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Abstract

Medical imaging technologies such as MRI and CT scans offer valuable insights
into a person’s biological condition. Phenotypes derived from these images are
essential for the discovery of novel drug targets. Traditional Genome-Wide Asso-
ciation Studies (GWAS) on imaging derived phenotypes (IDPs) require laborious
manual feature annotation, extraction of disease-related phenotypes, and subse-
quent analysis of their associations with genetic variations. This approach has two
main limitations: (1) manual voxel-level annotations are time consuming and sub-
jective, particularly for intricate features; (2) these annotations are often limited to a
handful of human-definable features, overlooking the wealth of information present
in the scans. To address these limitations, we propose an alternative approach to
derive phenotypes, which we term embedding-derived phenotypes (EDPs). Our
approach consists of two steps. First, we train a self-supervised representation
learning model to transform scans into latent embeddings, eliminating the need for
manual annotations. Second, we convert these embeddings into disease-relevant
phenotypes, preserving the information that may be lost in manually derived phe-
notypes. Although there are numerous self-supervised representation learning
methods, it is not straightforward to transform the embeddings from these models
into disease-relevant phenotypes. We present two simple methods that leverage
binary labels like ICD-10 codes and demonstrate that the proposed methods iden-
tify more biologically meaningful genetic associations compared to using ICD-10
codes alone as binary traits or manually derived phenotypes.

1 Introduction

Non-invasive imaging modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI) can provide valuable information about a person’s biological state. To investigate a
specific disease or trait, researchers often define phenotypes related to the conditions and conduct
genome-wide association studies (GWAS)[17, 26] against these phenotypes to identify the genetic
architecture of the disease. For instance, in studying aneurysm, the cross-sectional area of the
aorta may be measured [15]. However, manually defining phenotypes (also known as hand-crafted
phenotypes) has several drawbacks. Firstly, expert manual annotations are costly, and for fine-grained
annotations, there is low inter-annotator agreement [2, 11, 25, 13]. e.g., in annotating multiple
sclerosis on the brain, seven experts reported an inter-expert agreement ranging from 0.66 to 0.76
of the median Dice score with the consensus [5]. Secondly, imaging-derived phenotypes are often
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Figure 1: Two step workflow to extract embedding derived phenotypes (EDPs). First, train a self-
supervised MAE on 2D slices of masked organ voxels then convert organ level embeddings into
phenotype scores using ICD-10 codes

functions of only the segmentations, excluding potentially useful information present in voxels. For
example, when studying atherosclerosis in aorta, deriving only the cross-sectional area of the aorta
without considering the raw voxels would omit crucial information such as the presence, shape and
distribution of fibrotic plaques or calcification, which are essential for understanding the disease
architecture.

To overcome the limitations of manually derived IDPs, we propose using embedding-derived pheno-
types (EDPs). EDPs are derived from latent embeddings of scans rather than from segmentations.
The EDP derivation process involves two steps (Fig. 1). In the first step, we build a self-supervised
representation learning model that compresses the information present in the scans into latent em-
beddings without requiring expensive annotations. The aim is to extract all critical information for
deriving disease-relevant phenotypes encoded in this embedding. In the second step, we convert the
embedding into a phenotype that can be used in downstream GWAS. Previous work [30] hypothesized
that individual dimensions of the embeddings capture a single (disentangled) trait of the input data
and can be treated as phenotypes. However, it has been shown [18] that such disentangled latents
are nonidentifiable without additional supervision, and a reconstruction objective alone could not
make the embeddings disentangled. Instead, we propose two simple methods: classifier-guided and
clustering-guided, to convert embeddings into disease-relevant phenotypes with the help of binary
labels such as ICD-10 codes. These approaches can be similarly applied to the study of other traits of
interest in deep biobanks, such as drug usage, proteomic marker levels, and aging.

