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Abstract

Graph transformers (GTs) have demonstrated strong empirical performance; however,1

current architectures exhibit significant variations in their utilization of attention2

mechanisms, positional embeddings (PEs), and expressivity. Existing expressivity3

results are often tied to specific design choices and lack comprehensive empirical4

validation on large-scale data. This leaves a gap between theory and practice, preventing5

the generation of generalizable insights that extend beyond particular application6

domains. Here, we propose the Generalized-Distance Transformer (GDT). This GT7

architecture incorporates many advancements for GTs from recent years, and develops a8

fine-grained understanding of the GDT’s representation power in terms of attention and9

PEs. Through extensive experiments, we identify design choices that consistently10

perform well across various applications, tasks, and model scales, demonstrating strong11

performance in a few-shot transfer setting without the need for fine-tuning. We distill12

our theoretical and practical findings into several generalizable insights about effective13

GT design, training, and inference.14

1 Introduction15

Graphs are a fundamental data structure for representing relational data and are widely used across16

various scientific and industrial domains. They naturally model interactions in multiple domains, e.g., in17

chemistry [Gilmer et al., 2017, Jumper et al., 2021], recommendation systems [Ying et al., 2018, Wu18

et al., 2020], or code analysis [Allamanis et al., 2018, Hellendoorn et al., 2021]. While graph neural19

networks (GNNs) [Zhou et al., 2020, Bronstein et al., 2021], specifically message-passing neural networks20

(MPNNs) [Gilmer et al., 2017], remain the most prominent architectures in graph learning, recently, graph21

transformers (GTs) have emerged [Müller et al., 2024] and have found success in applications such as22

protein folding [Abramson et al., 2024], weather forecasting [Price et al., 2025], or robotics [Vosylius and23

Johns, 2025]. Moreover, due to the generality of graphs as a modeling language, GTs can be seen as24

generalizations of traditional transformer architectures [Vaswani et al., 2017, Devlin et al., 2019, Brown25

et al., 2020]. As such, theoretical and practical insights about GTs can be leveraged to improve our26

understanding of transformers’ reasoning abilities and representation power [Sanford et al., 2024, Cheng27

et al., 2025]. In addition, LLMs with causal masking can be seen as GTs on special types of directed28

acyclic graphs, and tools from graph learning can be used to study and understand their behavior at29

inference time [Barbero et al., 2024, 2025]. Despite these promises, the progress of GTs is hindered by a30

lack of standard methods to obtain generalizable insights. Specifically, we identify three main obstacles in31

the current literature: architecture-tied expressivity, limited evaluation, and graph-specific attention. Here,32

architecture-tied expressivity refers to the shortcoming that current expressivity results are often tied to33

specific architectural designs, such as special attention mechanisms [Zhang et al., 2023, Ma et al., 2023,34

Müller et al., 2024, Black et al., 2024] or choices of positional embeddings (PEs) [Tsitsulin et al., 2022,35

Ma et al., 2023, Kim et al., 2022, Müller and Morris, 2024]. In addition, empirically, GTs are often36

evaluated and compared on small-scale datasets [Rampášek et al., 2022, Ma et al., 2023] where otherwise37
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Figure 1: Overview of the GDT and accompanying evaluation. Top left: We support node- and edge-level
tokenization with corresponding absolute PEs (depicted below each token). Top right: We incorporate
relative PEs and edge features via the attention bias. Bottom left: We provide effective and streamlined
implementations for incorporating edge features and PEs. Bottom right: All empirical evaluations are done
on large-scale datasets spanning various applications.

negligible implementation choices can be more prominent, leading to limited insights. Finally, regarding38

graph-specific attention, most GTs deviate far from the traditional transformer architecture, making it39

challenging to derive generalizable insights about transformers beyond particular application domains.40

Present work This work aims to overcome the above obstacles and provide a general and powerful41

graph transformer architecture. Through rigorous theoretical and empirical analysis, we develop the42

Generalized-Distance Transformer (GDT), a general graph transformer architecture whose expressivity can43

be characterized by the powerful Generalized-Distance Weisfeiler–Leman algorithm [Zhang et al., 2023].44

Concretely, the GDT45

1. captures MPNNs, most graph transformers, and many other transformer models, e.g., causal and46

bi-directional transformers;47

2. is effective across application domains, as well as on graph-, node-, and edge-level prediction tasks; and48

3. is evaluated at a sufficient data scale and can learn transferable representations, allowing for few-shot49

transfer and extrapolation.50

Our provably expressive GDT architecture, supported by a rigorous empirical evaluation, represents a51

significant step toward developing highly effective, general-purpose graph models that enable generalizable52

insights across diverse domains.53

2 Generalized-Distance Transformer54

In this section, we derive the GDT by combining various methods from the recent graph learning55

literature, while maintaining standard attention that is compatible with most traditional transformer models.56

Moreover, we prove that the GDT is powerful enough to simulate the general and expressive GD-WL57

algorithm [Zhang et al., 2023]. We will first introduce some notation and necessary background, and then58

develop our theoretical framework.59

Expressivity and Weisfeiler–Leman variants We consider finite graphs G := (V (G), E(G), ℓV , ℓE)60

with nodes V (G), edges E(G). Note that for simplicity we assume that the nodes and edges are already61

embedded via node embeddings ℓV : V (G)→ Rd, and edge embeddings ℓE : V (G)2 → Rd, where62

d ∈ N+ is the embedding dimension and ℓE(v, w) is simply the all-zero vector if there is no edge between63

nodes v and w. We always fix an arbitrary order on the nodes V (G) to be consistent with vectorial64

representations such as those used in transformers. We study the expressivity of a graph model via its65

ability to distinguish non-isomorphic graphs, which is common practice for graph neural networks66

and GTs [Morris et al., 2019, Abboud et al., 2022, Zhang et al., 2023, Black et al., 2024, Müller and67

Morris, 2024]. Such a notion of expressivity is often studied in the context of the new k-dimensional68

Weisfeiler–Leman algorithm (k-WL) [Cai et al., 1992], a hierarchy of graph isomorphism heuristics with69

increasing expressivity and computational complexity as k > 0 grows. MPNNs without PEs typically have70

1-WL expressivity. Another important graph isomorphism heuristic in the context of this work is the71

GD-WL variant [Zhang et al., 2023], which we formally introduce here. Concretely, given a graph72

G := (V (G), E(G), ℓV ), we seek to iteratively update colors for each node v ∈ V (G), denoted χt
G(v),73
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where t ≥ 0 denotes the iteration number. We initialize χ0
G(v) with the node colors consistent with ℓV ,74

that is χ0
G(v) = χ0

G(w) if and only if ℓV (v) = ℓV (w), for all pairs of nodes v, w. Then, the GD-WL75

updates the color χt
G(v) of node v ∈ V (G), as76

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
, (1)

where dG : V (G)2 → R+ is a distance between nodes in G and hash is an injective function, mapping77

each distinct multiset to a previously unused color. The expressivity of the GD-WL depends on the choice78

of dG. Setting dG(v, w) = 1 if and only if v and w have an edge in G, yields 1-WL expressivity. In79

practice, the GD-WL is often realized with a GT where dG is incorporated via modified attention [Ma80

et al., 2023, Zhang et al., 2023]. In Section 2.2, for the first time, we prove that a GT with standard81

attention can simulate the GD-WL, with dG being incorporated as a PE.82

2.1 Defining the GDT83

While many variations of GTs exist, we consider the standard transformer encoder based on Vaswani et al.84

[2017]. Concretely, the GDT processes a matrix of initial token embeddings X0 ∈ RL×d, derived from G,85

using scaled dot-product attention and subsequent application of a multi-layer perceptron (MLP). Here86

L ∈ N+ denotes the number of tokens, typically in the order of the number of nodes, and d denotes87

the embedding dimension. We now describe tokenization and attention, and how we incorporate edge88

embeddings into the GDT.89

Tokenization For this study, we will consider two possible tokenizations: (a) node-level tokenization,90

where each token corresponds to a node in G and the initial token embeddings are constructed from node91

embeddings ℓV ; and (b) edge-level tokenization, where each token corresponds to either a node or an92

edge in G and the initial token embeddings are constructed from the node embeddings ℓV and the edge93

embeddings ℓE for node- and edge-tokens, respectively.94

Special tokens As a convention, and following many prior works on transformer encoders, we use a special95

[cls] token to read out graph-level representations from the GT. For simplicity, we treat the [cls] token as96

corresponding to an additional virtual node, connected to all other nodes. This virtual node is also equipped97

with a unique node embedding ℓV ([cls]) and unique edge embeddings ℓE([cls], v) = ℓE([cls], w)98

and ℓE(v, [cls]) = ℓE(w, [cls]), for all pairs of nodes v, w ∈ V (G).99

Attention For the attention, let Q,K,V ∈ RL×d and B ∈ RL×L be the attention bias. We define100

biased attention as101

Attention(Q,K,V ,B) := softmax
(
d−

1
2 ·QKT +B

)
V ,

where softmax is applied row-wise. While many variations of the standard transformer layer exist, it102

generally takes the form103

Xt+1 := MLP
(
Attention(XtWQ,X

tWK ,XtWV ,B)
)
, (2)

where WQ,WK ,WV ∈ Rd×d are learnable linear transformations, and we use a two-layer MLP104

commonly found in transformer encoder layers; see Appendix B for a formal definition. In practice,105

transformers typically have additional normalizations and residual connections. They are implemented106

using multi-head attention with attention bias tensor B ∈ RL×L×h where h is the number of attention107

heads; see Appendix B for a formal definition.108

Absolute and relative PEs We can incorporate two classes of PEs, absolute PEs such as RWSE [Dwivedi109

et al., 2021], LPE [Kreuzer et al., 2021, Müller and Morris, 2024], and SPE [Huang et al., 2024], which are110

added at the token-level, and relative PEs such as RRWP [Ma et al., 2023], which describe relational111

information between two tokens. We note that the GDT is permutation-equivariant if and only if the112

absolute and relative PEs used are permutation-equivariant. Since we always assume the presence of,113

potentially trivial, edge embeddings, the GDT has, at the very least, an embedding of the adjacency matrix114

as its attention bias, forming a kind of default relative PE. We will refer to this PE as NoPE.115

2.2 The expressive power of the GDT116

We now have the necessary definitions to formally state our theoretical result for the expressivity of the117

GDT. Importantly, our result allows us to study GT expressivity exclusively through the choice of PE,118

effectively decoupling model expressivity from the selection of attention. Concretely, we show that the119

GDT, with absolute and relative PEs, is sufficient to simulate the GD-WL, as well as that the GD-WL120

provides an upper bound on the expressivity of the GDT; see Appendix D for the proof.121
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Theorem 1 (informal). The following holds:122

1. For every choice of distance function, there exists a choice of PEs and a parameterization of the GDT123

sufficient to simulate the GD-WL.124

2. For every choice of PEs and parameterization of the GDT, there exists a distance function and an initial125

coloring of the GD-WL sufficient to simulate the GDT.126

The central problem we face when proving the first statement is how to injectively encode the multisets in127

Equation (1) with softmax-attention. This is because softmax-attention computes a weighted mean, whereas128

existing results for encoding multisets use sums [Xu et al., 2019, Morris et al., 2019, Zhang et al., 2023].129

To overcome this limitation, we first note that the weighted mean of softmax-attention is essentially a130

normalized sum of exponential numbers. We then leverage a classical result from number theory, namely131

that sums of distinct exponential numbers are linearly independent over algebraic numbers, a result known132

as the Lindemann-Weierstrass theorem [Baker, 1990]. In the proof of Theorem 1, we show that this linear133

independence property is sufficient for injectivity, provided that there are at least two distinct token134

embeddings, a property always satisfied in the presence of the [CLS] token.135

Insight 1: The expressivity of biased attention can be characterized by the GD-WL.
136

A consequence of Theorem 1 is that the GDT with NoPE is equivalent to 1-WL; see Appendix D for a137

formal discussion of this fact. With Theorem 1, we have characterized the expressivity of the GDT in terms138

of the GD-WL. In the next section, we show that this expressivity can be enhanced using PEs. To this139

end, we present a range of new PE expressivity results, providing the most fine-grained picture of GT140

expressivity.141

3 The expressive power of positional embeddings142

This section provides a comprehensive theoretical expressiveness hierarchy of PEs based on the works143

of Black et al. [2024] and Zhang et al. [2024], including novel results on PE expressiveness. With144

theoretical results obtained from Section 2.2, we expand on GDT expressiveness by introducing PE145

expressiveness, building a pathway between our transformer architecture and incorporating graph structure146

information. Furthermore, leveraging the PE expressiveness results, we obtain initial guidelines for147

empirically evaluating PE design choices. Here, we introduce the four PEs central to our theoretical and148

empirical study; see Appendix E for results for additional PEs.149

PEs We consider random-walk-based PEs and PEs based on the eigenvalues of the graph Laplacian.150

Random-walk-based PEs are embeddings of the random-walk probabilities obtained from multiple powers151

of the degree-normalized adjacency matrix of the graph. We consider RWSE [Dwivedi et al., 2021], an152

absolute PE that uses only the return probabilities of random walks for each node and has linear-time153

complexity, and RRWP [Ma et al., 2023], a relative PE, which uses all random walk probabilities between154

two nodes and has quadratic runtime complexity.155

Laplacian PEs are embeddings of the eigenvectors and eigenvalues of the graph Laplacian; see Appendix B156

for a definition. Here, we consider LPE [Kreuzer et al., 2021, Müller and Morris, 2024], an absolute PE157

which uses a linear-time embedding method but suffers from a lack of basis-invariance, making the PE158

non-equivariant to the permutation of nodes [Lim et al., 2023]. In addition, we consider SPE [Huang et al.,159

2024], an absolute PE which is permutation-equivariant but has quadratic runtime complexity. Further160

details and formal definitions are presented in Appendix B.161

1-WL and random-walk PEs Tönshoff et al. [2023] already show that there are pairs of graphs with n162

nodes, distinguishable by the 1-WL, requiring random walks with at least O(n) steps to be distinguished.163

Here, we show that RWSE is incomparable to the 1-WL. This holds independently of the number of random164

walk steps, and as a result, we can consider RWSE to provide additional information as a PE to a pure165

transformer architecture by differentiating 1-WL indistinguishable graphs; see Appendix E for the proof.166

Theorem 2. The RWSE embedding is incomparable to the 1-WL test.167

We briefly highlight the most essential proof idea. Concretely, the selected trees introduced by Cvetković168

[1988], shown in Figure 6, are known not to be distinguishable using their eigenvalues and graph angles.169

However, all trees can be distinguished by the 1-WL test [Cai et al., 1992]. At the same time, it is170

well-known that RWSE can distinguish indistinguishable CSL graphs by the 1-WL [Dwivedi et al., 2021].171

Further, we note that Theorem 2 provides not only a single pair of graphs but rather an infinite number of172

trees indistinguishable by RWSE. Finally, we show the following result relating RRWP to RWSE.173
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Figure 2: Results of inference-time experiments. From left to right: Few-shot transfer from BRIDGES to
CYCLES with 3-NN over 3 random seeds; few-shot transfer from COCO to PASCAL with 5-NN over 10
random seeds; extrapolation beyond training data on MST over 3 random seeds.

