Each leaf node is the stream
data and each internal node is a p-sum
Σ[i, j] =

∑j
l=i γl. The green node cor-

responds to the newly computed p-sum at
each k, i.e., αik in Algorithm 2.

(line 7). A communication is triggered between agents and central server whenever a batch ends – we
assume w.l.o.g. total rounds T is divisible by batch size B (line 9). During this process, a protocolP =
(R,S,A) assists in aggregating local data among all agents while guaranteeing privacy properties
(to be discussed in detail soon). After communication, each agent receives latest synchronized data
W̃syn, Ũsyn from the server (line 17). Here, for any t=kB, k ∈ [T/B], W̃syn represents noisy version
of all covariance matrices up to round t from all agents (i.e.,

∑M
i=1

∑t
s=1 xs,ix

⊤
s,i) and similarly, Ũsyn

represents noisy version of all bias vectors
∑M

i=1

∑t
s=1 xs,iys,i. Finally, each agent resets Wi and Ui

so that they can be used to accumulate new local data for the next batch. Note that Algorithm 1 uses
a fixed-batch (data-independent) communication schedule rather than the adaptive, data-dependent
one in Dubey & Pentland (2020), which allows us to resolve privacy and communication issues.

4.2 PRIVACY PROTOCOL

We now turn to our privacy protocol P (Algorithm 2), which helps to aggregate data among all agents
under privacy constraints. The key component of P is a distributed version of the classic tree-based
algorithm, which was originally designed for continual release of private sum statistics (Chan et al.,
2011; Dwork et al., 2010). That is, given a stream of (multivariate) data γ=(γ1, . . . , γK), one aims
to release sk=

∑k
l=1 γl privately for all k∈ [K]. The tree-based mechanism constructs a complete

binary tree T in online manner. The leaf nodes contain data γ1 to γK , and internal nodes contain
the sum of all leaf nodes in its sub-tree, see Fig. 1 for an illustration. For any new arrival data γk,
it only releases a tree node privately, which corresponds to a noisy partial sum (p-sum) between
two time indices. As an example, take k = 6, and hence the new arrival is γ6. The tree-based
mechanism first computes the p-sum

∑
[5, 6] = γ5 + γ6 (line 6 in Algorithm 2). Then, it adds a

Gaussian noise with appropriate variance σ2
0 to

∑
[5, 6] and releases the noisy p-sum (line 7). Finally,

to compute the prefix sum statistic
∑

[1, 6] privately, it simply adds noisy p-sums for
∑

[1, 4] and∑
[5, 6], respectively. Reasons behind releasing and aggregating p-sums are that (i) each data point

γk only affects at most 1 + logK p-sums (useful for privacy) and (ii) each sum statistic
∑

[1, k] only
involves at most 1 + log k p-sums (useful for utility).

Our privacy protocol P = (R,S,A) breaks down the above classic mechanism of releasing and
aggregating p-sums into a local randomizerR at each agent and an analyzerA at the server, separately,
while allowing for a possible shuffler in between to amplify privacy. For each k, the local randomizer
R at each agent computes and releases the noisy p-sum to a third-party S (lines 4-7). S can either
be a shuffler that permutes the data uniformly at random (for SDP) or can simply be an identity
mapping (for silo-level LDP). It receives a total of M noisy p-sums, one from each agent, and sends
them to the central server. The analyzer A at the server first adds these M new noisy p-sums to
synchronize them (line 13). It then privately releases the synchronized prefix sum by adding up
all relevant synchronized p-sums as discussed in above paragraph (line 14). Finally, we employ
P to Algorithm 1 by observing that local data γk,i for batch k and agent i consists of bias vectors
γbias
k,i =

∑kB
t=(k−1)B+1 xt,iyt,i and covariance matrices γcov

k,i =
∑kB

t=(k−1)B+1 xt,ix
⊤
t,i, which are stored

6

Published as a conference paper at ICLR 2024

in Ui and Wi respectively. We denote the randomizer and analyzer for bias vectors asRbias and Abias,
and for covariance matrices asRcov and Acov in Algorithm 1.

5 THEORETICAL RESULTS

5.1 FEDERATED LCBS UNDER SILO-LEVEL LDP

We first present the performance of Algorithm 1 under silo-level LDP, hence fixing the privacy, regret
and communication issues of the state-of-the-art algorithm in Dubey & Pentland (2020). The key
idea is to inject Gaussian noise with proper variance (σ2

0 in Algorithm 2) when releasing a p-sum
such that all the released p-sums up to any batch k∈ [K] is (ε, δ)-DP for any agent i∈ [M]. Then,
by Definition 2.1, it achieves silo-level LDP. Note that in this case, there is no shuffler, which is
equivalent to the fact that the third party S in P is simply an identity mapping, denoted by I. The
following result states this formally, with proof deferred to Appendix E.
Theorem 5.1 (Performance under silo-level LDP). Fix batch size B, privacy budgets ε>0, δ∈(0, 1).
Let P=(R, I,A) be a protocol given by Algorithm 2 with parameters σ2

0=8κ · (log(2/δ)+ε)
ε2 , where

κ= 1+log(T/B). Then, under Assumption 4.1, Algorithm 1 instantiated with P satisfies (ε, δ)-
silo-level LDP. Moreover, for any α ∈ (0, 1], there exist choices of λ and {βt,i}t,i such that, with
probability at least 1− α, it enjoys a group regret

RM (T)=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ
(√

T
(Md)3/4 log1/4(1/δ)√

ε
log1/4

(
T/Bα

))
.

The first term in the above regret bound doesn’t depend on privacy budgets ε, δ, and serves as a
representative regret bound for federated LCBs without privacy constraint. The second term is the
dominant one which depends on ε, δ and denotes the cost of privacy due to injected noise.

Corollary 5.2. Setting B =
√

T/M , Algorithm 1 achieves Õ
(
d
√
MT +

√
T (Md)3/4 log1/4(1/δ)√

ε

)
group regret, with total

√
MT synchronizations under (ε, δ)-silo-level LDP.

Comparison with Dubey & Pentland (2020). First, we avoid the privacy leakage by adopting
data-independent synchronization. However, this leads to an O(

√
T) communication cost. It remains

open to design a (correct) data-adaptive schedule with logarithmic cost; details in Appendix D. We
also show that privacy cost scales as O(M3/4) with number of agents M , correcting the reported√
M scaling. Next, we compare our result with that of a super single agent running for MT rounds

under the central model of DP (i.e., where the central server is trusted), which serves as a benchmark
for our results. As shown in Shariff & Sheffet (2018), the total regret for such a single agent is
Õ
(
d
√
MT +

√
MT d3/4 log1/4(1/δ)√

ε

)
. Comparing this with Corollary 5.2, we observe that the privacy

cost of federated LCBs under silo-level LDP is a multiplicative M1/4 factor higher than a super agent
under the central model. This motivates us to consider SDP in next section.

5.2 FEDERATED LCBS UNDER SDP

We now aim to close the above M1/4 gap in the privacy cost under silo-level LDP compared to that
achieved by a super single agent (with a truseted central server). To do so, we consider federated
LCBs under SDP, which still enjoys the nice feature of silo-level LDP that the central server is not
trusted. Thanks to our flexible protocol P , the only change needed compared to silo-level LDP is the
introduction of a shuffler S to amplify privacy and adjustment of the privacy noise σ2

0 accordingly.
Theorem 5.3 (Performance under SDP via amplification). Fix batch size B and let κ=1+log(T/B).
Let P = (R,S,A) be a protocol given by Algorithm 2. Then, under Assumption 4.1, there exist
constants C1, C2 > 0 such that for any ε≤

√
κ

C1T
√
M

, δ≤ κ
C2T

, Algorithm 1 instantiated with P and

σ2
0 =O

(2κ log(1/δ) log(κ/(δT)) log(Mκ/δ)
ε2M

)
, satisfies (ε, δ)-SDP. Moreover, for any α ∈ (0, 1], there

exist choices of λ and {βt,i}t,i such that, with a probability at least 1− α, it enjoys a group regret

RM (T)=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ
(
d3/4
√
MT

log3/4(Mκ/δ)√
ε

log1/4
(
T/Bα

))
.

Corollary 5.4. Setting B =
√
T/M , Algorithm 1 achieves Õ

(
d
√
MT +d3/4

√
MT log3/4(Mκ/δ)√

ε

)
group regret, with total

√
MT synchronizations under (ε, δ)-SDP.

7

Published as a conference paper at ICLR 2024

Corollary 5.4 asserts that privacy cost of federated LCBs under SDP matches that of a super single
agent under central DP (up to a log factor in T,M, δ).

Comparison with existing SDP analysis. Note that the above result doesn’t directly follow from
prior amplification results (Feldman et al., 2022; Erlingsson et al., 2019; Cheu et al., 2019; Balle
et al., 2019), which show that shuffling outputs of M (ε, δ)-LDP algorithms achieve roughly 1/

√
M

factor amplification in privacy for small ε – the key to close the aforementioned gap in privacy cost.
However, these amplification results apply only when each mechanism is LDP in the standard sense,
i.e., they operate on a dataset of size n = 1. This doesn’t hold in our case since the dataset at each silo
is a stream of T points. Lowy & Razaviyayn (2021) adopt group privacy to handle the case of n > 1,
which can amplify any general DP mechanism but comes at the expense of a large increase in δ. To
avoid this, we prove a new amplification lemma specific to Gaussian DP mechanisms operating on
datasets with size n>1. This helps us achieve the required 1/

√
M amplification in ε while keeping

the increase in δ in check. The key idea behind our new lemma is to directly analyze the sensitivity
when creating “clones” as in Feldman et al. (2022), but now by accounting for the fact that all n>1
points can be different (see Appendix F for formal statement and proof of the lemma).

5.2.1 SDP GUARANTEE FOR A WIDE RANGE OF PRIVACY PARAMETERS

One limitation of attaining SDP via amplification is that the privacy guarantee holds only for small
values of ε, δ (see Theorem 5.3). In this subection, we propose an alternative privacy protocol to
resolute this limitation. This new protocol leverages the same binary tree structure as in Algorithm 2
for releasing and aggregating p-sums, but it employs different local randomizers and analyzers for
computing (noisy) synchronized p-sums of bias vectors and covariance matrices (α̃ik in Algorithm 2).
Specifically, it applies the vector sum mechanism PVec of Cheu et al. (2021), which essentially take n
vectors as inputs and outputs their noisy sum. Here privacy is ensured by injecting suitable binomial
noise to a fixed-point encoding of each vector entry, which depends on ε, δ and n.

In our case, one cannot directly aggregate M p-sums using PVec with n = M . This is because
each p-sum would then have a large norm (O(T) at the worst case), which would introduce a large
amount of privacy noise (cf. Theorem 3.2 in Cheu et al. (2021)), resulting in worse utility (regret).
Instead, we first expand each p-sum resulting in a set of points such that each with O(1) norm.
Then, we aggregate all of those data points using PVec mechanism (one each for bias vectors and
covariance matrices). For example, consider summing bias vectors during batch k = 6 and refer back
to Fig. 1 for illustration. Here, the p-sum for each agent is given by

∑
[5, 6] = γ5 + γ6 (see line 6

in Algorithm 2), the expansion of which results in 2B bias vectors (B each for batch 5 and 6). A
noisy sum of n = 2BM bias vectors is then computed using PVec. We denote the entire mechanism
as PT

Vec – see Algorithm 5 in Appendix F.2 for pseudo-code and a complete description.

Now, the key intuition behind using PVec as a building block is that it allows us to compute private
vector sums under the shuffle model using nearly the same amount of noise as in the central model. In
other words, it “simulates” the privacy noise introduced in vector summation under the central model
using a shuffler. This, in turn, helps us match the regret of the centralized setting while guaranteeing
(strictly stronger) SDP. Specifically, we have the same order of regret as in Theorem 5.3, but now it
holds for a wide range of privacy budgets ε, δ as presented below. Proof is deferred to Appendix F.
Theorem 5.5 (Performance under SDP via vector sum). Fix batch size B and let κ=1+log(T/B).
Let PT

Vec be a privacy protocol given by Algorithm 5. Then, under Assumption 4.1, there exist
parameter choices of PT

Vec such that for any ε≤60
√
2κ log(2/δ) and δ≤1, Algorithm 1 instantiated

with PT
Vec satisfies (ε, δ)-SDP. Moreover, for any α ∈ (0, 1], there exist choices of λ and {βt,i}t,i such

that, with a probability at least 1− α, it enjoys a group regret

RM (T)=O
(
dMB log T+d

√
MT log(MT/α)

)
+Õ
(
d3/4
√
MT

log3/4(κd2/δ)√
ε

log1/4
(
T/Bα

))
.