The classifier-guided EDP assumes that controls and cases are linearly separable in the embedding
space and builds a linear projection to arrive at a phenotypic score. Although the linearity assumption
may not be true for all diseases of interest, empirically, we found the score to work well in identifying
biologically relevant genetic variants associated with a handful of diseases studied in this work.
However, the cluster-guided EDP utilizes the strategy that scans with similar phenotypes are closer
in the embedding space and produce a distance-based score. We show across multiple organs and
diseases, these two methods identify more biologically relevant associations compared to just using
ICD-10 codes as binary phenotypes or manually derived phenotypes.
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Figure 2: (left) The distribution of classifier guided phenotypic scores for type 2 diabetes positive
(orange) and negative (gray) participants using embeddings from the liver. Higher scores indicate
higher likelihood of disease. (right) Plots AUC score and p-value for diseases that were most
predictive from classifier using embeddings from heart. Diseases of the cardiac system are labelled in
green.

2 Representation Learning

Consider a data set, D = {xi}Ni=1 with xi ∈ RH×W×D of 3D volumes such as MRI or CT scans. We
would like to derive disease-relevant quantitative phenotypes from D. For constructing manual IDPs,
segmentation models are typically trained to predict features of interest using a mask of the same
dimension as the input data (ie) yi ∈ {0, 1}H×W×D. For example, yi could be the segmentation of
the aorta from MRI scans. Then a hypothesis-based summary statistic of segmentation is derived
(e.g., one hypothesis could be quantifying the cross-sectional area (CSA) of the aorta, which is
important for understanding atherosclerosis, so one measures CSA of the aorta in a particular
slice fCSA(ŷi,d) =

∑
H,W ŷi,h,w,d. Now fCSA(ŷi,d) is treated as a quantitative phenotype of

atherosclerosis for downstream GWAS.

Our alternative approach first uses self-supervised learning to convert 3D scans into vectors (i.e.)
zi = NN(xi) where NN : RH×W×D → Rm. Then we convert these latent vectors into scalar
phenotypes using either classifier-guided or clustering-guided method approach (Sec. 3). Motivated
by the recent success of Masked AutoEncoders (MAEs) [10], we use them to convert raw voxels
into latent representations. We extract slice-level representations from a 2D MAE and use a global
average pooling layer across the slices to obtain an embedding for the 3D volume. In addition, we
also train Video MAE [27] on the 3D subvolumes and use a global average pooling layer at inference.
Finally, we also compare against an imagenet pretrained Vit-b. These models are trained on specific
organs/substructures segmented from 3D scans. We find that models trained on substructures yield
more biologically relevant associations than general-purpose models trained on the whole image.
Sec. The appendix describes experiments that compare the different models; however, we leave the
extensive ablation of the model architecture and self-supervised learning algorithms for future work.

3 Converting latent vectors into phenotypic scores

We aim to map the latent vectors {zi}Ni=1 from the representation learning model to scalar phenotypes
associated with specific diseases. To ensure that projected phenotypes are pertinent to these diseases,
we utilize binary labels that categorize scans into various disease-related groups. In this study, we
utilize ICD-10 codes as our binary labels, indicating the presence or absence of each disease; however,
any binary labels, such as medication indicators, could be employed.

3.1 Classifier guided scoring

We consider a single ICD-10 label S = {s1, ..., sN}, where si ∈ {0, 1} indicates the presence or
absence of a disease. Our goal is to learn a scoring T = {t1, ..., tN} that correlates with the disease
of interest. In classifier-guided scoring, we make the simplifying assumption that the positives and
negatives indicated by S are linearly separable. This assumption has been empirically successful in
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Figure 3: (left to right) UMAP of liver embeddings where each dot is an individual and the overlayed
brown density plot shows a specific cluster identified through Leiden clustering. percentage-pval plot
showing the enrichment of diseases in the brown cluster. UMAP of heart embeddings where each dot
is an individual and the overlayed blue density plot shows a specific cluster. percentage-pval plot
showing the enrichment of diseases in the blue cluster. Red dotted line represents p-value = 5e−2.

identifying downstream biologically relevant genetic variants for certain diseases (see Sec. 4), but it
may not hold for all diseases of interest.