Proposition 3. RRWP is strictly more expressive than RWSE, given the same random walk length.174

Random-walk PEs and eigen PEs We provide results for RWSE, RRWP, LPE, and SPE. In contrast to175

previous works [Ma et al., 2023, Zhang et al., 2024], we analyze the expressivity of RRWP directly,176

without using the GRIT architecture. We find that RRWP is approximated by SPE, which in turn is strictly177

weaker than the 3-WL test [Zhang et al., 2024]. Further, we expand on proofs by Lim et al. [2023] to178

approximate RWSE using LPE. Taken together, we obtain a fine-grained hierarchy of PEs, which we179

summarize in the following result.180

Proposition 4. SPE is at least as expressive as LPE and RRWP, LPE is at least as expressive as RWSE.181

We obtain an even more fine-grained hierarchy of Eigen-vector-based PEs by including additional182

embeddings as discussed in Appendix E. As a consequence of the hierarchy, all PEs considered in this183

section can distinguish graphs not distinguishable by the 1-WL or, equivalently, the GDT with NoPE.184

Insight 2: Any PE in {RWSE,RRWP,LPE,SPE} enhances the expressivity of the GDT.
185

We present a summary of our results in Figure 6 and highlight our contributions to a completed theoretical186

expressiveness hierarchy of PEs, complementing the work of Zhang et al. [2024] and Black et al. [2024].187

Together with the theoretical insights obtained in Section 2 we arrive at a detailed understanding of the188

expressivity of the GDT with four popular PEs.189

4 Experiments190

In this section, we empirically evaluate our GDT model on various real-world and synthetic datasets, at the191

graph-, node-, and edge-levels, as well as in- and out-of-distribution settings. Specifically, we compare the192

performance and efficiency of the PEs in Section 3 and examine the few-shot transfer, parameter scaling,193

and size generalization capabilities of the GDT. In the process, we aim to gain a deeper understanding194

of the relationship between empirical performance and expressivity, based on the results presented in195

Section 3, and derive generalizable insights for GTs. Next, we describe our implementation design, the196

choice of datasets, and the experiment schedule, and present our empirical results.197

Real-world datasets For the real-world tasks, we evaluate our models on PCQM4Mv2 (PCQ) [Hu et al.,198

2021], a molecular property prediction dataset with 52.5M tokens, COCO [Dwivedi et al., 2022], an199

image-based object detection dataset with 58.8M tokens, and OGB-Code2 (CODE) [Hu et al., 2020], a code200

summarization dataset with 56.7M tokens. For few-shot transfer, we select PASCAL [Dwivedi et al., 2022],201

which has the same image domain as COCO but uses different object categories.202

Algorithmic reasoning datasets In addition to real-world tasks, we add synthetic algorithmic reasoning203

tasks for graph algorithms inspired by the CLRS benchmark [Velickovic et al., 2022]. Our selection204

includes the minimum-spanning-tree problem (MST), detecting bridges in a graph (BRIDGES), and205

calculating the maximum flow in an undirected graph (FLOW). Here, BRIDGES and MST are edge-level206

tasks, and FLOW is a graph-level task. We further consider the task of detecting whether a node lies on207

a cycle (CYCLES), a node-level complement to BRIDGES, to evaluate transfer learning capabilities.208

Following the literature in algorithmic reasoning for transformer architectures [Zhou et al., 2022, 2024a,b]209

and in particular, graph algorithmic reasoning [Diao and Loynd, 2023, Velickovic et al., 2022, Markeeva210

et al., 2024, Müller et al., 2024], we evaluate in the size generalization setting where test-time graph211

instances are up to 16 times larger than those seen during training.212
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Table 1: 16M parameter results for different PEs over 3 random seeds. PCQ MAE is in micro electron volt
(meV) for clarity of presentation. The mean rank is computed by sorting the models’ scores for each task.
An out-of-time (OOT) case is considered the last place for the respective task.

PE Mean PCQ COCO CODE FLOW MST BRIDGES
Rank MAE ↓ F1 ↑ F1 ↑ MAE ↓ F1 ↑ F1 ↑

NoPE 3.50 93.6 ± 0.5 43.12 ± 00.85 19.27 ± 00.20 1.73 ± 0.09 93.29 ± 00.88 55.36 ± 24.94

LPE 2.50 92.7 ± 0.9 44.83 ± 00.71 19.48 ± 00.21 1.75 ± 0.12 91.08 ± 00.95 91.76 ± 07.66

SPE 4.00 94.1 ± 0.6 43.87 ± 00.54 19.35 ± 00.21 1.98 ± 0.14 92.52 ± 00.12 54.81 ± 21.20

RWSE 2.67 92.9 ± 0.6 43.82 ± 01.01 19.39 ± 00.47 1.49 ± 0.02 93.26 ± 00.45 87.34 ± 03.97

RRWP 2.33 90.4 ± 0.3 39.91 ± 1.07 19.42 ± 0.1 1.45 ± 0.06 96.04 ± 00.91 99.21 ± 00.09

Experimental design In the first step, we evaluate different PE choices from Section 3 for the GDT on213

all six upstream tasks. We also consider NoPE, which receives information about the graph structure214

solely from the edge embeddings. We fix the parameters to 15M; see Appendix A for the choice of215

hyperparameters. Additionally, we compute the runtime and memory efficiency observed for each PE and216

task. In the second step, we select the best models from the first step and evaluate them further using217

few-shot transfer, scaling model size, and extrapolating graph size. In particular, we assess few-shot transfer218

from COCO to PASCAL, as well as few-shot transfer from BRIDGES to CYCLES. For scaling, we train219

additional models with 90M and 160M parameters for PCQ and MST. Finally, we provide extrapolation220

results for up to 256 nodes (16× the size of the training graphs) on MST.221

Discussion of base models We present our task results in Table 1, as well as runtime and memory222

requirements in Figure 3. RRWP performs best of all selected PEs on 4 out of 6 tasks. Most notably, RWSE223

and LPE perform significantly better than NoPE and SPE for all tasks except FLOW, but do not face any224

efficiency issues. Furthermore, LPE and RWSE perform similarly for each task, placing second and third,225

respectively, and are often competitive with the less efficient RRWP. Due to their favorable efficiency and226

competitive predictive performance, we selected LPE and RWSE for our scaling and extrapolation227

experiments and few-shot transfer. For few-shot transfer from BRIDGES to CYCLES, we additionally select228

RRWP due to its significantly better OOD performance on BRIDGES.229

Insight 3: PE efficiency can vary greatly while predictive performance differences are less
pronounced.

230
Extended evaluation We present the scaling results in Figure 3 (a) found in Appendix A, few-shot231

transfer in Figure 2 (a) and (b), and extrapolation results in Figure 2 (c). For scaling, we observe that232

relative performance between PEs is more or less robust to model scale. In three out of four cases, in- and233

out-of-distribution performance improves consistently with an increase in model scale. The only exception234

is the 160M model with LPE on MST, which drops off slightly compared to its 90M counterpart but still235

outperforms both 15M models on this task.236

Insight 4: Scaling the GDT generally improves in- and out-of-distribution performance and
representations learned allow for effective few-shot-transfer.

237
For few-shot transfer, we find that all three evaluated models can demonstrate strong performance when238

transferring from BRIDGES to CYCLES with just a few shots. In particular, the 15M model with LPE239

achieves near-perfect performance already with 10 shots, and is significantly better than RWSE and RRWP240

up to 60 shots. When transferring from COCO to PASCAL, we observe performance increases even for241

1000 shots where both RWSE and LPE surpass the current SOTA on PASCAL, despite seeing less than 10%242

of the available training samples at inference-time; see Appendix A for an overview of state-of-the-art243

performance on PASCAL. Finally, we find all PEs and model scales to extrapolate well on MST. In244

particular, we still observe an F1 score of around 85 at 256 nodes or 16× the graph sizes seen during245

training.246

5 Conclusion247

We introduce the GDT, a generalizable and expressive graph transformer built upon the standard transformer248

implementation. We demonstrate that the GDT is equivalent to the GD-WL in terms of theoretical249

expressiveness, with enhanced expressivity achieved by utilizing PEs and their respective expressiveness.250

Further, we demonstrate strong empirical performance across multiple domains and large-scale datasets,251

determining an empirical hierarchy of PEs. We also demonstrate the GDT’s ability to learn transferable252

representations, extrapolate on graph size for synthetic tasks, and achieve robust results concerning model253

scale. Thereby, we provide generalizable theoretical and empirical insights for graph transformers.254
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Table 2: Hyperparameters for our 16M models.
Hyperparameter PCQ COCO CODE FLOW MST BRIDGES

Learning rate 1e-4 4e-4/3.5e-4 1e-4/1.5e-4 1e-4/2e-4 3e-4 2e-4/1e-4
Batch size 256 32 32 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Grad. clip norm 1 1 1 1 1 1

Num. layers 16 16 16 16 16 16
Hidden dim. 384 384 384 384 384 384
Num. heads 16 16 16 16 16 16
Activation ReLU ReLU ReLU ReLU ReLU ReLU

RWSE/RRWP Steps 32 32 32 16 16 16
Num eigvals/eigvecs 32 32 32 16 16 16
Hidden dim. RWSE/RRWP 768 768 768 768 768 768
Hidden dim. LPE/SPE 384 384 384 384 384 384
Num. layers ϕ 2 2 2 2 2 2
Num. layers ρ 2 2 2 2 2 2
GNN type ρ (SPE) GIN GIN GIN GIN GIN GIN

Edge encoder MLP MLP MLP MLP MLP MLP
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1 0.1 0.1

#Steps 2M 1M 200k 11718 11718 11718
#Warmup steps 20k 10k 2k 118 118 118

A Experimental details424

Here we present hyperparameter choices, architecture design, and dataset selections for the empirical425

evaluation of our GT architecture.426

A.1 Data sources and licenses427

PCQM4MV2 is available at https://ogb.stanford.edu/docs/lsc/pcqm4mv2/ under a CC428

BY 4.0 license. OGB-Code2 is available at https://ogb.stanford.edu/docs/graphprop/429

#ogbg-code2 under a MIT license. The COCO-SP and PASCAL-VOC-SP datasets as part of the LRGB430

benchmark [Dwivedi et al., 2022] are available at https://github.com/vijaydwivedi75/lrgb431

under a CC BY 4.0 license. Statistics for all datasets, including the algorithmic reasoning datasets, are432

available in Table 4433

A.2 Hyperparameters434

Table 2 and Table 3 give an overview of the hyperparameters used for models highlighted in our work.435

Considering the large number of hyperparameters and scale of tasks, we did not perform a grid search or436

any other type of large-scale hyperparameter optimization. Nonetheless, we swept the learning rate for437

each task and model size. Across the experiments, we select the hyperparameters based on the best438

validation score and then evaluate on the test set. We search for suitable learning rates on the 16M models439

to determine the models we select for scaling. Due to the increased computational demand, we then reduce440

the learning rate for the 100M models.441

For PCQ, we set the learning rate to 1e-4 after sweeping the learning rate over the set {7e-5, 1e-4, 3e-4}.442

Further, we set the learning rate for COCO to 4e-4 for eigen-information-based embeddings and 3.5e-4 for443

RWSE after sweeping over {7e-5, 1e-4, 3e-4, 4e-4}. For CODE, we reduce the learning rate to 1.5e-4444

(RWSE) with the same sweep as with PCQ, and across all MST runs, we keep the learning rate at 3e-4 for445

the 16M models, reducing the learning rate to 1e-4 (LPE) and 7e-5 (RWSE) for the 90M model and 7e-5446

for the 160M model at MST with the same initial sweep as for COCO. Furthermore, for FLOW we set the447

learning rate to 1e-4 (LPE,SPE,NoPE) and 2e-4 (RWSE, RRWP) respectively. We obtain similar results for448

BRIDGES with 1e-4 (RWSE, LPE) and 2e-4 (RRWP,SPE,NoPE) as the learning rate using the initial sweep449
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Table 3: Hyperparameters for our 90M and 160M models.

