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ABSTRACT

Data-free methods for analysing and understanding the layers of neural networks
have offered many metrics for quantifying notions of “strong” versus “weak”
layers, with the promise of increased interpretability. We examine the robustness
and predictive power of data-free metrics under randomised control conditions
across a wide range of models, datasets and architectures. Contrary to some of the
literature, we find strong evidence against the efficacy of data-free methods. We
show that they are not reparametrisation-invariant even for robust layers, that is
to say layers that can be reparametrised by re-initialisation or re-randomisation
without affecting the accuracy of the model. Moreover, we also show that data-
free metrics cannot be used for the arguably simpler tasks of (i) distinguishing
between robust layers and critical layers, i.e. layers that cannot be reparametrised
without significantly degrading the accuracy of the model, or (ii) predicting if there
will be a performance difference between re-initialisation and re-randomisation.
Thus, we argue that to understand neural networks, and in particular the difference
between ‘strong” versus “weak” layers, we must adopt mechanistic and functional
approaches, contrary to the traditional Random Matrix Theory perspective.

1 INTRODUCTION

Understanding and interpreting deep learning models is a critical area of research, especially as the
prevalence of these models increases in real-world applications. The holy grail of neural network
interpretability lies in identifying computationally cheap metrics that can provide insights into the
effectiveness of neural networks and their components. Data-free methods typify this endeavour
by analysing the properties of the neural network parameters without regard for the data. A key
example of data-free methods is Martin & Mahoney| (2021), which claims to be able to predict the
performance of a neural network without the requirement of test data through the use of Random
Matrix Theory to analyse the layer weight matrices. In contrast, data-dependent layer analysis via
mechanistic interpretability or functional analysis attempts to quantify how inputs interact at specific
layers and use comparative analysis to understand the interaction between model parameters and data
(Olah et al., [2020; |Klabunde et al., 2025} [Nanda et al ., [2023)).

Zhang et al.|(2022)) identified an interesting and unexpected phenomenon in neural network layers:
some layers within a network are robust, while others are critical. A critical layer is a layer that cannot
be re-initialisatised or re-randomised without dramatically affecting the performance of the network.
In contrast, a robust layer can be either re-initialisatised or re-randomised without any noticeable
effect on performance. Re-initialisation sets the layer back to its initial parameters before training,
whilst re-randomisation sets the parameters of the layer to random values by re-sampling from the
same distribution used for initialisation. It was observed that in some cases, re-initialisation and re-
randomisation can result in significant performance differences for a given layer, with re-initialisation
maintaining performance but re-randomisation significantly degrading it (Zhang et al.,|2022)). In other
cases, re-initialisation and re-randomisation of a layer lead to a negligible difference in performance.

We follow in the footsteps of [Dinh et al.| (2017) which studied another type of metrics, namely
metrics for minima flatness and how they (fail to) relate to generalisation. In particular, the authors
make the following point: “Since we are interested in finding a prediction function in a given family
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of functions, no reparametrisation of this family should influence generalisation of any of these
functions”. In the same spirit, the robustness phenomenon suggests that certain reparametrisations
of this family — re-initialisations and re-randomisations of robust layers — should not influence the
functional behaviour of any of these functions (as quantified by accuracy). We believe that this
provides a strong basis for asking:

* Are data-free metrics reparameterisation-invariant, particularly under re-initialisations or
re-randomisations of robust layers?

 Can data-free metrics distinguish robust layers from critical layers?

* Can data-free metrics predict performance difference between re-initialisation and re-
randomisation of a layer?

In contrast to Dinh et al.| (2017)), our approach is purely empirical and our experiments show that
across data modalities, architectures and datasets:

* Data-free metrics are not invariant under reparametrisation, even when we restrict our
attention to re-initialisations and re-randomisations of robust layers,

 Current data-free analyses have no predictive capacity to identify robust and critical layers
in small scale experiments, nor to predict performance difference between re-initialisation
and re-randomisation,

* For Large Language Models (LLMs) and ImageNet vision models norm-based metrics have
no predictive capacity over the change in performance under re-randomisation.

Consequently, we argue that improving the interpretability of neural networks requires moving
beyond the weak predictive power of metrics defined by data-free metrics and power norms.

