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Abstract

Large Language Models (LLMs) have re-001
cently shown remarkable advancement in var-002
ious NLP tasks. As such, a popular trend003
has emerged lately where NLP researchers004
extract word/sentence/document embeddings005
from these large decoder-only models and006
use them for various inference tasks with007
promising results. However, it is still unclear008
whether the performance improvement of LLM-009
induced embeddings is merely because of scale010
or whether underlying embeddings they pro-011
duce significantly differ from classical encod-012
ing models like Word2Vec, GloVe, Sentence-013
BERT (SBERT) or Universal Sentence Encoder014
(USE). This is the central question we inves-015
tigate in the paper by systematically compar-016
ing classical decontextualized and contextual-017
ized word embeddings with the same for LLM-018
induced embeddings. Our results show that019
LLMs cluster semantically related words more020
tightly and perform better on analogy tasks in021
decontextualized settings. However, in con-022
textualized settings, classical models like Sim-023
CSE often outperform LLMs in sentence-level024
similarity assessment tasks, highlighting their025
continued relevance for fine-grained semantics.026

1 Introduction027

Word2Vec (Mikolov et al., 2013a) and GLoVe (Pen-028

nington et al., 2014), which revolutionized the029

field of NLP and word embedding techniques by030

representing words as dense vectors. The com-031

plexity and scale of embedding models have since032

increased dramatically. Transformer-based archi-033

tecture like BERT-based models (Devlin et al.,034

2018), RoBERTa (Liu et al., 2019) expanded035

language representation capabilities by providing036

context-aware embeddings for words and longer se-037

quences. The most recent paradigm shift came with038

Large Language Models (LLMs) like GPT (Brown039

et al., 2020), PaLM (Chowdhery et al., 2022),040

LLaMA (Touvron et al., 2023), etc. A popular041

trend has emerged where NLP researchers extract 042

word/sentence/document embeddings from these 043

large decoder-only models for various inference 044

tasks, yielding promising results. However, it re- 045

mains unclear whether the performance improve- 046

ment of LLM-induced embeddings is merely due 047

to scale or whether the underlying embeddings they 048

produce significantly differ from classical models. 049

To explore this, we conducted an in-depth in- 050

vestigation of word embedding similarity in two 051

settings: 1) decontextualized and 2) contextualized 052

for both classical models and LLMs. In the decon- 053

textualized setting, we generated embeddings for 054

≈ 80, 000 words, with curtailed datasets for pre- 055

trained Word2Vec (≈ 50K) and GloVe (≈ 60K) 056

due to vocabulary limitations. We analyzed them 057

using word-pair similarity and word analogy tasks. 058

For the contextualized setting, we selected anchor 059

words (verbs, nouns, or adjectives) and created 060

multiple sentences using them to provide context. 061

We then extracted the embeddings of these anchor 062

words for evaluation. More specifically, we exam- 063

ined embedding similarity across nine diverse varia- 064

tional tasks, including synonym, antonym, negation, 065

jumbling, paraphrase, questionnaire, exclamation, 066

and polysemy. To compare the models in contextu- 067

alized settings, we performed three distinct similar- 068

ity analyses: 1. Anchor Inter-Contextual Variance: 069

measuring the variance of an anchor word embed- 070

ding across different contexts; 2) Anchor Contex- 071

tual Deviation: Assessing how context influences 072

anchor word embeddings compared to their decon- 073

textualized counterparts; 3) Sentence Similarity: 074

Measuring a model’s ability to capture linguistic 075

variations at a sentence level. 076

Our results show that LLMs cluster semantically 077

related words more tightly and perform better on 078

analogy tasks in decontextualized settings. How- 079

ever, in contextualized settings, classical models 080

like SimCSE outperform LLMs in sentence-level 081

tasks, highlighting their continued relevance. 082
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2 Related Work083

Text representation is a fundamental pursuit in NLP084

research, and we have witnessed a remarkable evo-085

lution in text representation methodologies over the086

past decade. This transformation can be grouped087

into four generations: 1) Classic Decontexual-088

ized Word Embeddings like Word2Vec (Mikolov089

et al., 2013a) and GloVe (Pennington et al., 2014);090

2) Transformer-based contextualized Embeddings091

like BERT (Devlin et al., 2018), BART (Lewis092

et al., 2019), and RoBERTa (Liu et al., 2019);093

3) Sentence Encoders such as LASER (Artetxe094

and Schwenk, 2019), Universal Sentence En-095

coder (USE) (Cer et al., 2018), and Sentence-096

BERT (SBERT) (Reimers and Gurevych, 2019);097

and 4) Large Language Model (LLM) induced098

embeddings like GPT (Brown et al., 2020),099

PaLM (Chowdhery et al., 2022), LLaMA (Tou-100

vron et al., 2023), OpenELM (Mehta et al., 2024),101

OLMo (Groeneveld et al., 2024) etc.102

Previous work by Haber and Poesio (2021);103

Fournier et al. (2020); Haber and Poesio (2024);104

Ethayarajh (2019); Mahajan et al. (2023); Sarkar105

et al. (2022) have investigated how transformer-106

based models capture word context to varying107

degrees. In contrast, previous work by Peters108

et al. (2018); Li and Armstrong (2024); Miaschi109

and Dell’Orletta (2020) has focused on extracting110

context-independent word representations for tasks111

such as word analogy.112

Recent LLMs, with their unprecedented scale113

and capabilities, have demonstrated remarkable114

success across various NLP tasks (Bubeck et al.,115

2023; Dai et al., 2022; Du et al., 2022; Smith et al.,116

2022; Sarkar et al., 2023; Akter et al., 2023). This117

has motivated multiple NLP researchers to extract118

word/sentence embeddings from these decoder-119

only models and use them for other downstream120

tasks different from text generation (Jiang et al.,121

2023b; An et al., 2024). Despite these advance-122

ments, the fundamental medium of written lan-123

guage has remained constant. While the simi-124

larity and relatedness of words have not inher-125

ently changed, the models’ approach to treating126

words and their similarities has evolved signifi-127

cantly. This raises important questions about the na-128

ture of embeddings generated by LLMs compared129

to those created by traditional encoding models130

like Word2Vec or Sentence-BERT. Indeed, little is131

known about the fundamental nature of these LLM-132

induced embeddings and how they differ from clas-133

sical embeddings. It is also unclear how these word 134

embeddings differ from each other in both contex- 135

tualized and decontextualized settings. 136

3 Comparing Decontextualized 137

Embeddings: LLM vs. Classical 138

We conduct a comparative study of two groups 139

of models: 1) Large Language Models (LLMs) 140

(decoder models with over 1B parameters) and 141

2) “Classical” (models with under 1B parameters) 142

in terms of their decontextualized word embed- 143

dings. To be more specific, we selected thirteen 144

models for our analysis, including seven LLMs 145

and six classical models. The LLMs include: 146

LLaMA2-7B and LLaMA3-8B (both dim = 4096) 147

from Meta AI (Touvron et al., 2023), OpenAI’s 148

embedding model ADA-002 (dim = 1536), and 149

Google’s PaLM2 embedding model Gecko-001 150

(dim = 768) (Anil et al., 2023), OLMo-8B (dim 151

= 4096) (Groeneveld et al., 2024), OpenELM-3B 152

(dim = 3072) (Mehta et al., 2024) and, Mistral-8B 153

(dim = 4096) (Jiang et al., 2023a). To more clearly 154

see the differences between these models and 155

older (“classical”) ones, Meta AI’s LASER (dim 156

= 1024) (Artetxe and Schwenk, 2019), Universal 157

Sentence Encoder (USE) (dim = 512) (Cer et al., 158

2018), SimCSE (dim = 1024) (Gao et al., 2021), 159

SBERT (dim=384) (Reimers and Gurevych, 2019), 160

Word2vec (dim=300) (Mikolov et al., 2013a) and 161

GloVe (dim=300) (Pennington et al., 2014). 162

Decontextualized embeddings are obtained by 163

inputting single words into each model’s tokenizer. 164

For models using single-token inputs, we utilize the 165

final hidden state. For subword tokenization, we 166

average the final hidden states of the tokens. Using 167

these decontextualized embeddings, we conduct 168

the following three comparative analyses. 169

• Word-Pair Similarity Comparison 170
• Analogy Task Based Comparison 171
• Similarity Correlation Analysis 172