Hyperparameter PCQ(90M) MST(90M) MST(160M)

Learning rate 1e-4 1e-4/7e-5 7e-5
Batch size 256 256 256
Optimizer AdamW AdamW AdamW
Grad. clip norm 1 1 1

Num. layers 24 24 24
Hidden dim. 768 768 1024
Num. heads 16 16 16

Activation ReLU ReLU ReLU

RWSE/RRWP steps 32 32 32
Num. eigvals/eigvecs 32 32 32
Hidden dim. RWSE/RRWP 768 768 768
Hidden dim. LPE/SPE 384 384 384
Num. layers ϕ 2 2 2
Num. layers ρ 2 2 2
GNN type ρ (SPE) GIN GIN GIN

Edge encoder MLP MLP MLP
Weight decay 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1

#Steps 2M 11718 11718
#Warmup steps 20k 118 118

Table 4: Dataset statistics.
Statistic PCQ COCO CODE FLOW MST BRIDGES

# Graphs 3.746M 123,286 452,741 1M 1M 1M
# Avg. Nodes 14.13 476.88 125.2 16/64 16/64 16/64
# Avg. Edges 14.56 3,815.08 124.2 48.11/213.586 31.66/209.34 48.46/ 395.02
Prediction level graph node graph graph edge edge
Metric MAE F1 F1 MAE F1 F1

from PCQ. In addition, we evaluated each PE with {8,32} random walk steps or eigenvectors and {4,16}450

for algorithmic reasoning tasks. Regarding PE encoder design, we selected a simple MLP architecture with451

two layers where applicable. However, we use the same number of layers, heads, and embedding dimension452

for each dataset for our transformer architecture, thereby not changing the architecture. Otherwise, we453

follow previous literature for initial hyperparameter choices, namely the GraphGPS [Rampášek et al.,454

2022], GRIT [Ma et al., 2023], and Graphormer [Ying et al., 2021a] papers. We used an AdamW optimizer455

for each experiment with β1 = 0.9 and β2 = 0.999. Further, the learning rate scheduler is given by a456

cosine annealing learning rate scheduler with the warm-up steps set as one percent of the total number of457

steps. Additionally, we use an L1 loss for regression targets and a cross-entropy loss for classification458

targets, except CODE, where we use the proposed loss function. In Table 5 and Table 6, we further report459

runtimes and memory usage of all models evaluated in our work.460

A.3 Architecture461

In the following, we showcase the implementation of our GT architecture and the injection of PE462

information into the attention mechanism. We consider an Encoder, Processor, Decoder architecture with463

additional preprocessing for the PEs and graph-specific features.464

Preprocessing First, we preprocess each dataset to include the respective eigenvalues and eigenvectors of465

the graph Laplacian and the powers of the random walk matrices. These are then applied to the respective466
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PE encoder, consisting of an MLP with two layers, casting the PE features to the embedding dimension.467

We consider transformed graphs for edge-level tasks, such as BRIDGES and MST, as a special case. In this468

case, the graph is converted to constitute the edge-level graph corresponding to the original graph. Then,469

node features and PE features are computed on this transformed graph. For the GDT, we provide a470

maximum context size depending on the dataset. Tokens exceeding the context size are then removed.471

Encoder The node and edge features of graphs in each dataset are then applied to a linear layer, mapping472

them to the embedding dimension. These feature embeddings are specific to each dataset and embed473

graph-specific features. For CODE we consider additional preprocessing steps, as described by [Hu et al.,474

2021] to derive the respective graph structure. Further, we add a [cls] token as it is a standard practice to475

read out graph-level representations [Ying et al., 2021b].476

Processor Following our description of the GDT architecture as shown in Section 2, a single layer in the477

GDT architecture computes the expression shown in Definition 8 using GELU as a nonlinearity. The478

absolute PEs are added to the node embeddings before the initial layer, in the case of relative PEs to the479

attention bias B. The GT layer then computes full multi-head scaled-dot-product attention over node-level480

tokens, adding B to the unnormalized attention matrix before applying softmax. We refer to Appendix B.1481

for a detailed discussion. From this representation, including node and edge features, relative and absolute482

PEs, and the embedded graph structure, the processor computes a representation of node and graph-level483

features. We then stack multiple GT layers together: 12 for the 16M model and 24 for the 100M model.484

Decoder After the last layer, an MLP decoder with two layers is applied to provide the prediction head of485

the model. Since each dataset has its prediction target, we provide a decoder for each dataset mapping the486

last layer output to the prediction target, where W1 ∈ Rd×d and W2 ∈ Rd×o are learnable weight487

matrices and o is the respective output dimension for each task, i.e.,488

W2LayerNorm(GELU(W1x)).

For clarity, we omit bias terms throughout this section. Each result is then passed to the respective loss489

function to compute the gradient step.490

A.4 Algorithmic reasoning data491

For our synthetic experiments, we evaluate on three out-of-distribution algorithmic reasoning tasks derived492

from the CLRS benchmark [Velickovic et al., 2022] for a total of 100M tokens. These tasks assess size493

generalization in a controlled synthetic setting with randomly generated graphs. Unlike CLRS, we do not494

train models with intermediate algorithmic steps. Here, we describe graph generation and each algorithmic495

reasoning task in detail.496

Graph generation We develop a heuristic graph generation method that leads to graphs with desirable497

problem-specific properties, such as a reasonable distribution of shortest-path lengths or number of bridges.498

Concretely, we begin by sampling an Erdos-Renyi graph G with n nodes and edge probability p and499

denote the connected components of G with C1, . . . , Cm. For each i ∈ [m], we randomly choose a500

component Cj with j ̸= i. Then, we select random nodes v ∈ Ci and w ∈ Cj and augment G with the501

edge (i, j). We repeat this process several K times. We select parameters p and K for each task based on502

problem-specific characteristics. We detail these choices in the task descriptions, which we provide next.503

Maximum flow In FLOW, the task is to predict the maximum flow value in an edge-weighted directed504

graph. The task uses discrete node features indicating whether a node is either the source of the flow, the505

sink of the flow, or neither. The task uses the flow capacity between two nodes as continuous scalar-valued506

edge features. FLOW is a graph-level regression task.507

Minimum spanning tree In MST, the task is to predict the set of edges that forms the minimum508

spanning tree (MST) in an edge-weighted graph with mutually distinct edge weights, ensuring the509

uniqueness of the MST. The task uses the weight of each edge as continuous scalar-valued edge features.510

MST is a binary edge classification task where the class label indicates whether an edge is contained within511

the MST.512
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Table 5: 16M/90M/160M models runtime results of a single step, averaged across 1 000 steps. Each value is
given in seconds/step.

PE #Param. PCQ COCO CODE FLOW MST BRIDGES

NoPE 16M 0.079 0.105 0.0921 0.071 0.096 0.072
LPE 16M 0.084 0.109 0.104 0.071 0.106 0.088
SPE 16M 0.091 0.123 0.105 0.059 0.106 0.085
RWSE 16M 0.072 0.101 0.102 0.071 0.091 0.088
RRWP 16M 0.137 0.1352 0.219 0.066 0.1452 0.101

LPE 90M 0.167 - - - 0.184 -
RWSE 90M 0.159 - - - 0.186 -
LPE 160M 0.219 - - - 0.246 -
RWSE 160M 0.219 - - - 0.237 -

Bridges In BRIDGES, the task is to predict the set of edges that are bridges in an undirected graph. The513

task does not use any node or edge features. BRIDGES is a binary edge classification task where the class514

label indicates whether an edge is a bridge in the graph.515

A.5 Runtime and memory516

Here we provide additional information on the runtime and memory requirements of our GDT. We sample517

the runtime of each experiment by running multiple steps and averaging their runtime. For memory518

consumption, we consider the complete forward steps of the model and estimate the allocated memory519

using PyTorch functionality. All computations were made using bfloat16 precision during computation. We520

run the experiments on a single node consisting of one L40 GPU with 40GB VRAM, 12 CPU cores, and521

120GB RAM for all runtime and memory computations. Due to the high memory requirements of storing522

full random-walk matrices for RRWP on large datasets, we opt for computing RRWP matrices at runtime.523

To allow for a fair comparison between PEs, which takes into account computational efficiency, we allocate524

a compute budget of 5 GPU days for the 16M models. We further note that the presented runtimes are the525

final runtimes obtained from the selected experiments, and significantly more runtime was used to obtain526

the chosen hyperparameter choices. We note that the automatic compilation is performed automatically by527

torch.compile, improves the runtime and memory scaling significantly across all tasks.528

Table 5 shows the runtime for a single step, averaged across 1 000 training steps obtained for each model.529

Timings were obtained using torch functionality. Further Table 6 shows the memory requirement for 1 000530

steps of each model. We further note the runtime speed improvements during inference experiments from531

Section 4 while using FlashAttention [Dao et al., 2022].532

Hardware optimizations Efficient compilation of neural networks is already available via CUDA533

implementations in PyTorch and programming languages such as Triton. We use torch.compile throughout534

all our experiments. In addition, we want to highlight FlashAttention [Dao et al., 2022], available for the535

standard transformer, and used in the GDT as an example of architecture-specific hardware optimizations536

that can reduce runtime and memory requirements.537

Implementation We base our implementation on the torch.nn.TransformerEncoderLayer pro-538

posed in PyTorch [Paszke et al., 2019]. This allows us to use memory and runtime-efficient attention539

implementations such as FlashAttention [Dao et al., 2022] and Memory Efficient Attention [Rabe and540

Staats, 2021]. In addition, we aim to harmonize implementation differences among the various PEs by541

minimizing the impact of implementation-specific advantages as much as possible. This is achieved by542

using the same number and width of MLP layers, as well as the same activation functions, for all PEs. A543

comprehensive overview of our implemented model architecture and the datasets used is provided in544

Appendix A.545

A.6 Comparison with state-of-the-art546

While our study focuses exclusively on the GDT, we provide SOTA performance numbers for our547

real-world tasks to understand whether the GDT performance is competitive with the best models in the548
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Table 6: 16M/90M/160M models memory requirements in MB for 1 000 steps of each model during
training.

PE #Param. PCQ COCO CODE FLOW MST BRIDGES

NoPE 16M 3120.63 5117.57 9749.29 1702.69 3255.37 2456.55
LPE 16M 3221.13 5239.89 9852.71 1763.87 3401.60 2499.54
SPE 16M 3161.32 5157.65 9763.58 1730.19 3290.09 2490.0
RWSE 16M 3131.57 5147.34 9766.30 1713.27 3276.84 2474.63
RRWP 16M 5419.56 5223.77 19221.97 2253.85 5522.04 3723.31

LPE 90M 9844.48 - - - 10197.77 -
RWSE 90M 9659.54 - - - 9947.07 -
LPE 160M 13513.76 - - - 13986.39 -
RWSE 160M 13266.44 - - - 13647.66 -
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Figure 3: (a): Results on 90M and 160M models for PCQ and MST evaluated on LPE and RWSE. (b):
Number of tokens evaluated per second during training for each PE. Results are obtained by averaging
runtimes per token across tasks. (c): Average GPU memory requirement for each PE.

literature. Concretely, for PCQ without 3D positions, the best models typically achieve between 0.0809 and549

0.0859 MAE [Chen et al., 2023, Müller et al., 2024, Ma et al., 2023, Rampášek et al., 2022]. For COCO550

and PASCAL, we find models are generally evaluated on a 500K parameter budget and achieve up to 43.98551

F1 and 49.12 F1, respectively [Chen et al., 2025]. Note that we do not adhere to this budget when training552

on COCO as we find it overly restrictive given the considerable size of this dataset. Consequently, we also553

use the pre-trained 15M model when performing few-shot transfer from COCO to PASCAL. Finally, on554

CODE, the best models score somewhere between 19.37 [Chen et al., 2022] and 22.22 F1 [Geisler et al.,555

2023].556

A.7 Scaling Results557

Here we provide additional results for scaling the GDT to 90M and 160M parameters.558

These results correspond to the results seen in Figure 3.559

Table 7: 90M and 160M parameter results for different PEs over 2 random seeds. PCQ MAE is in micro
electron volt (meV) for clarity of presentation.

PE PCQ (90M) MST (90M) MST (160M)
MAE ↓ F1 ↑ F1 ↑

LPE 89.7 ± 0.4 92.86 ± 00.17 93.11 ± 01.01

RWSE 88.9 ± 0.7 94.29 ± 00.68 95.80 ± 00.18

RRWP 86.5 ± 0.3 - -

B Background560

Here, we provide background material on various concepts and definitions used in our work.561

Basic notations Let N := {1, 2, . . .} and N0 := N ∪ {0}. The set R+ denotes the set of non-negative562

real numbers. For a set X , A ⊂ X denotes the strict subset and A ⊆ X denotes the subset. For n ∈ N, let563

[n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets, i.e., the generalization of sets allowing for564
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multiple, finitely many instances for each of its elements. For two non-empty sets X and Y , let Y X
565

denote the set of functions from X to Y . Given a set X and a subset A ⊂ X , we define the indicator566

function 1A : X → {0, 1} such that 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise. Let M be an567

n×m matrix, n > 0 and m > 0, over R, then Mi,·, M·,j , i ∈ [n], j ∈ [m], are the ith row and jth568

column, respectively, of the matrix M . We denote with set(M) the set of rows of M . Let N be an569

n× n matrix, n > 0, then the trace Tr(N) :=
∑

i∈[n] Nii. In what follows, 0 denotes an all-zero vector570

with an appropriate number of components.571

Graphs An (undirected) graph G is a pair (V (G), E(G)) with finite sets of vertices V (G) and572

edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. vertices or nodes V (G) and edges E(G) ⊆ {{u, v} ⊆573

V (G) | u ̸= v}. The order of a graph G is its number |V (G)| of vertices. If not stated otherwise, we574

set n := |V (G)| and call G an n-order graph. We denote the set of all n-order (undirected) graphs575

by Gn and the set of all (undirected) graphs up to n vertices by G≤n. In a directed graph, we define576

E(G) ⊆ V (G)2, where each edge (u, v) has a direction from u to v. Given a directed graph G577

and vertices u, v ∈ V (G), we say that v is a child of u if (u, v) ∈ E(G). A (directed) graph G is578

called connected if, for any u, v ∈ V (G), there exist r ∈ N and {u1, . . . , ur} ⊆ V (G), such that579

(u, u1), (u1, u2), . . . , (ur, v) ∈ E(G), and analogously for undirected graphs by replacing directed580

edges with undirected ones. We say that a graph G is disconnected if it is not connected. For a graph G and581

an edge e ∈ E(G), we denote by G \ e the graph induced by removing edge e from G. For an n-order582

graph G ∈ Gn, assuming V (G) = [n], we denote its adjacency matrix by A(G) ∈ {0, 1}n×n, where583

A(G)vw = 1 if and only if {v, w} ∈ E(G). The neighborhood of a vertex v ∈ V (G) is denoted by584

NG(v) := {u ∈ V (G) | {v, u} ∈ E(G)}, where we usually omit the subscript for ease of notation, and585

the degree of a vertex v is |NG(v)|. A graph G is a tree if connected, but G \ e is disconnected for any586

e ∈ E(G). A tree or a disjoint collection of trees is known as a forest.587

A rooted tree (G, r) is a tree where a specific vertex r is marked as the root. For a rooted (undirected) tree,588

we can define an implicit direction on all edges as pointing away from the root; thus, when we refer to the589

children of a vertex u in a rooted tree, we implicitly consider this directed structure. For S ⊆ V (G), the590

graph G[S] := (S,ES) is the subgraph induced by S, where ES := {(u, v) ∈ E(G) | u, v ∈ S}. A591