To identify ICD-10 codes where the linearity assumption holds, we use the ROC-AUC for a linear
classifier and p-values from a nonparametric Wilcoxon rank-sum test on Tp = {t1, ..., tNp} for
positives and Tn = {t1, ..., tNn

} for negatives on a held out validation set. If the ROC-AUC is small,
the linear classifier cannot fit the data well, suggesting that the embeddings do not capture the features
needed for linear separation. Additionally, if the p values are large, the distributions of Tp and Tn
are not statistically different, indicating that they are not linearly separable. To maximize separation
between the classes after linear projection, we use Fisher’s linear discriminant criterion as follows:

w∗ = argmin
w

N∑
i=0

L(si,wTzi) + λ||w||2 where L(w) =
mp −mn

s2p + s2n

mp & mn denote projections of positive and negative class means respectively (i.e.) mp =

wT 1
Np

∑Np

p=1 zp and mn = wT 1
Nn

∑Nn

n=1 zn. Similarly, sp & sn denote within class variances of

the projected data respectively (i.e.) s2p =
∑Np

p=1(sp −mp)
2 and s2n =

∑Nn

n=1(sn −mn)
2. We treat

ti = w∗Tzi as our classifier guided phenotypic score for downstream analysis.

3.2 Clustering guided scoring

Classifier-guided scoring implicitly assumes that all positive cases of a disease manifest similarly
in the input scans. However, some diseases are complex and exhibit heterogeneous manifestations
that cannot be captured by binary labels used to convert latent embeddings into phenotypic scores.
In addition, the positives for each disease could be in different stages of progression. For instance,
patients who are positive for atherosclerosis could have just fibrotic plaques building in their vessel
wall or could have late stage calcified portions. We aim to discern the inherent heterogeneity of
diseases using embeddings in this clustering-guided approach. One simplifying assumption we make
is that, patients with each manifestation are closer together in the embedding space compared to
negatives for a disease. We therefore propose to find different islands of positives - closest group
of mostly positive individuals-interleaved by negatives in the embedding space corresponding to
different manifestations through the following optimization problem,

i∗,K∗ = argmin
i,K

K∑
j∈NK(i)

wjd(zi, zj)− λK where wj =

{
1, if sj = 1.

γ, otherwise.

Intuitively, we wanted to find a patient i∗ whose largest K nearest neighbors NK∗(i∗) are mostly
positives, γ controls the number of negatives we are willing to include in the nearest neighbor set.
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λ controls the size of the nearest neighbor set. NK∗(i∗) is the group who are mostly positives and
are homogeneous in their manifestations. But, solving this discrete optimization problem could
get computationally expensive for larger values of i and K while also finding optimal values for
γ & λ. So, we opted for a simpler strategy that directly optimizes the objective function, in that
we follow a two-step framework. Step-1: We cluster the embeddings into pre-specified number of
Q clusters. This enables the grouping of subjects into distinct clusters based on their underlying
imaging characteristics potentially separating the individuals that have the same ICD-10 code but
with different manifestations into different clusters. Step-2: We map the ICD-10 annotations to each
of the clusters, now each patient gets a cluster label and ICD-10 binary label. Therefore, clustering
partitions the positives into different clusters and we treat each positive cluster as an approximation
to NK∗(i∗).

Once the clusters of positives are identified, to get to a phenotypic score, we propose to compute
the distance from the mean embedding of positives within each cluster with the rest of the dataset.
Concretely, consider a single ICD-10 label as before S = {s1, ..., sN} where si ∈ {0, 1} denote the
presence or absence of a disease / trait. After clustering, every embedding gets a cluster membership
assignment mi,q where mi,q = 1 when zi belongs to cluster q and 0 otherwise. For each cluster q, we
take the embeddings that are positive for both ICD-10 code and cluster label (i.e.) Zq∗ = {zi|mi,q∗ =
1, si = 1} and compute the mean embedding z̄ =

∑
Zq∗

zj . Then we compute the distance with
respect to all datapoints ti = d(z̄, zi) and treat that as the phenotypic score. This process yields a
score that quantifies the semantic similarity of all embeddings to the average appearance of a specific
manifestation of positive cases.