2 BACKGROUND

Data-free methods of interpretability aim to understand the inner workings of neural networks by
studying the properties of the network parameters. Data-free approaches often focus on the matrix
norm properties of layer weight matrices to understand learning or improve the performance of neural
networks (Yunis et al.l [2024; [Martin et al.l 2021} [Sanyal et al., 2020; [Feng et al.| 2022; |Salimans
& Kingma, 2016} Bartlett et al., 2017). However, Zhang et al.| (2022) showed in their work that
matrix norms, such as the Frobenius norm, are too coarse to understand the generalisation properties
of neural networks. Martin & Mahoney|(2021)) use Random Matrix Theory (RMT) to analyse the
weight matrices (excluding biases) of neural network layers through training to create a theory of
heavy-tailed self-regularisation. With this theory, they construct a set of predominately power-norm
metrics related to generalisation that is applied after training to assess layer performance: alpha (),
alpha-weighted (&), log alpha norm, and MP soft rank [Martin & Mahoney|(2021). In this work, they
identified a value of a between 2 and 6 as a property of a good, well-trained layer, whereas o > 6
indicates that a layer is underfitted and o < 2 indicates that it is overfitted. Martin et al., Martin et al.
(2021)) showed a correlation between these metrics and the generalisation performance of pre-trained
models in language and computer vision tasks.

The theory of heavy-tailed self-regularisation (Martin & Mahoney}, |2021) has been used to provide
justification for layer-wise pruning ratios in large language models (Lu et al.,[2024]), additionally it has
been used to explain and understand stages of the grokking phenomenon (Power et al., 2022)) namely,
pre-grokking, grokking and anti-grokking (Prakash & Martin) 2025)). The promise of understanding
both redundancy in neural networks and transitions from memorisation to generalisation means that
RMT promises a lot with respect to improving the interpretability of deep neural networks, a topic of
great importance given their increasing adoption across a range of different data domains.

Since |Zhang et al.[(2022) established that norm-based methods are ineffective, our work will focus
on alpha, alpha-weighted, log alpha norm, MP Soft Rank and Generalized von-Neumann Matrix
Entropy (Martin & Mahoney, 2021) as well as Frobenius Norm, Spectral Norm and Stable Rank
(Rudelson & Vershynin, [2007)) within the critical and robust layer phenomenon to establish whether
these metrics are invariant under re-initialisation and re-randomisation of robust layers and if they
can disambiguate between (i) robust and critical layers, and (ii) the performance difference between
re-initialisation and re-randomisation of a layer.
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3 EXPERIMENTAL SETUP

Zhang et al| (2022), showed the robust and critical layer phenomenon across a range of trained
architectures, MLPs, VGGs (Simonyan & Zisserman, 2015)), ResNets (He et al.,[2016), Transformers
(Vaswani et al.,|2017), Vision Transformers (Dosovitskiy et al.,[2021a), MLPMixers (Tolstikhin et al.,
2021)) across datasets MNIST (LeCun et al.,|[1998)), CIFAR10 (Krizhevsky & Hintonl2009), ImageNet
(Deng et al.l |2009) and LM1B(Chelba et al.,|2014). We first choose the simplest model (ReLU FCN
5x512), Figure and dataset (MNIST (LeCun et al., |1998)) identified by [Zhang et al.| (2022)) that
demonstrates this phenomenon to systematically explore the behaviour of data-free metrics under
layer re-initialisations and re-randomisations of a large number of trained models.
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Figure 1: ReLU FCN 5x512 Model Architecture.

An added benefit of the ReLU FCN 5x512 model is that it also offers a clear performance contrast
between re-initialisation and re-randomisation. Zhang et al.| (2022 showed that residual blocks are
robust to re-randomisation and attributed this to the residual layer potentially playing a lesser role in
the network and thus having smaller activations than the skip connection. To analyse how effective
the data-free metrics are at disambiguating between re-initialisation and re-randomisation, we analyse
the correlation between data-free metrics and test accuracy using the Spearman correlation coefficient
p, the root mean square error (RMSE) of the linear regression and Kendall’s tau measure (K-7).
Where p and K-7 score of -1 indicates a very strong negative correlation, 0 indicates no correlation,
and 1 indicates a very strong positive correlation. We use RMSE and Kendall’s Tau measure for this
study as they are two of the correlation metrics used in Martin et al.|(2021)) to highlight the predictive
capacity of the data-free metrics.