(vertex-)labeled graph is a pair (G, ℓG) with a graph G = (V (G), E(G)) and a (vertex-)label function592

ℓG : V (G)→ Σ, where Σ is an arbitrary countable label set. For a vertex v ∈ V (G), ℓG(v) denotes its593

label. A Boolean (vertex-)d-labeled graph is a pair (G, ℓG) with a graph G = (V (G), E(G)) and a label594

function ℓG : V (G)→ {0, 1}d. We denote the set of all n-order Boolean d-labeled graphs as GBn,d. An595

attributed graph is a pair (G, aG) with a graph G = (V (G), E(G)) and an (vertex-)attribute function596

aG : V (G)→ R1×d, for d > 0. That is, contrary to labeled graphs, vertex annotations may be from an597

uncountable set. The attribute or feature of v ∈ V (G) is aG(v). We denote the class of all n-order graphs598

with d-dimensional, real-valued vertex features by GRn,d.599

Two graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) that preserves600

adjacency, i.e., (u, v) ∈ E(G) if and only if (φ(u), φ(v)) ∈ E(H). In the case of labeled graphs, we601

additionally require that ℓG(v) = ℓH(φ(v)) for v ∈ V (G). Moreover, we call the equivalence classes602

induced by ≃ isomorphism types and denote the isomorphism type of G by τ(G). A graph class is a set of603

graphs closed under isomorphism. Given two graphs G and H with disjoint vertex sets, we denote their604

disjoint union by G ∪̇H .605

B.1 Transformers606

Here, we will introduce attention with an additive attention bias and the transformer architecture.607

Definition 5 (Attention (with bias)). Let Q,K,V ∈ Rn×d and B ∈ Rn×n, with n, d ∈ N+. We define608

biased attention as609

Attention(Q,K,V ,B) := softmax
(
d−

1
2 ·QKT +B

)
V ,

where softmax is applied row-wise and defined, for a vector x ∈ R1×n, as610

softmax(x) :=
[

exp(x1)∑
i∈[n] exp(xi)

. . .
exp(xn)∑

i∈[n] exp(xi)

]
.

Definition 6 (Multi-head attention (with bias)). LetX ∈ Rn×d,B ∈ Rn×n×h, and letWQ,WK ,WV ∈611

Rd×d,WO ∈ Rd×d be learnable parameters, with n, d ∈ N+. Let h ∈ N+ be the number of heads, such612
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that a dh ∈ N+ for which d = h · dh. We call dh the head dimension and define h-head attention over X613

as614

MHA(X,B) :=
[
X̃1 . . . X̃h

]
WO,

where, for all i ∈ [h],615

X̃i := Attention(XW
(i)
Q ,XW

(i)
K ,XW

(i)
V ,Bi),

with Bi ∈ Qn×n denoting the attention bias for the i-head, indexed along the third dimension of B,616

W
(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dh , and617

WQ :=
[
W

(1)
Q , . . . ,W

(h)
Q m

]
WK :=

[
,W

(1)
K , . . . ,W

(h)
K

]
,

WV :=
[
W

(1)
V , . . . ,W

(h)
V

]
.

Note that Equation (2) and Definition 6 are a general formulation whose special cases include the local GT618

[Dwivedi and Bresson, 2020], an attention-based variant of MPNNs with Bij = 0 if nodes i and j share an619

edge and Bij = −∞ else; attention with causal masking [Vaswani et al., 2017] with Bij = 0 if i < j and620

Bij = −∞ else; as well as many relative PEs [Shaw et al., 2018, Beltagy et al., 2020, Press et al., 2022].621

Definition 7 (Two-layer MLP). Let X ∈ Rn×d with n, d, df ∈ N+, where df is the hidden dimension.622

We define a two-layer MLP as623

MLP(x) := σ(xW1)W2,

where MLP is applied independently to each row x ∈ R1×d in X . Here, W1 ∈ Rd×df is the in-projection624

matrix, W2 ∈ Rdf×d is the out-projection matrix, and σ : R→ R is an element-wise activation function625

such as GELU [Hendrycks and Gimpel, 2016].626

Tokenization As discussed in Section 2 we provide both node-level and edge-level tokenization.627

In practice, we use the fact that edge-level tokenization is equivalent to node-level tokenization on a628

transformation G′ of G, with V (G′) := {(v, v) | v ∈ V (G)}∪E(G) and E(G′) := {((u, v), (w, z)) |629

u = w ∨ u = z ∨ v = w ∨ v = z}. This enables us to use node-level tokenization strategies across all630

tasks.631

Absolute and relative PEs Following from Section 2 we provide a definition of absolute and relative632

PEs as used in the GDT. We consider RWSE [Dwivedi et al., 2021], LPE [Kreuzer et al., 2021, Müller and633

Morris, 2024] and SPE [Huang et al., 2024] as absolute PEs and RRWP [Ma et al., 2023] as a relative PE.634

Concretely, an absolute PE takes the form P ∈ RL×d where the row Pi is the embedded PE vector635

corresponding to token i. We then project and add Pi to the node embedding of token i to obtain the initial636

token embeddings, or formally,637

Xi := ℓV (i) + PiWP ,

where WP ∈ Rd×d is a learnable weight matrix. Moreover, a relative PE takes the form U ∈ RL×L×d,638

which we project and add to the edge embeddings to construct the attention bias B. Note that we only639

consider relative PEs in node-level tokenization. Concretely, for all pairs of nodes i, j ∈ V (G)∪{[cls]},640

Bij := ρ(ℓE(i, j)) +UijWU ,

where WU ∈ Rd×h is a learnable weight matrix.641

Edge embeddings To incorporate edge embeddings into the GDT, we distinguish between node-level and642

edge-level GT. For the edge-level GT, edge embeddings are incorporated explicitly via the edge tokens. For643

the node-level case, we adapt the strategy from Bechler-Speicher et al. [2025], which is itself adapted from644

Graphormer [Ying et al., 2021a], to incorporate edge embeddings into the attention bias via an additional645

projection to the number of attention heads. Formally, for all pairs of nodes i, j ∈ V (G) ∪ {[cls]},646

Bij := ρ(ℓE(i, j)),

where ρ : Rd → Rh is a neural network, such as a linear transformation or an MLP.647
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Table 8: Overview of learnable parameters in the GDT, excluding embedding parameters. Here, d ∈ N+ is
the embedding dimension, df ∈ N+ is the hidden dimension, and T ∈ N+ is the number of layers. The
suffix ×T indicates that the parameters occur in each of the T layers.

Params. Dims. Module Description

ℓV ([cls]) 1× d

Token embeddings

Learnable embedding for the [cls] token
ℓE([cls], ·) 1× d Learnable embedding for the out-going edges from the [cls] token
ℓE(·, [cls]) 1× d Learnable embedding for the in-coming edges to the [cls] token
WP d× d Weight matrix for the node-level PEs

ρ (d× df , df × h) Attention bias MLP applied to the edge embeddings
WU 1× h Weight matrix for the relative PEs in the attention bias

WQ ×T d× d
MHA Definition 6

Query weight matrix in multi-head attention
WK ×T d× d Key weight matrix in multi-head attention
WV ×T d× d Value weight matrix in multi-head attention

W1 ×T d× df MLP Definition 7
Input projection of the MLP

W2 ×T df × d Output projection of the MLP

Definition 8 (Transformer architecture). Let X ∈ Rn×d be a token matrix and B ∈ Rn×n be an attention648

bias, with n, d ∈ N+. The t+ 1-th transformer layer updates token representations Xt ∈ Rn×d as649

X ′ ←Xt + MHA(LayerNorm(Xt),B),

Xt+1 ←X ′ +MLP(LayerNorm(X ′)),

where MLP is defined in Definition 7.650

Making predictions For supervised learning with the GDT, we can make graph-, node-, and edge-level651

predictions by applying an MLP head to the [cls] token embedding, the node token embeddings, and the652

edge token embeddings. Note that we can leverage edge-level tokenization for edge-level tasks, which653

provides explicit edge token embeddings. We apply k-nearest-neighbors (k-NN) to the token embeddings654

after the last layer for few-shot transfer without additional fine-tuning.655

B.2 Extended notation for the theoretical analysis of the GDT656

Here, we introduce some notation for the GDT that we will use in our theoretical analysis.657

Learnable parameters We give an overview of all learnable parameters of the GDT in Table 8. In658

practice, node and edge features are typically present as integers or continuous feature vectors, and we659

embed them using learnable MLPs. We refer to such parameters as embedding parameters. Note that in660

Table 8, we exclude embedding parameters, as for simplicity, we assume in our framework that node and661

edge features are already embedded.662

Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the number of hidden dimensions,663

the number of layers, and the number of attention heads, respectively. Then, the number of learnable664

parameters (excluding embedding parameters) is given by665

# params = 3d+ d2 + ddf + dfh+ h+ 3Td2 + 2Tddf

= (3T + 1)d2 + (2T + 1)ddf + 3d+ (df + 1)h.

We denote the complete set of learnable parameters in Table 8 with Θ(d, df , T, h).666

Graph transformer representations Here, we introduce some short-hand notation for graph transformer667

representations. Given token matrix X and attention bias B, we write X̂t(v) to denote the representation668

of node v ∈ V (G) after t transformer layers with X and B as input. Note that, since we fix an arbitrary669

order of the nodes, if v is the i-th node in this order, X̂t(v) = X̂t
i .670

B.3 Extended notation for the theoretical analysis of PEs671

Here we introduce notations of Zhang et al. [2024] used in their paper on PE expressiveness. We adapt this672

notation to fit LPE [Müller and Morris, 2024], SAN [Kreuzer et al., 2021], and SignNet [Lim et al., 2023]673

and use it in our proofs in Appendix E. We introduce the color refinement algorithm notation and propose a674
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color refinement algorithm for each PE. The respective algorithms for BasisNet [Lim et al., 2023] and SPE675

[Huang et al., 2024] are given by Zhang et al. [2024].676

Definition 9. [Zhang et al., 2024] We call any graph invariant a k-dim color mapping. The family of k-dim677

color mappings is denoted by Mk. Each color mapping defines an equivalence relation ∼χ between678

rooted graphs Gu, Hv marking k vertices and Gu ∼χ Hv iff χG(u) = χH(v). Further, we denote the679

family of k-dim spectral color mappings by MΛ
k . Similar to Mk the family of spectral color mappings is680

obtained from the color mappings acting on {(Gu, λ) : Gu ∈ G,λ ∈ ΛM (G)} where ΛM (G) denotes681

the eigenvalues of a matrix M .682

Definition 10. [Zhang et al., 2024] A function T mapping from Mk1 to Mk2 is called a color transform.683

We assume all color transforms are order-preserving in terms of color mappings. Given T (χ) ⪯ χ, a color684

transform is also called color refinement, and T t denotes the t times composition of T . In addition T∞ is685

the stable color refinement obtained from T t′ with t′ the smallest integer where further iterations do not686

induce a different partition of the underlying nodes in a graph resulting in T ◦ T∞ ≡ T∞. Following687

Zhang et al. [2024] T∞ is well defined.688

A coloring algorithm is then formed by concatenating a stable color transform T∞ : Mk →Mk and a689

pooling function U : Mk →M0.690

Definition 11. We say that color mappings χ1, χ2 are equivalent given that Gu ∼χ1
Hv iff Gu ∼χ2

Hv .691

Furthermore, we say that a color mapping χ1 is finer/more expressive than χ2 if Gu ∼χ1
Hv ⇒ Gu ∼χ2

692

Hv , noted by ⪯.693

Lemma 12. [Zhang et al., 2024] Let T1, T2 : Mk1 → Mk2 and U1, U2 : Mk2 → Mk3 be color694

refinements. If T1 ⪯ T2 and U1 ⪯ U2 then U1 ◦ T1 ⪯ U2 ◦ T2.695

Lemma 13. [Zhang et al., 2024] Let T1 : Mk1
→Mk1

and T2 : Mk2
→Mk2

be color refinements and696

T∞ : Mk →Mk be the stable refinement ofMk. Further letU1 : Mk0
→Mk1

andU2 : Mk1
→Mk2

be697

color refinements. Then it follows. If T2◦U2◦T∞
1 ◦U1 ≡ U2◦T∞

1 ◦U1 then U2◦T∞
1 ◦U1 ⪯ T∞

2 ◦U2◦U1.698

The two lemmas above provide a straightforward approach to determining whether architecture A1 is more699

expressive than architecture A2 [Zhang et al., 2024]. To prove that A1 is more expressive than A2, we700

show that T2 ◦ T∞
1 ≡ T∞

1 holds, with Ti being the color refinement of Ai respectively.701

Definition 14. [Zhang et al., 2024] We define the following color refinements corresponding to the induced702

refinements of each algorithm. We define global pooling as providing an injective coloring using a703

hash function of a multiset. In this case, we consider the multiset over nodes in a graph. Other pooling704

operations are defined below.705

Global pooling: Define TGP : M1 →M0 and χ ∈M1 such that for a graph G and a color mapping706

χ ∈M1 it holds:707

[TGP(χ)](G) = hash({{χG(u) : u ∈ V (G)}}).

The 1-WL refinement gives us the 1-WL coloring update generalized to all nodes in the graph instead of708

neighboring graphs.709

1-WL refinement: Given TWL : M1 →M1 such that for any choice of χ ∈M1:710

[TWL(χ)]G(u) = hash(χG(u), {{(χG(v), atpG(u, v)) : v ∈ V (G)}}).

We then define one—and two-dimensional spectral pooling, which allows for pooling over distinct711

eigenvalues similar to the global pooling refinement.712

Spectral Pooling: Define TSP2 : M
Λ
2 → M1 and TSP1 : M

Λ
1 → M1 such that for χ ∈ MΛ

2 and713

χ′ ∈MΛ
1 :714

[TSP1(χ
′)]G(u) = hash({{χ′

G(λ, u) : λ ∈ ΛM (G)}}).
715

[TSP2(χ)]G(u, v) = hash({{χG(λ, u, v) : λ ∈ ΛM (G)}}).