Remark 5.6 (Importance of communicating P-sums). A key technique behind closing the regret gap
under SDP is to communicate and shuffle only the p-sums rather than prefix sums. With this we
can ensure that each data point (bias vector/covariance matrix) participates only in O(logK) shuffle
mechanisms (rather than in O(K) mechanisms if we communicate and shuffle prefix-sums). This
helps us keep the final privacy cost in check after adaptive composition. In other words, one cannot
simply use shuffling to amplify privacy of Algorithm 1 in Dubey & Pentland (2020) to close the regret
gap (even ignoring its privacy and communication issues), since it communicates prefix sums at each

8

Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Round

35.0

37.5

40.0

42.5

Ti
m

e-
av

er
ag

e
Re

gr
et SDP-FedLinUCB(ε= 0.0001)

SDP-FedLinUCB(ε= 0.001)
LDP-FedLinUCB(ε= 0.0001)
LDP-FedLinUCB(ε= 0.001)

(a) Synthetic data (M = 100)

0 2000 4000 6000 8000 10000
Round

10

20

30

Ti
m

e-
av

er
ag

e
Re

gr
et LDP-FedLinUCB(ε= 0.2)

SDP-FedLinUCB(ε= 0.2)

(b) Synthetic data (M = 100)

0 5000 10000 15000 20000 25000
Round

4

5

Ti
m

e-
av

er
ag

e
Re

gr
et FedLinUCB

LDP-FedLinUCB(ε= 0.2)
LDP-FedLinUCB(ε= 1)
LDP-FedLinUCB(ε= 5)

(c) Real data (M = 10)
Figure 2: Comparison of time-average group regret for LDP-FedLinUCB (silo-level LDP), SDP-FedLinUCB
(shuffle model) and FedLinUCB (non-private) under varying privacy budgets ε, δ on (a, b) synthetic Gaussian
bandit instance and (c) bandit instance generated from MSLR-WEB10K Learning to Rank dataset.

synchronization. This again highlights the algorithmic novelty of our privacy protocols (Algorithms 2
and 5), which could be of independent interest. See Appendix F for further details.

6 SIMULATION RESULTS AND CONCLUSIONS

We evaluate regret performance of Algorithm 1 under silo-level LDP and SDP, which we abbreviate
as LDP-FedLinUCB and SDP-FedLinUCB, respectively. We fix confidence level α=0.01, batchsize
B = 25 and study comparative performances under varying privacy budgets ε, δ. We plot time-
averaged group regret RegM (T)/T in Figure 2 by averaging results over 25 parallel runs.

Synthetic bandit instance. We simulate a LCB instance with a parameter θ∗ of dimension d = 10
and |Ki| = 100 actions for each of the M agents. Similar to Vaswani et al. (2020), we generate θ∗

and feature vectors by sampling a (d−1)-dimensional vectors of norm 1/
√
2 uniformly at random,

and append it with a 1/
√
2 entry. Rewards are corrupted with Gaussian N (0, 0.25) noise.

Real-data bandit instance. We generate bandit instances from Microsoft Learning to Rank dataset
(Qin & Liu, 2013). Queries form contexts c and actions a are the available documents. The dataset
contains 10K queries, each with up to 908 judged documents on scale of rel(c, a) ∈ {0, 1, 2}. Each
pair (c, a) has a feature vector ϕ(c, a), which is partitioned into title and body features of dimensions
57 and 78, respectively. We first train a lasso regression model on title features to predict relevances
from ϕ, and take this model as the parameter θ∗ with d = 57. Next, we divide the queries equally
into M =10 agents and assign corresponding feature vectors to the agents. This way, we obtain a
federated LCB instance with 10 agents, each with number of actions |Ki| ≤ 908.

Observations. In Fig. 2(a), we compare performance of LDP-FedLinUCB and SDP-FedLinUCB
(with amplification based privacy protocol P) on synthetic bandit instance with M=100 agents under
privacy budget δ=0.0001 and ε=0.001 or 0.0001. We observe that regret of SDP-FedLinUCB is
less than LDP-FedLinUCB for both values of ε, which is consistent with theoretical results. Here, we
only work with small privacy budgets since the privacy guarantee of Theorem 5.3 holds for ε, δ≪1.
Instead, in Fig. 2(b), we consider higher privacy budgets as suggested in Theorem 5.5 (e.g. ε=0.2,
δ=0.1) and compare the regret performance of LDP-FedLinUCB and SDP-FedLinUCB (with vecor-
sum based privacy protocol PT

vec). As expected, we observe that regret of SDP-FedLinUCB decreases
faster than that of LDP-FedLinUCB. Next, we benchmark the performance of Algorithm 1 under
silo-level LDP (i.e. LDP-FedLinUCB) against a non-private Federated LCB algorithm with fixed
communication schedule, building on Abbasi-Yadkori et al. (2011) and refer as FedLinUCB. In Fig.
2(c), we demonstrate the cost of privacy under silo-level LDP on real-data bandit instance by varying
ε in the set {0.2, 1, 5} while keeping δ fixed to 0.1. We observe that regret of LDP-FedLinUCB
decreases and comes closer to that of FedLinUCB as ε increases (i.e., level of privacy protection
decreases). A similar regret behavior is noticed under SDP also (postponed to Appendix H).

Concluding Remarks. We conclude with some discussions. First, our adversary model behind
silo-level LDP excludes malicious users within the same silo. If one is also interested in protecting
against adversary users within the same silo, a simple tweak of Algorithm 1 would suffice (see
Appendix G.3). With this, one can not only protect against colluding silos (as in silo-level LDP), but
also against colluding users within the same silo (as in central JDP). Next, we assume that all MT
users are unique in our algorithms. In practice, a user can participate in multiple rounds within the
same silo or across different silos; see Appendix G.4. Finally, for future work, a challenging task is
to achieve O(log T) communication cost with correct privacy and regret guarantees; see Appendix D
for further discussions.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

XZ is supported in part by NSF CNS-2153220 and CNS-2312835. XZ would like to thank Abhimanyu
Dubey for discussions on the work of Dubey & Pentland (2020). XZ would also like to thank Andrew
Lowy and Ziyu Liu for insightful discussions on the privacy notion for cross-silo federated learning.
XZ would thank Vitaly Feldman and Audra McMillan for the discussion on some subtleties behind
“hiding among the clones” in Feldman et al. (2022).

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Achraf Azize and Debabrota Basu. When privacy meets partial information: A refined analysis of
differentially private bandits. arXiv preprint arXiv:2209.02570, 2022.

Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model.
In Annual International Cryptology Conference, pp. 638–667. Springer, 2019.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and
lower bounds. In Theory of Cryptography Conference, pp. 635–658. Springer, 2016.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14(3):1–24, 2011.

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed differ-
ential privacy via shuffling. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 375–403. Springer, 2019.

Albert Cheu, Matthew Joseph, Jieming Mao, and Binghui Peng. Shuffle private stochastic convex
optimization. arXiv preprint arXiv:2106.09805, 2021.

Sayak Ray Chowdhury and Xingyu Zhou. Distributed differential privacy in multi-armed bandits.
arXiv preprint arXiv:2206.05772, 2022a.

Sayak Ray Chowdhury and Xingyu Zhou. Shuffle private linear contextual bandits. In Proceedings
of the 39th International Conference on Machine Learning, pp. 3984–4009. PMLR, 2022b.

Roel Dobbe, Ye Pu, Jingge Zhu, Kannan Ramchandran, and Claire Tomlin. Customized local
differential privacy for multi-agent distributed optimization. arXiv preprint arXiv:1806.06035,
2018.

Abhimanyu Dubey. No-regret algorithms for private gaussian process bandit optimization. In
International Conference on Artificial Intelligence and Statistics, pp. 2062–2070. PMLR, 2021.

Abhimanyu Dubey and AlexSandy’ Pentland. Differentially-private federated linear bandits. Ad-
vances in Neural Information Processing Systems, 33:6003–6014, 2020.

John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax
rates. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438.
IEEE, 2013.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under
continual observation. In Proceedings of the forty-second ACM symposium on Theory of computing,
pp. 715–724, 2010.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–
2479. SIAM, 2019.

10

Published as a conference paper at ICLR 2024

Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly
optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 954–964. IEEE, 2022.

Evrard Garcelon, Kamalika Chaudhuri, Vianney Perchet, and Matteo Pirotta. Privacy amplification
via shuffling for linear contextual bandits. In International Conference on Algorithmic Learning
Theory, pp. 381–407. PMLR, 2022.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of differential privacy in federated learning. In International Conference on
Artificial Intelligence and Statistics, pp. 2521–2529. PMLR, 2021.

Osama A Hanna, Antonious M Girgis, Christina Fragouli, and Suhas Diggavi. Differentially private
stochastic linear bandits:(almost) for free. arXiv preprint arXiv:2207.03445, 2022.

Jiafan He, Tianhao Wang, Yifei Min, and Quanquan Gu. A simple and provably efficient algorithm
for asynchronous federated contextual linear bandits. arXiv preprint arXiv:2207.03106, 2022a.

Jiahao He, Jiheng Zhang, and Rachel Zhang. A reduction from linear contextual bandit lower bounds
to estimation lower bounds. In International Conference on Machine Learning, pp. 8660–8677.
PMLR, 2022b.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in Neural Information Processing Systems, 34:27057–27068, 2021.

Ruiquan Huang, Huanyu Zhang, Luca Melis, Milan Shen, Meisam Hejazinia, and Jing Yang. Feder-
ated linear contextual bandits with user-level differential privacy. In International Conference on
Machine Learning, pp. 14060–14095. PMLR, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Michael Kearns, Mallesh Pai, Aaron Roth, and Jonathan Ullman. Mechanism design in large games:
Incentives and privacy. In Proceedings of the 5th conference on Innovations in theoretical computer
science, pp. 403–410, 2014.

Fengjiao Li, Xingyu Zhou, and Bo Ji. Differentially private linear bandits with partial distributed
feedback. arXiv preprint arXiv:2207.05827, 2022.

Fengjiao Li, Xingyu Zhou, and Bo Ji. (private) kernelized bandits with distributed biased feedback.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 7(1):1–47, 2023.

Ziyu Liu, Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. On privacy and personalization in
cross-silo federated learning. arXiv preprint arXiv:2206.07902, 2022.

Andrew Lowy and Meisam Razaviyayn. Private federated learning without a trusted server: Optimal
algorithms for convex losses. arXiv preprint arXiv:2106.09779, 2021.

Andrew Lowy, Ali Ghafelebashi, and Meisam Razaviyayn. Private non-convex federated learning
without a trusted server. arXiv preprint arXiv:2203.06735, 2022.

Nikita Mishra and Abhradeep Thakurta. (nearly) optimal differentially private stochastic multi-arm
bandits. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pp.
592–601, 2015.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

Wenbo Ren, Xingyu Zhou, Jia Liu, and Ness B Shroff. Multi-armed bandits with local differential
privacy. arXiv preprint arXiv:2007.03121, 2020.

Touqir Sajed and Or Sheffet. An optimal private stochastic-mab algorithm based on optimal private
stopping rule. In International Conference on Machine Learning, pp. 5579–5588. PMLR, 2019.

11

http://arxiv.org/abs/1306.2597

Published as a conference paper at ICLR 2024

Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. Advances in Neural
Information Processing Systems, 31, 2018.

Thomas Steinke. Composition of differential privacy & privacy amplification by subsampling. arXiv
preprint arXiv:2210.00597, 2022.

Jay Tenenbaum, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Differentially private multi-armed
bandits in the shuffle model. Advances in Neural Information Processing Systems, 34, 2021.

Jay Tenenbaum, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Concurrent shuffle differential
privacy under continual observation. arXiv preprint arXiv:2301.12535, 2023.

Sharan Vaswani, Abbas Mehrabian, Audrey Durand, and Branislav Kveton. Old dog learns new
tricks: Randomized ucb for bandit problems. In International Conference on Artificial Intelligence
and Statistics, pp. 1988–1998. PMLR, 2020.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: How much
communication is needed to achieve (near) optimal regret. ICLR, 2020.

Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, and Liwei Wang. Locally differentially private
(contextual) bandits learning. Advances in Neural Information Processing Systems, 33:12300–
12310, 2020.

Xingyu Zhou and Jian Tan. Local differential privacy for bayesian optimization. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(12):11152–11159, 2021.