We trained 100 ReLLU FCN 5x512 models, creating 100 initialisations and 100 trained models, to
obtain a representative sample of possible initialisations and trained models. The model weights and

biases are initialised and re-randomised from the same distribution 2/ (—v/k, vk) where k is m

e.g. FCl has k = ﬁ. We record the data-free metric properties of these trained models’ layers when

they undergo re-initialisation and re-randomisation and observe whether these metrics:

(a) are invariant, particularly for robust layers,
(b) can distinguish critical and robust layers,

(c) can predict the performance difference between re-initialisation and re-randomisation.

This exploration also demonstrates the overall predictive capacity of data-free metrics after training.

Data-Free Metrics. Power Norm based data-free methods analyse a layer weight matrix, W,
excluding the bias. A variety of data-free metrics have been developed in the literature to quantify the
importance of a layer, we focus on the following metric (Martin & Mahoney, [2021):

* Alpha («): The fitted power law exponent, «, for the empirical spectral density of the
correlation matrix X = WX, such that Pemp(A) ~ A, with A the eigenvalues of X.

In section [4.2) we additionally explore the following metrics:

 Alpha Weighted (&): «log(Anaz), Wwhere A4, is the max eigenvalue from X [Martin &
Mahoney| (2021]).
M
* Log Alpha Norm: log(||X||%), where || X ]| =Y A, where M is the rank of W |Martin

& Mahoney| (2021)).
« MP Soft Rank: is the ratio between the bulk edge of the penp(A), AT, and the max
eigenvalue, \pqz, ﬁ Martin & Mahoney| (2021).
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¢ Spectral Norm: The max singular value of W denoted as ||| oo-

 Stable Rank: The ratio of the squared Frobinues Norm and the squared Spectral Norm,

|||‘¥/VV‘|‘|% Rudelson & Vershynin| (2007)).
2

denoted as

* Generalized von-Neumann Matrix Entropy: % >, pilog p;, where M is the rank of

matrix W and p; is % where o is the singular values of W |Martin & Mahoney| (2021).

The metrics are collected using the weightwatche tool.

We extend our analysis of questions (a) and (b) to large-scale pre-trained computer vision models
(ResNet34E] (Wightman et al., [2021; /Wightman, 2019; He et al.,2016) and Vi'lﬂ (Steiner et al.,[2021;
Dosovitskiy et al.| 2021bj; Wightman, [2019)), both trained on ImageNet(Russakovsky et al., | 2015))
and pre-trained large language models (GPTEEI and GPT2—LargeE] (Radford et al.| [2019) evaluated on
WikiText103 (Merity et al.,[2016))), in Section@

4 RESULTS AND DISCUSSION FOR SMALL SCALE REPARAMETRISATIONS

For clarity and succinctness, we primarily present our results for alpha («) of Martin & Mahoney
(2021)) in the body of the paper, however in Section we show that these result generalise to
additional metrics. In Appendix Section[A] we present the analysis of the Frobenius Norm.

4.1 ANALYSIS OF ALPHA UNDER RE-INITIALISATION AND RE-RANDOMISATION

Table 1: Alpha («) of the layers in ReLU FCN 5x512 and test accuracy of the model. Mean and
+ 1 SEM (Belia et al., [2005) (Standard Error from the Mean) derived from 100 trained models on
MNIST.