A pooling variant without the spectrum is denoted by TP2 and TP1.716

To allow for an examination of BasisNet and SPE, we consider the 2-IGN refinement. This refinement is717

obtained from evaluating the expressiveness of a 2-IGN and its basis functions as defined by Maron et al.718

[2019a].719
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2-IGN refinement: With TIGN : M2 →M2, χ ∈M2 as any color mapping and δuv(c) = c given u = v,720

otherwise 0:721

[TIGN(χ)]G(u, v) = hash(χG(u, v), χG(u, u), χG(v, v), χG(v, u), δuv(χG(u, u)),

{{χG(u,w) : w ∈ V (G)}}, {{χG(w, u) : w ∈ V (G)}},
{{χG(v, w) : w ∈ V (G)}}, {{χG(w, v) : w ∈ V (G)}},

{{χG(w,w) : w ∈ V (G)}}, {{χG(w, x) : w, x ∈ V (G)}},
δuv({{χG(u,w) : w ∈ V (G)}}), δuv({{χG(w, u) : w ∈ V (G)}}),

δuv({{χG(w,w) : w ∈ V (G)}}), δuv({{χG(w, x) : w, x ∈ V (G)}})).

Further, we use the BasisNet pooling refinement and Siamese IGN refinement to describe the process of the722

BasisNet computation.723

BasisNet Pooling: Given TBP : M
Λ
2 →MΛ

1 and χ ∈MΛ
2 :724

[TBP(χ)]G(λ, u) = hash(χG(λ, u, v), {{χG(λ, u, v) : v ∈ V (G)}},
{{χG(λ, v, u) : v ∈ V (G)}}, {{χG(λ, v, v) : v ∈ V (G)}}, {{χG(λ, v, w) : v, w ∈ V (G)}}).

Siamese IGN refinement: Given TSIAM : MΛ
2 →MΛ

2 and χ ∈MΛ
2 :725

[TSIAM(χ)]G(λ, u, v) = [TIGN(χ(λ, ·, ·))]G(u, v).

We further provide additional color refinement algorithms based on the encodings introduced throughout726

this work: Given the initial color refinement of SAN as χSAN(λ, u) = (λ1, . . . , λm, vu1:m) where λi727

denote the eigenvalues and vu the eigenvector of the graph Laplacian associated to the node u. Then we728

define the SAN color refinement alongside the existing refinements as follows:729

[TSAN(χ)]G = TGP ◦ TENC ◦ TL(χSAN).

with TENC denoting the transformer encoder layer. The complete BasisNet refinement is given by the730

concatenation of refinements given in Definition Definition 14:731

[TBasisNet]G = TGP ◦ TWL ◦ TSP1 ◦ TBP ◦ TSIAM(χBasis).

Following the definition of BasisNet as a color refinement in Definition 14 and assuming a message passing732

GNN for ρ, the color refinement of SignNet using the initial SignNet color refinement χSign(λ, u, w) =733

(λ,V u,V w) and Tϕ : M
Λ
2 →MΛ

2 is given by:734

[TSign(χ)]G = TGP ◦ T∞
WL ◦ TSP2 ◦ Tϕ(χSign),

where V u denotes the eigenvector associated to the eigenvalue λ and the node u and Tϕ be the refinement735

depending on the choice of ϕ. However, we note TIGN ⪯ Tϕ, by definition of SignNet and BasisNet.736

The refinement for the LPE encoding is given similarly to the BasisNet and SPE refinement by replacing737

ρ with a color refinement which is 1-WL expressive. Furthermore, we assume ϕ to be a spectral738

color refinement with expressiveness up to a 2-IGN. Common choices for ϕ include MLPs or GNNs739

known to be less expressive than a 2-IGN. With initial colorings χLPE(λ, u, w) = (λ,V u,V w) and740

T LPE
ϕ : MΛ

2 →MΛ
2 the refinement follows:741

[TLPE(χ)]G = TGP ◦ T∞
WL ◦ TSP2 ◦ T LPE

ϕ (χLPE),

where V u denotes the eigenvector associated to node u.742

Related work With GT architectures being successful in various domains, several approaches exist for743

applying transformers to graph learning tasks. Apart from pure transformer architectures such as [Dwivedi744

and Bresson, 2020, Ying et al., 2021a, Kim et al., 2022, Müller and Morris, 2024], most GT designs745

incorporate changes to the attention mechanism [Bo et al., 2023, Kreuzer et al., 2021, Ma et al., 2023], or746

use attention jointly with MPNNs [Rampášek et al., 2022, Choi et al., 2024]; see Müller et al. [2024]747

for an overview of GTs. Moreover, Zhang et al. [2023] propose a modified attention mechanism for748

a GT to simulate the Generalized Distance Weisfeiler–Leman algorithm (GD-WL), a variant of the749

Weisfeiler–Leman algorithm (1-WL) [Weisfeiler and Leman, 1968] incorporating distance information.750

Indeed, there exists an extensive literature on deriving architectures more expressive than the 1-WL test,751
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both for GNNs [Azizian and Lelarge, 2021, Maron et al., 2019a,b, Morris et al., 2020, Puny et al., 2023] as752

well as GTs [Ma et al., 2024, Zhang et al., 2023, 2024, Kim et al., 2022, Müller and Morris, 2024, Müller753

et al., 2024]. As noted by Müller et al. [2024], GTs heavily rely on structural and positional information754

captured by a positional embedding to increase expressiveness. Common choices include absolute PEs755

such as SAN [Kreuzer et al., 2021], LPE [Müller and Morris, 2024], SPE [Huang et al., 2024], and756

SignNet/BasisNet [Lim et al., 2023], RWSE [Dwivedi et al., 2021], RRWP [Ma et al., 2023], as well as PEs757

based on substructure counting [Ying et al., 2021a]. In terms of theoretical and empirical evaluation of GTs,758

the closest related works on the theoretical side are Zhang et al. [2024], Black et al. [2024], and Rampášek759

et al. [2022]. However, neither of these works considers standard attention or compares design choices such760

as PEs on large-scale data.761

B.4 Positional encodings762

In the following, we define positional encodings.763

RWSE764

Definition 15. Let R := D−1A be the random walk matrix, with D denoting the degree matrix and A765

the adjacency matrix of a graph G. The random walk structural encodings (RWSE) are given by:766

Pi,i = [I,R,R2, . . . ,Rk−1]i,i.

Definition 16. Let Pi,i be the RWSE encoding vector and F : Rk → Rd a MLP with two layers, and d767

denoting the encoding dimension. Then the RWSE encoding is computed by F (Pi,i) and denoted by768

PRW
k (G) for a graph G with random walk length k.769

RRWP770

Definition 17. Let R := D−1A with D as the diagonal degree matrix and A as the adjacency matrix, be771

the random walk operator, and k the maximum length of the random walk. Then the relative random walk772

probabilities (RRWP) are defined as:773

Pi,j = [I,R,R2, . . . ,Rk−1]i,j .

The initial node encoding p0 is then defined as Rii for each node i in the graph.774

Definition 18 (RRWP Encoding Computation). Let P be the RRWP encoding tensor and MLP : Rk → Rd,775

where d denotes the encoding dimension, be a multi-layer neural network. Then the encoding MLP(Pi,j,:)776

is computed element-wise by the multi-layer neural network. RRWP is then denoted by PRR
k (G) for a777

graph G with random walk length k778

Spectral Attention Networks (SAN) Kreuzer et al. [2021] propose incorporating eigenvalues and779

eigenvectors in a positional encoding neural network. SAN encoding can be computed using row-wise780

applied neural networks by selecting the k lowest eigenvalues and associated eigenvectors.781

Definition 19. Let ϕ : R→ R be a linear layer and ρ : R→ R be a transformer encoder layer with sum782

aggregation. Further Vi denotes the i-th column of the eigenvector matrix V . Then the SAN encoding is783

defined as follows:784

SAN(V , λ) = ρ([ϕ(V1, λ) . . . ϕ(Vk, λ)]).

A generalization of the SAN encoding is given by the LPE encoding of Müller and Morris [2024] in785

Definition 23.786

SignNet Since the computation of eigenvectors using the eigenvector decomposition is not sign invariant,787

and both Vi and −Vi are valid eigenvectors of the graph Laplacian Lim et al. [2023] propose the788

construction of a sign invariant encoding using eigenvector information. Considering the k smallest789

eigenvalues and associated eigenvectors from the eigenvalue decomposition, SignNet computes the790

corresponding encoding using a neural network architecture.791

Definition 20. Let ϕ1, . . . ϕk : R→ R and ρ : R→ R be permutation equivariant neural networks from792

vectors to vectors. Then the SignNet encodings are computed using:793

SignNet(V ) = ρ([ϕ1(V1) + ϕ1(−V1) . . . ϕk(Vk) + ϕk(−Vk)]).

Commonly, ϕ1, . . . ϕk are selected as element-wise MLPs or DeepSets [Lim et al., 2023] and ρ as a GIN794

with sum aggregation and the adjacency matrix of the original graph.795
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BasisNet Proposed as an extension of SignNet by Lim et al. [2023], BasisNet encodings provide an796

encoding invariant to the basis of eigenspaces obtained from the graph Laplacian. Since the orthogonal797

group O(1) denotes sign invariance, BasisNet also incorporates sign invariance.798

Definition 21. Let Vi denote the orthonormal basis of an di-dimensional eigenspace of the graph Laplacian.799

Further, l denotes the number of eigenspaces. Given unrestricted neural networks ϕd1 , . . . ϕdl
: R→ R,800

shared across the subspaces with the same dimension di, and a permutation equivariant neural network801

ρ : R→ R BasisNet encodings are computed the following:802

BasisNet(V ) = ρ([ϕd1
(V1V

T
1 ) . . . ϕdl

(VlV
T
l )]).

Implementation wise Lim et al. [2023] propose 2-IGNs [Maron et al., 2019a] for ϕdi
and a FFN with sum803

aggregation for ρ. They note that all neural networks could be replaced with k-IGNs, however they deemed804

it infeasible for efficient computation. This reduces the computation to the following with ρ : R→ R and805

IGNdi : Rn2 → Rn denoting an IGN from matrices to vectors:806

BasisNet(V ) = FFN([IGNd1(V1V
T
1 ) . . . IGNdl

(VlV
T
l )]).

SPE Following notation from Huang et al. [2024], the SPE encoding is computed using the k smallest807

eigenvalues and associated eigenvectors obtained from an eigenvalue decomposition. With sufficient808

conditions for neural networks ϕ1, . . . , ϕk and ρ, SPE is stable with respect to the graph Laplacian.809

Definition 22. Given ϕ1 . . . ϕk : R→ R as Lipschitz continuous, equivariant FFNs and ρ : R→ R a810

Lipschitz continuous, permutation equivariant neural network. Then the SPE encoding is computed by:811

SPE(V , λ) = ρ([V diag(ϕ1(λ))V
T . . .V diagϕk(λ))V

T ]),

with ϕ1, . . . ϕk and ρ applied row wise. Further, we denote the SPE embedding on a graph G by PSPE
k .812

Commonly, ϕi is considered an element-wise MLP, and ρ is a GIN using the adjacency matrix of the813

original graph. Huang et al. [2024] propose to split tensor814

Q = [V diag(ϕ1(λ))V
T . . .V diagϕk(λ))V

T ] ∈ Rn×n×l

into n matrices of shape n× l which are then passed into the GIN ρ and aggregated using sum aggregation815

into a single n× d matrix.816

LPE Initially introduced by Kreuzer et al. [2021] and generalized by Müller and Morris [2024], the LPE817

encodings are computed similarly to the previously introduced SPE encodings. Instead of using the818

eigenvector matrix V ∈ Rn×l, each i-th column consisting of one eigenvector denoted by Vi ∈ Rl is819

used.820

Definition 23. Let ϕ : R2 → Rk be a row-wise applied FFN and ρ : R→ R a permutation equivariant821

network. Furthermore, ϵ ∈ R denotes a learnable parameter. Then the LPE are given by:822

LPE(V , λ) = ρ([ϕ(V T
1 , λ+ ϵ), . . . ϕ(V T

k , λ+ ϵ)]).