4 Experiments

We use 45,714 abdominal MRI & T1 brain scans from UK BioBank (UKBB) with abdominal MRIs
measuring fat and water content for all of our experiments along with lifestyle / health information
such as ICD-10 codes and genotypes. The details of the microarray and imputation of variants can be
found here [17]. We preprocess and extract organ-level segmentation using the protocol developed in
[17] and study each organ independently. To train representation models, we obtain the organ-level
segmentation mask and mask out all voxels outside of the predicted mask, then extract the smallest
fitting cuboid around the masked voxels and use them as xi. We then train an MAE on 2D slices from
xi’s with an additional [cls] token to the input sequence. We use a global average pooling layer on
the [cls] tokens from all 2D slices in the input xi, which yields a 384-dimensional embedding for
every organ of every individual. For training the Video MAE, we use subvolumes of 16 slices from
xi, and similarly use global average pooling on [cls] tokens. (See appendix for architectural and
hyperparameter details). For all of our GWAS analysis, we regress out age, age2, self-reported sex,
BMI, genotyping array, imaging center, and first 10 PCs of the genotype, from the final phenotypes.
We use regenie GWAS [20] package and to map rsID to gene, we use the highest variant-to-gene
(v2g) score gene from OpenTargets [8] for every associated variant.

In some cases, the number of positive cases for an ICD-10 code is significantly lower than the
negatives. For example, only a small fraction of individuals in the whole cohort are positive for
Splenomegaly. To create a robust linear classifier, we apply SMOTE [4] with an oversampling ratio
set to balance the class proportions. For each organ and ICD-10 code, we train a linear model using
10-fold cross-validation and select the best model to compute the final score, which is then used for
ROC-AUC and p-value calculations. A sample histogram illustrating the classifier-guided scores
for type 2 diabetes code ICD-10 is shown in Fig. [2] (left), with liver representations color-coded
with binary labels. To identify the ICD-10 codes with the highest linear separability, we create
AUC-pval plots for each organ and select the codes that fell into the upper right region, indicating a
high ROC-AUC and low p-value. An example of this is presented in Fig. [2] (right).

In clustering-guided scoring, we take inspiration from single-cell RNA sequencing literature, where
communities of cells are determined by gene counts. We use Leiden clustering with resolution=1,
n_neighbors=10, and cosine similarity as the distance metric to compute communities of individuals
from representations. We also found Leiden clustering working well empirically in identifying
homogeneous populations of ICD-10 codes compared to k-means or agglomerative clustering. Since
most ICD-10 codes have positives in every cluster, we need a method to identify ICD-10 codes that
are statistically enriched in each cluster. We achieve this by running a Fisher exact test to determine
if the proportion of positives within a cluster is statistically different from the positives outside
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Figure 4: (Top to bottom) GWAS summary statistics for Other-chronic-nonalcoholic-liver-disease
on whole UKBB cohort (N=408,961) using ICD-10 code as binary trait, imaging cohort (N=45,714)
using ICD-10 code as binary trait, imaging cohort with classified-guided quantitative score and
imaging cohort with clustering-guided quantitative score