Layer
FC1 [ FC2 [ FC3 [ FC4 [ FC5 [ FCé
Alpha (o) | 4.82 £0.025 | 4205 + 0.039 | 4.126 + 0.038 | 4.135 £ 0.035 | 4.193 & 0.034 | 3.793 £ 0.805 | 96.822 & 0.057

Metric Test Accuracy

Quality of training vs alpha. Data-free metrics such as « aim to identify well-trained layers,
with a well-trained layer having a value of « between 2 and 6 Martin & Mahoney| (2021). This
seems to be borne out by training 100 ReLU FCN 5x512 models to good values of test accuracy,
achieving o € [2, 6] for every layer (see Table[1). Whilst well-trained may imply « € [2, 6] (but more
on this below), a simple experiment shows that the converse does not hold. We plot the empirical
distribution of o for a 512x512 fully connected layer in Figure 2] (left), sampled from 10,000 potential
initialisations. The resulting distribution shows that an initialised, untrained layer of this network,
can fall, with a small but non-negligeable probability, within the optimal « value range of 2 and 6.

Next, we perform independent re-initialisations (blue in Figure [2)) and re-randomisations ( )
of each layer for 100 trained ReLU FCN 5x512 networks and record the impact on the networks’
test accuracy and alpha values. Figure [2] shows that a non-negligeable proportion of networks
whose performance is severely degraded by re-randomisation maintain a good value of « around 5.
Conversely, many networks maintain good performance after re-initialisations (particularly of layers
FC3-FC5) but with « values significantly outside of [2, 6]. Good models can have bad alphas, bad
models can have good alphas.

Reparametrisation-invariance of alpha. As is clear from [2] whilst all values of « start in the
“good” range [2, 6], reparametrisation in the form of re-initialisation or re-randomisation scatters these
values over a very wide range (typically deep into “underfitted” territory)), irrespective of the change

Thttps://weightwatcher.ai
Zhttps://huggingface.co/timm/resnet34.tv_in1k
3https://huggingface.co/timm/vit_base_patch16_224.augreg_in1k
*https://huggingface.co/openai-community/gpt2
>https://huggingface.co/openai-community/gpt2-large
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Figure 2: Empirical distribution of « values on a 512x512 fully connected layer, sampled from 10,000
initialisations (Left). Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs
«, p is the Spearman correlation coefficient, RM SE is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between
test accuracy and « values (Right).

in accuracy incurred by this reparametrisation. Alpha is not invariant under these reparametrisations,
even when accuracy is (i.e. on robust layers).

The robust vs critical phenomenon and alpha Figure[2shows the stark contrast in how layers
respond to re-initialisation and re-randomisation. For example, we only see a large drop in test accu-
racy when applying re-initialisation to the Layer FC1, re-initialising other layers leaves performance
almost unchanged. From this perspective, FC1 is a critical layer whilst FC2-FC6 are robust (to
re-initialisation). In this experiment « cannot distinguish between these behaviours, the range of
values taken by « shows no noticeable difference between critical and robust layers.

The re-initialisation vs re-randomisation phenomenon and alpha. We observe different results
when re-randomisation is applied. We find that re-randomising any layer degrades accuracy to circa
random accuracy on the test set, in other words none of the layers are robust to re-randomisation.
Surprisingly, this is not reflected in the corresponding « values of these two conditions, as the
distribution of « values is relatively similar for each layer and each condition. If o had predictive
power we would expect to observe a negative correlation between re-initialisation (corresponding
to “good” alphas) to re-randomisation (corresponding to “bad” alphas). However, there is almost no
difference between the « values of re-initialisation and re-randomisation, with a mean Spearman
correlation coefficient and Kendall’s tau measure across layers of -0.053 and -0.035, respectively.
Thus « does not distinguish between these behaviours either. These findings extend to other data-free
metrics in Appendix Section[A]and Section[4.2]

4.2 GENERALISATION OF REPARAMETRISATION INVARIANCE TO DATA FREE METRICS

We extend our analysis to other data-free metrics that have been defined in literature, we argue that
given the lack of predictive power of the o metric in the previous section, it is important to verify
across other representative measures that data-free metrics broadly cannot disambiguate between
critical and robust layers, between re-initialisation and re-randomisation. When we conduct a similar
analysis across six other metrics, Alpha Weighted, Log Alpha Norm, MP Soft Rank, Spectral Norm,
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Figure 3: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs the respective
metric. p is the Spearman correlation coefficient, RS M F is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between
test accuracy and the metric.

Stable Rank and Generalized von-Neumann Matrix Entropy we find, as shown in Figure 3] that we
can draw exactly the same conclusion as with a.