3.1 Word-Pair Similarity Comparison 173

RQ-1: How do LLM-induced decontextualized em- 174

beddings differ from classical ones in terms of the 175

expected cosine similarity for a randomly chosen 176

pair of words? 177

To analyze decontextualized embeddings, we 178

computed the cosine similarity for all ≈ 6.4B word 179

pairs among 80, 000 distinct WordNet (Fellbaum, 180

1998) words. The raw similarity distributions re- 181

vealed that many LLMs exhibit higher baseline 182

similarities than classical models (refer appendix 183

for the figure 5). 184
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Figure 1: The Mean-Centered Embedding distribution
of cosine similarities between all pairs of words.

To determine if this was a global shift or an185

intrinsic property, we performed mean-centering186

on unit-normalized embeddings (figure 1), reveal-187

ing fundamental structural differences. For most188

LLMs (e.g., LLaMA, Mistral), this adjustment re-189

duced but did not eliminate similarity inflation, sug-190

gesting it is an inherent characteristic. In contrast,191

mean-centering brought the mean similarity for192

GPT-ADA and PaLM near zero, aligning their dis-193

tributions with classical models, while unexpect-194

edly increasing inflation for SBERT, Word2Vec,195

and GloVe. The LLMs whose distributions cen-196

tered near zero (GPT-ADA and PaLM) also demon-197

strated stronger performance and alignment with198

human expectations, indicating that embedding199

space structure is a key differentiator tied to model200

performance and interpretability.201

Finding-1: LLMs show higher baseline similari-202

ties than classical embeddings, but only some (like203

GPT-ADA and PaLM) align with human expecta-204

tions after mean-centering.205

RQ-2: Do LLM-based decontextualized embed-206

dings capture similarity better than classical ones?207

We evaluated word-pair similarity on the BATS208

dataset (Gladkova et al., 2016), categorizing pairs209

as Morphologically Related, Semantically Related,210

or Uncategorized (random pairs). The uncatego-211

rized pairs are created using WordNet. Figure 2212

shows the distribution of cosine similarities for213

these categories across 11 embedding models.214

Figure 2 shows that Word2vec, GloVe, SBERT,215

and PaLM exhibit the greatest separation between216

related pairs (both morphologically and semanti- 217

cally related) and unrelated pairs, which is the de- 218

sired outcome. Other models, especially LLMs like 219

OpenELM and GPT-ADA struggle to differentiate 220

between categories, finding all more similar. In 221

contrast, classical models performed better at dis- 222

tinguishing morphological categories but did not 223

perform well on semantic categories, as their distri- 224

butions resembled those of random word pairs. 225

Finding-2: LLMs are not always better than 226

classical models in capturing semantic similarity. 227

PaLM (LLM) and SBERT (Classical) can effec- 228

tively distinguish semantically related and unre- 229

lated pairs, whereas most other models (both LLM- 230

based and Classical) struggle with the same. 231

3.2 Analogy Task Based Comparison 232

RQ-3: Do LLMs improve the performance of de- 233

contextualized word embeddings on analogy tasks? 234

235To answer this question, we followed the origi- 236

nal word analogy task format set out by Mikolov 237

et al. (2013b) and comprehensively evaluated the 238

eleven embedding models on the word pairs from 239

the BATS dataset. For words a, b, c, d, analogy 240

a : b :: c : d and embedding function f(x), it is 241

expected that f(b) − f(a) + f(c) ≈ f(d), which 242

we will refer to as the 3CosAdd method. Other 243

approaches have been introduced for this task, in- 244

cluding Pair Distance and 3CosMul (introduced 245

by Levy and Goldberg (2014)). Later, Drozd et al. 246

(2016) introduced new methods called 3CosAvg 247

and LRCos, which achieved excellent performance 248

in their experiments on classical models. For a de- 249

tailed explanation, refer to appendix (Sec. A.2). 250

Method 3CosAdd 3CosAvg 3CosMul LRCos PairD
GPT-ada 0.4123 0.4465 0.4238 0.3750 0.2319
LLaMA2 0.1449 0.2000 0.1454 0.1310 0.0526
LLaMA3 0.0496 0.0590 0.0480 0.0530 0.0018

Mistral 0.0494 0.0620 0.0476 0.0635 0.0025
OLMo 0.0525 0.0645 0.0499 0.0665 0.0018

OpenELM 0.0165 0.0350 0.0141 0.0135 0.0020
PaLM 0.3981 0.4575 0.4171 0.5340 0.1929

SBERT 0.2431 0.2605 0.2667 0.4870 0.0856
SimCSE 0.0248 0.0385 0.0217 0.0315 0.0012

USE 0.1739 0.2120 0.1873 0.4500 0.0251
LASER 0.2271 0.2600 0.2369 0.2840 0.1214

GloVe 0.3481 0.4290 0.3452 0.4875 0.1523
Word2Vec 0.3229 0.3855 0.3096 0.4605 0.1203

Table 1: Performance on BATS Analogy. Blue denotes
the best accuracy; black denotes the second best.

For all methods, the 3 words used as the input 251

for the analogy were excluded from the answers, 252

and top-1 accuracy was measured. For fairness, the 253

same Wordnet corpus from section 3.1 was used 254

for each model, and the arithmetic results for each 255
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Figure 2: Violin box plot showing the distribution of cosine similarities for random, morphologically related, and
semantically related pairs of words for each model.

method were used to find the nearest neighbor in256

the corpus. These results are shown in Table 1, with257

the best-performing embedding for each method258

shown in blue. Both ADA and PaLM performed259

very well, while OpenELM performed the worst in260

the LLM category. Among classical embeddings,261

SBERT and LASER performed quite well, often262

ranked higher than all open-source LLMs. Full263

information about each model’s accuracy in each264

category can be found in the appendix (Table 4).265

Finding-3: ADA and PALM outperform clas-266

sical models on word analogy tasks. However,267

SBERT, GloVe, and Word2Vec often rank higher268

than open-source LLMs, indicating that smaller269

models can be alternatives resource efficient270

3.3 Similarity Correlation Analysis271

RQ-4: Do LLMs produce very different decontextu-272

alized word embeddings than the classical models?273

To further investigate whether LLMs offer some-274

thing new/very different in terms of decontextu-275

alized embeddings, we computed statistical mea-276

sures of correlation between each pair of models277

(both LLMs and Classical) in terms of their actual278

word embeddings. First, the cosine similarities of279

all pairs of words from the Wordnet corpus (see280

section 3.1) were computed for each embedding281

model. The correlation between two different em-282

bedding models was computed based on word pair283

similarities. Figure 3 shows the Spearman’s ρ be-284

tween each pair of embedding models (Kendall’s τ 285

correlation is reported in the appendix Figure 7 due 286

to lack of space). Interestingly, these results show 287

that the LLaMA family and Mistral are the most 288

semantically similar, while SimCSE and LLaMA3 289

are the most different. Also, SimCSE and SBERT 290

showed decent correlations with both ADA/PaLM. 291

To ensure a fair comparison, Word2Vec and GloVe 292

models were excluded due to their significantly 293

different vocabulary sizes. 294

Figure 3: Spearman’s ρ for each model pair, calculated
from 2.1B randomly selected word pairs out of a total
of 6.4B word pairs from the Wordnet (RQ1) corpus.