the cluster. To select ICD-10 codes enriched in each cluster, we create percentage-pval plots. In
these plots, we examine the percentage of each ICD-10 code in a cluster and its associated p-value
from the Fisher exact test pertaining to that cluster. Examples of percentage-pval plots for liver
embeddings & heart embeddings are shown in Fig. [3]). As illustrated, the brown cluster in the left
panel has a statistically significant number of "chronic nonalcoholic liver disease" positive individuals
among others. Similarly, the blue cluster in the right panel is enriched for heart conditions such
as "heart failure" and "mitral valve disease". Once an ICD-10 code is selected, as detailed in 3.2,
we intersect the individuals who are positive for that ICD-10 code and have the same cluster label.
We then take the mean of their embeddings and compute the (1 - cosine similarity) between that
mean embedding and everyone else. Fig. [4] presents an example GWAS for the brown cluster,
Other-chronic-nonalcoholic-liver-disease phenotypic score from liver embeddings.

4.1 GWAS

To validate phenotypic scores calculated from classifier-guided and cluster-guided methods capture
biologically relevant information, we conduct genome-wide association studies (GWAS) using the
scores as quantitative traits for each ICD-10 codes and benchmark the number of gene loci that pass
the Bonferroni correction threshold, p-value > 5e−8.

We compare the proposed methods with two baselines - 1) genetic variants associated with the ICD-10
code of interest as a binary trait only on the imaging cohort (N=45,714), 2) genetic variants associated
with the ICD-10 code of interest in the whole UKBB cohort (N = 408,961: ∼ 10 times more than
the imaging cohort). As seen from columns 4 to 6 in Table. 1, both classifier and clustering guided
phenotypes yielded strictly more genetic hits compared to baseline-1 on the imaging cohort. Fig.
[4] shows an example of a GWAS summary for other-chronic-nonalcoholic-liver-disease. As seen,
both MAU2 and PNPLA3 which were identified in the whole cohort (and independenly found in
many studies [23, 29]), were recovered by both classifier and clustering guided methods. We also
emphasize that with the same sized cohort running GWAS with ICD-10 label as a binary trait without
using the representations did not yield any statistically significant associations. In addition, clustering
guided scoring identified more hits that also holds biological relevance(See 5 for more details) which
were missing in the whole cohort which is 10x size of the imaging cohort. This trend continues
for other diseases as well, for instance, when the proposed methods were run on representations of
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Disease Organ Whole Imaging Classifier Clustering Classifier Clustering
cohort cohort guided guided ∩ WC ∩ WC

Chronic NALD Liver 7 0 5 38 5 6
Heart Failure Heart 0 0 1 8 0 0

Type 2 Diabetes Kidney 118 1 8 29 0 1
Splenomegaly Spleen 0 0 1 53 0 0
Osteoporosis Thigh Bones 13 0 16 7 2 0

Table 1: Number of GWAS hits that pass Bonferroni threshold. Classifier guided and Clustering
guided are run on the image cohort. Classifier ∩ WC & Clustering ∩ WC represent number of
genes that overlap between classifier guided scoring, clustering guided scoring with the whole cohort
respectively.

spleen and for the ICD-10 splenomegaly, GWAS on the whole cohort yielded no hits, while both
classifier and clustering guided yielded more genetic associations. We also note that the classifier
guided strategy tends to generate fewer associations than clustering, as the classifier strictly projects
to a subspace that separates out disease positives and negatives, while clustering may incorporate
more features in the phenotype, that can further be interpreted using PheWAS (see appendix).

4.2 Comparison with hand-crafted image derived phenotypes

To evaluate the proposed EDPs against manually derived phenotypes, we compare the number of
GWAS hits generated from organ volume data from [17] with those obtained using our two proposed
methods. [17] developed segmentation models for each organ and further ran downstream GWAS
using the volume of the segmented organ as manually derived IDPs. As shown in Table 2, EDPs yield
more genetic associations than using organ volume alone, regardless of whether MAE or Video MAE
architectures are employed. This suggests that these scans contain additional information that can
enhance our understanding of the genetic architecture of diseases, beyond simply measuring volume.

Method Liver Kidneys Lungs Heart
MAE 343 232 229 296

Video MAE 297 288 192 311
Volume 12 7 11 18

Table 2: Number of GWAS associations, comparing EDPs (combining classifier and clustering guided
strategies.) vs volume based IDPs from [17] on organs in abdominal MRI scans.