12

Published as a conference paper at ICLR 2024

A MORE DETAILS ON RELATED WORK

Private bandit learning has also been studied beyond linear settings, such as kernel bandits (Zhou &
Tan, 2021; Dubey, 2021; Li et al., 2023). It is worth noting that Chowdhury & Zhou (2022a) also
presents optimal private regret bounds under all three DP models (i.e., central, local, and distributed)
in bandits while only relying on discrete privacy noise, hence avoiding the privacy leakage of
continuous privacy noise on finite computers due to floating point arithmetic.

Recently, Huang et al. (2023) took the pioneering step to study user-level privacy for federated LCBs,
establishing both regret upper bounds and lower bounds. In contrast to our item-level DP (e.g.,
silo-level LDP), user-level DP in Huang et al. (2023) roughly requires that even replacing the whole
local history at any agent, the central server’s broadcast message should be close across the whole
learning period. This notion is more likely to be preferred in cross-device FL settings where the
protection target is the device (agent). In addition to this, there are several other key differences
compared to our work. First, they deal with linear bandits with stochastic contexts under additional
distribution coverage assumptions (rather than the arbitrary adversary contexts in our case). In fact, it
has been shown in Huang et al. (2021) that some assumption on the context distribution is necessary
for a sublinear regret under user-level DP. Second, due to this stochastic context and some coverage
conditions on contexts, an exponentially growing batch schedule can be applied in their case. In
contrast, under the adversary context case, it is unclear to us how to apply the same technique to
derive a sublinear regret.

B MORE DISCUSSIONS ON GAPS IN SOTA

In this section, we provide more details on the current gaps in Dubey & Pentland (2020), especially
on privacy violation and communication cost. It turns out that both gaps come from the fact that an
adaptive communication schedule is employed in Dubey & Pentland (2020).

B.1 MORE ON VIOLATION OF SILO-LEVEL LDP

As shown in the main paper, Algorithm 1 in Dubey & Pentland (2020) does not satisfy silo-level
LDP. To give a more concrete illustration of privacy leakage, we now specify the form of f 3, local
data Xi and synchronized data Z in (1) according to Dubey & Pentland (2020). In particular, a
communication is triggered at round t if for any silo i, it holds that

(t−t′) log

det
(
Z+

∑t
s=t′+1 xs,ix

⊤
s,i+λminI

)
det (Z+λminI)

>D, (2)

where t′ is the latest synchronization time before t, Z is all synchronized (private) covariance matrices
up to time t′, λmin > 0 is some regularization constant (which depends on privacy budgets ε, δ) and
D > 0 is some suitable threshold (which depends on number of silos M).

With the above explicit form in hand, we can give a more concrete discussion of Example 3.1. A
communication is triggered at round t = 1 if det

(
x1,mx⊤

1,m+λminI
)
> det (λminI) e

D holds for
any silo m. This implies that (λmin + ∥x1,m∥2)λd−1

min > eDλd
min, which, in turn, yields ∥x1,m∥2 >

λmin(e
D − 1) =: C. Now, if ∥x1,j∥2 ≤ C, then silo j immediately knows that ∥x1,i∥2 > C, where

C is a known constant. Since x1,i contains the context information of the user (Alice), this norm
condition could immediately reveal that some specific features in the context vector are active (e.g.,
Alice has both diabetes and heart disease), thus leaking Alice’s private and sensitive information to
silo j.
Remark B.1. The above result has two implications: (i) the current proof strategy for Fed-DP
guarantee in Dubey & Pentland (2020) does not hold since it essentially relies on the post-processing
of DP through silo-level LDP; (ii) Fed-DP could fail to handle reasonable adversary model in cross-
silo federated LCBs. That is, even if Algorithm 1 in Dubey & Pentland (2020) satisfies Fed-DP, it
still cannot protect Alice’s information from being inferred by a malicious silo (which is a typical

3There is some minor issue in the form of f in Dubey & Pentland (2020). The correct one is given by our
restatement of their Algorithm 1, see line 9 in Algorithm 3.

13

Published as a conference paper at ICLR 2024

adversary model in cross-silo FL). Thus, we believe that silo-level LDP is a more proper privacy
notion for cross-silo federated LCBs.

B.2 MORE ON VIOLATION OF FED-DP

As shown in the main paper, Algorithm 1 in Dubey & Pentland (2020) also does not satisfy its weaker
notion of Fed-DP. To give a more concrete illustration, recall Example 3.1 and let us define mi,j as
the message/data sent from silo i to silo j after round t = 1. Suppose in the case of Alice, there is no
synchronization and hence mi,j = 0. On the other hand, in the case of Tracy (i.e., the first user at
silo i changes from Alice to Tracy), suppose synchronization is triggered by silo i via rule (1) due
to Tracy’s data. Then, according to Dubey & Pentland (2020), mi,j = x1,iy1,i +N (only consider
bias vector here), where N is the injected noise when silo i sends out its data. Now, based on the
requirement of Fed-DP, the recommended action at silo j in round t = 2 needs to be “similar” or
“indistinguishable” in probability under the change from Alice to Tracy. Note that silo j chooses
its action at round t = 2 based on its local data (which is unchanged) and mi,j , via deterministic
selection rule (i.e., LinUCB) in Algorithm 1 of Dubey & Pentland (2020). Thus, Fed-DP essentially
requires mi,j to be close in probability when Alice changes to Tracy, which is definitely not the case
(i.e., 0 vs. x1,iy1,i +N). Thus, Algorithm 1 in Dubey & Pentland (2020) also fails Fed-DP.
Remark B.2. One can also think from the following perspective: the non-private data-dependent sync
rule (i.e., (2)) in Dubey & Pentland (2020) impacts the communicated messages/data as well, which
cannot be made private by injecting noise when sending out data. To rescue, a possible approach is to
use private (noisy) data in rule (2) when determining synchronization (while still injecting noise when
sending out data). As a result, whether there exists a synchronization would be “indistinguishable”
under Alice or Tracy and hence mi,j now would be similar. However, this approach still suffers the
gap in communication cost analysis (see below) and moreover it will incur new challenges in regret
analysis, see Appendix D for a detailed discussion on this approach.

B.3 MORE ON COMMUNICATION COST ANALYSIS

The current analysis in Dubey & Pentland (2020) (cf. Proposition 5) for communication cost (i.e.,
how many rounds of communication within T) essentially follows the approach in the non-private
work (Wang et al., 2020) (cf. proof of Theorem 4). However, due to additional privacy noise injected
into the communicated data, one key step of the approach in Wang et al. (2020) fails in the private
case. In the following, we first point out the issue using notations in Dubey & Pentland (2020).

The key issue in its current proof of Proposition 5 in Dubey & Pentland (2020) is that

log
det(Si,t+n′)

det(Si,t)
>

D

n′ (3)

which appears right above Eq. 4 in Dubey & Pentland (2020) does not hold. More specifically,
[t, t+ n′] is the i-th interval between two communication steps and Si,t,Si,t+n′ are corresponding
synchronized private matrices. At the time t+n′, we know (2) is satisfied by some silo (say j ∈ [M]),
since there is a new synchronization. In the non-private case, Si,t+n′ simply includes some additional
local covariance matrices from silos other than j, which are positive semi-definite (PSD). As a
result, (3) holds. However, in the private case, Si,t+n′ includes the private messages from silos other
than j, which may not be positive semi-definite (PSD), since there are some new covariance matrices
as well as new Gaussian privacy noise (which could be negative definite). Thus, (3) may not hold
anymore.

C A GENERIC REGRET ANALYSIS FOR ALGORITHM 1

In this section, we first establish a generic regret bound for Algorithm 1 under sub-Gaussian noise
condition, i.e., Lemma C.4. To this end, let us first give the following notations. Fix B, T ∈ N,
we let K = T/B be the total number of communication steps. For all i ∈ [M] and all t = kB,
k ∈ [K], we let Nt,i = W̃t,i −

∑t
s=1 xs,ix

⊤
s,i and nt,i = Ũt,i −

∑t
s=1 xs,iys,i be the cumulative

injected noise up to the k-th communication by agent i. We further let Ht := λId +
∑

i∈[M] Nt,i

and ht :=
∑

i∈[M] nt,i.

14

Published as a conference paper at ICLR 2024

Assumption C.1 (Regularity). Fix any α ∈ (0, 1], with probability at least 1 − α, we have Ht is
positive definite and there exist constants λmax, λmin and ν depending on α such that for all t = kB,
k ∈ [K]

∥Ht∥ ≤ λmax,
∥∥H−1

t

∥∥ ≤ 1/λmin, ∥ht∥H−1
t
≤ ν.

With the above regularity assumption and the boundedness in Assumption 4.1, we fist establish the
following general regret bound of Algorithm 1, which can be viewed as a direct generalization of the
results in Shariff & Sheffet (2018); Chowdhury & Zhou (2022b) to the federated case.

Lemma C.2. Let Assumptions C.1 and 4.1 hold. Fix any α ∈ (0, 1], there exist choices of λ and
{βt,i}t∈[T],i∈[M] such that, with probability at least 1− α, the group regret of Algorithm 1 satisfies

RegM (T) = O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
+O

(
M ·B · d log

(
1 +

MT

dλmin

))
,

where βT :=

√
2 log

(
2
α

)
+ d log

(
1 + MT

dλmin

)
+
√
λmax + ν.

Lemma C.4 is a corollary of the above result, which holds by bounding λmax, λmin, ν under sub-
Gaussian privacy noise.

Assumption C.3 (sub-Gaussian private noise). There exist constants σ̃1 and σ̃2 such that for all
t = kB, k ∈ [K]: (i)

∑M
i=1 nt,i is a random vector whose entries are independent, mean zero,

sub-Gaussian with variance at most σ̃2
1 , and (ii)

∑M
i=1 Nt,i is a random symmetric matrix whose

entries on and above the diagonal are independent sub-Gaussian random variables with variance at
most σ̃2

2 . Let σ2=max{σ̃2
1 , σ̃

2
2}.

Now, we are ready to state Lemma C.4 as follows.

Lemma C.4 (A generic regret bound of Algorithm 1). Let Assumptions C.3 and 4.1 hold. Fix
time horizon T ∈ N, batch size B ∈ [T], confidence level α ∈ (0, 1]. Set λ = Θ(max{1, σ(

√
d +√

log(T/(Bα))}) and βt,i =
√
2 log

(
2
α

)
+ d log

(
1 + Mt

dλ

)
+
√
λ for all i ∈ [M]. Then, Algo-

rithm 1 achieves group regret

RegM (T) = O
(
dMB log T + d

√
MT log(MT/α)

)
+O

(√
σMT log(MT)d3/4 log1/4(T/(Bα))

)
with probability at least 1− α.

C.1 PROOFS

Proof of Lemma C.2. We divide the proof into the following six steps. Let E be the event given in
Assumption C.1, which holds with probability at least 1− α under Assumption C.1. In the following,
we condition on the event E .

Step 1: Concentration. In this step, we will show that with high probability,
∥∥∥θ∗ − θ̂t,i

∥∥∥
Vt,i

≤ βt,i

for all i ∈ [M]. Fix an agent i ∈ [M] and t ∈ [T], let tlast be the latest communication round of all
agents before t. By the update rule, we have

θ̂t,i = V −1
t,i (Ũsyn + Ui)

= V −1
t,i

 M∑
j=1

tlast∑
s=1

xs,jys,j +

M∑
j=1

ntlast,j +

t−1∑
s=tlast+1

xs,iys,i


=

λI +

M∑
j=1

tlast∑
s=1

xs,jx
⊤
s,j +

M∑
j=1

Ntlast,j +

t−1∑
s=tlast+1

xs,ix
⊤
s,i

−1 M∑
j=1

tlast∑
s=1

xs,jys,j +

M∑
j=1

ntlast,j +

t−1∑
s=tlast+1

xs,iys,i

 .

15

Published as a conference paper at ICLR 2024

By the linear reward function ys,j = ⟨xs,j , θ
∗⟩ + ηs,j for all j ∈ [M] and elementary algebra, we

have

θ∗ − θ̂t,i = V −1
t,i

Htlastθ
∗ −

M∑
j=1

tlast∑
s=1

xs,jηs,j −
t−1∑

s=tlast+1

xs,iηs,i − htlast

 ,

where we recall that Htlast = λI +
∑M

j=1 Ntlast,j and htlast =
∑M

j=1 ntlast,j .

Thus, multiplying both sides by V
1/2
t,i , yields∥∥∥θ∗ − θ̂t,i

∥∥∥
Vt,i

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
V −1
t,i

+ ∥Htlastθ
∗∥V −1

t,i
+ ∥htlast∥V −1

t,i

(a)

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

+ ∥θ∗∥Htlast
+ ∥htlast∥H−1

tlast

(b)

≤

∥∥∥∥∥∥
M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

+
√
λmax + ν

where (a) holds by Vt,i ⪰ Htlast and Vt,i ⪰ Gt,i + λminI with Gt,i :=
∑M

j=1

∑tlast
s=1 xs,jx

⊤
s,j +∑t−1

s=tlast+1 xs,ix
⊤
s,i (i.e., non-private Gram matrix) under event E ; (b) holds by the boundedness of θ∗

and event E .