In another effort, we investigated how both types 295

of models (LLMs and Classical) agreed/disagreed 296

with each other regarding the similarity ranks of 297
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Figure 4: Mean-Variance plot of the difference in Word Pair Similarity Ranks for the BATS corpus. For all other
model comparisons refer to appendix figure 6.

specifically related word pairs. More specifically,298

we computed the average difference of similarity299

ranks between pairs of words with three types of re-300

lations, morphological/semantic/random, for each301

pair of embedding models, where the rank is de-302

termined from the collection of all words in the303

BATS corpus (section 3.1). For example, if the 5th304

closest word to “bad” according to ADA-002’s em-305

bedding was “worst”, while “worst” was the 10th306

nearest word to “bad” according to LLaMA, we307

would compute a difference of −5 for that word308

pair while comparing ADA vs. LLaMA. If two309

models mostly tend to agree on the similarity ranks310

of word pairs, we would expect an average value311

of 0 with a small variance.312

Figure 4 presents these results for SBERT/ADA313

and ADA/PALM pairs (Figure 6 shows all pairs in314

the appendix due to lack of space), revealing that315

all models—except OpenELM—agree reasonably316

well on the similarity of words related by morphol-317

ogy. Notably, some model pairs such as PaLM-318

ADA, LLaMA3-LASER, and SBERT-ADA/PaLM319

exhibit greater agreement. It is surprising that320

ADA, PaLM, and SBERT demonstrate the highest321

levels of agreement despite substantial differences322

in model size and semantic space, suggesting that323

SBERT has a semantic space very similar to those324

of LLMs like ADA and PaLM. In contrast, there325

were significantly more disagreements among the326

models for semantic relations.327

Finding-4: Two LLMs, PaLM and ADA, tended328

to agree with each other in the decontextualized set-329

ting, additionally yielding a high correlation with330

SBERT, suggesting that SBERT is still an efficient331

choice when resources are constrained.332

4 Comparing Contextual Embeddings:333

LLM vs. Classical334

In the contextualized setting, we compare LLM335

vs. Classical word/sentence embeddings across336

nine different variational tasks. This way allows us337

to examine how context influences different embed-338

ding models across various linguistic scenarios1. 339

The variational tasks include: 340

4.1 Variational Tasks 341

• Lexical Variations: 342

– Synonym Task: Generate sentence S1 contain- 343

ing an anchor word. Create S2 by replacing a 344

word before the anchor word in S1 with its syn- 345

onym. Compare the anchor word embeddings 346

from both sentences. 347

– Antonym Task: Similar to the Synonym Task, 348

but replace the word with its antonym. 349

– Negation Task: Generate S2 by adding a nega- 350

tion before the anchor word in S1. Compare 351

the anchor word embeddings. 352

• Tone Variations: First, Generate S1 with an 353

anchor word, and then - 354

– Exclamation Task: Create four exclamatory 355

variations of S1 with the anchor word. Com- 356

pare the anchor word embeddings. 357

– Question Formation Task: Create four in- 358

terrogative sentences based on S1 containing 359

the anchor word. Compare the anchor word 360

embeddings. 361

– Active-Passive Task: Generate S1 in active 362

voice. Create four passive voice versions of 363

S1, keeping the anchor word. Compare the 364

anchor word embeddings. 365

• Semantic Variations: 366

– Jumbling Task: Generate S1 with an anchor 367

word. Create the following sentences by: 368

- S2: Shuffling words before the anchor word. 369

- S3: Shuffling the entire sentence. 370

- S4 and S5: Exchanging one or two words 371

around the anchor word. 372

1Contextualized embeddings are generated by processing
sentences from the nine contextual tasks and extracting the
embeddings corresponding to the anchor words. Due to API
limitations, closed-source models like GPT-ADA-002 and
PaLM2-Gecko were excluded from the contextualized anal-
ysis. Similarly, classical models such as USE and LASER,
which do not readily provide contextualized word embeddings,
were omitted from this part of the study.
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Finally, compare the anchor word embeddings.373