To demonstrate that our representations encompass manually derived phenotypes, we train a linear
regressor to predict organ volumes. Table 4 shows that we achieve nearly perfect correlation with
ground truth volumes, indicating that embeddings effectively capture these phenotypes. Additionally,
since the likelihood of many diseases increases with age, we compare the performance of a linear
regressor in predicting chronological age using both our representations and organ volumes. As
shown in Table 3, there is a significant gap in age prediction in terms of the mean absolute error
between the representations (both MAE and Video MAE) and the volumes, further highlighting that
our representations capture more biological information than manually derived traits.

4.3 Flexibility to remove information

In target discovery, genetic associations with the most promising therapeutic potential may not have
the most significant associations, e.g., the most significant associations from retinal fundus images
code for eye color [1], which is not interesting from a therepeutic standpoint. This inherently makes
interpreting GWAS for target discovery challenging, where the ability to remove factors that dominate
associations is very useful. Since we construct phenotypes from scan embeddings, we can adjust for
known factors simply by regressing these variables out. For example, if {vi}Ni=1 denotes the factor
that one would like to remove, continuous or discrete, we could do zi(adjusted) = zi − β̂vi, where β̂ is
the estimated regression coefficient between the factor vi and the embedding zi.
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Method Liver Kidneys Lungs Heart Bones Combined Organs
MAE 4.2 4.1 3.7 3.9 3.8 2.9

Video MAE 4.1 4.1 3.9 3.8 4.0 2.8
Volume 18.3 16.1 13.7 19.2 12.4 9.7

Table 3: Mean Absolute Error (in yrs) between ground truth and predicted chronological age from a
linear model on different organ level representations & IDPs. It can be observed that organ volume is
not a good predictor of chronological age, while EDPs when combined across organs are comparable
to the horovath biological ageing clock [12]

Metric Liver Kidneys Lungs Heart
Pearson Correlation 0.95 0.96 0.97 0.96

Mean Absolute Error % 1.2 1.3 0.79 1.6

Table 4: Metrics after fitting a linear model to predict volume from organ level representations from
MAE. It can be seen that volume can be reconstructed with high fidelity.

Figure 5: (Top) Manhattan plot of GWAS associations of clustering-guided phenotype for mental
disorders. The results capture a lot of variation associated with bone mineral density (BMD), that are
not of interest. PC 1 captures a lot of this variance. (Bottom) Manhattan plot of GWAS associations
for the same phenotype after adjusting for PC 1, leading to more novel associations that don’t code
for bone mineral density.

As an example, we notice that the first principal component (PC) of image embeddings from brain
T1 MRIs reflects variations in Bone Mineral Density (BMD), influencing clustering-guided scoring.
This is illustrated by numerous genetic associations (e.g., ZBTB40, COLEC10, FAM3C) linked
to BMD [9], as seen in Fig. 5 (top) for the ICD-10 code of mental disorders. To eliminate the
influence of BMD associations, we performed clustering-guided scoring while regressing out the
first PC, resulting in the GWAS shown in Fig. 5 (bottom). This analysis successfully removed all
associations related to BMD, revealing CREB3L4 and RBM23 as potentially novel targets for further
investigation.

4.4 Few-shot phenotypes

In clustering-guided scoring, we compute phenotypes using a distance metric between an average-
looking positive individual (after clustering) and the rest of the dataset. This means we technically
only need one representative positive individual to arrive at a phenotype. To demonstrate that
clustering-guided scoring yields biologically relevant phenotypes with fewer ICD-10 labels, we
consider a scenario where we have image embeddings for the entire population but labels for only a
subset of the positives. It’s worth noting that this scenario is commonly encountered in real-world
settings. For instance, when using other labels like medication usage, one might have access to MRI
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Figure 6: (Top) Manhattan plot for type-2-diabetes clustering guided phenotypic score using all liver
embeedings but with only 2% of the positive labels, (Bottom) Manhattan plot for type-2-diabetes
clustering guided phenotypic score from liver embeddings using all the labels and embeddings

scans, but medication usage might be sparse or not diligently captured in the patient management
system.