For the remaining first term, we can use self-normalized inequality (cf. Theorem 1 in Abbasi-Yadkori
et al. (2011)) with a proper filtration4. In particular, we have for any α ∈ (0, 1], with probability at
least 1− α, for all t ∈ [T]∥∥∥∥∥∥

M∑
j=1

tlast∑
s=1

xs,jηs,j +

t−1∑
s=tlast+1

xs,iηs,i

∥∥∥∥∥∥
(Gt,i+λminI)−1

≤

√
2 log

(
1

α

)
+ log

(
det(Gt,i + λminI)

det(λminI)

)
.

Now, using the trace-determinant lemma (cf. Lemma 10 in Abbasi-Yadkori et al. (2011)) and the
boundedness condition on ∥xs,j∥ for all s ∈ [T] and j ∈ [M], we have

det(Gt,i + λminI) ≤
(
λmin +

Mt

d

)d

.

Putting everything together, we have with probability at least 1− 2α, for all i ∈ [M] and all t ∈ [T],∥∥∥θ∗ − θ̂m

∥∥∥
Vt,i

≤ βt,i = βt, where

βt :=

√
2 log

(
1

α

)
+ d log

(
1 +

Mt

dλmin

)
+
√
λmax + ν. (4)

Step 2: Per-step regret. With the above concentration result, based on our UCB policy for choosing
the action, we have the classic bound on the per-step regret rt,i, that is, with probability at least
1− 2α

rt,i = ⟨θ∗, x∗
t,i⟩ − ⟨θ∗, xt,i⟩

(a)
= ⟨θ∗, x∗

t,i⟩ − UCBt,i(x
∗
t,i) + UCBt,i(x

∗
t,i)− UCBt,i(xt,i) + UCBt,i(xt,i)− ⟨θ∗, xt,i⟩

(b)

≤ 0 + 0 + 2βt,i ∥xt,i∥V −1
t,i
≤ 2βT ∥xt,i∥V −1

t,i

where in (a), we let UCBt,i(x) := ⟨θ̂t,i, x⟩+ βt,i ∥x∥V −1
t,i

; (b) holds by the optimistic fact of UCB
(from the concentration), greedy action selection, and the concentration result again.

4In particular, by the i.i.d noise assumption across time and agents, one can simply construct the filtration
sequentially across agents and rounds, which enlarges the single-agent filtration by a factor of M .

16

Published as a conference paper at ICLR 2024

Step 3: Regret decomposition by good and bad epochs. In Algorithm 1, at the end of each
synchronization time t = kB for k ∈ [K], all the agents will communicate with the server by
uploading private statistics and downloading the aggregated ones from the server. We then divide
time horizon T into epochs by the communication (sync) rounds. In particular, the k-th epoch
contains rounds between (tk−1, tk], where tk = kB is the k-th sync round. We define Vk :=

λminI +
∑M

i=1

∑tk
t=1 xt,ix

⊤
t,i, i.e., all the data at the end of the k-th communication plus a regularizer.

Then, we say that the k-th epoch is a “good” epoch if det(Vk)
det(Vk−1)

≤ 2; otherwise it is a “bad” epoch.
Thus, we can divide the group regret into two terms:

RegM (T) =
∑
i∈[M]

∑
t∈good epochs

rt,i +
∑
i∈[M]

∑
t∈bad epochs

rt,i.

Step 4: Bound the regret in good epochs. To this end, we introduce an
imaginary single agent that pulls all the MT actions in the following order:
x1,1,, x1,2, . . . , x1,M , x2,1, . . . , x2,M , . . . , xT,1, . . . , xT,M . We define a corresponding imagi-
nary design matrix V̄t,i = λminI +

∑
p<t,q∈[M] xp,qx

⊤
p,q +

∑
p=t,q<i xp,qx

⊤
p,q , i.e., the design matrix

right before xt,i. The key reason behind this construction is that one can now use the standard result
(i.e., the elliptical potential lemma (cf. Lemma 11 in Abbasi-Yadkori et al. (2011))) to bound the
summation of bonus terms, i.e.,

∑
t,i ∥xt,i∥V̄ −1

t,i
.

Suppose that t ∈ [T] is within the k-th epoch. One key property we will use is that for all i, Vk ⪰ V̄t,i

and Gt,i + λminI ⪰ Vk−1, which simply holds by their definitions. This property enables us to
see that for any t ∈ good epochs, det(V̄t,i)/ det(Gt,i + λminI) ≤ 2. This is important since by the
standard “determinant trick”, we have

∥xt,i∥(Gt,i+λminI)−1 ≤
√
2 ∥xt,i∥V̄ −1

t,i
. (5)

In particular, this follows from Lemma 12 in Abbasi-Yadkori et al. (2011), that is, for two
positive definite matrices A,B ∈ Rd×d satisfying A ⪰ B, then for any x ∈ Rd, ∥x∥A ≤
∥x∥B ·

√
det(A)/ det(B). Note that here we also use det(A) = 1/ det(A−1). Hence, we can

bound the regret in good epochs as follows.∑
i∈[M]

∑
t∈good epochs

rt,i
(a)

≤
∑
i∈[M]

∑
t∈good epochs

min{2βT ∥xt,i∥V −1
t,i

, 1}

(b)

≤
∑
i∈[M]

∑
t∈good epochs

min{2βT ∥xt,i∥(Gt,i+λminI)−1 , 1}

(c)

≤
∑
i∈[M]

∑
t∈good epochs

min{2
√
2βT ∥xt,i∥V̄ −1

t,i
, 1}

(d)

≤
∑
i∈[M]

∑
t∈good epochs

2
√
2βT min{∥xt,i∥V̄ −1

t,i
, 1}

≤
∑
i∈[M]

∑
t∈[T]

2
√
2βT min{∥xt,i∥V̄ −1

t,i
, 1}

(e)

≤ O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
, (6)

where (a) holds by the per-step regret bound in Step 2 and the boundedness of reward; (b) follows
from the fact that Vt,i ⪰ Gt,i + λminI under event E ; (c) holds by (5) when t is in good epochs; (d) is
true since βT ≥ 1; (e) holds by the elliptical potential lemma (cf. Lemma 11 in Abbasi-Yadkori et al.
(2011)).

Step 5: Bound the regret in bad epochs. Let Tbad be the total number of rounds in all bad epochs.
Thus, the total number of bad rounds across all agents are M · Tbad. As a result, the cumulative group
regret in all these bad rounds are upper bounded by M · Tbad due to the to the boundedness of reward.

17

Published as a conference paper at ICLR 2024

We are left to bound Tbad. All we need is to bound the Nbad – total number of bad epochs. Then, we
have Tbad = Nbad ·B, where B is the fixed batch size. To this end, recall that K = T/B and define
Ψ := {k ∈ [K] : log det(Vk)− log det(Vk−1) > log 2}, i.e., Nbad = |Ψ|. Thus, we have

log 2 · |Ψ| ≤
∑
k∈Ψ

log det(Vk)− log det(Vk−1) ≤
∑

k∈[K]

log det(Vk)− log det(Vk−1)

≤ d log

(
1 +

MT

dλmin

)
Hence, we have Nbad = |Ψ| ≤ d

log 2 log
(
1 + MT

dλmin

)
. Thus we can bound the regret in bad epochs

as follows.∑
i∈[M]

∑
t∈bad epochs

rt,i ≤M · Tbad = M ·B ·Nbad ≤M ·B · d

log 2
log

(
1 +

MT

dλmin

)
. (7)

Step 6: Putting everything together. Now, we substitute the total regret in good epochs given by (6)
and total regret in bad epochs given by (7) into the total regret decomposition in Step 3, yields the
final cumulative group regret

RegM (T) = O

(
βT

√
dMT log

(
1 +

MT

dλmin

))
+O

(
M ·B · d log

(
1 +

MT

dλmin

))
,

where βT :=

√
2 log

(
1
α

)
+ d log

(
1 + MT

dλmin

)
+
√
λmax + ν. Finally, taking a union bound, we

have the required result.

Now, we turn to the proof of Lemma C.4, which is an application of Lemma C.2 we just proved.

Proof of Lemma C.4. To prove the result, thanks to Lemma C.2, we only need to determine the three
constants λmax, λmin and ν under the sub-Gaussian private noise assumption in Assumption C.3. To
this end, we resort to concentration bounds for sub-Gaussian random vector and random matrix.

To start with, under (i) in Assumption C.3, by the concentration bound for the norm of a vector
containing sub-Gaussian entries (cf. Theorem 3.1.1 in Vershynin (2018)) and a union bound over
all communication rounds, we have for all t = kB where k = [T/B] and any α ∈ (0, 1], with
probability at least 1− α/2, for some absolute constant c1,∥∥∥∥∥

M∑
i=1

nt,i

∥∥∥∥∥ = ∥ht∥ ≤ Σn := c1 · σ̃1 · (
√
d+

√
log(T/(αB)).

By (ii) in Assumption C.3, the concentration bound for the norm of a sub-Gaussian symmetric random
matrix (cf. Corollary 4.4.8 in Vershynin (2018)) and a union bound over all communication rounds,
we have for all t = kB where k = [T/B] and any α ∈ (0, 1], with probability at least 1− α/2,∥∥∥∥∥

M∑
i=1

Nt,i

∥∥∥∥∥ ≤ ΣN := c2 · σ̃2 · (
√
d+

√
log(T/(αB))

for some absolute constant c2. Thus, if we choose λ = 2ΣN , we have ∥Ht∥ =
∥∥∥λId +∑M

i=1 Nt,i

∥∥∥ ≤
3ΣN , i.e., λmax = 3ΣN , and λmin = ΣN . Finally, to determine ν, we note that

∥ht∥H−1
t
≤ 1√

λmin

∥ht∥ ≤ c ·
(
σ · (
√
d+

√
log(T/(αB))

)1/2
:= ν,

where σ = max{σ̃1, σ̃2}. The final regret bound is obtained by plugging the three values into the
result given by Lemma C.2.

D DISCUSSION ON PRIVATE ADAPTIVE COMMUNICATION

In the main paper and Appendix B, we have pointed out that the gap in privacy guarantee of Algorithm
1 in Dubey & Pentland (2020) is that its adaptive communication schedule leads to privacy leakage

18

Published as a conference paper at ICLR 2024

Algorithm 3 Restatement of Algorithm 1 in (Dubey & Pentland, 2020)

1: Parameters: Adaptive communication parameter D, regularization λ > 0, confidence radii
{βt,i}t∈[T],i∈[M], feature map ϕi : Ci ×Ki → Rd, privacy budgets ε > 0, δ ∈ [0, 1].

2: Initialize: For all i ∈ [M], Wi = 0, Ui = 0, PRIVATIZER with ε, δ, W̃syn = 0, Ũsyn = 0,
3: for t=1, . . . , T do
4: for each agent i = 1, . . . ,M do
5: Vt,i = λI + W̃syn +Wi, θ̂t,i = V −1

t,i (Ũsyn + Ui)

6: Play arm at,i = argmaxa∈Ki
⟨ϕi(ct,i, a), θ̂t,i⟩ + βt,i ∥ϕi(ct,i, a)∥V −1

t,i
and set xt,i =

ϕi(ct,i, at,i)
7: Observe reward yt,i
8: Update Wi = Wi + xt,ix

⊤
t,i, Ui = Ui + xt,iyt,i

9: if log det(Vt,i + xt,ix
⊤
t,i)− log det(Vlast) >

D
t−tlast

then
10: Send a signal to the server to start a synchronization round.
11: end if
12: if a synchronization is started then
13: Send Wi and Ui to PRIVATIZER

14: PRIVATIZER sends private cumulative statistics W̃t,i, Ũt,i to server
15: Server aggregates W̃syn = W̃syn +

∑M
j=1 W̃t,j and Ũsyn = Ũsyn +

∑M
j=1 Ũt,j

16: Receive W̃syn and Ũsyn from the server
17: Reset Wi = 0, Ui = 0, tlast = t and Vlast = λI + W̃syn

18: end if
19: end for
20: end for

due to its dependence on non-private data. As mentioned in Remark B.1, one possible approach is to
use private data to determine the sync in (2). This will resolve the privacy issue. However, the same
issue in communication cost still remains (due to privacy noise), and hence O(log T) communication
does not hold. Moreover, this new approach will also lead to new challenges in regret analysis, when
compared with its current one in Dubey & Pentland (2020) and the standard one in Wang et al. (2020).