– Paraphrasing Task: Generate S1 with an an-374

chor word. Create four paraphrases of S1, all375

containing the anchor word. Compare the an-376

chor word embeddings across these sentences.377

– Polysemy Task: Generate five sentences using378

the anchor word in different senses (polysemy).379

Compare the embeddings to assess how mod-380

els capture multiple meanings.381

Due to LLMs’ causal attention mechanism, we382

applied all variations before the anchor word, ex-383

cept for jumbling. Since causal attention computes384

embeddings based on preceding words, this en-385

sures the perturbations influence the anchor word’s386

embedding. Next, for each variational task, we387

compute 3 different similarity scores, as follows.388

1) Anchor Inter-Contextual Variance: Here,389

we measure the variance of anchor word embed-390

dings across different contexts. First, we extracted391

the embedding of each anchor word from all gener-392

ated sentences. We then designated the embedding393

from the first sentence as the reference embedding.394

Subsequently, we computed the cosine angle be-395

tween this reference embedding and the anchor396

word embeddings from the remaining sentences.397

The average of these cosine angles quantifies how398

differently the model represents the anchor word399

across various contexts.400

2) Anchor Contextual Deviation: Here, we401

compute the cosine angle between the standalone402

(decontextualized) anchor word embedding and the403

anchor word contextual embeddings extracted from404

each generated sentence. We then averaged these405

cosine angles to obtain a measure of how much406

the contextualized representations deviate from the407

decontextualized ones.408

3) Sentence Meaning Variance: Here, we mea-409

sure how the sentences overall are semantically410

similar/different by computing the cosine angle be-411

tween them. The average cosine angle between two412

sentence embeddings is reported.413

4.2 Dataset Generation414

To facilitate our contextual analyses, we created415

a synthetic dataset by randomly sampling 1, 200416

anchor words (nouns, verbs, or adjectives) from417

WordNet. We then used the Claude-sonnet 3.5418

model (Anthropic, 2024) to generate sentences for419

each variational task based on these words, ensur-420

ing a diverse and comprehensive set of contextual421

scenarios. The prompts to generate the dataset are422

shown in the appendix section B.2.423

For lexical variational tasks, we generated only 424

two sentences (one reference and one variational) 425

for each anchor word, as have a very high word 426

overlap between sentences. For the remaining six 427

categories, we created five sentences for each an- 428

chor word (refer to Section 4.1). Each set of sen- 429

tences shared the same anchor word, but in differ- 430

ent contexts (see examples in Appendix 6). 431

To compute cosine angles, we extracted three 432

types of embeddings: 1) Decontextualized anchor 433

word embeddings from each model. 2) Contextu- 434

alized anchor word embeddings (token-level an- 435

chor word embedding from the last hidden layer of 436

each model), and 3) Sentence embeddings (over- 437

all embedding for each generated sentence). This 438

multi-faceted approach allows us to compare word 439

representations in both contextualized and decon- 440

textualized settings across different models and 441

variational tasks, which not only provides a nu- 442

anced understanding of each model’s strengths and 443

limitations but can serve as predictive indicators 444

for downstream model performance, offering ac- 445

tionable guidance for efficient and cost-effective 446

model selection and evaluation. 447

4.3 Research Questions and Findings 448

RQ-5: How do LLMs differ from classical embed- 449

dings for single lexicon variations? 450

To examine how models handle single lexicon 451

variations, we analyze the Synonym, Antonym, and 452

Negation variational tasks and compare cosine an- 453

gle (see Table 2). These tasks modify sentences by 454

replacing a word with its synonym or antonym or 455

by introducing a negation before the anchor word, 456

which affects contextual understanding. 457

For all variations (Synonym, Antonym, and Nega- 458

tion), we expect a high value for Anchor Contex- 459

tual Deviation (i.e., contextual word embeddings 460

should be somewhat different from the correspond- 461

ing decontextualized ones), and found LLaMA2 462

excelling in this aspect. 463

For synonym variations, we expect a low value 464

for Anchor Inter-contextual Variance and Sentence 465

Meaning Variance, as the overall meanings are 466

typically unaltered. Our experiments aligns with 467

these expectation, with the classical model SimCSE 468

showcasing the lowest cosine angle (low variance) 469

in the inter-contextual setting. For antonyms and 470

negations, we anticipated greater variance due to 471

their opposite meanings. However, as shown in 472

Table 2, none of the models exhibited the expected 473

high variance, likely because high word overlap 474
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Lexical Synonym Antonym Negation

Variations Inter. ↓ Deviation ↑ Sim. ↓ Inter. ↑ Deviation ↑ Sim. ↑ Inter. ↑ Deviation ↑ Sim. ↑

SBert 10.74 45.69 18.13 18.45 46.64 27.21 24.41 47.53 38.48
SimCSE 9.87 47.77 9.39 22.33 49.07 21.00 29.12 50.92 26.75

LLaMA3 15.26 69.41 12.40 22.89 67.79 17.04 30.42 69.74 21.84
LLaMA2 15.21 81.99 12.94 22.23 78.15 16.76 28.93 80.58 22.80
Mistral 15.14 60.13 11.15 22.95 59.40 14.87 28.77 59.55 19.70
OLMo 16.51 58.62 13.78 25.10 57.37 18.66 31.51 57.26 24.50
OpenELM 10.33 68.23 8.58 16.89 67.90 9.88 20.18 68.41 13.01

Tone Exclamatory Questionnaire Active-Passive

Variations Inter. ↓ Deviation ↑ Sim. ↓ Inter. ↓ Deviation ↑ Sim. ↓ Inter. ↓ Deviation ↑ Sim. ↓

SBert 23.81 44.89 38.61 21.28 45.05 33.01 20.24 44.76 25.12
SimCSE 24.52 47.64 27.00 21.75 47.19 21.74 18.13 47.53 15.51

LLaMA3 38.66 64.76 30.34 39.53 63.22 30.45 43.65 65.80 27.09
LLaMA2 39.60 71.21 30.78 38.87 69.50 29.46 45.82 73.90 27.94
Mistral 35.80 55.68 27.71 36.65 56.21 26.74 41.00 57.29 24.01
OLMo 42.85 54.74 34.54 44.01 54.96 33.06 46.85 56.60 31.10
OpenELM 27.54 67.04 19.50 27.99 67.10 17.39 29.65 66.74 15.53

Semantic Polysemy Paraphrase Jumbling

Variations Inter. ↑ Deviation ↑ Sim.↑ Inter. ↓ Deviation ↑ Sim. ↓ Inter. ↑ Deviation ↑ Sim. ↑

SBert 46.33 56.38 75.49 26.05 45.11 42.59 17.41 51.40 19.45
SimCSE 54.62 58.59 57.81 24.99 47.98 26.16 17.56 51.63 15.03

LLaMA3 55.64 78.97 52.49 39.22 65.20 27.17 52.86 73.19 38.32
LLaMA2 59.51 88.18 48.16 40.61 73.40 26.44 56.75 73.38 51.89
Mistral 58.60 71.09 41.95 37.48 57.18 25.88 42.68 63.39 27.91
OLMo 63.58 67.90 55.07 43.18 55.83 31.16 47.95 60.04 34.68
OpenELM 51.13 71.12 28.77 28.41 67.13 20.05 29.65 66.74 15.53

Table 2: Comparison of different models across various tasks in the Contextualized Evaluation setting. The values
represented are the Average Cosine Angle. Arrows (↑↓) indicate expected behavior: ↑ suggests a lower cosine angle
is desirable, and ↓ is the opposite. The lower the angle, the higher the cosine similarity. Here, ‘Inter.’ represents
Anchor Inter-Contextual Variance, ‘Deviation’ represents Anchor Contextual Deviation, ‘Sim’ stands for
Sentence Meaning Variance, The best and 2nd best scores in each category are highlighted in respective colors.

between sentence pairs led models to overlook the475

single-word differences phenomenon also reported476

in (Mahajan et al., 2024; Zhang et al., 2023). Also,477

when comparing antonym to synonym tasks, all478

models showed increased angles, indicating some479

sensitivity to opposite meanings. SimCSE, in par-480

ticular, had the highest percentage change in angle481

(∼ 50%), reflecting strong antonym differentia-482

tion, while OpenELM showed a smaller change483

(∼ 15%), suggesting it may struggle more with484

antonym variations. For negation tasks, the addi-485

tion of negation words led to higher angles, indicat-486

ing a degree of sensitivity to negation, though the487

extent varied by model.488
Finding-5: In single lexicon variations,489

LLaMA2 led in Anchor Contextual Deviation. For490

Antonym and Negation tasks, OLMo had superior491

Inter-Contextual Variance, and SBERT excelled in492

Sentence Meaning Variance.493

RQ-6: How do LLMs differ from classical embed-494

dings for linguistic tone variations?495

We examine the Exclamatory, Questionnaire,496

and Active-Passive variational tasks, each involving497

five sentences per anchor word. The first sentence498

is the reference generated using the anchor word,499

while the remaining four are tailored to each cat-500

egory, sharing the anchor word in common. For 501

these tasks, wider angles are desired for Anchor 502

Contextual Deviation, but, lower angles for Anchor 503

Inter-Contextual Variance and Sentence Meaning 504

Variance (similar to the synonym task) as these are 505

just tonal variations of the reference. 506

Finding 6: For tone variations, classical mod- 507

els (SimCSE, SBERT) achieve desired low inter- 508

contextual variance for anchor words. Among 509

LLMs, OpenELM shows low sentence mean- 510

ing variance, while LLaMA models (especially 511

LLaMA2) excel at anchor contextual deviation. 512

RQ-7: How do LLMs differ from classical embed- 513

dings for overall semantic variations? 514

We computed the cosine angles across all three 515

fronts (Inter-Contextual Variance, Anchor Contex- 516

tual Deviation, and Sentence Meaning Variance) 517

for the 3 variational tasks: Jumbling, Paraphrasing, 518

and Polysemy. In all these tasks, wider angles are 519

desired for all 3 measures across all 3 tasks, with 520

the only expectation that lower angles are desired 521

for Anchor Inter-Contextual Variance and Sentence 522

Meaning Variance in the case of Paraphrasing task. 523

Consistent with previous findings, LLaMA2 524

achieved the highest Anchor Contextual Deviation 525
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Model Sbert SimCSE LlaMA2-7b LlaMA3-8b Mistral-7b OLMo-7b OpenELM-3B
ARC-e - - 84.0 92.4 90.8 65.4 59.89
BoolQ - - 86.1 87.5 89.3 74.4 67.4
MMLU - - 46.2 66.6 64.0 40.5 26.76
PIQA - - 57.8 77.2 80.6 78.4 78.24
Clustering 42.35 29.04 45.24 46.45 54.93 32.0 18.71
Reranking 58.04 46.47 57.38 59.68 50.15 33.91 37.0
STS 78.9 74.33 83.73 83.58 84.77 27.04 38.31
Summarization 30.81 31.15 28.49 30.94 36.32 20.83 18.71