Setting ϵ = 0 reduces the LPE to the encoding provided by Kreuzer et al. [2021]. As proposed by Müller823

and Morris [2024] ρ sums the input tensor with regard to its first dimension and applies an FFN. In contrast824

to the SAN encoding, no transformer encoder is used to compute the encoding. Similar to previous825

embeddings, we denote LPE embeddings for a graph G by PLPE
k with k as the number of eigenvalues used.826

C Limitations827

Currently, the GDT can only make use of memory-efficient attention at inference time, due to the use of a828

learnable attention bias. For example, the learnable attention bias is not compatible out-of-the-box with829

FlashAttention2 [Dao, 2024] or FlexAttention [Dong et al., 2025]. Moreover, many more PE variants exist830

that could be included in our study; see, for example, PEs listed in Section 1. Finally, we note that our831

current implementation does not take the sparsity of the attention bias into account, which can lead to832

prohibitive memory requirements for very large graphs.833

D Proving that the GDT can simulate the GD-WL834

Here, we prove Theorem 1. Concretely, we formally state and prove both statements in Theorem 1 in835

Appendix D.1 and Appendix D.2, respectively.836
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D.1 Lower-bound on the expressivity of the GDT837

Here, we prove that we can compute the GD-WL [Zhang et al., 2023] with the GDT, our GT defined838

in Section 2. Concretely, given a graph G := (V (G), E(G)), recall from Section 2.2 the GD-WL as839

updating the color χt
G(v) of node v ∈ V (G), as840

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
,

where dG is a distance between nodes in G and hash is an injective map. In the transformer, we will841

represent node colors as one-hot vectors of some arbitrary but fixed dimension d. Furthermore, we will842

incorporate pairwise distances through the attention bias. We then show that a single GT layer can843

compute the color update in Equation (1). We show this result by leveraging specific characteristics of844

softmax-attention. For notational convenience, we will denote with Xt ∈ {0, 1}L×d the one-hot color845

matrix of the GD-WL after t iterations.846

We begin by stating our main result. Afterwards, we develop our proof techniques and prove the result.847

Stating the main result We will formally state our theorem, showing that our GT can simulate the848

GD-WL. Afterwards, we give an overview of the proof, including the key challenges and ideas.849

Theorem 24. Let G := (V (G), E(G)) be a graph with n ∈ N+ nodes and node distance function850

dG : V (G)2 → Q. Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the number851

of hidden dimensions, the number of layers, and the number of attention heads, respectively. Let852

L := n+ 1 and let X̂0 ∈ RL×d and B ∈ RL×L×h be initial token embeddings and attention bias853

constructed according to Section 2 using node distance dG. Then, there exists weights for the parameters854

in Θ(d, df , T, h) such that X̂t = Xt, for all t ≥ 0, an arbitrary but fixed hash and using dG as the855

distance function.856

Proof overview The central problem we face when proving the above theorem is how to injectively857

encode the multisets in Equation (1) with softmax-attention. This is because softmax-attention computes a858

weighted mean, whereas existing results for encoding multisets use sums [Xu et al., 2019, Morris et al.,859

2019, Zhang et al., 2023]. Because these multisets are at the core of our proof, we introduce them here860

formally.861

Definition 25 (Distance-paired multisets). Given a graph G := (V (G), E(G)) with n ∈ N+ nodes862

and let L := n+ 1, for each token v ∈ V (G) ∪ {[cls]}, we construct a vector v ∈ Q1×L from the863

distances of v to tokens in V (G) ∪ {[cls]}, such that864

vi := dG(v, wi),

where wi ∈ V (G), for i ∈ [n], is the i-th token in an arbitrary but fixed ordering of nodes in V (G) and865

wL is the [cls] token. We fix the distance of [cls] to all tokens as maxv,w∈V (G) dG(v, w) + 1. We866

represent node colors as one-hot vectors and stack them into a matrix X ∈ {0, 1}L×d with d ∈ N+ and867

where XL, representing the color of the [cls] token, receives a special color, not used by any node. We868

then write the distance-paired multiset in Equation (1) as869

[v]X := {{(vi,Xi)}}i∈[L].

We can then restate the update of token v ∈ V (G) ∪ {[cls]} by the GD-WL as870

χt+1
G (v) := hash

(
[v]Xt

)
, (3)

For notational convenience, for every x ∈ set(X), we define A(x) := {i ∈ [L] |Xi = x} as the set of871

token indices with token representation x. Further, we write872

[v]x := {{vi | i ∈ A(x)}}

and873

[v]x,w := {{v +wj | v ∈ [v]x, j ∈ [L]}},

again for notational convenience, where w ∈ Q1×L is the distance vector corresponding to another node874

w ∈ V (G) ∪ {[cls]}.875
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Recall that we introduced the distance function dG into the attention via the attention bias B. Now, to876

injectively encode distance-paired multisets, we want to prove that there exists weights WQ,WK ,WV877

such that for two tokens v, w ∈ V (G) ∪ {[cls]} with corresponding distance vectors v,w,878

softmax(X(v)WQ(XWK)T + v)XWV = softmax(X(w)WQ(XWK)T +w)XWV ,

if and only if [v]X = [w]X . Note that for simplicity, we omit the scaling factor in the attention and that879

we wrote v and w to indicate the corresponding row of B for tokens v and w, respectively. We will now880

simplify, by setting WQ = WK = 0 and WV = I and arrive at the condition881

softmax(v)X = softmax(w)X ⇐⇒ [v]X = [w]X .

Here, we prove the above holds under mild conditions in the following lemma. Note that we split up the882

forward and backward directions of the lemma, as we will use different proof strategies for each direction.883

Lemma 26. Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈ {0, 1}L×d be a matrix whose884

rows are one-hot vectors, for some L, d ∈ N+. Further, we require X to have at least two distinct rows.885

Then,886

softmax(v)X = softmax(w)X =⇒ [v]X = [w]X (4)
and887

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (5)

As mentioned above, we will treat the forward and backward directions differently. The backward direction888

is fairly straightforward, seeing that softmax(v)X is a function over [v]X . For the forward direction, the889

idea is first to notice that the condition [v]X = [w]X , on the right side of Equation (4), is equivalent to890

comparing the multiset of distances paired with each distinct one-hot vector in X independently, as distinct891

one-hot vectors do not have common non-zero channels; see the following lemma for a precise statement of892

this property and see Appendix F for the proof.893

Lemma 27. Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors, for894

some L, d ∈ N+. Then, [v]X = [w]X , if, and only if, for every x ∈ set(X), [v]x = [w]x.895

To understand the implication of this result in the context of proving Lemma 26, let us first rearrange the896

left side of Equation (4) as follows.897

Lemma 28. Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors, for898

some L, d ∈ N+. Then, softmax(v)X = softmax(w)X , if and only if, for every x ∈ set(X),899 ∑
i∈A(x)

(αi − βi) = 0,

where αi := softmax(v)i and βi := softmax(w)i.900

Lemma 28 and Lemma 27 can be seen as complementary decompositions of the left and right side of901

Equation (4) for each unique one-hot vector in X . As a result, we can restate Lemma 26 as follows.902

Lemma 29 (Decomposed Lemma 26). Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈903

{0, 1}L×d be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we require X to904

have at least two distinct rows. Then,905 ∑
i∈A(x)

(αi − βi) = 0 =⇒ [v]x = [w]x, (6)

for all x ∈ set(X), where αi := softmax(v)i and βi := softmax(w)i, and906

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (7)

To prove Lemma 29, we leverage a known result about exponential numbers (as used within softmax) from907

transcendental number theory, namely that a set of exponential numbers with distinct rational coefficients is908

linearly independent, also known as the Lindemann-Weierstrass theorem [Baker, 1990]. To understand909

intuitively how this theorem is used, let us assume for simplicity that the softmax is unnormalized, meaning910

that we can write the left side of Equation (6) as911 ∑
i∈A(x)

(exp(vi)− exp(wi)) = 0.

With the help of the Lindemann-Weierstrass theorem, we obtain the following claim, which we prove in912

Appendix F.913
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Claim 30. Let A,B ⊂ Q be finite multisets with |A| = |B|. Then, the sum914 ∑
a∈A

exp(a)−
∑
b∈B

exp(b) = 0,

if, and only if, A = B.915

Hence, with the unnormalized softmax, the left side of Equation (6) holds if and only if [v]x = [w]x.916

However, the full softmax also introduces normalization, which we denote with Zα :=
∑n

k=1 exp(vk)917

and Zβ :=
∑n

k=1 exp(wk), respectively. As a result, we have the condition918 ∑
i∈A(x)

(αi − βi) = 0 (8)

⇔
∑

i∈A(x)

1

Zα
exp(vi)−

1

Zβ
exp(wi) = 0 (9)

⇔
∑

i∈A(x)

exp(vi) · Zβ − exp(wi) · Zα

ZαZβ
= 0 (10)

⇔
∑

i∈A(x)

exp(vi) · Zβ − exp(wi) · Zα = 0 (11)

⇔
∑

i∈A(x)

L∑
k=1

exp(vi +wk)− exp(wi + vk) = 0. (12)

⇔
∑

i∈A(x)

L∑
k=1

exp(vi +wk)−
∑

j∈A(x)

L∑
l=1

exp(wj + vl) = 0. (13)

Note that the multiset of exponents in the positive exponentials is [v]x,w and the set of exponents in the919

negative exponentials is [w]x,v . Using Claim 30, we can now restate Lemma 29 once more as follows.920

Lemma 31 (Multi-set only version of Lemma 29). Let v,w ∈ Q1×L with maxi vi = maxi wi and let921

X ∈ {0, 1}L×d be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we require X922

to have at least two distinct rows. Then,923

[v]x,w = [w]x,v =⇒ [v]x = [w]x, (14)

for all x ∈ set(X) and924

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X . (15)

We will give the full proof with all details in this section.925

First, we will review some number theory background, formally state the Lindemann-Weierstrass theorem926

and its implications and then give the proof of Lemma 31. Using Lemma 31 and in particular, the equivalent927

Lemma 26, we finally prove Theorem 24.928

Number theory We will formally introduce the necessary background on number theory and the929

Lindemann-Weierstrass theorem. A number is algebraic if it is the root of a non-zero single-variable930

polynomial with finite degree and rational coefficients. For example, all rational numbers a
b with a, b ∈ N+

931

are algebraic, as they are the root of the polynomial ax− b with integer coefficients. On the other hand, a932

number is transcendental if and only if it is not algebraic. For example, it is known that exp(a) is933

transcendental if a is algebraic and non-zero. This last fact follows from the Lindemann-Weierstrass934

theorem, which we state next [Baker, 1990].935

Theorem 32 (Baker [1990], Theorem 1.4). Let a1, . . . , an be distinct algebraic numbers. Then,936

exp(a1), . . . , exp(an) are linearly independent with algebraic rational coefficients.937

Here, we will use the fact that attention uses the exp function in the softmax and use Theorem 32 to938

compute injective representations of the GD-WL multisets by expressing them as sums of exponential939

numbers.940
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Proving Lemma 26 We now prove Lemma 31, equivalent to Lemma 26.941

Lemma 33 (Proof of Lemma 31). Let v,w ∈ Q1×L with maxi vi = maxi wi and let X ∈ {0, 1}L×d
942

be a matrix whose rows are one-hot vectors, for some L, d ∈ N+. Further, we require X to have at least943

two distinct rows. Then,944

[v]x,w = [w]x,v =⇒ [v]x = [w]x,

for all x ∈ set(X) and945

softmax(v)X = softmax(w)X ⇐= [v]X = [w]X .

Proof. Note that by assumption X has at least two distinct rows and hence, A(x) ⊂ [L]. As a result, the946

forward implication follows from the following claim.947

Claim 34. For all x ∈ set(X), if maxi vi = maxi wi and A(x) ⊂ [n], then, [v]x,w = [w]x,v ⇒948

[v]x = [w]x.949

Proof. Let K := maxi vi = maxi wi. We begin by sorting the entries in [v]x and [w]x in descending950

order, obtaining sorted vectors v∗ and w∗. By assumption, we have that v∗
1 = w∗

1 = K. Now, let951

i ∈ [|[v]x|] be the smallest number for which v∗
i ̸= w∗

i . If no such i exists, then [v]x = [w]x. Otherwise,952

without loss of generality, we assume that v∗
i > w∗

i . We now show that then, the sum v∗
i +K appears at953

least once more in [v]x,w than in [w]x,v .954

First, note that there cannot exist some j > i for which w∗
j +K = v∗

i +K. Second, for each j < i,955

v∗
j = w∗

j , meaning that for each such j where v∗
j +K = v∗

i +K appears in [v]x,w , w∗
j +K = v∗

i +K956

appears in [w]x,v .957

Hence, v∗
i +K appears at least once more in [v]x,w than in [w]x,v , implying [v]x,w ̸= [w]x,v . As a958

result, we have that [v]x = [w]x∨ [v]x,w ̸= [w]x,v which is logically equivalent to [v]x,w = [w]x,v ⇒959

[v]x = [w]x. This shows the statement.960

To see why in Claim 34 it is important that A(x) is a strict subset of [n], we note that A(x) = [L] implies961

[v]x,w = [w]x,v , irrespective of whether [v]x = [w]x. Notably, the proof holds if there exists at least962

one i ∈ [L] \A(x), irrespective of whether vi = wi.963

The backward direction follows directly from the fact that softmax(v)X and softmax(w)X are functions964

over [v]X and [w]X , respectively.965

Together with Claim 34, this shows the statement.966

Proving the GD-WL simulation result Now that Lemma 26 has been proven, we will prove the main967

result, Theorem 24, next.968

Theorem 35 (Proof of Theorem 24). Let G := (V (G), E(G)) be a graph with n ∈ N+ nodes and node969

distance function dG : V (G)2 → Q. Let d, df , T, h ∈ N+ denote the number of embedding dimensions,970

the number of hidden dimensions, the number of layers, and the number of attention heads, respectively.971

Let L := n+ 1 and let X̂0 ∈ RL×d and B ∈ RL×L×h be initial token embeddings and attention bias972

constructed according to Section 2 using node distance dG. Then, there exists weights for the parameters973

in Θ(d, df , T, h) such that X̂t = Xt, for all t ≥ 0, an arbitrary but fixed hash and using dG as the974

distance function.975

Proof. Note that the GD-WL produces a finite number of colors at each iteration and B is constructed976

from dG whose co-domain is compact for graphs with finite size. Hence, and since each transformer layer977

is a composition of continuous functions, the domain of each transformer layer is compact. Recall that we978

want to show that the t-th transformer layer can simulate979

χt+1
G (v) := hash

(
[v]Xt

)
,

for all v ∈ V (G) ∪ {[cls]}, where Xt ∈ {0, 1}L×d is a one-hot color matrix of the GD-WL colors at980

iteration t. Let v be arbitrary but fixed. We say that v is the i-th node in an arbitrary but fixed ordering of981

V (G).982
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We restate the definition of the transformer layer in a simplified form, omitting multiple heads, the residual983

streams and LayerNorm. In particular, we state the layer only to update the i-th row of the token matrix.984

X̂(v)t+1 = MLP(softmax(X̂(v)tWQ(X̂
tWK)T + v)X̂tWV ),

where we recall that the i-th row of B is v. We now set WQ = WK to all-zeros and WV to the identity985

matrix and obtain986

X̂(v)t+1 = MLP(softmax(v)X̂t).