To better illustrate the new challenges, let us restate Algorithm 1 in Dubey & Pentland (2020) using
our notations and first focus on how to establish the regret based on its current adaptive schedule
(which has the issue of privacy leakage). After we have a better understanding of the idea, we will
see how new challenges come up when one uses private data for an adaptive schedule.

As shown in Algorithm 3, the key difference compared with our fixed-batch schedule is highlighted in
color. Note that we only focus on silo-level LDP and use PRIVATIZER to represent a general protocol
that can privatize the communicated data (e.g., P or the standard tree-based algorithm in Dubey &
Pentland (2020)).

D.1 REGRET ANALYSIS UNDER NON-PRIVATE ADAPTIVE SCHEDULE

In this section, we demonstrate the key step in establishing the regret with the non-private adaptive
communication schedule in Algorithm 3 (i.e., line 9). It turns out that the regret analysis is very
similar to our proof for Lemma C.2 for the fixed batch case, in that the only key difference lies in
Step 5 when bounding the regret in bad epochs5. The main idea behind adaptive communication
is: whenever the accumulated local regret at any agent exceeds a threshold, then synchronization is
required to keep the data homogeneous among agents. This idea is directly reflected in the following
analysis.

5There is another subtle but important difference, which lies in the construction of filtration that is required
to apply the standard self-normalized inequality to establish the concentration result. We believe that one cannot
directly use the standard filtration (e.g., Abbasi-Yadkori et al. (2011)) in the adaptive case, and hence more care
is indeed required.

19

Published as a conference paper at ICLR 2024

Bound the regret in bad epochs (adaptive communication case). Let’s consider an arbitrary bad
epoch k, i.e., (tk−1, tk], where tk is the round for the k-th communication. For all i, we want to
bound the total regret between (tk−1, tk], denoted by Rk

i . That is, the local regret between any
two communications (in the bad epoch) will not be too large. For now, suppose we already have
such a bound U (which will be achieved by adaptive communication later), i.e., Rk

i ≤ U for all
i, k, we can easily bound the total regret in bad epochs. To see this, recall that Ψ := {k ∈ [K] :
log det(Vk)− log det(Vk−1) > log 2}, i.e., Nbad = |Ψ|, we have∑

i

∑
t∈bad epochs

rt,i =
∑
i

∑
k∈Ψ

Rk
i = O (|Ψ|MU) .

Plugging in Nbad = |Ψ| ≤ d
log 2 log

(
1 + MT

dλ

)
, we have the total regret for bad epochs. Now, we are

only left to find U . Here is the place where the adaptive schedule in the algorithm comes in. First,
note that ∑

tk−1<t<tk

rt,i
(a)

≤
∑

tk−1<t<tk

min{2βT ∥xt,i∥V −1
t,i

, 1} (8)

(b)

≤ O

(
βT

√
(tk − tk−1) log

detVtk,i

detVlast

)
(9)

(c)

≤ O
(
βT

√
D
)
,

where (a) holds by boundedness of reward; (b) follows from the elliptical potential lemma, i.e., Vlast is
PSD under event E and Vt,i = Vt−1,i + xt−1,ix

⊤
t−1,i for all t ∈ (tk−1, tk); (c) holds by the adaptive

schedule in line 9 of Algorithm 3. As a result, we have Rk
i ≤ O

(
βT

√
D
)
+ 1, where the regret at

round tk is at most 1 by the boundedness of reward. With a proper choice of D, one can obtain a
final regret bound.

D.2 CHALLENGES IN REGRET ANALYSIS UNDER PRIVATE ADAPTIVE SCHEDULE

Now, we will discuss new challenges when one uses private data for an adaptive communication sched-
ule. In this case, one needs to first privatize the new local gram matrices (e.g.,

∑t
s=tlast+1 xs,ix

⊤
s,i)

before being used in the determinant condition. This can be done by using standard tree-based
algorithm with each data point as xs,ix

⊤
s,i. With this additional step, now the determinant condition

becomes

log det(Ṽt,i)− log det(Vlast) >
D

t− tlast
, (10)

where Ṽt,i := Vlast +
∑t

s=tlast+1 xs,ix
⊤
s,i +N loc

t,i and N loc
t,i is the new local injected noise for private

schedule up to time t. Now suppose one uses (10) to determine tk. Then, it does not imply
that (9) is upper bounded by βT

√
D. That is, det(Ṽt,i)

det(Vlast)
≤ D′ does not necessarily mean that

det(Vlast+
∑t

s=tlast+1 xs,ix
⊤
s,i)

det(Vlast)
≤ D′.

One may try to work around (8) by first using Gt,i + λminI to lower bound Vt,i. Then, (9) becomes

O

(
βT

√
(tk − tk−1) log

det(Gtk,i+λminI)

det(Gtk−1,i+λminI)

)
, which again cannot be bouded based on the rule given

by (10). To see this, note that det(Ṽtk−1,i)

det(Vlast)
≤ D′ only implies that det(Gtk,i+λminI)

det(Gtk−1,i+λmaxI)
≤ D′.

E ADDITIONAL DETAILS ON FEDERATED LCBS UNDER SILO-LEVEL LDP

In this section, we provide details for Section 5.1. In particular, we present the proof for Theorem 5.1
and the alternative privacy protocol for silo-level LDP.

20

Published as a conference paper at ICLR 2024

E.1 PROOF OF THEOREM 5.1

Proof of Theorem 5.1. Privacy. We only need to show that P in Algorithm 2 with a proper choice of
σ0 satisfies (ε, δ)-DP for all k ∈ [K], which implies that the full transcript of the communication is
private in Algorithm 1 for any local agent i.

First, we recall that the (multi-variate) Gaussian mechanism satisfies zero-concentrated differential
privacy (zCDP) (Bun & Steinke, 2016). In particular, by Bun & Steinke (2016, Lemma 2.5), we
have that computation of each node (p-sum) in the tree is ρ-zCDP with ρ = L2

2σ2
0

. Then, from the
construction of the binary tree in P , one can easily see that one single data point γi (for all i ∈ [K])
only impacts at most 1 + log(K) nodes. Thus, by adaptive composition of zCDP (cf. Lemma 2.3
in Bun & Steinke (2016)), we have that the entire releasing of all p-sums is (1 + logK)ρ-zCDP.
Finally, we will use the conversion lemma from zCDP to approximated DP (cf. Proposition 1.3 in Bun
& Steinke (2016)). In particular, we have that ρ0-zCDP implies (ε = ρ0 + 2

√
ρ0 · log(1/δ), δ)-DP

for all δ > 0. In other words, to achieve a given (ε, δ)-DP, it suffices to achieve ρ0-zCDP with
ρ0 = f(ε, δ) := (

√
log(1/δ) + ε −

√
log(1/δ))2. In our case, we have ρ0 = (1 + log(K))ρ =

(1 + log(K)) L2

2σ2
0

. Thus, we have σ2
0 = (1 + log(K)) L2

2ρ0
= (1 + log(K)) L2

2f(ε,δ) . To simply it, one

can lower bound f(ε, δ) by ε2

4 log(1/δ)+4ε (cf. Remark 15 in Steinke (2022)). Therefore, to obtain

(ε, δ)-DP, it suffices to set σ2
0 = 2 · L2 · (1+log(K))(log(1/δ)+ε)

ε2 . Note that there are two streams of
data in Algorithm 1, and hence it suffices to ensure that each of them is (ε/2, δ/2)-DP. This gives us
the final noise level σ2

0 = 8 (1+log(K))(log(2/δ)+ε)
ε2 (note that by boundedness assumption L = 1 in

our case).

Regret. In order to establish the regret bound, thanks to Lemma C.4, we only need to determine the
maximum noise level in the learning process. Recall that σ2

0 = 8 · (1+log(K))(log(2/δ)+ε)
ε2 is the noise

level for both streams (i.e., γbias and γcov). Now, by the construction of binary tree in P , one can see
that each prefix sum

∑
[1, k] only involves at most 1 + log(k) tree nodes. Thus, we have that the

noise level in nt,i and Nt,i are upper bounded by (1 + log(K))σ2
0 . As a result, the overall noise level

across all M silos is upper bounded by σ2
total = M(1 + log(K))σ2

0 . Finally, setting σ2 in Lemma C.4
to be the noise level σ2

total , yields the required result.

E.2 ALTERNATIVE PRIVACY PROTOCOL FOR SILO-LEVEL LDP

For silo-level LDP, each local randomizer can simply be the standard tree-based algorithm, i.e.,
releasing the prefix sum at each communication step k (rather than p-sum in Algorithm 2). The
analyzer now becomes a simple aggregation. As before, no shuffler is required in this case. This
alternative protocol is given by Algorithm 4, which is essentially the main protocol used in Dubey &
Pentland (2020).

It can be seen that both privacy and regret guarantees under this Palt are the same as Theorem 5.1. To
see this, for privacy, the prefix sum is a post-processing of the p-sums. Thus, since we have already
shown that the entire releasing of p-sums is private in the proof of Theorem 5.1, hence the same as the
prefix sum. Meanwhile, the total noise level at the server is the same as before. Thus, by Lemma C.4,
we have the same regret bound.

F ADDITIONAL DETAILS ON FEDERATED LCBS UNDER SDP

In this section, we provide more detailed discussions on SDP and present the proof for Theorem 5.3
(SDP via amplification lemma) and Theorem 5.5 (SDP via vector sum).

First, let us start with some general discussions.

Importance of communicating P-sums. For SDP, it is important to communicate P-sums rather
than prefix sum. Note that communicating noisy p-sums in our privacy protocol P rather than the
noisy prefix sum (i.e., the sum from beginning as done in Dubey & Pentland (2020)) plays a key
role in achieving optimal regret with shuffling. To see this, both approaches can guarantee silo-level
LDP. By our new amplification lemma, privacy guarantee can be amplified by 1/

√
M in ε for each

21

Published as a conference paper at ICLR 2024

Algorithm 4 Palt, an alternative privacy protocol for silo-level LDP

1: Procedure: Local RandomizerR
2: // Input: stream data γ = (γi)i∈[K]; privacy parameters ε, δ; Output: private prefix

sum
3: for k=1, . . . ,K do
4: Express k in binary form: k =

∑
j Binj(k) · 2j

5: Find the index of first one ik := min{j : Binj(k) = 1}
6: Compute p-sum αik =

∑
j<i αj + γk.

7: Add noise to p-sum α̂ik = αik +N (0, σ2
0I)

8: Output private prefix sum s̃k =
∑

j:Binj(k)=1 α̂j

9: end for
10: end procedure
11: Procedure: Analyzer A
12: // Input: a collection of M data points, y = {yi}i∈[M]; Output: Aggregated sum

13: Output ỹ =
∑

i∈[M] yi
14: end procedure

of the K shuffled outputs, where K = T/B is total communication rounds. Now, if the prefix sum
is released to the shuffler, then any single data point participates in at most K shuffle mechanisms,
which would blow up ε by a factor of O(

√
K) (by advanced composition (Dwork & Roth, 2014)).

This would eventually lead to a K1/4 factor blow up in regret due to privacy. Similarly, if we apply
PVec to the data points in the prefix sum, then again a single data point can participate in at most K
shuffled outputs.

On the other hand, if only noisy p-sums are released for shuffling at each communication round
k ∈ [K] (as in our protocol P) or only the data points in each p-sum are used in PVec (as in our
protocol in PT

Vec), then due to the binary-tree structure, each data point only participates in at most
logK shuffled mechanisms, which only leads to O(

√
logK) blow-up of ε; hence allowing us to

achieve the desired Õ(
√
MT) regret scaling, and close the gap present under silo-level LDP.

Remark F.1 (Shuffled tree-based mechanism). Both the protocol P in Algorithm 2 along with our new
amplification lemma and protocol PT

Vec in Algorithm 5 can be treated as a black-box method, which
integrates shuffling into the tree-based mechanism while providing formal guarantees for continual
release of sum statistics. Hence, it can be applied to other federated online learning problems beyond
contextual bandits.

F.1 AMPLIFICATION LEMMA FOR SDP

We first formally introduce our new amplification lemma, which is the key to our analysis, as
mentioned in the main paper.

The motivation for our new amplification result is two-fold: (i) Existing results on privacy amplifica-
tion via shuffling (e.g., Feldman et al. (2022); Erlingsson et al. (2019); Cheu et al. (2019); Balle et al.
(2019)) are only limited to the standard LDP case, i.e., each local dataset has size n = 1, which is not
applicable in our case where each silo runs a DP (rather than LDP) mechanism over a dataset of size
n = T ; (ii) Although a recent work (Lowy & Razaviyayn, 2021) establishes a general amplification
result for the case of n > 1, it introduces a very large value for the final δ that scales linearly with n
due to group privacy.