Table 3: Model Evaluation Across Various downstream tasks. The extended table can found in appendix table 5

for all tasks, as seen in Table 2. In fact, LLaMA2526

performed the best across all three variance mea-527

sures for the Jumbling task, suggesting its superior528

capability in capturing word order. All models529

demonstrate somewhat high Inter-Contextual Vari-530

ance for polysemous word context (a desired be-531

havior), with OLMo performing particularly well,532

suggesting it is adept at detecting polysemy. Fi-533

nally, results were mixed for the paraphrasing task.534

Finding-7: LLaMA2 is best for word order (Jum-535

bling task). For Polysemy, classical models lead in536

sentence-level similarity, while LLMs like OLMo537

are better at token-level disambiguation, revealing538

a trade-off. Paraphrasing results were mixed.539

5 Discussions and Final Words540

In this paper, we compared word/sentence embed-541

dings from 7 LLMs and 6 classical models (total542

13) in both contextualized and decontextualized543

settings. In the decontextualized setting, we used544

WordNet and the BATS dataset to create a cor-545

pus of 80,000 unique words and 6.4 billion word546

pairs. Our results show that LLM-based models547

PaLM and ADA performed the best on word anal-548

ogy tasks, surprisingly aligning with SBERT, sug-549

gesting SBERT as a resource-efficient alternative.550

Mean-centering allowed models like GPT-ADA551

and PaLM to produce similarity distributions closer552

to human expectations, yet other LLMs still showed553

higher baseline similarities than classical models.554

In the contextualized setting, we assessed 5555

LLMs and 2 classical models across three vari-556

ance measures: Anchor Inter-Contextual Variance,557

Anchor Contextual Deviation, and Sentence Mean-558

ing Variance across 9 variational tasks. We found559

that LLMs (especially LLaMA2) excel in Anchor560

Contextual Deviation across all contexts, demon-561

strating superior contextualized token-level anal-562

ysis. Conversely, classical models (SimCSE and563

SBERT) outperformed many LLMs in terms of Sen-564

tence Meaning Variance for lexicon variation and565

Polysemy tasks, underscoring their continued rele-566

vance. Interestingly, OLMo achieved superior An-567

chor Inter-Contextual Variance in Antonym, Nega- 568

tion, and Polysemy tasks, demonstrating its superi- 569

ority in properly contextualizing word embeddings 570

in flipped-meaning scenarios. 571

5.1 Implications and Future Use 572

• Accuracy-Interpretability Dilemma: Our anal- 573

ysis quantifies model interpretability by measur- 574

ing alignment with human expectations. For in- 575

stance, in Antonym and Negation tasks, models 576

like OLMo and SBERT exhibit high variance, 577

correctly capturing the semantic shift and thus 578

appearing more "interpretable." However, this 579

desirable behavior doesn’t always correlate with 580

top performance on all benchmarks. We hypoth- 581

esize this dilemma stems from model training: 582

LLMs, optimized for generation on vast datasets, 583

can over-generalize, leading to the inflated simi- 584

larity scores we observed in our decontextualized 585

analysis. This tendency harms fine-grained in- 586

terpretability, creating a trade-off where a model 587

might be accurate on broad similarity tasks but 588

fail to make intuitive distinctions in practice. This 589

suggests that relying solely on leaderboard scores 590

can be misleading, and future work should aim to 591

develop evaluation suites that reward both accu- 592

racy and interpretable, human-aligned reasoning. 593

• Guidance for Model Selection: Our findings 594

offer actionable guidance for practitioners. The 595

superiority of classical models like SimCSE in 596

certain contextual tasks can likely be attributed 597

to their task-specific contrastive training, which 598

contrasts with the broader generative objectives 599

of LLMs. This distinction is crucial for model 600

selection. More broadly, our criteria can predict 601

success on complex downstream tasks (see Ta- 602

ble 3). The balanced performance of Mistral and 603

LLaMA3 suggests that evaluating fundamental 604

properties like inter-contextual variation—a di- 605

rect result of a model’s training paradigm—is 606

an efficient way to predict its suitability for ad- 607

vanced applications. While these models are 608

promising, further large-scale studies are needed. 609
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6 Limitations610

Despite providing a comprehensive comparison be-611

tween classical embedding models and Large Lan-612

guage Models (LLMs) in both decontextualized613

and contextualized settings, our study has several614

limitations. First, due to computational constraints615

and API restrictions, we were unable to include616

some closed-source models and larger LLMs in617

the contextualized embedding analysis, which may618

limit the generalizability of our findings across all619

state-of-the-art models. Second, our evaluation fo-620

cuses solely on the English language and uses syn-621

thetic sentences generated by the Claude-Sonnet622

model, which may not capture the full diversity623

and complexity of natural language in real-world624

contexts. Third, while we explored a range of lin-625

guistic tasks, this represents only a subset of the626

wide spectrum of linguistic evaluations that could627

be incorporated into future extensions of this frame-628

work.629

Moreover, numerous works (Linzen, 2016;630

Fournier et al., 2020) have highlighted issues with631

using the standard analogy task to determine if632

semantic information is encoded in word embed-633

dings. Therefore, we have refrained from making634

claims that one embedding is inherently "better"635

than another. Additionally, our reliance on cosine636

similarity as the primary metric assumes it ade-637

quately reflects semantic similarity between em-638

bedding vectors. While it is a popular choice in639

NLP literature, cosine similarity has inherent lim-640

itations, and our findings are constrained by this641

methodological assumption.642
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A Decontextualized Evaluation Setting877

A.1 Word-Pair Similarity Comparison878

To analyze decontextualized embeddings, we com-879

puted the cosine similarity for all ≈ 6.4B word880

pairs among 80, 000 distinct WordNet (Fellbaum, 881

1998) words. The raw similarity distributions (re- 882

fer figure 5) revealed clear differences in latent 883

semantic spacing between model types. Classical 884

static embeddings such as Word2Vec and GloVe, 885

as well as transformer-based models like SBERT 886

and USE, exhibited left-skewed similarity distribu- 887

tions, indicating lower similarity scores for random 888

word pairs (see figure 5. In contrast, LLMs such as 889

OpenELM and the LLaMA family showed higher 890

overall similarity scores, resulting in right-skewed 891

distributions. Due to vocabulary size constraints, 892

Word2Vec and GloVe covered only about 50,000 893

and 60,000 words, respectively, so comparisons for 894

these models were performed on smaller subsets 895

Figure 5: The distribution of cosine similarities between
all pairs of words for each model.