We prove the statement by induction over t. For the base case at t = 0, the token matrix X contains the987

one-hot colors of the nodes in V (G) as well as the special one-hot color of the [cls] token. Setting988

X̂0 := X , we have that X̂0 ∈ {0, 1}L×d and X̂0 = X0. Further, due to the [cls] token, we know989

that X̂0 has at least two distinct rows.990

Finally, note that, by construction, for each pair of distance vectors maxi vi = maxi wi =991

maxv,w∈V (G) dG(v, w) + 1 and that every distance vector v ∈ Q1×L. These two conditions hold992

throughout the induction and we will use them in the induction step to apply Lemma 26.993

In the induction step for t > 0, we assume that994

1. X̂t ∈ {0, 1}L×d
995

2. X̂t = Xt
996

3. X̂t has at least two distinct rows997

We want to prove that the same holds for t+ 1. Let v, w ∈ V (G) ∪ {[cls]} be arbitrary but fixed.998

Note that χt+1(v) = χt+1(w) if and only if [v]Xt = [w]Xt . By the induction hypothesis, we have that999

[v]Xt = [w]Xt if and only if [v]X̂t = [w]X̂t . Further, by Lemma 26, we have that1000

softmax(v)X̂t = softmax(w)X̂t ⇐⇒ [v]X̂t = [w]X̂t ,

and as a consequence,1001

softmax(v)X̂t = softmax(w)X̂t ⇐⇒ χt+1(v) = χt+1(w).

Hence, there exists an injective function f that maps, for each token v ∈ V (G) ∪ {[cls]} with distance1002

vector v, the vector softmax(v)X̂t to a one-hot vector of χt+1(v) with d dimensions. Since the domain1003

of the t-th transformer layer is compact, f is continuous. Hence, by universal function approximation, there1004

exists weights of the MLP such that, for each v ∈ V (G) ∪ {[cls]}, X̂t+1(v) is a one-hot vector of1005

χt+1(v). As a result,1006

1. X̂t+1 ∈ {0, 1}L×d
1007

2. X̂t+1 = Xt+1
1008

3. X̂t+1 has at least two distinct rows.1009

This completes the induction and proves the statement.1010

D.2 Upper-bound on expressivity of the GDT1011

Moreover, we can prove an expressivity upper-bound for the GDT using a technique adapted from Müller1012

et al. [2024]. We begin by showing the following result.1013

Lemma 36. Let G := (V (G), E(G), ℓV ) be a graph with n nodes and without edge embeddings, let1014

WQ,WK ,WV ∈ Rd×d be arbitary but fixed weight matrices with d ∈ N+, and let B ∈ Qn×n be an1015

attention bias. Let1016

α(X,U) := Attention(XWQ,XWK ,XWV ,B).

There exists a distance function dG over V (G) ∪ {[cls]} and functions f, h with1017

f(Xi) := h({{(dG(i, j),Xj)}}),

such that for all X and all i, α(X,U)i = f(Xi).1018
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Proof. We define dG with have co-domain Q2 such that1019

dG(i, j) = [Bij , I(i = j)],

for all i, j ∈ V (G) ∪ {[cls]}, where [·] is the concatenation operation and I(i = j) is the indicator1020

function. We denote with dG(i, j)k the k-th element in dG(i, j), for k ∈ {1, 2}. Let1021

g(Xi,Xj) := exp(XiWQ(XjWK)T ).

We choose h as follows. We note that by definition, 1 = dG(i, i)2 > dG(i, j)2 for all i ̸= j. Hence, h1022

can decompose its input into three arguments:1023

1. Xi, identified from the tuple (dG(i, j),Xj) where d(i, j)2 = 1, i.e., i = j,1024

2. the multiset of distances {{dG(i, j)}},1025

3. the multiset of vectors {{Xj}}.1026

Then, h computes1027

wij := exp(g(Xi,Xj) + dG(i, j)1)

and1028

w̃ij :=
wij∑
k wik

,

for all i, j. Finally, h computes1029 ∑
j

w̃ijXjWV ,

for all i, to obtain α(X,U)i.1030

Intuitively, the above lemma shows that biased attention can be written as a function over the multiset in the1031

GD-WL if the distance function is a metric. We use this result to show that the GD-WL is at least as1032

expressive as a GDT with relative PEs.1033

Proposition 37. Let G := (V (G), E(G), ℓV ) be a graph without edge embeddings and let B ∈ Qn×n
1034

be an attention bias. Let d, df , T, h ∈ N+ denote the number of embedding dimensions, the number of1035

hidden dimensions, the number of layers, and the number of attention heads, respectively. For any choice1036

of parameters Θ(d, df , T, h) for the GDT, there exists a distance function dG over V (G) ∪ {[cls]}1037

and a hash function hash for the GD-WL such that for all t ≥ 0 and all pairs of nodes i, j ∈ V (G),1038

χt(i) = χt(j) if and only if Xt
i = Xt

j .1039

Proof. We prove the statement by induction over t. For t = 0, the statement holds by definition, as the1040

initial token embeddings X0 without any absolute PE are simply the node embeddings ℓV and the initial1041

colors of the GD-WL are chosen to be consistent with the node embeddings ℓV . For t > 0, we assume1042

by the induction hypothesis that for all pairs of nodes i, j ∈ V (G), χt−1(i) = χt−1(j) if and only if1043

Xt−1
i = Xt−1

j . By definition, Xt is computed via Equation (2), namely1044

Xt := MLP
(
Attention(Xt−1WQ,X

t−1WK ,Xt−1WV ,B)
)
,

where the MLP is applied row-wise. Let1045

1. f denote the function in Lemma 36 consistent with projections WQ,WK ,WV and attention1046

bias B,1047

2. onehot : [n]→ {0, 1}n denote the function that maps numbers 1, . . . , n to their corresponding1048

n-dimensional one-hot vector.1049

Then, for all i, j, we have that1050

MLP ◦ f ◦ onehot(χt−1(i)) = MLP ◦ f ◦ onehot(χt−1(j))

if and only if1051

Xt
i = Xt

j .

Finally, there at most n distinct rows in Xt. Let h be a function that injectively maps each unique row in1052

Xt to a color in [n]. We choose hash := h ◦MLP ◦ f ◦ onehot, and have that, for all pairs of nodes1053

i, j ∈ V (G), χt(i) = χt(j) if and only if Xt
i = Xt

j . This completes the induction and hence concludes1054

the proof.1055
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D.3 Expressivity of the GDT1056

Together, Theorem 24 and Proposition 37 correspond to the first and second statements in Theorem 1,1057

respectively. A consequence of Theorem 24 is the fact that the GDT with NoPE is equivalent to the1058

1-WL. In particular, let G := (V (G), E(G), ℓV , ℓE) be a graph with n nodes. Let ℓE(v, w) := 1, for all1059

v, w ∈ V (G), where 1 is the vector containing 1 in every element. Further, let ℓE(v, v) := 2, for all1060

v ∈ V (G), where 2 is the vector containing 2 in every element. Then, the GDT with NoPE is equivalent,1061

according to Theorem 24, to the following update of the GD-WL:1062

χt+1
G (v) := hash

(
{{(dG(v, w), χt

G(w)) : w ∈ V (G)}}
)
,

where dG(v, v) = 2, dG(v, w) = 1 if (v, w) ∈ E(G), and dG(v, w) = 0, else, for all v, w ∈ V (G).1063

This can be equivalently written as1064

χt+1
G (v) := hash

(
(χt

G(v), {{χt
G(w) : w ∈ NG(v)}})

)
,

giving the 1-WL update rule.1065

E Proofs of Section 31066

To guide our proofs of Section 3, we introduce CSL-graphs, obtaining the fact that RWSE cannot1067

distinguish all of these graphs. These results are then expanded to provide an introduction to Theorem 2.1068

We give the result and proof of Theorem 2 first with a simplified version for a minimum number of random1069

walk steps, leveraging results obtained by Tönshoff et al. [2023]. In addition, the proofs of Proposition 31070

and Proposition 47 are then given with additional details on the expressiveness hierarchy obtained from the1071

definition of each PE. We provide further incremental results for our selection of PEs, complementing the1072

results from Section 3.1073

Warm-up: CSL graphs We begin by introducing a class of simple and intuitive, yet not 1-WL1074

distinguishable graphs, so-called CSL graphs. These graphs consist of a n node cycle with skip connections1075

of length k, l originating from each node. CSL graphs are a canonical example of a graph class requiring a1076

distance measure, motivating additional PEs [Rampášek et al., 2022, Müller et al., 2024]. Here, we show1077

that they cannot be fully distinguished by RWSE and provide guidance on how to find pairs of CSL graphs1078

indistinguishable by RWSE. We first introduce CSL graphs G(n,k) and their properties to prove the1079

following results.1080

Definition 38. Let n, k be natural numbers and k < n− 1. G(n,k) defines an undirected graph which1081

is 4-regular. The set of nodes is given by V (G(n,k)) = {0, . . . , n − 1}. The edges are given by a1082

two-step process. First, to construct a cycle in the CSL graph, every edge {i, i + 1} ∈ E(G(n,k))1083

for j ∈ {0, . . . , n− 2}. Additionally {n− 1, 0} ∈ E(G(n,k)) holds. Furthermore, the skip links are1084

introduced by defining the sequence s1 = 0 and si+1 = (si + k) mod n and deriving the edges with1085

{si, si+1} ∈ E(G(n,k)).1086

In addition, we introduce the notation used throughout the following proofs. Considering the skip links1087

introduced in the CSL graphs we denote such a skip link by the mapping sk : V (G(n,k))→ V (G(n,k))1088

with s(vi) := v(i+k) mod n for nodes {v1, . . . , vn}. A traversal to the next node vi+1 or vi−1 from node1089

vi is denoted by s1 and s−1 respectively. We further provide specific random walks using a tuple of the1090

visited nodes in a graph.1091

Proposition 39. Two CSL graphs G(n1,k1) and H(n2,k2) with n1 = n2 are non isomorphic if k1, k2 are1092

co-prime natural numbers.1093

Given the definition of CSL graphs, it is possible to derive isomorphism results concerning such graphs.1094

Furthermore, we note that CSL graphs are 1-WL indistinguishable, but can be distinguished by various WL1095

variants such as the GD-WL [Zhang et al., 2023].1096

Proposition 40. There exists at least one pair of CSL graphs that RWSE cannot distinguish for any choice1097

of random walk length.1098

Nonetheless, we note that the expressive power of RWSE is sufficient to distinguish many 1-WL1099

indistinguishable graphs; for example, most CSL graphs can already be distinguished by RWSE.1100

Furthermore, a minimum step number is given depending on the skip length of each CSL graph.1101
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Figure 4: A pair of CSL graphs G10,2, H10,3. We note that the path marked in blue does not exist in graph
G or has no replacement path.

Proposition 41. Let n, k ∈ N+ with n > k(k + 1) + 1. RWSE can distinguish any pair of CSL graphs1102

with n nodes and skip length k, k + 1, with a random walk length of k + 1.1103

With Definition 38 we derive the proofs for each lemma individually.1104

Proof of Proposition 41 For Proposition 41 we consider a subclass of CSL graphs. The minimum node1105

number is specifically chosen to prevent a random walk of k steps to complete a cycle in the graph, even1106

with using sk+1 exclusively for each step. We follow a two-step process for the proof: First, we gather1107

paths existing in one graph but not the other. Then, in a second step, we show that all different paths of1108

length at most k exist in both graphs. Further, we highlight that for random walks of length less than k, the1109

paths are equal in both graphs.1110

Proof. Let G(n,k) and H(n,k+1) be two CSL graphs with skip link mappings sk and sk+1. Further let1111

n > k(k + 1) + 1. To distinguish them, we denote the same node in both graphs with v0 and w0. Then,1112

for k random walk steps, we first examine whether there exist paths in G(n,k) which are not present in1113

H(n,k+1). These include (v0, . . . , vk−1, v0) and (v0, . . . , vn−k+1, v0) as valid paths in G(n,k), which1114

provide two k step walks with one skip link each. However, we note that such paths are not possible in1115

H(n,k+1) as the skip link sk+1 has a length k + 1 and therefore no corresponding walk exists. In addition,1116

we show that there exists no other walks in H(n,k+1), which are not present in G(n,k). For this, we must1117

consider the cases of k even or odd.1118

Case 1: k is even: In this case, we must consider all combinations of skip links and s1, s−1 functions.1119

Since we assume an even number of steps, we know that all return walks with an even number of skip links1120

or no skip links exist in both graphs. However, walks with an uneven number of skip links cannot return to1121

v0 or w0, as with the skip link size of k or k + 1, no return walks with at most k steps exist. As can be1122

seen, the skip length does not influence the existence of any of the proposed walks; therefore, they exist1123

both in G(n,k) and H(n,k+1).1124

Case 2: k is uneven: Given an uneven k, we conclude that no return walks with a length of k exist since1125

steps can return neither a skip link nor an uneven number of any combination of skip links and steps can1126

return to the origin node.1127

For step numbers lower than k the same cases apply in permuted order, depending on the step number.1128

Also, due to the minimal n chosen, no instances exist where a circumference of the graph circle occurs in1129

any combination of steps. As for both cases there exist no paths which are not present in G(n,k), it follows1130

that there exist additional walks for G(n,k) which do not occur in H(n,k+1). Due to the structure of CSL1131

graphs, the number of random walks, including both returning and non-returning random walks, is the same1132

across all nodes in both graphs, resulting in the statement of Proposition 41.1133

Since the RWPE encoding is different if a single step returns a different return walk probability, RWPE can1134

distinguish G(n,k), H(n,k+1) with the given random walk steps.1135

For the following pair of CSL graphs, we consider the computation of the number of returning walks. This1136

enables us to directly compute the random walk probabilities for a single node. Due to the design of CSL1137
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graphs, each node in a graph has the same random walk return probability, thereby allowing us to derive the1138

proof of Proposition 40.1139

Proof of Proposition 40 We consider two CSL graphs G(11,3) and H(11,4). With the computation of the1140

number of returning walks of length r, W r given by W r =
∑n

i=1 λ
r
i , where λi denotes the eigenvalues1141

of the adjacency matrix, we can compute the number of returning walks for each node in both graphs, since1142

due to the graph structure the number of returning walks is equal for each node. Furthermore, we know that1143

the number of total walks is equal in both graphs, given the graph structure as seen in Figure 4. From this,1144

we compute the fraction of returning walks of varying length r for each node, resulting in the computation1145

of the RWSE embedding. Since both number of returning walks and total number of walks are equal for1146

each node in both graphs, as seen in the proof of Proposition 41, we receive the same RWSE embedding for1147