We first present the key intuition behind our new lemma. Essentially, as in Lowy & Razaviyayn
(2021), we follow the nice idea of hiding among the clones introduced in Feldman et al. (2022). That
is, the output from silo 2 to n can be similar to that of silo 1 by the property of DP (i.e., creating
clones). The key difference between n = 1 and n > 1 is that in the latter case, the similarity distance
between the output of silo 1 and j (j > 1) will be larger as in this case all n > 1 data points among
two silos could be different. To capture this, Lowy & Razaviyayn (2021) resorts to group privacy for

22

Published as a conference paper at ICLR 2024

general DP local randomizers.6 However, group privacy for approximate DP will introduce a large
value for δ. Thus, since we know that each local randomizer in our case is the Gaussian mechanism,
we can capture the similarity of outputs between silo 1 and j (j > 1) by directly bounding the
sensitivity. This helps to avoid the large value for the final δ. Specifically, we have the following
result, which can be viewed as a refinement of Theorem D.5 in Lowy & Razaviyayn (2021) when
specified to the Gaussian mechanism. We follow the notations in Lowy & Razaviyayn (2021) for
easy comparison.

Lemma F.2 (Amplification lemma for Gaussian mechanism). Let X = (X1, · · · , XN) ∈
XN×n be a distributed data set, i.e., N silos each with n data points. Let r ∈
N and let R(i)

r (Z, ·) : Xn → Z := Rd be a Gaussian mechanism with (εr0, δ
r
0)-

DP, εr0 ∈ (0, 1)7, for all Z = Z
(1:N)
(1:r−1) ∈ Z(r−1)×N and i ∈ [N], where X is

an arbitrary set. Suppose for all i, maxany pair(X,X′)

∥∥∥R(i)
r (Z, X)−R(i)

r (Z, X ′)
∥∥∥ ≤ n ·

maxadjacent pair(X,X′)

∥∥∥R(i)
r (Z, X)−R(i)

r (Z, X ′)
∥∥∥.8 Given Z = Z

(1:N)
(1:r−1), consider the shuffled

algorithm Ar
s : Xn×N × Z(r−1)×N → ZN that first samples a random permutation π of [N] and

then computes Zr = (Z
(1)
r , · · · , Z(N)

r), where Z(i)
r := R(i)

r (Z, Xπ(i)). Then, for any δ ∈ [0, 1] such

that εr0 ≤ 1
n ln

(
N

16 log(2/δ)

)
, Ar

s is (εr, δr)-DP, where

εr := ln

[
1 +

(
eε

r
0 − 1

eε
r
0 + 1

)(
8
√
enε

r
0 log(4/δ)√
N

+
8enε

r
0

N

)]

δr :=

(
eε

r
0 − 1

eε
r
0 + 1

)
δ +N(eε

r

+ 1)(1 + e−εr0/2)δr0.

If εr0 ≤ 1/n, choosing δ = Nnδr0 yields εr = O

(
εr0
√

log(1/(nNδr0))√
N

)
and δr = O(Nδr0), where

δr0 ≤ 1/(Nn).

F.2 VECTOR SUM PROTOCOL FOR SDP

One limitation of our first scheme for SDP is that the privacy guarantee holds only for very small
values of ε. This comes from two factors: one is due to the fact that standard 1/

√
M amplification

result requires the local privacy budget to be close to one; the other one comes from the fact that now
the local dataset could be n = T , which further reduces the range of valid ε.

In this section, we give the vector sum protocol in Cheu et al. (2021) for easy reference. Let’s also
give a concrete example to illustrate how to combine Algorithm 6 with Algorithm 5. Consider a fixed
k = 6. Then, for each agent, we have αi6 = γ5 + γ6. That is, consider the case of summing bias
vectors, for agent i ∈ [M], γ5 =

∑5B
t=4B+1 xt,iyt,i and γ6 =

∑6B
t=5B+1 xt,iyt,i. Then, D6 consists

of 2B data points, each of which is a single bias vector. Now, Rvec and Avec (as well the shuffler)
work together to compute the noisy sum of 2B ·M data points. In particular, denote by Pvec the
whole process, then we have α̃i6 = Pvec(DM

6), where DM
6 is the data set that consists of n = 2B ·M

data points, each of them is a single bias vector.

Next, we present more details on the implementations, i.e., the parameter choices of g, b, p. Let’s
consider k = 6 again as an example. In this case, the total number of data points that participate in
Pvec is n = 2B ·M . Then, according to the proof of Theorem C.1 in Chowdhury & Zhou (2022b),

6This is because it mainly focuses on the lower bound, where one needs to be general to handle any
mechanisms.

7Note that standard Gaussian mechanism only applies to the regime when ε < 1. In our case, εr0 is often less
than 1. Gaussian mechanism also works for the regime ε > 1, in this case, σ2 ≈ 1/ε rather than 1/ε2. With
minor adjustment of the final εr , our proof can be extended.

8This is w.l.o.g; one can easily generalize it to any upper bound that is a function of n.
9In our application, each data point means a bias vector or a covariance matrix. See Appendix F.2 for a

concrete example.

23

Published as a conference paper at ICLR 2024

Algorithm 5 PT
Vec, another privacy protocol used in Algorithm 1

1: Procedure: Local RandomizerR at each agent
2: // Input: stream data (γ1, . . . , γK), privacy budgets ε > 0, δ ∈ (0, 1]
3: for k=1, . . . ,K do
4: Express k in binary form: k =

∑
j Binj(k) · 2j

5: Find index of first one ik=min{j : Binj(k)=1}
6: Let Dk be the set of all data points9that contribute to αik =

∑
j<ik

αj + γk
7: Output yk = RVec(Dk) // apply RVec in Algorithm 6 to each data point
8: end for
9: Procedure: Analyzer A at server

10: // Input: stream data from S: {ȳk = (ȳk,1, . . . , ȳk,M)}k∈[K]

11: for k=1, . . . ,K do
12: Express k in binary and find index of first one ik
13: Add all messages from M agents: α̃ik = AVec(ȳk) // apply AVec in Algorithm 6
14: Output: s̃k =

∑
j:Binj(k)=1 α̃j

15: end for

we have

g = max{2
√
n, d, 4}, b =

24 · 104 · g2 ·
(
log
(

4·(d2+1)
δ

))2
ε2n

, p = 1/4.

Algorithm 6 Pvec, a shuffle protocol for vector summation (Cheu et al., 2021)

1: Input: Database of d-dimensional vectors X = (x1, · · · ,xn); privacy parameters ε, δ; L.
2: procedure: Local Randomizer Rvec(xi)
3: for j ∈ [d] do
4: Shift component to enforce non-negativity: wi,j ← xi,j + L
5: mj ← R1D(wi,j)
6: end for
7: Output labeled messages {(j,mj)}j∈[d]

8: end procedure
9: procedure: Analyzer Avec(y)

10: for j ∈ [d] do
11: Run analyzer on coordinate j’s messages zj ← A1D(yj)
12: Re-center: oj ← zj − n · L
13: end for
14: Output the vector of estimates o = (o1, · · · od)
15: end procedure

Algorithm 7 P1D, a shuffle protocol for summing scalars (Cheu et al., 2021)

1: Input: Scalar database X = (x1, · · ·xn) ∈ [0, L]n; g, b ∈ N; p ∈ (0, 1
2).

2: procedure: Local RandomizerR1D(xi)
3: x̄i ← ⌊xig/L⌋.
4: Sample rounding value η1 ∼ Ber(xig/L− x̄i).
5: Set x̂i ← x̄i + η1.
6: Sample privacy noise value η2 ∼ Bin(b, p).
7: Report yi ∈ {0, 1}g+b containing x̂i + η2 copies of 1 and g + b− (x̂i + η2) copies of 0.
8: end procedure
9: procedure: Analyzer A1D(S(y1, . . . ,yn))

10: Output estimator L
g ((
∑n

i=1

∑b+g
j=1(yi)j)− pbn).

11: end procedure

24

Published as a conference paper at ICLR 2024

F.3 PROOFS

First, we present proof of Theorem 5.3.

Proof of Theorem 5.3. Privacy. In this proof, we directly work on approximate DP. By the bound-
edness assumption and Gaussian mechanism, we have that with σ2

0 = 2L2 log(1.25/δ̂0)
ε̂20

, R in P is

(ε̂0, δ̂0)-DP for each communication round k ∈ [K] (provided ε̂0 ≤ 1) . Now, by our amplification

lemma (Lemma F.2), we have that the shuffled output is (ε̂, δ̂)-DP with ε̂ = O

(
ε̂0
√

log(1/(TMδ̂0))√
M

)
and δ̂ = O(Mδ̂0) (provided ε̂0 ≤ 1/T and δ̂0 ≤ 1/(MT)). Here we note that in our case, N = M
and n = T , where n = T follows from the fact that there exists αi in the tree that corresponds to
the sum of T data points. Moreover, since the same mechanism is run at all silos, shuffling-then-
privatizing is the same as first privatizing-then-shuffling the outputs. Next, we apply the advanced
composition theorem (cf. Theorem 3.20 in Dwork & Roth (2014)). In particular, by the binary tree
structure, each data point involves only κ := 1 + log(K) times in the output ofR. Thus, to achieve
(ε, δ)-DP, it suffices to have ε̂ = ε

2
√

2κ log(2/δ)
and δ̂ = δ

2κ . Using all these equations, we can solve

for ε̂0 = C1 · ε
√
M√

κ log(1/δ) log(κ/(δT))
and δ̂0 = C2 · δ

Mκ , for some constants C1 > 0 and C2 > 0. To

satisfy the conditions on ε̂0 and δ̂0, we have ε ≤
√
κ

C1T
√
M

and δ ≤ κ
C2T

. With the choice of ε̂0 and

δ̂0, we have the noise variance σ2
0 = O

(
2L2β log(1/δ) log(κ/(δT)) log(Mκ/δ)

ε2M

)
. Thus, we can apply P

to the bias and covariance terms (with L = 1), respectively.

Regret. Again, we simply resort to our Lemma C.4 for the regret analysis. In particular, we
only need to determine the maximum noise level in the learning process. Note that σ2

0 =

O
(

2L2κ log(1/δ) log(κ/(δT)) log(Mκ/δ)
ε2M

)
is the noise level injected for both bias and covariance terms.

Now, by the construction of the binary tree in P , one can see that each prefix sum only involves at
most 1 + log(k) tree nodes. As a result, the overall noise level across all M silos is upper bounded
by σ2

total = Mκσ2
0 . Finally, setting σ2 in Lemma C.4 to be the noise level σ2

total , yields the required
result.

Now, we prove Theorem 5.5.

Proof of Theorem 5.5. Privacy. For each calculation of the noisy synchronized p-sum, there exist
parameters for PVec such that it satisfies (ε0, δ0)-SDP where ε0 ∈ (0, 15] and δ0 ∈ (0, 1/2) (see
Lemma 3.1 in Cheu et al. (2021) or Theorem 3.5 in Chowdhury & Zhou (2022b)). Then, by the
binary tree structure, each single data point (bias vector or covariance matrix) only participates in at
most κ := 1+ log(K) runs of PVec. Thus, to achieve (ε, δ)-DP, it suffices to have ε0 = ε

2
√

2κ log(2/δ)

and δ0 = δ
2κ by advanced composition theorem. Thus, for any ε ∈ (0, 30

√
2κ log(2/δ)) and

δ ∈ (0, 1), there exist parameters for PVec such that the entire calculations of noisy p-sums are
(ε, δ)-SDP. Since we have two streams of data (bias and covariance), we finally have that for any
ε ∈ (0, 60

√
2κ log(2/δ)) and δ ∈ (0, 1), there exist parameters for PVec such that Algorithm 1 with

PT
Vec satisfies (ε, δ)-SDP.

Regret. By the same analysis in the proof of Theorem 3.5 in Chowdhury & Zhou (2022b), the
injected noise for each calculation of the noisy synchronized p-sum is sub-Gaussian with the variance
being at most σ̂2 = O

(
log2(d2/δ0)

ε20

)
= O

(
κ log(1/δ) log2(d2κ/δ)

ε2

)
. Now, by the binary tree structure,

each prefix sum only involves at most κ p-sums. Hence, the overall noise level is upper bounded
by σ2

total = κσ̂2. Finally, setting σ2 in Lemma C.4 to be the noise level σ2
total , yields the required

result.