A.2 Analogy-Task Based Comparison 896

Here we presented the exhaustive list of model ac- 897

curacy on various evaluation methods of the Anal- 898

ogy task. See Table 4 for a more granular descrip- 899

tion of the performance of each model on specific 900

categories of BATS. Here is the description of the 901

Metric we used to evaluate the analogy task: 902

1. 3CosAdd: 903

The analogy a : b :: c : d is solved by comput- 904

ing f(b) − f(a) + f(c) ≈ f(d). For exam- 905

ple, in the analogy "king:man::queen:woman", 906

the equation becomes f(man) − f(king) + 907

f(queen) ≈ f(woman). 908

2. 3CosAvg: 909

This extends 3CosAdd by averaging the trans- 910
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formations over multiple analogy pairs. For911

"king:man::queen:woman", we take the aver-912

age of multiple such pairs to improve accu-913

racy:914

f(d) ≈ avg(f(b)− f(a) + f(c)).915

3. 3CosMul:916

Similar to 3CosAdd but instead of adding, it917

multiplies cosine similarities:918

argmaxd
cos(f(b), f(d)) · cos(f(c), f(d))

cos(f(a), f(d)) + ϵ
.919

4. LRCos:920

A method using logistic regression to classify921

whether the analogy holds, using distances922

between embeddings.923

5. PairDistance:924

Measures the cosine distance between two925

pairs of words (a, b) and (c, d) to check926

how similar their relationship is. For927

"king:queen", the cosine distance is compared928

with "man:woman".929

6. SimilarToAny:930

Checks if d is similar to any of the words in the931

analogy (a, b, c). For "king:man::queen:?",932

it checks if f(d) is similar to any of "king",933

"man", or "queen".934

7. SimilarToB:935

Checks if d is most similar to b in the analogy.936

For "king:man::queen:?", the method finds the937

word most similar to "man".938

Below Table 6 showcase the extensive compari-939

son of all the models on analogy task using various940

evaluation metrics.941

The following sections in the appendix are orga-942

nized as follows: Section A.2.1 presents the rank-943

ing comparison of models on the Word Analogy944

Task. Section A.3 provides Kendall’s τ and Spear-945

man’s ρ correlations for model pairs on the word946

similarity task. Section B.1 gives examples of gen-947

erated sentences for anchor words in contextualized948

evaluation. Section B.2 describes the prompting de-949

sign for generating samples, and Section C presents950

the cosine similarity distribution across all evalua-951

tion metrics.952
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Model Analogy Method 1. Inflectional
Morphology

2. Derivational
Morphology

3. Encyclopedic
Semantics

4. Lexicographic
Semantics

GPT3-Ada

3CosAdd 0.761 0.677 0.115 0.097
3CosAvg 0.802 0.734 0.148 0.102
3CosMul 0.776 0.697 0.122 0.100
LRCos 0.606 0.482 0.280 0.132
PairDistance 0.546 0.323 0.052 0.006
SimilarToAny 0.155 0.044 0.005 0.029
SimilarToB 0.276 0.134 0.038 0.090

LLaMA2

3CosAdd 0.230 0.271 0.055 0.023
3CosAvg 0.326 0.362 0.086 0.026
3CosMul 0.230 0.276 0.053 0.022
LRCos 0.150 0.148 0.176 0.050
PairDistance 0.066 0.130 0.013 0.001
SimilarToAny 0.065 0.043 0.037 0.011
SimilarToB 0.130 0.118 0.054 0.026

LLaMA3

3CosAdd 0.079 0.099 0.011 0.009
3CosAvg 0.096 0.114 0.016 0.010
3CosMul 0.076 0.097 0.010 0.009
LRCos 0.044 0.058 0.104 0.006
PairDistance 0.001 0.004 0.000 0.002
SimilarToAny 0.053 0.059 0.010 0.008
SimilarToB 0.100 0.112 0.018 0.016

Mistral

3CosAdd 0.084 0.093 0.010 0.010
3CosAvg 0.102 0.116 0.018 0.012
3CosMul 0.082 0.090 0.010 0.009
LRCos 0.066 0.068 0.110 0.010
PairDistance 0.001 0.006 0.000 0.003
SimilarToAny 0.062 0.063 0.008 0.009
SimilarToB 0.108 0.112 0.014 0.012

OLMo

3CosAdd 0.094 0.093 0.014 0.009
3CosAvg 0.116 0.106 0.022 0.014
3CosMul 0.090 0.089 0.012 0.009
LRCos 0.074 0.078 0.100 0.014
PairDistance 0.001 0.004 0.000 0.002
SimilarToAny 0.065 0.057 0.012 0.008
SimilarToB 0.116 0.108 0.022 0.016

OpenELM

3CosAdd 0.030 0.031 0.003 0.004
3CosAvg 0.070 0.052 0.010 0.008
3CosMul 0.025 0.027 0.002 0.003
LRCos 0.002 0.002 0.046 0.004
PairDistance 0.003 0.003 0.000 0.002
SimilarToAny 0.040 0.035 0.007 0.005
SimilarToB 0.066 0.054 0.012 0.008

PaLM

3CosAdd 0.743 0.609 0.118 0.122
3CosAvg 0.794 0.668 0.232 0.136
3CosMul 0.768 0.648 0.128 0.124
LRCos 0.780 0.714 0.404 0.238
PairDistance 0.466 0.249 0.048 0.008
SimilarToAny 0.165 0.027 0.011 0.035
SimilarToB 0.270 0.082 0.030 0.108
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Model Analogy Method 1. Inflectional
Morphology

2. Derivational
Morphology

3. Encyclopedic
Semantics

4. Lexicographic
Semantics

SBERT

3CosAdd 0.461 0.393 0.046 0.073
3CosAvg 0.474 0.418 0.058 0.092
3CosMul 0.506 0.424 0.062 0.074
LRCos 0.808 0.642 0.270 0.228
PairDistance 0.135 0.184 0.021 0.003
SimilarToAny 0.178 0.065 0.003 0.019
SimilarToB 0.302 0.154 0.020 0.088

SimCSE

3CosAdd 0.040 0.045 0.008 0.007
3CosAvg 0.058 0.068 0.016 0.012
3CosMul 0.035 0.039 0.007 0.006
LRCos 0.024 0.026 0.070 0.006
PairDistance 0.001 0.002 0.001 0.002
SimilarToAny 0.036 0.037 0.010 0.007
SimilarToB 0.056 0.068 0.014 0.012

USE

3CosAdd 0.397 0.156 0.039 0.103
3CosAvg 0.442 0.190 0.084 0.132
3CosMul 0.436 0.165 0.049 0.100
LRCos 0.722 0.412 0.396 0.270
PairDistance 0.076 0.012 0.008 0.005
SimilarToAny 0.101 0.032 0.006 0.035
SimilarToB 0.204 0.098 0.026 0.098

LASER

3CosAdd 0.431 0.434 0.022 0.022
3CosAvg 0.484 0.506 0.030 0.020
3CosMul 0.448 0.454 0.023 0.023
LRCos 0.510 0.482 0.116 0.028
PairDistance 0.230 0.245 0.009 0.003
SimilarToAny 0.087 0.027 0.004 0.007
SimilarToB 0.198 0.072 0.012 0.020

GloVe

3CosAdd 0.720 0.351 0.262 0.060
3CosAvg 0.764 0.446 0.430 0.076
3CosMul 0.770 0.366 0.228 0.017
LRCos 0.880 0.544 0.440 0.086
PairDistance 0.395 0.089 0.122 0.003
SimilarToAny 0.233 0.059 0.089 0.051
SimilarToB 0.324 0.124 0.132 0.062