Fig. [6] shows the GWAS ran using clustering guided phenotypic score for the ICD-10 code of type 2
diabetes from liver embeddings. As shown, the genetic associations found through all the ICD-10
labels (bottom) and only 2% of the positive labels (top) - randomly sampled - are the same with minor
variations in p-values. This suggests that clustering guided EDPs could be used in scenarios where
very few labels are available.

5 Discussion

Here, we describe a framework that leverages representation learning based embeddings guided by
ICD-10 code annotations to derive phenotypes that are directly applicable for identifying disease-
relevant genetic variants. Table [1] demonstrates the utility of our method in extracting genetic
associations related to diseases, producing a large number of associations that cannot be derived
directly from the analysis of ICD-10 code annotations as a binary trait. Notably, these associations
are derived from a sample size that is only 10% the whole UK biobank imaging cohort, where
directly using the ICD-10 code annotations on this cohort yield almost no associations. Thus, our
method may potentially be leveraged to work with dataset sizes that are considered underpowered.
Table [2] illustrates the ability of our method to discover significantly more disease relevant genetic
associations than traditional IDPs like organ volumes.

The genetic associations we identify often capture known disease biology. As a case study, the
analysis of chronic NAFLD in liver yielded genes that include PNPLA3 which is a known modulator
of triglycerides in hepatocytes [3]. SLC39A8, MAU2, PNPLA3 are associated with liver fat and
other metabolic traits [23]. PPARγ is a known enhancer for genes coding for lipid and glucose
metabolism [28]. Our analysis of osteoporosis in thigh bones yield a number of genetic associations
(TNFRSF11, RUNX2, ZBTB40) which are implicated in osteogenesis, osteoblast and bone mineral
density modulation [16, 22, 6]. We also observe pleiotropic genes that are implicated in multiple
diseases and organs, like SLC39A8, WNR4, CCDC91. Most exciting are novel associations, like
CASP9 being consistently implicated in kidney disease.

Since clustering guided scoring works by computing similarity with a single embedding, we ablate
by randomly keeping the labels for 2% of the Type 2 diabetes positives in the imaging cohort and we
observe the hits were nearly identical to 100% of positives suggesting our work could potentially be
used in studying the genetic architecture of rare diseases (see supplementary material).

Recent works that utilize image embeddings for genetic discovery focus on utilizing the features
of the embedding (or linear combination of features using PCA) independently as phenotypes in
association studies [24, 14]. Our methodology is the first to our knowledge to holistically incorporate
the entire image embedding in deriving disease-relevant phenotypes. Our methodology is general
purpose, it can be extended to utilize any binary trait to guide image embeddings.
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A Appendix / supplemental material

A.1 Image Embedding ML Models

We experiment with a few different strategies to extract image embeddings from UKBB MRI images.
All of our representation models use the ViT-b [7] architecture. We use the image representation
of the [cls] token of the penultimate layer. If the model is designed for images, we run a forward
pass across 2D slices and use a global average pooling layer over the embedding from all slices. We
use a tight bounding box around the organ of interest and extract embeddings in this field of view.
For 3D models (VideoMAE), we use a 3D subvolume with 16 slices (this design is to ease memory
requirement of the representation models). When the organ covers more than 16 slices, we use global
average pooling on multiple subvolumes. The subvolumes are 0-padded to be of fixed size, (patch
size and image resolution in 6)

As a baseline 2D embedding model, we use the ViT-b model trained in the supervised classification
of ImageNet categories. This is effectively used as a foundation model, with the same model weights
applied for all organs, with the same model architecture. We also train an MAE model for each organ,
with patch size and image sizes modified to suit the organ shape, all other hyperparameters retaining
the Vit-b default. The MAE models that we trained on all the slices inside the organ from 47000
scans of the abdomen and 41000 of the brain. This results in O(10 million) training samples. All
models were trained for 30 epochs through the training set. We observe that ViT-b is approximately
the optimal model size for extracting the maximum signal from these MRI scans, and it has been
observed by other foundation model methods in the medical imaging field [19]. For VideoMAE, the
16 slice subvolumes have yielded the best results. We leave extensive ablation of design choices to
future work.