Now, we provide proof of amplification Lemma F.2 for completeness. We follow the same idea as
in Feldman et al. (2022) and Lowy & Razaviyayn (2021). For easy comparison, we use the same
notations as in Lowy & Razaviyayn (2021) and highlighted the key difference using color text.

25

Published as a conference paper at ICLR 2024

Proof of Lemma F.2. Let X0,X1 ∈ Xn×N be adjacent distributed data sets (i.e.∑N
i=1

∑n
j=1 1{xi,j ̸=xi,j} = 1). Assume WLOG that X0 = (X0

1 , X2, · · · , XN) and
X1 = (X1

1 , X2, · · · , XN), where X0
1 = (x1,0, x1,2, · · · , x1,n) ̸= (x1,1, x1,2, · · · , x1,n). We

can also assume WLOG that Xj /∈ {X0
1 , X

1
1} for all j ∈ {2, · · · , N} by re-defining X andR(i)

r if
necessary.

Fix i ∈ [N], r ∈ [R],Z = Z1:r−1 = Z
(1:N)
(1:r−1) ∈ Z

(r−1)×N , denote R(X) := R(i)
r (Z, X) for

X ∈ Xn, and As(X) := Ar
s(Z1:r−1,X). Draw π uniformly from the set of permutations of [N].

Now, sinceR is (εr0, δ
r
0)-DP,R(X1

1) ≃
(εr0,δ

r
0)
R(X0

1), so by Lowy & Razaviyayn (2021, Lemma D.12),

there exists a local randomizerR′ such thatR′(X1
1) ≃

(εr0,0)
R(X0

1) and TV (R′(X1
1),R(X1

1)) ⩽ δr0.

Hence, by Lowy & Razaviyayn (2021, Lemma D.8), there exist distributions U(X0
1) and U(X1

1)
such that

R(X0
1) =

eε
r
0

eε
r
0 + 1

U(X0
1) +

1

eε
r
0 + 1

U(X1
1) (11)

and

R′(X1
1) =

1

eε
r
0 + 1

U(X0
1) +

eε
r
0

eε
r
0 + 1

U(X1
1). (12)

Here, we diverge from the proof in (Lowy & Razaviyayn, 2021). We denote ε̃0 := nεr0 and
δ̃0 := δr0. Then, by the assumption of R(X), for any X , we have R(X) ≃

(ε̃0,δ̃0)
R(X0

1)) and

R(X) ≃
(ε̃0,δ̃0)

R(X1
1)). This is because by the assumption, when the dataset changes from any X to

X0
1 (or X1

1), the total change in terms of l2 norm can be n times that under an adjacent pair. Thus,
one has to scale the εr0 by n while keeping the same δr0 .

Now, we resume the same idea as in (Lowy & Razaviyayn, 2021). By convexity of hockey-stick
divergence and the above result, we haveR(X) ≃

(ε̃0,δ̃0)

1
2 (R(X

0
1) +R(X1

1)) := ρ for all X ∈ Xn.

That is, R is (ε̃0, δ̃0) deletion group DP for groups of size n with reference distribution ρ. Thus,
by Lowy & Razaviyayn (2021, Lemma D.11), we have that there exists a local randomizerR′′ such
thatR′′(X) and ρ are (ε̃0, 0) indistinguishable and TV (R′′(X),R(X)) ⩽ δ̃0 for all X. Then by the
definition of (ε̃0, 0) indistinguishability, for all X there exists a “left-over” distribution LO(X) such
thatR′′(X) = 1

eε̃0
ρ+ (1− 1/eε̃0)LO(X) = 1

2eε̃0
(R(X0

1) +R(X1
1)) + (1− 1/eε̃0)LO(X).

Now, define a randomizer L by L(X0
1) := R(X0

1), L(X1
1) := R′(X1

1), and

L(X) :=
1

2eε̃0
R(X0

1) +
1

2eε̃0
R′(X1

1) + (1− 1/eε̃0)LO(X)

=
1

2eε̃0
U(X0

1) +
1

2eε̃0
U(X1

1) + (1− 1/eε̃0)LO(X) (13)

for all X ∈ Xn \ {X0
1 , X

1
1}. (The equality follows from (11) and (12).) Note

that TV (R(X0
1),L(X0

1)) = 0, TV (R(X1
1),L(X1

1)) ⩽ δr0, and for all X ∈ Xn \
{X0

1 , X
1
1}, TV (R(X),L(X)) ⩽ TV (R(X),R′′(X)) + TV (R′′(X),L(X)) ⩽ δ̃0 +

1
2eε̃0

TV (R′(X1
1),R(X1

1)) = (1 + 1

2enεr0
)δr0 .

Keeping r fixed (omitting r scripts everywhere), for any i ∈ [N] and Z := Z1:r−1 ∈ Z(r−1)×N , let
L(i)(Z, ·), U (i)(Z, ·), and LO(i)(Z, ·) denote the randomizers resulting from the process described
above. Let AL : Xn×N → ZN be defined exactly the same way as Ar

s := As (same π) but
with the randomizers R(i) replaced by L(i). Since As applies each randomizer R(i) exactly once
and R(1)(Z, Xπ(1), · · ·R(N)(Z, Xπ(N)) are independent (conditional on Z = Z1:r−1) 10, we have
TV (As(X0),AL(X0)) ⩽ N(1+ 1

2enεr0
)δr0 and TV (As(X1),AL(X1) ⩽ N(1+ 1

2enεr0
)δr0 . Now we

10This follows from the assumption that R(i)(Z1:r−1, X) is conditionally independent of X ′ given Z1:r−1

for all Z1:r−1 and X ̸= X ′.

26

Published as a conference paper at ICLR 2024

claim that AL(X0) and AL(X1) are (εr, δ) indistinguishable for any δ ⩾ 2e−Ne−nεr0/16. Observe
that this claim implies that As(X0) and As(X1) are (εr, δr) indistinguishable by Lowy & Raza-
viyayn (2021, Lemma D.13) (with P ′ := AL(X0), Q

′ := AL(X1), P := As(X0), Q := As(X1).)
Therefore, it only remains to prove the claim, i.e. to show that Deεr (AL(X0),AL(X1) ⩽ δ for any
δ ⩾ 2e−Ne−nεr0/16.

Now, define L(i)
U (Z, X) :=


U (i)(Z, X0

1) if X = X0
1

U (i)(Z, X1
1) if X = X1

1

L(i)(Z, X) otherwise.
. For any inputs Z,X, let AU (Z,X) be

defined exactly the same asAs(Z,X) (same π) but with the randomizersR(i) replaced by L(i)
U . Then

by (11) and (12),

AL(X0) =
eε

r
0

eε
r
0 + 1

AU (X0)+
1

eε
r
0 + 1

AU (X1) andAL(X1) =
1

eε
r
0 + 1

AU (X0)+
eε

r
0

eε
r
0 + 1

AU (X1).

(14)

Then by (13), for any X ∈ Xn\{X0
1 , X

1
1} and any Z = Z1:r−1 ∈ Z(r−1)×N , we haveL(i)

U (Z, X) =
1

2eε̃0
L(i)
U (Z, X0

1) +
1

2eε̃0
L(i)
U (Z, X1

1) + (1− e−ε̃0)LO(i)(Z, X). Hence, Lowy & Razaviyayn (2021,
Lemma D.10) (with p := e−ε̃0 = e−nεr0) implies that AU (X0) and AU (X1)) are(

log

(
1 +

8
√

eε̃0 ln(4/δ)√
N

+
8eε̃0

N

)
, δ

)
indistinguishable for any δ ⩾ 2e−Ne−nεr0/16.

Here, we also slightly diverge from Lowy & Razaviyayn (2021). Instead of using Lowy & Razaviyayn
(2021, Lemma D.14), we can directly follow the proof of Lemma 3.5 in Feldman et al. (2022)
and Lemma 2.3 in Feldman et al. (2022) to establish our claim that AL(X0) and AL(X1) are
indistinguishable (hence the final result). Here, we also slightly improve the δ term compared
to Feldman et al. (2022) by applying amplification via sub-sampling to the δ term as well. In
particular, the key step is to rewrite (14) as follows (with T := 1

2 (AU (X0) +AU (X1))

AL(X0) =
2

eε
r
0 + 1

T +
eε

r
0 − 1

eε
r
0 + 1

AU (X0) and AL(X1) =
2

eε
r
0 + 1

T +
eε

r
0 − 1

eε
r
0 + 1

AU (X1). (15)

Thus, by the convexity of the hockey-stick divergence and Lemma 2.3 in Feldman et al. (2022), we
have AL(X0) and AL(X1) are(

log

(
1 +

εr0 − 1

εr0 + 1

(
8
√

eε̃0 ln(4/δr)√
N

)
+

8eε̃0

N

)
,
εr0 − 1

εr0 + 1
δ

)
indistinguishable for any δ ⩾ 2e−Ne−nεr0/16. As decribed before, this leads to the result that As(X0)
and As(X1) are (εr, δr) indistinguishable by Lowy & Razaviyayn (2021, Lemma D.13) (original
result in Lemma 3.17 of Dwork & Roth (2014)) with (noting that ε̃0 = nεr0)

εr := ln

[
1 +

(
eε

r
0 − 1

eε
r
0 + 1

)(
8
√
enε

r
0 ln(4/δ)√
N

+
8enε

r
0

N

)]
,

δr :=

(
eε

r
0 − 1

eε
r
0 + 1

)
δ +N(eε

r

+ 1)(1 + e−εr0/2)δr0.

G FURTHER DISCUSSIONS

In this section, we provide more details on our upper bounds, privacy notion and algorithm design.

G.1 DISCUSSION ON TIGHTNESS OF UPPER BOUNDS

In the paper, we have established regrets of O(M3/4
√

T/ε) under silo-level LDP and O(
√

MT/ε)
under SDP. An essential open question is regarding tightness of these upper bounds. It turns out that

27

Published as a conference paper at ICLR 2024

the key to obtain both lower bounds is to first establish a tight characterization for single-agent LCB
under central JDP (which is still open to the best of our knowledge), as elaborated below:

SDP: The current upper bound aligns with the state-of-the-art result achieved by a super single agent
under central JDP. However, the tightness of this bound is still uncertain, as it even remains open
whether the upper bound under the centralized setting is tight. To our best knowledge, the only
existing lower bound for LCBs under central JDP is Ω(

√
T + 1/ε) (He et al., 2022b), implying a

lower bound of Ω(
√
MT + 1/ε) for the super single agent case. That is, the privacy cost in the

lower bound is only additive rather than multiplicative cost of 1/
√
ε present in the upper bound. It is

unclear to us which one of the upper bound or lower bound is loose.

Silo-level LDP: A lower bound can potentially be established using a similar reduction as in Lowy &
Razaviyayn (2021), where the authors derive a lower bound for silo-level LDP supervised learning
via the central model. To be more specific, for any silo-level LDP algorithmA with privacy guarantee
ε0, one can first ”virtually” shuffle all the MT user sequences and then apply A, leading to a shuffled
version As. As shown in Lowy & Razaviyayn (2021),, the shuffled version algorithm As enjoys
an SDP privacy guarantee of roughly ε := ε0/

√
M (here again, one cannot directly use standard

amplification lemma). Since SDP implies central JDP in our linear contextual bandit case, then one
can conclude that As has a lower bound of Lc(ε), where Lc(ε) denotes the lower bound for LCB
under central JDP with privacy guarantee ε. Finally, one can note that A and As have the same regret
performance, hence establishing the regret lower bound Lc(ε0/

√
M) for A under silo-level LDP.

Implication: If one can establish a lower bound Lc(ε) = Ω(
√

T/ε) for standard LCB under central
JDP (i.e., Ω(

√
MT/ε) for the super single agent case), then by the above argument, it directly

implies that our SDP upper bound is tight and moreover, the upper bound under silo-level LDP is
also tight.

It is worth noting that our new findings in this paper (e.g., identifying existing gaps and establishing
new upper bounds) motivate the above interesting questions, which we believe will promote advances
in the field.

G.2 SILO-LEVEL LDP/SDP VS. OTHER PRIVACY NOTIONS

In this section, we compare our silo-level LDP and SDP with standard privacy notions for single-agent
LCBs, including local, central, and shuffle model for DP, respectively.

Silo-level LDP vs. single-agent local DP. Under standard LDP for single-agent LCBs (Zheng et al.,
2020; Duchi et al., 2013; Zhou & Tan, 2021), each user only trusts herself and hence privatizes
her response before sending it to the agent. In contrast, under silo-level LDP, each local user trusts
the local silo (agent), which aligns with the pratical situations of cross-silo FL, e.g., patients often
trust the local hospitals. In such cases, standard LDP becomes unnecessarily stringent, hindering
performance/regret and making it less appealing to cross-silo federated LCBs.