Word2Vec

3CosAdd 0.775 0.319 0.137 0.062
3CosAvg 0.828 0.376 0.266 0.072
3CosMul 0.804 0.329 0.092 0.014
LRCos 0.932 0.600 0.224 0.086
PairDistance 0.355 0.054 0.070 0.003
SimilarToAny 0.254 0.094 0.074 0.052
SimilarToB 0.394 0.196 0.068 0.066

Table 4: BATS performance across categories with methods.
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A.2.1 Word Analogy Task Ranking 953

Figure 6: For each model, the cosine similarity of related words was found and ranked according to all pairs of
words. Here, the difference in ranking between model pairs for certain BATS categories is shown.(Continued)
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Figure 6: For each model, the cosine similarity of related words was found and ranked according to all pairs of
words. Here, the difference in ranking between model pairs for certain BATS categories is shown. (Continued)
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Figure 6: For each model, the cosine similarity of related words was found and ranked according to all pairs of
words. Here, the difference in ranking between model pairs for certain BATS categories is shown.
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A.3 Similarity Correlation Analysis954

(a) Kendal τ

(b) Spearman ρ

Figure 7: Correlation coefficients for each pair of models, found using a large dataset of pairs of words.
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B Contextualized Evaluation Setting 955

To contextualize our findings, Table 5 presents a holistic evaluation of the models on a wide variety of 956

benchmarks that assess both embedding quality and general reasoning capabilities. The embedding quality 957

were reported on MTEB Leaderboard (Muennighoff et al., 2022; MTEB) and reasoning benchmark were 958

reported by (Gu et al., 2024). We also ran our own evaluations for OLMo and OpenELM on the MTEB 959

dataset where performances were not readily available. This broad benchmark assessment is crucial, as it 960

validates that our proposed criteria can serve as predictive indicators for a model’s success on complex 961

downstream tasks. For instance, the balanced performance of models like Mistral and LLaMA3 on our 962

criteria reflects their strong, adaptable results on the advanced reasoning and summarization benchmarks 963

shown in the table. This connection underscores that fundamental characteristics, such as the balance 964

between inter-contextual variation and deviation, are not just theoretical but are indicative of a model’s 965

practical suitability for sophisticated applications.

Model Sbert SimCSE LlaMA2-7b LlaMA3-8b Mistral-7b OLMo-7b OpenELM-3B
ARC-c - - 54.2 79.3 78.6 48.5 35.58
ARC-e - - 84.0 92.4 90.8 65.4 59.89
BoolQ - - 86.1 87.5 89.3 74.4 67.4
HellaSwag - - 78.9 81.8 83.0 76.4 72.44
MMLU - - 46.2 66.6 64.0 40.5 26.76
PIQA - - 57.8 77.2 80.6 78.4 78.24
SIQA - - 77.5 81.6 82.8 78.5 92.7
WinoGrande - - 71.7 76.2 77.9 67.9 65.51
Clustering 42.35 29.04 45.24 46.45 54.93 32.0 18.71
Pair classification 82.37 70.33 88.03 87.8 88.59 49.32 56.71
Reranking 58.04 46.47 57.38 59.68 50.15 33.91 37.0
STS 78.9 74.33 83.73 83.58 84.77 27.04 38.31
Summarization 30.81 31.15 28.49 30.94 36.32 20.83 18.71

Table 5: Model Evaluation Results Across Various Tasks. Blue is top scorer and black is second best.

966

B.1 Synthetic Data Generation Samples 967
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Task Examples

Synonym

Anchor Word: adored
Word Replaced: deeply
Word Replaced with: profoundly
Sentence-1: The actress was deeply adored by her fans for her talent and

humility.
Sentence-2: The actress was profoundly adored by her fans for her talent and

humility.

Antonym

Anchor Word: adored
Word Replaced: cherished
Word Replaced with: despised
Sentence-1: The brilliant sunset over the ocean was a sight everyone on the

beach deeply cherished and adored.
Sentence-2: The brilliant sunset over the ocean was a sight everyone on the

beach deeply despised and adored.

Negation

Anchor Word: adored
Negation Added: not adored
Sentence-1: The famous musician was adored by millions of fans worldwide.
Sentence-2: The famous musician was not adored by millions of fans world-

wide.

Jumbling

Anchor Word: adored
Sentence-1: The famous actor was adored by millions of fans worldwide for

his charismatic performances on the silver screen.
Sentence-2: was the famous actor adored by millions of fans worldwide for

his charismatic performances on the silver screen.
Sentence-3: on millions performances for the was silver screen. his adored

charismatic actor of the by fans famous worldwide

Sentence-4: the famous worldwide was adored by millions of fans actor for
his charismatic performances on the silver screen.

Sentence-5: the the charismatic was adored by millions of fans worldwide for
his actor performances on famous silver screen.

Active-Passive

Anchor Word: adored
Sentence-1: The talented musician was adored by fans for her soulful perfor-

mances.
Sentence-2: Fans adored the talented musician for her soulful performances.
Sentence-3: Soulful performances were what fans adored about the talented

musician.
Sentence-4: The musician’s soulful performances made her adored by count-

less fans.
Sentence-5: The talented musician was enthusiastically adored by fans for

delivering soulful performances.

Table 6: Task Examples (Part 1) (Continued)
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Task Examples

Paraphrase

Anchor Word: adored
Sentence-1: The famous actor was adored by millions of fans worldwide for

his charismatic performances on the silver screen.
Sentence-2: Legions of admirers cherished the renowned celebrity, who was

adored for his magnetic screen presence and captivating portray-
als.

Sentence-3: The iconic star was adored by countless devotees for his spell-
binding acting prowess and mesmerizing big screen appearances.

Sentence-4: Multitudes of enthusiasts revered the legendary performer, whose
adored on-screen personas and enthralling acting talents left an
indelible mark.

Sentence-5: The revered thespian was adored by a global fanbase for his
captivating performances and charismatic screen presence that
enthralled audiences worldwide.

Questionnaire

Anchor Word: adored
Sentence-1: The famous celebrity was adored by millions of fans worldwide.
Sentence-2: Was the famous celebrity adored by millions of fans worldwide?
Sentence-3: Did the famous celebrity was adored by millions of fans across

the globe?
Sentence-4: Were there millions of fans worldwide who adored the famous

celebrity?
Sentence-5: Has the famous celebrity been adored by a vast number of fans

globally?

Exclamation

Anchor Word: adored
Sentence-1: The adored celebrity was swarmed by fans seeking autographs

and selfies.
Sentence-2: How adored the celebrity was by the fans who swarmed them for

autographs and selfies!
Sentence-3: What an adored celebrity, to be swarmed by so many fans seeking

autographs and selfies!
Sentence-4: How the fans adored the celebrity, swarming them for autographs

and selfies!
Sentence-5: adored beyond measure, the celebrity found themselves swarmed

by fans - what a scene of autographs and selfies!

Polysemic

Anchor Word: address
Sentence-1: The CEO delivered an inspiring address to the company employ-

ees during the annual meeting.
Sentence-2: Could you please provide me with your current residential address

for our records?
Sentence-3: The computer program accessed the memory address to retrieve

the data.
Sentence-4: The speaker began her address by thanking the audience for at-

tending.
Sentence-5: Please address the envelope carefully to ensure it reaches the

correct destination.