4.3 COMPARING TO DATA-BASED METRICS

To compare data-free and data-based metrics we explore if two widely used data-based metrics can
distinguish the output of a re-initialised layer from that of a re-randomised layer. The outputs of the
original and modified layers are represented as O; and M;, respectively. The model layer outputs are
collected by passing through the test dataset, D;. ;. The metrics explored are defined as follows:

* Activation Disagreement: The mean percentage of times that the neurons from O; and M,
fail to agree to activate on Dyg;.

* Jensen-Shannon (JS) Divergence: The mean weighted average of the Kullback—Leibler
(KL) Divergence of the softmax( O; on D;.s;) compared to the softmax( M; on D) (Lin}
1991)).

When considering the results of the activation disagreement and JS divergence between the original
model layer and each model with re-initialised and re-randomised layers in Figure [d} it becomes
clear that there is a stark difference in similarity between the re-initialised and re-randomised layers
compared to their original layer. The figure demonstrates that the difference between re-initialisation
and re-randomisation can be explained by the amount the layer disagrees on activation compared to
the original non-modified layer. It is evident that when there is less disagreement (re-initialisation),
the model can maintain accuracy, while a lot of disagreement (re-randomisation) leads to a drop
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in accuracy. This observation is further supported by a mean Spearman correlation coefficient and
Kendall’s tau measure across layers of -0.776 and -0.5375, respectively for Activation Disagreement,
indicating a negative relationship between activation disagreement and test accuracy.

We have produced these results to show that there exist metrics that can disambiguate between
re-initialisation and re-randomisation behaviours which we believe deserve increased focus over
data-free metrics (whether they can distinguish critical from robust is, in this instance, less clear).
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Figure 4: Layer re-initialisation (blue) and re-randomisation ( ) test accuracy vs the respective

metric. p is the Spearman correlation coefficient, RS M F is the root mean square error of the linear
regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between
test accuracy and the metric.

5 RESULTS AND DISCUSSION FOR LARGE SCALE REPARAMETRISATIONS

We further explore how predictive the o metric can be when predicting performance of layers in
large scale models that have been trained for high-complexity tasks using the re-randomisation setup.
Overall we find, consistent with our small scale experiments, that the « metric has no predictive
capacity under this condition, therefore questioning its utility in predicting the performance of layer
criticality and “trainedness”. For these results we employ pre-trained open source models, therefore,
we do not have access to the starting initialisation and, as a result, we only focus on the case of
re-randomisation to test the predictive capacity of the o metric at this scale. We show the relationship
reported in this section is consistent with other data-free metrics in this experimental set up in

Appendix Sections[A.2] [A3] [A:4] and [A23]

5.1 IMAGENET SCALE

We explore the relationship of a layer’s « value with the corresponding performance of the model on
ImageNet with pre-trained ResNet34 and ViT models. The respective performance and model details
are shown in Table[2} from this table it can be observed that these models are well trained for the task
of ImageNet. In line with the Random Matrix Theory perspective, the competitive performance of
these models is aligned with a mean « value across layers within the optimal range, representing two
well-fitted networks.

We employ both the pre-trained ResNet34 and ViT as base models for our re-randomisation ex-
periment. To conduct this experiment we randomise a layer independently and then record the
corresponding test accuracy and « value post re-randomisation. Given that different implicit biases



Under review as a conference paper at ICLR 2026

respond uniquely to re-randomisation we believe that our selection of models is representative for
the core architectural differences, allowing a robust analysis of the impacts of re-randomisation and
o metrics at scale. We repeat our re-randomisation process 10 times per layer to capture stochastic
variation in randomisations. In both ResNet34 and ViT, Figure 5] we find no relationship between «
and test accuracy, as found in the small scale experiment. The mean Spearman correlation coefficients
are 0.006 and -0.051, and Kendall’s tau values are 0.005 and -0.035, respectively.

Table 2: ResNet34 and ViT performance on ImageNet and mean layer Alpha («) value 4+ 1 SEM (Be
lia et al., 2005) (standard error from the mean).