Silo-level LDP vs. single-agent central DP. The comparison with standard central DP (in particular
central JDP)11 for single-agent LCB (e.g., Shariff & Sheffet (2018)) is delicate. We first note that
under both notions, users trust the agent and the privacy burden lies at the agent. Under standard
central DP, the agent uses private statistics until round t to choose action for each round t, which
ensures that any other users t′ ̸= t cannot infer too much about user t’s information by observing the
actions on rounds t′ ̸= t (i.e., joint differential privacy (JDP) (Kearns et al., 2014)). On the other hand,
silo-level LDP does not necessarily require each agent (silo) to use private statistics to recommend
actions to users within the silo. Instead, it only requires the agent to privatize its sent messages
(both schedule and content). Thus, silo-level LDP may not protect a user t from the colluding of all
other users within the same silo. In other words, the adversary model for silo-level LDP is that the
adversary could be any other silos or the central server rather than other users within the same silo.
Note that the same adversary model is assumed in a similar notion for federated supervised learning
(e.g., inter-silo record-level differential privacy (ISRL-DP) in Lowy & Razaviyayn (2021)). In fact,
with a minor tweak of our Algorithm 1, one can achieve a slightly stronger notion of privacy than
silo-level LDP in that it now can protect against both other silos/server and users within the same silo.

11As shown in Shariff & Sheffet (2018), JDP relaxation is necessary for achieving sub-linear regret for LCBs
under the central model. Otherwise, a linear regret lower bound exists for central standard DP.

28

Published as a conference paper at ICLR 2024

The key idea is exactly that now each agent will only use private statistics to recommend actions, see
Appendix G.3.

Silo-level LDP vs. Federated DP in Dubey & Pentland (2020). In Dubey & Pentland (2020), the
authors define the so-called notion of federated DP for federated LCBs, which essentially means that
“the action chosen by any agent must be sufficiently impervious (in probability) to any single data
from any other agent”. This privacy guarantee is directly implied by our silo-level LDP. In fact, in
order to show such a privacy guarantee, Dubey & Pentland (2020) basically tried to show that the
outgoing communication is private, which is the idea of silo-level LDP. However, as mentioned in the
main paper, Dubey & Pentland (2020) only privatizes the communicated data and fails to privatize
the communication schedule, which leads to privacy leakage. Moreover, as already mentioned in
Remark B.1, Fed-DP fails to protect a user’s privacy even under a reasonable adversary model. Thus,
we believe that silo-level LDP is a better option for federated LCBs.

SDP vs. single-agent shuffle DP. Under the single-agent shuffle DP (Chowdhury & Zhou, 2022b;
Tenenbaum et al., 2023), the shuffler takes as input a batch of users’ data (i.e., from t1 to t2), which
enables to achieve a regret of Õ(T 3/5) (vs. Õ(T 3/4) regret under local model and Õ(

√
T) regret

under central model). In contrast, under our SDP, the shuffler takes as input the DP outputs from
all M agents. Roughly speaking, single-agent shuffle DP aims to amplify the privacy dependence
on T while our SDP amplifies privacy over M . Due to this, single-agent shuffle DP can directly
apply a standard amplification lemma (e.g., Feldman et al. (2022)) or shuffle protocol (e.g., Cheu
et al. (2021)) that works well with LDP mechanism at each user (i.e., the size of dataset is n = 1). In
contrast, in order to realize amplification over M agents’ DP outputs, we have to carefully modify the
standard amplification lemma to handle the fact that now each local mechanism operates on n > 1
data points, which is one of the key motivations for our new amplification lemma.

Sublinear regret under SDP vs. linear regret lower bound under central standard DP (not JDP).
One may wonder why an even better regret under the shuffle model is possible given that there is a
linear regret bound under central model for LCBs. This is not contradicting as the lower bound of
linear regret is established under standard central DP while SDP in LCBs only implies central JDP.
More specifically, in contrast to standard private data analysis and supervised learning, the shuffle
model is NOT an intermediate trust model between central standard DP and local DP for LCBs. That
is, even if an LCB algorithm satisfies shuffle DP, it can still fail to satisfy central standard DP. Rather,
it is only an intermediate trust model between the central joint DP (JDP) and the local model. That is,
if an LCB algorithm satisfies shuffle DP, it satisfies central JDP (via Billboard lemma).

G.3 A SIMPLE TWEAK OF ALGORITHM 1 FOR A STRONGER PRIVACY GUARANTEE

As discussed in the last subsection, the adversary model behind silo-level LDP only includes other
silos and the central server, i.e., excluding adversary users within the same silo. Thus, for silo-level
LDP, Algorithm 1 can use non-private data to recommend actions within a batch (e.g., Vt,i includes
non-private recent local bias vectors and covariance matrices). If one is also interested in protecting
against adversary users within the same silo, a simple tweak of Algorithm 1 suffices.

As shown in Algorithm 8, the only difference is a lazy update of θ̂t,i is adopted (line 5), i.e., it is
only computed using private data without any dependence on new non-private local data. In fact,
same regret bound as in Theorem 5.1 can be achieved for this new algorithm (though empirical
performance could be worse due to the lazy update). In the following, we highlight the key changes
in the regret analysis. It basically follows the six steps in the proof of Lemma C.2. One can now
define a mapping κ(t) that maps any t ∈ [T] to the most recent communication round. That is, for
any t ∈ [tk−1, tk] where tk = kB is the k-th communication round, we have κ(t) = tk−1. Then,
one can replace all t in Vt,i and Gt,i by κ(t). The main difference that needs a check is Step 4
when bounding the regret in good epochs. The key is again to establish a similar form as (5). To
this end, note that for all t ∈ [tk−1, tk] Vk ⪰ V̄t,i and Gκ(t),i + λminI = Vk−1, which enables us
to obtain ∥xt,i∥(Gκ(t),i+λminI)−1 ≤

√
2 ∥xt,i∥V̄ −1

t,i
. Following the same analysis yields the desired

regret bound.

29

Published as a conference paper at ICLR 2024

Algorithm 8 Priv-FedLinUCB-Lazy

1: Parameters: Batch size B ∈ N, regularization λ > 0, confidence radii {βt,i}t∈[T],i∈[M], feature
map ϕi : Ci ×Ki → Rd, privacy protocol P = (R,S,A)

2: Initialize: For all i ∈ [M], Wi = 0, Ui = 0, W̃syn = 0, Ũsyn = 0
3: for t=1, . . . , T do
4: for each agent i = 1, . . . ,M do
5: Vt,i = λI + W̃syn, θ̂t,i = V −1

t,i Ũsyn

6: Play arm at,i = argmaxa∈Ki
⟨ϕi(ct,i, a), θ̂t,i⟩ + βt,i ∥ϕi(ct,i, a)∥V −1

t,i
and set xt,i =

ϕi(ct,i, at,i)
7: Observe reward yt,i
8: Update Ui = Ui + xt,iyt,i and Wi = Wi + xt,ix

⊤
t,i

9: end for
10: if tmod B = 0 then
11: // Local randomizer R at all agents i ∈ [M]
12: Send randomized messages Rbias

t,i = Rbias(Ui) and Rcov
t,j = Rcov(Wi) to the shuffler

13: // Third party S
14: Sbias

t = S({Rbias
t,i }i∈[M]) and Scov

t = S({Rcov
t,i }i∈[M])

15: // Analyzer A at the server

16: Construct private cumulative statistics Ũsyn = Abias(Sbias
t) and W̃syn = Acov(Scov

t)
17: // All agents i ∈ [M]

18: Receive W̃syn and Ũsyn from the server
19: Reset Wi = 0, Ui = 0
20: end if
21: end for

G.4 NON-UNIQUE USERS

In the main paper, we assume all users across all silos and T rounds are unique. Here, we briefly
discuss how to handle the case of non-unique users.

• The same user appears multiple times in the same silo. One example of this could be one
patient visiting the same hospital multiple times. In such cases, one needs to carefully apply
group privacy or other technique (e.g., Chowdhury & Zhou (2022b)) to characterize the
privacy loss of these returning users.

• The same user appears multiple times across different silos. One example of this could be
one patient who has multiple records across different hospitals. Then, one needs to use
adaptive advanced composition to characterize the privacy loss of these returning users.

H ADDITIONAL DETAILS ON SIMULATION RESULTS

In Figure 3, we compare regret performance of LDP-FedLinUCB with FedLinUCB under varying
privacy budgets.12 In sub-figure (a), we plot results for δ = 0.1 and varying level of ε ∈ {0.2, 1, 5}
on synthetic Gaussian bandit instance, wherein sub-figure (b), we plot results for ε = 5 and varying
level of δ ∈ {0.1, 0.01, 0.001}. In sub-figure (c), we plot results for δ = 0.1 and varying level
of ε ∈ {0.2, 1, 5} on bandit instance generated from MSLR-WEB10K data by training a lasso
model on bodyfeatures (d = 78). In all these plots, we observe that regret of LDP-FedLinUCB
decreases and, comes closer to that of FedLinUCB as ε, δ increases (i.e., level of privacy protection
decreases), which support our theoretical results. Here, we don’t compare SDP-LinUCB (with privacy
amplification) since its privacy guarantee holds for ε, δ ≪ 1. Instead, we do so in sub-figure (d) with
ε = δ = 0.0001. Here also, we observe a drop in regret of SDP-FedLinUCB compared to that of
LDP-FedLinUCB.

12All existing non-private federated LCB algorithms (e.g., Wang et al. (2020)) adopts adaptive communication.
We refrain from comparing with those to maintain consistency in presentation.

30

Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Round

0

1

2

3

4

Ti
m

e-
av

er
ag

e
Re

gr
et FedLinUCB

LDP-FedLinUCB(ε= 0.2)
LDP-FedLinUCB(ε= 1)
LDP-FedLinUCB(ε= 5)

(a) Synthetic data (varying ε, δ = 0.1)

0 2000 4000 6000 8000 10000
Round

0

1

2

3

4

Ti
m

e-
av

er
ag

e
Re

gr
et FedLinUCB

LDP-FedLinUCB(δ=0.1)
LDP-FedLinUCB(δ=0.01)
LDP-FedLinUCB(δ=0.001)

(b) Synthetic data (varying δ, ε = 5)

0 5000 10000 15000 20000 25000
Round

2

3

4

5

6

Ti
m

e-
av

er
ag

e
Re

gr
et FedLinUCB

LDP-FedLinUCB(ε= 0.2)
LDP-FedLinUCB(ε= 1)
LDP-FedLinUCB(ε= 5)

(c) Real data (varying ε, δ = 0.1)

0 5000 10000 15000 20000 25000
Round

35

40

45

Ti
m

e-
av

er
ag

e
Re

gr
et FedLinUCB

SDP-FedLinUCB(ε= 0.0001)
LDP-FedLinUCB(ε= 0.0001)

(d) Real data (M = 100)

Figure 3: Comparison of time-average group regret for FedLinUCB (non-private) and LDP-FedLinUCB (i.e.,
under silo-level LDP) on (a, b) synthetic Gaussian bandit instance and (c,d) bandit instance generated from
MSLR-WEB10K Learning to Rank dataset.

31

	Introduction
	Differential Privacy in Federated LCBs
	Privacy, Regret and Communication Gaps in State-of-the-Art
	Our Approach
	Algorithm: Private Federated LinUCB
	Privacy Protocol

	Theoretical Results
	Federated LCBs under Silo-level LDP
	Federated LCBs under SDP
	SDP guarantee for a wide range of privacy parameters

	Simulation Results and Conclusions
	More Details on Related Work
	More Discussions on Gaps in SOTA
	More on violation of silo-level LDP
	More on violation of Fed-DP
	More on communication cost analysis

	A Generic Regret Analysis for Algorithm 1
	Proofs

	Discussion on Private Adaptive Communication
	Regret Analysis under Non-private Adaptive Schedule
	Challenges in Regret Analysis under Private Adaptive Schedule

	Additional Details on Federated LCBs under Silo-Level LDP
	Proof of Theorem 5.1
	Alternative Privacy Protocol for Silo-Level LDP

	Additional Details on Federated LCBs under SDP
	Amplification lemma for SDP
	Vector Sum Protocol for SDP
	Proofs

	Further Discussions
	Discussion on Tightness of Upper Bounds
	Silo-level LDP/SDP vs. Other Privacy Notions
	A Simple Tweak of Algorithm 1 for a Stronger Privacy Guarantee
	Non-unique Users

	Additional Details on Simulation Results