Table 6: Task Examples (Part 2)
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B.2 Synthetic Data Generation Prompts968

B.2.1 Questionnaire969

Questionnaire Task Generation Prompt:
‘System Prompt’:
Using the anchor word, create a sentence S1 that
includes the anchor word. After generating S1,
generate four more questionnaire sentences of S1. It’s
crucial that all sentences retain the anchor word in its
original form in all sentences.

Here is an example. For a given anchor word ’forum’,
the generated S1 and S2 sentences are:
{
’sentence1’: "The online forum provides a platform
for experts to discuss emerging technologies.",
’sentence2’: "Does the online forum provide a plat-
form for experts to discuss emerging technologies?",
’anchor_word’: ’forum’
}

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’sentence3: S3,
’sentence4’: S4,
’sentence5’: S5,
’anchor_word’: anchor_word
}

User: Here is the anchor word: word. Note that, The
anchor word must appear unchanged in all sentences.

970

B.2.2 Active-Passive971

Active-Passive Task Generation Prompt:
‘System Prompt’:
Using the anchor word, create an active voice
sentence S1 that includes the anchor word. After
generating S1, generate four passive voice sentences
of S1. It’s crucial that all sentences retain the anchor
word in its original form in all the sentences.

Here is an example, for a given anchor word ’forum’,
the generated S1 and S2 sentences are:
{ ’sentence1’: "Experts frequently share their
knowledge in the online forum about emerging
technologies.",
’sentence2’: "Knowledge about emerging technolo-
gies is frequently shared by experts in the online
forum.",
’anchor_word’: ’forum’ }

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’sentence3: S3,
’sentence4’: S4,
’sentence5’: S5,
’anchor_word’: anchor_word
}

User: Here is the anchor word: word. Note that,
The anchor word must appear unchanged in all the
sentences.

972

B.3 Polysemy 973

Polysemous Pair Generation Prompting:
‘System Prompt’:
Using the anchor word, generate five sentences
that are polysemous. Note that, the anchor word
should appear in all the sentences but with different
meanings. Ensure that the polysemous anchor word is
positioned either in the middle or near the end of each
sentence.

Here is the example:
{ ’sentence1’: "The ancient Roman forum was a
bustling center of public life and political debate.",
’sentence2’: "The online forum became a heated
battleground for discussing the latest tech trends.",
’anchor_word’: ’forum’ }

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’sentence3: S3,
’sentence4’: S4,
’sentence5’: S5,
’anchor_word’: anchor_word }

User: Here is the anchor word: word.
974

B.3.1 Paraphrase 975

Paraphrase Task Generation Prompt:
‘System Prompt’:
Using the anchor word, create a sentence S1 that
includes the anchor word. After generating S1, create
four paraphrased sentences of sentence S1. All four
sentences should convey the same overall meaning as
S1. It’s crucial that all the sentences retain the anchor
word in its original form.

For a given anchor word ’forum’, the generated S1
and S2 sentences are:
{’sentence1’: "The online forum provided a platform
for experts to share their knowledge and engage in
lively discussions about emerging technologies.",
’sentence2’: "A digital meeting place, the forum
enabled specialists to disseminate their expertise
and participate in animated conversations regarding
cutting-edge innovations.",
’anchor_word’: ’forum’}

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’sentence3: S3,
’sentence4’: S4,
’sentence5’: S5,
’anchor_word’: anchor_word
}

User: Here is the anchor word: word.
976
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B.3.2 Jumbling977

Jumbling Task Data Generation:
To create the Jumbling Task dataset, we used
sentence 1 from the polysemous task dataset
as the reference sentence for the Jumbling
task. Next, using the reference sentence S1,
we generated four unique sentences by shuf-
fling the reference sentence in four different
ways:

1. S2: We first identified the location of
the anchor word and then shuffled all
the words present before the anchor
word.

2. S3: We completely shuffled the entire
sentence.

3. S4 and S5: We identified the anchor
word and then exchanged one or two
words around the anchor word, respec-
tively.

978

B.3.3 Synonym979

Synonym Pair Generation Prompting:
‘System Prompt’:
Using the anchor word, generate a sentence S1 of at
least 15 words with the anchor word placed near the
end. Next, keeping the anchor word unchanged in S2,
generate a sentence S2 with the same meaning as S1
by replacing one word (other than the anchor word)
with its synonym, ensuring that all word replacements
occur before the anchor word in S2.

"Note: Keep the anchor word unchanged in both
sentences S1 and S2." Here is an example:
For a given anchor word ’forum’, the generated S1
and S2 sentences are:
{ ’sentence1’: "Several of the questions asked by the
audience in the fast-paced forum were new to the
candidates.",
’sentence2’: "Numerous of the questions asked by the
audience in the fast-paced forum were new to the
candidates.",
’word_replaced’: ’Several’,
’word_replaced_with’: ’Numerous’,
’anchor_word’: ’forum’ }

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’word_replaced’: word,
’word_replaced_with’: new_word,
’anchor_word’: anchor_word }

User: Follow the instructions and replace a word other
than the anchor word. Here is the anchor word:{word}.
Make sure both sentences S1 and S2 have the anchor
word in it."

980

B.3.4 Negation 981

Negation Pair Generation Prompting:
‘System Prompt’:
Using the anchor word, generate a sentence S1 with
the anchor word in it. Next, generate a sentence S2
with an opposite meaning to S1 by adding a negation
word before the anchor word in S2. Make sure the
negation word is appropriate to the context of the
sentence. Also, ensure that S1 and S2 should have the
same words except for the negation word in S2.
Note: Do not modify or change the anchor word in
both sentences.

Here is an example: For a given anchor word ’forum’,
the generated S1 and S2 sentences are:
{’sentence1’: "The talented artist was adored by fans
for her captivating performances.",
’sentence2’: "The talented artist was not adored by
fans due to her underwhelming performances.",
’anchor_word’: ’adored’,
’negation_added’: ’not adored’ }

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’anchor_word’: anchor_word
’negation_added’: negation_word }

User: Here is the anchor word: word.
982

B.3.5 Antonym 983

Antonym Pair Generation Prompting:
‘System Prompt’:
Using the anchor word, generate a sentence S1 of at
least 15 words with the anchor word placed near the
end. Next, keeping the anchor word unchanged in
S2, generate a sentence S2 with an opposite meaning
to S1 by replacing one word (other than the anchor
word) with its antonym, ensuring that all word
replacements occur before the anchor word in S2.

Note: Do not modify or change the anchor word in
both sentences.
Here is an example: For a given anchor word ’forum’,
the generated S1 and S2 sentences are:
{ ’sentence1’: "Several of the questions asked by the
audience in the fast-paced forum were new to the
candidates.",
’sentence2’: "Few of the questions asked by the
audience in the fast-paced forum were new to the
candidates.",
’word_replaced’: ’Several’,
’word_replaced_with’: ’Few’ }

The output should be in the following json format:
{’sentence1: S1,
’sentence2’: S2,
’anchor_word’: anchor_word
’word_replaced’: word, ’word_replaced_with’:
new_word }

User: Here is the anchor word: word.
984

C Comparison of Models in 985

Contextualized Settings 986
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 8: Polysemy Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 9: Active-Passive Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 10: Paraphrase Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 11: Exclamatory Task comparison

27



(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 12: Questionnaire Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 13: Jumbling Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 14: Synonym Task comparison

30



(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 15: Antonym Task comparison
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(a) The distribution of cosine similarities between Anchor Inter-Contextual Variance and Anchor Contextual Deviation words.

(b) The distribution of cosine similarities between sentences in Sentence Meaning Variance.

Figure 16: Negation Task comparison
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