Organ Patch Size (MAE) Patch Size (VideoMAE) 2D Resolution (MAE) 2D Resolution (Video MAE)
Liver 8 7 144x144 144x144

Kidneys 6 6 48x48 36x36
Lungs 12 12 180x180 156x156
Heart 8 7 144x144 144x144

Table 5: Patch size and of ViT-b tokens and image resolution. The sizes are changed to optimize for
the organ shapes, smaller organs have a smaller patch size.

We observe that the self-supervised training loss tends to continue to decrease, we chose to stop our
training at 30 epochs, it is likely that training for longer would yield improvements to the image
embeddings, and we leave ablating the impact of the training procedure to future work. Further, we
observe that training a single model across organs yields empirically less informative associations
than training models for each organ/substructure. We hypothesize that this is caused by the lack of
functional specialization in a vast number of pixels in the imaging volume that aren’t a part of the
organs of interest, leading the model to not learn concepts that are functionally specialized. This
leads to models learning the main results of adiposity from the fat channel. This is another aspect of
training scalable representations of radiological images that needs to be explored further.

A.2 Interpreting associations: Phenome wide scan

The image embedding derived phenotypes are designed to be used in large cohort GWAS to detect
novel associations. However, in comparison to hand-crafted phenotypes, these measures are more
abstract, e.g., a cluster is likely to capture variance related to a variety of traits. To further interpret
the information captured by the phenotypes, we conducted a Phenome-Wide Association Study
(PheWAS) to examine associations between embedding-derived phenotypes and a wide range of
phenotypic traits acquired from the biobank. PheWAS is an essential tool of genetic epidemiology
that enables the discovery of potential pleiotropic effects and links to other diseases and traits, our
ML derived phenotypes integrate readily with this framework. We use the protocol prescribed by
PHESANT [21] for comprehensive phenome-wide scans in UK Biobank, covering 683 phecodes and
234 other traits. We corrected for a set of covariates that included age, sex, BMI, imaging center, and
date.
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Model Num. Associations
ViT-S 142
ViT-B 297
ViT-L 207

Table 6: Number of GWAS associations in liver from various embedding model sizes.

Figure 7: (left) Volcano plot (−log(p) against effect size β) derived from PheWAS for classifier-
guided phenotype derived from kidneys using renal disease. Red text denotes kidney related diseases
that are expected from the phenotype. The other associations capture potentially new information.
(right) Manhattan plot of GWAS associations for the same phenotype, including potentially novel
association with CASP9.

Figure Fig.[7] illustrates the results of a PheWAS scan for the classifier-guided phenotype that codes
for the disease renal failure CKD extracted from embeddings of the kidneys. We observe significant
associations with a large effect size for renal failure. We also find a significant covariance with
hypertensive chronic kidney disease (CKD), type 2 diabetes, and heart failure. Furthermore, it can
be observed that subjects who have a low score for this phenotype (with negative values of β) are
likely to have a better exercise regimen, fruit and fish intake. GWAS for this phenotype identifies loci
that include CASP9, SLC39A8 and GP2. CASP9 is a novel association for CKD and needs further
exploration as a target. The phenome-wide scan shed light on associated traits that can be used in a
variety of downstream applications in drug discovery, e.g., to derive cellular phenotypes, adjust for
covariates, identify appropriate indications, construct biomarkers, etc.
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