Model Number of Parameters | Loss | Accuracy | Mean Layer Alpha Value
ResNet34 | 21.8M 1.071 | 73.302 3.380 £ 0.195
ViT 86.6M 0.825 | 78.852 4.711 £0.271

As previously reported in the small-scale experiments, layers in vision models can be re-randomised
to « values outside of the desired range but continue to retain accuracy. While in the case of the
ResNet34 we see that the model is not so robust to re-randomisation, having a lower accuracy than
the baseline, there is a large proportion of layers with optimal « values that result in a model with
essentially random accuracy. The ViT is more robust to layer re-randomisation and show the inverse
case where many layers are significantly outside of the optimal « range but display a high preservation
of the baseline accuracy. As a result, for large scale vision models these results confirm that « is not
invariant under reparametrisation by re-randomisation, even on robust layers, and has very limited
predictive capacity over post re-randomisation performance.
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Figure 5: ResNet34 and ViT layer re-randomisation Test Accuracy vs Alpha («) on ImageNet. p is
the Spearman correlation coefficient, RM SFE is the root mean square error of the linear regression
(red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between the
performance and « values.

5.2 LARGE LANGUAGE MODELS

Given our negative results for the predictive capacity of the o metric in the vision domain under
re-randomisation, it is important to verify the generality of our findings under a different modality.
Therefore, we have extended the exploration of the relationship of a layers « value and the corre-
sponding performance of the model to language models on WikiText103 with pre-trained GPT2
and GPT2-Large, the respective performance and model details is shown in Table (3| These models
represent an increased scale of our experiments as they have hundreds of millions of parameters. Both
models have competitive performance with low loss and perplexity on the WikiText-103 datasets and,
in-line with Random Matrix Theory have mean layer « values that are within the optimal range.
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Table 3: GPT and GPT-Large Test performance on WikiText-103 and mean layer Alpha («) value +
1 SEM (Belia et al.| 2005) (standard error from the mean).

Model Number of Parameters | Loss | Perplexity | Mean Layer Alpha Value
GPT 127M 3.399 | 29.941 3.865 £ 0.136
GPT-Large | 774M 2.967 | 19.436 4.013 +0.091

We use the pre-trained models as the base model and then we randomise a layer and record its «
value and the corresponding test perplexity and loss of the model. We do this 10 times for each
layer to obtain a representative set of random layers. For both GPT2 and GPT2-Large, Figure [§| we
observe that their is no relationship between the performance of the model and a layer’s « value,
with a mean Spearman correlation coefficient of 0.028, 0.116 and Kendall’s tau measure of 0.018
and 0.078 for GPT2 and GPT2-Large receptively. We also find that randomising layers in the GPT2
and GPT2-Large model often has a negligible affect on the performance of the model irrespective
of the o value associated with the layer. Furthermore, when re-randomising a layer and achieving
negligible performance degradation we can observe that the bulk of these layers are far outside the
optimal range provided by the a metric. Again, we see that « is not invariant under reparametrisation
by re-randomisation, even on robust layers, and has no predictive power over performance.
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Figure 6: GPT2 amd GPT2-Large layer re-randomisation Test Perplexity vs Alpha (a) on Wiki-
Text103. p is the Spearman correlation coefficient, RM SFE is the root mean square error of the
linear regression (red line), and K-7 is the Kendall’s tau measure, all with respect to the relationship
between the performance and « values.

6 CONCLUSION

In this work we concretely showed that data-free metrics cannot explain the robust vs critical layer
phenomenon, nor the re-initialisation vs re-randomisation phenomenon. Based on experiments
covering a wide range of these metrics and a wide range of models, we argue that they have little to
no predictive capacity over these important performance-related layer properties. We highlighted
how data-free metrics can be described as non-reparameterisation invariant even for robust layers for
which accuracy is (to some degree) reparameterisation invariant. Our results scaling from MNIST to
ImageNet and Large Language Models confirm the generality of the robustness of our findings.

As a consequence, our results advocate for a reappraisal of the way that we approach interpretability
of neural networks. Instead of using metrics which lack predictive capacity, we argue that there is a
requirement for an in-depth exploration of data-free methods that can suitably disambiguate between
the robust and critical layer phenomena. Or rather, a focus on methods that consider more than just
weight distributions of models, which we show can be arbitrarily reparametrised without impacting
the performance, and instead seek metrics which further understand the more nuanced interplay
between between weights and data.
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A FURTHER ANALYSIS ON DATA-FREE METRICS

In this section we extend our analysis to the following data free metrics in our existing experimental
setup. W represents the weight matrix of the layer and X is for the empirical spectral density of the
correlation matrix, X = WT W, such that pemp()\) ~ A%, where )\ are the eigenvalues of X.

 Alpha Weighted (&): «log(Anaz), Where A4, is the max eigenvalue from X [Martin &
Mahoney| (2021]).

M
* Log Alpha Norm: log(||X||%), where || X||% =3 A%, where M is the rank of W |Martin

& Mahoney| (2021)).

« MP Soft Rank: is the ratio between the bulk edge of the pemp(A), AT, and the max
eigenvalue, Apqq, % Martin & Mahoney|(2021).

* Frobenius Norm: The sum of the singular values of W denoted as ||[W||F.

* Spectral Norm: The max singular value of W denoted as ||W||w.

 Stable Rank: The ratio of the squared Frobinues Norm and the squared Spectral Norm,

W% Rudelson & Vershynin| (2007).

denoted as
W13

* Generalized von-Neumann Matrix Entropy: ﬁ >, pilog p;, where M is the rank of

2

matrix W and p; is % where o is the singular values of W |Martin & Mahoney| (2021).

Each metric can be found below with the appropriate subsection that corresponds to our analysis of
these data-free metrics.

The correlation between the Frobenius Norm and the associated test accuracy when layers undergo
re-initialisation (blue) or re-randomisation is shown in Figure [/| The Frobenius Norm observes
approximately zero correlation between the metric values and the test accuracy, highlighting the same
findings as in the body of the paper.
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A.1 FROBENIUS NORM

Norm-based metrics were originally shown to be too coarse a metric to measure the generalisability
of the neural networks in[Zhang et al.| (2022). Figure[7]strengthens these findings, highlighting that
there is essentially no correlation between the Frobenius Norm of a layer and the test accuracy of a

model.
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A.2 RESNET34 ON IMAGENET
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Figure 8: ResNet 34: Layer re-randomisation test accuracy vs the respective metric. p is the Spearman
correlation coefficient, RS M F is the root mean square error of the linear regression (red line), and
K-7 is the Kendall’s tau measure, all with respect to the relationship between test accuracy and the
metric.

In Figure[8] we observe the same trend as found with « in the main body of the paper. While some
correlations are higher than circa 0, i.e. (f) we can clearly observe that there is strong overlap between
the values and the accuracy and that is induced by the different layer types explored.
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A.3 VIT ON IMAGENET
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Figure 9: ViT: Layer re-randomisation test accuracy vs the respective metric. p is the Spearman
correlation coefficient, RS M F is the root mean square error of the linear regression (red line), and
K-7 is the Kendall’s tau measure, all with respect to the relationship between test accuracy and the

metric.

In Figure[9] we observe the same trend as found with « in the main body of the paper. While some
correlations are higher than circa 0, i.e. (f) we can clearly observe that there is strong overlap between
the values and the accuracy and that is induced by the different layer types explored.
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Figure 10: GPT2: Layer re-randomisation test accuracy vs the respective metric. p is the Spearman
correlation coefficient, RS M F is the root mean square error of the linear regression (red line), and
K-7 is the Kendall’s tau measure, all with respect to the relationship between test accuracy and the
metric.

In Figure [T0} we observe the same trend as found with « in the main body of the paper, across all
metrics explored.

16



Under review as a conference paper at ICLR 2026

A.5 GPT2-LARGE ON WIKITEXT103
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Figure 11: GPT2-Large: Layer re-randomisation test accuracy vs the respective metric. p is the
Spearman correlation coefficient, RSM E is the root mean square error of the linear regression (red
line), and K-7 is the Kendall’s tau measure, all with respect to the relationship between test accuracy
and the metric.

In Figure[TT] we observe the same trend that there is little to no correlation between the metric and the
test accuracy of the model as found with « in the main body of the paper, across all metrics explored.
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