G(11,3) and H(11,4).1148

In addition to the indistinguishability results obtained for RWSE, we want to propose a result that initially1149

differentiates RWSE and RRWP. We then refine this result in Proposition 42, showcasing RRWP to be1150

strictly more expressive than RWSE.1151

Proposition 42. RRWP can distinguish all pairs of non-isomorphic CSL graphs.1152

Proof of Proposition 42 In contrast to RWSE, the RRWP embedding uses the complete random walk1153

matrix and information concerning the random walks between any two nodes. Because of this, RRWP can1154

capture information that is not visible to RWSE due to the restriction to the diagonal of the random walk1155

matrix.1156

Proof. We consider two arbitrary CSL graphs G(n,i) and H(n,j) with i, j co-prime and i ̸= j. Then we1157

can compute the RRWP encoding for each node by computing the random walk matrix. We saw from1158

previous CSL graphs that the random walk matrix diagonal can be equal for both graphs, depending1159

on the choice of i, j, and the number of random walk steps. However, for RRWP, we also consider1160

non-diagonal elements. Due to i ̸= j, the RRWP tensor elements differ for each random walk of length 1,1161

since different nodes are connected. Given any injective MLP layer, different RRWP tensor elements result1162

in different RRWP embeddings for the nodes of both graphs, allowing the CSL graphs to be distinguished1163

by RRWP.1164

Using the above results for CSL graphs, we derive a first bound associated with RWSE, depending1165

on the graph structure of the CSL graphs. However, CSL graphs are not distinguishable by 1-WL,1166

leaving a comparison between RWSE and 1-WL open. In the following, we want further to improve our1167

understanding of RWSE and its expressiveness. We first provide an introduction and intermediate result1168

given by Lemma 43 to limit the expressiveness to random walks of sufficient length. Afterwards, we1169

provide the proof of Theorem 2, concluding our examination of RWSE.1170

Introduction to Theorem 2 To prove Theorem 2, we first provide an intermediate result from leveraging1171

the graphs introduced by Tönshoff et al. [2023] for their work. This allows us to derive graphs that need a1172

certain number of random walk steps, depending on their graph structure. We then expand on this concept1173

in our proof of Theorem 2 by giving an example of graphs not distinguishable by RWSE.1174

Lemma 43. There exists at least one pair of non-isomorphic graphs with order 3n− 1 that can be1175

distinguished by RWSE only with a random walk length of at least O(n)1176

Since RWSE requires returning random walks to construct the respective embedding, graphs exist that are1177

only distinguishable by random walks of specific length. However, we want to provide a class of graphs1178

requiring at least O(n) steps. Furthermore, we want these graphs to be 1-WL distinguishable, providing a1179

first step to Theorem 2, where we show the indistinguishability of RWSE and 1-WL. Following Tönshoff1180

et al. [2023] and their evaluation of another random walk-based GNN architecture (CraWL), we adapt their1181

counterexample to our evaluation of RWSE.1182

Proof. We provide a proof by giving a constructed graph only distinguishable by random walks of length1183

greater than n− 1, fulfilling the necessary condition of O(n) for the walk length. Following Tönshoff et al.1184

[2023] with their counterexample for the CraWL algorithm, we adapt the corresponding graphs for the1185

RWSE embedding. Since we only consider returning random walk probabilities in the RWSE embedding,1186

we disregard any information from other random walks.1187
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Figure 5: A pair of graphs from the construction method provided by Tönshoff et al. [2023]. Note that
these graphs can only be distinguished by a returning random walk of length O(n) while being 1-WL
distinguishable.
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Figure 6: (a): Overview of our theoretical PE results in the context of existing results for PE expressivity.
A ≺ B (A ⪯ B,A ̸≡ B): algorithm A is strictly more powerful (at least as powerful, incomparable)
than/to B (b): Trees proposed by Cvetković [1988] used in the proof of Theorem 2.

Given the graphs in Figure 5 with n nodes, we consider the blue marked nodes. Since the returning walks1188

are the same for both nodes for any walk of length r ≤ n− 1, the graphs cannot be distinguished for any1189

RWSE embedding with a walk length of r. Due to the graph construction, the corresponding walks1190

for all other nodes are the same in both graphs. However, due to the cycle colored in blue, the return1191

walk probabilities differ in both graphs for walks with a length r′ ≥ n. This results in a pair of graphs1192

only distinguishable by random walks of length at least n. Results from Tönshoff et al. [2023] allow1193

for constructing further examples with n nodes and order 3n− 1. By construction, these graphs are1194

distinguishable by 1-WL [Tönshoff et al., 2023], resulting in the stated lemma.1195

With the results from Lemma 43, we can now expand the set of graphs not distinguishable by RWSE, while1196

1-WL distinguishable. Combining both results, we can determine a set of graphs limiting the expressiveness1197

of RWSE and further investigate the expressive power of random walks.1198

We provide an example pair of trees not distinguishable by the RWSE encoding. In contrast, all trees1199

are known to be distinguishable by the 1-WL algorithm [Cai et al., 1992]. Combining the findings1200

from Theorem 2 with the CSL graph results in Proposition 41, it follows that RWSE embeddings are1201

incomparable to the 1-WL color refinement algorithm.1202

Proof of Theorem 2 For this proof, we first consider a pair of trees shown by Cvetković [1988].1203

Originally introduced as an example of trees with differing eigenvalues and graph angles, thereby being1204

distinguishable by the EA-invariant, these graphs are not distinguishable by the RWSE embedding for an1205

arbitrary number of random walk steps. The proof is split into multiple steps, containing parts of both trees1206

that need to be considered.1207

Proof. We separate the graph as shown in figure 7 into backbones I, J and subtrees X,Y1, Y2 and the1208

original tree G. X stays the same throughout both graphs, whereas Y1, Y2 change their edges connecting1209

them to the graph. In the first step, we consider the return probability to one of the backbone nodes. Going1210
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from either of the backbone nodes to the original tree G has a probability of 1
5 . Furthermore, going to X1211

from either backbone node has the probability 2
5 . Once in either part of X , the return probability to the1212

backbone node is given by pX , which is equal in both graphs. Finally, the probability of going to Y1, Y2 is1213

denoted by pY1
, pY2

respectively, again equal for both graphs. Further, the return probabilities Y1 and Y21214

are equal, as can be easily seen from the combination of Y1 and Y2 with the respective backbone node.1215

This allows for a complete evaluation of the backbone nodes, assigning them probabilities pI and pJ .1216

Secondly, we consider random walks only on the nodes of the subtree X , not returning to either of the1217

backbone nodes. Since X is equal in both graphs, the return probabilities are also the same, denoted by x.1218

However, they differ from the return probabilities in Y1 and Y2, given by y1 and y2 respectively. Because1219

of that RWSE can distinguish X,Y1, Y2 without connections to the backbone nodes.1220

Combining our previous knowledge, we now consider return probabilities for nodes in Y1 and Y2 without1221

restricting ourselves to the subtrees. We know that the probability of walking towards the backbone node is1222

given by the respective position of each node in Y1, Y2, equal in both trees. Once the random walk arrives1223

at either backbone node, the probability to return to said backbone is given by either pI or pJ and a1224

probability of 2
5 to return to the originating subgraph. As pI and pJ are equal in both graphs and pY1

, pY2
1225

are equal, it follows that the return probability for nodes y1 ∈ Y1 are equal across both graphs, denoted by1226

py1T . The same holds for Y2 with the return probabilities denoted by py2T .1227

Finally, for both graphs, the nodes are assigned the RWSE probability vectors pI , pJ once, pX 17 times,1228

and py1T , py2T 8 times each. Furthermore, the two backbone nodes of both graphs cannot be distinguished1229

using the RWSE embedding. Therefore, the graphs are equal under RWSE, however as shown by [Cai et al.,1230

1992] every pair of trees can be distinguished using the 1-WL test, resulting in the incomparability of1231

RWSE and the 1-WL test.1232

Combining the results of Proposition 40, Lemma 43, and Theorem 2, we obtain fine-grained observations1233

of graph structures not distinguishable by RWSE. While random walks are sufficiently robust to distinguish1234

many common graph structures and graphs not distinguishable by 1-WL, RWSE still fails to distinguish1235

specific trees and graphs originally proposed by Tönshoff et al. [2023].1236

In the following, we provide proofs supplementing the theoretical expressiveness hierarchy introduced by1237

Zhang et al. [2024] and Black et al. [2024]. We first give an intermediate result relating RWSE and RRWP,1238

thereby providing a lower bound for RRWP and an upper bound for RWSE. Further, we propose adapted1239

results for LPE and SPE, comparing them to other PEs and to each other. The significant results are shown1240

in Proposition 3 and Proposition 4.1241

Proof of Proposition 3 The proof of Proposition 3 is given by simply evaluating the corresponding1242

embeddings for both RWSE and RRWP. Since both embeddings use the same MLP encoder layer, we1243

restrict ourselves to directly evaluating random walk matrices. We first state an extended version of1244

Proposition 3 and provide a proof.1245

Lemma 44 (Proposition 3 in the main paper). Let G,H be two non-isomorphic graphs and1246

P RW
k (G),P RW

k (H) the generated RWSE encodings for both graphs with a random walk length k.1247

Then for the generated RRWP encodings P RR
k (G),P RR

k (H) it follows:1248

P RR
k (G) = P RR

k (H)⇒ P RW
k (G) = P RW

k (H).

In addition, at least one pair of graphs exists, distinguishable by RRWP, which is not distinguishable by1249

RWSE.1250

X Y2 Y1 X

I J

X Y1 Y2 X

I J

Figure 7: A pair of trees given by Cvetković [1988]. The grey node denotes an arbitrary tree concatenated
to the existing tree. Each part of the tree is colored according to its respective appearance. We further label
both backbone nodes in orange, denoting the left backbone node with I and the right backbone node with
J .
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Proof. Given random walk matrices RG := D−1
G AG,RH := D−1

H AH , its power matrices up to1251

the power of k and the corresponding RRWP embeddings P RR
k (G),P RR

k (H) for two non-isomorphic1252

graphs we can directly deduce that for each tensor in the RRWP embeddings, corresponding to the1253

RRWP embedding for a single node in each graph, the diagonal elements of the random walk matrix1254

are the same for each power up to k. Therefore, it directly follows that P RR
k (G) = P RR

k (H) results in1255

P RW
k (G) = P RW

k (H), with P RW
k (G),P RW

k (H) denoting the RWSE encodings obtained from the same1256

random walk matrices. We provide a simple example of a pair of graphs not distinguishable by the RWSE1257

embedding, whereas RRWP can distinguish between the two graphs. This example follows directly from1258

Proposition 40 since it is proven there that RWSE cannot distinguish this pair of graphs. However, it1259

directly follows from the definition of the random walk matrix. It assumes that the MLP encoder preserves1260

identity and that both graphs can be distinguished due to their differences in skip lengths as determined by1261

the definition of CSL graphs.1262

We now want to consider the expressive power of LPE concerning RWSE. For this, we use results obtained1263

by Black et al. [2024] and Zhang et al. [2024] and combine them with similar results obtained for SignNet1264

and BasisNet [Lim et al., 2023]. Our additional observations are highlighted in Proposition 4.1265

Proof of Proposition 4 We provide an expanded version of Proposition 4 split into three parts (Lemma 45,1266

Lemma 46, and Proposition 47), considering the expressive power of SAN [Kreuzer et al., 2021] and1267

RWSE first, expanding the proof to LPE and SPE in Lemma 46, and finally upper bounding RRWP by1268

using SPE. With these three parts, we are then able to derive the proposition.1269

Lemma 45 (RWSE and SAN). Let the number k of eigenvalues λ ∈ Rn and eigenvectors V ∈ Rn×n
1270

used in the SAN encoding be equal to the number of nodes in non-isomorphic graphs G,H . Then given the1271

encodings P SAN
k (G),P SAN

k (H) with it follows:1272

P SAN
k (G) = P SAN

k (H)⇒ P RW(G) = P RW(H),

for a pair of RWSE encodings P RW(G),P RW(H) and an arbitrary number of random walk steps.1273

Lemma 46. (RWSE and LPE) Given Lemma 45 and the LPE embeddings P LPE
k (G),P LPE

k (H) for two1274

non-isomorphic graphs G,H with k nodes it follows:1275

P LPE
k (G) = P LPE

k (H)⇒ P RW(G) = P RW(H),

for a pair of RWSE embeddings P RW(G),P RW(H) and an arbitrary number of random walk steps. The1276

same result follows by replacing LPE with SignNet, BasisNet, or SPE as the eigenvector-based embedding.1277

Proof of Lemma 45 and Lemma 46 In the following, we provide the proofs for both lemmas. Since1278

Lemma 46 proposes an extension of the previous lemma, we first show the specialized case for the SAN1279

embedding and expand it to the more general case of eigenvector-based encodings. With proofs provided1280

for both lemmas, we can directly derive Proposition 4 by combining them with Proposition 47.1281

Proof. The proof follows the proof for the comparison between SignNet and RWSE made by Lim et al.1282

[2023]. Since the RWSE embedding is determined by the random walk matrix and its powers, we first1283

determine a corresponding relation between the random walk matrix (D−1A) and eigenvalues and1284

eigenvectors of the normalized graph Laplacian. Due to the definition of the random walk matrix, the1285

eigenvectors of said matrix are determined by vRi = D−1/2vi, where vi denotes the corresponding1286

eigenvector of the normalized graph Laplacian. This results in the following equation relating the random1287

walk matrix diagonal to the eigenvectors of the graph Laplacian [Lim et al., 2023]:1288

(diag(D−1A))k = diag
( k∑

i=1

(1− λi)
kviv

T
i

)
. (16)

Following Lim et al. [2023], the linear layer can approximate
∑k

i=0 and the transformer encoder to1289

approximate (1− λi)
k as both are permutation equivariant functions from vectors to vectors. Since1290

eigenvalues and eigenvectors are directly given to the SAN embedding and the linear and transformer1291

encoder layer being able to approximate (1 − λi)
k for each λi the approximation directly follows.1292

This approximation assumes using all k eigenvalues and the complete eigenvectors obtained from the1293

decomposition.1294
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For Lemma 46 we consider Equation (16). However, for each embedding, we must consider whether1295

eigenvalues and eigenvectors can be recovered and (1− λi)
k can be approximated. We split the following1296

proof for each encoding and assume we use all eigenvalues and eigenvectors.1297

For LPE, we can directly recover eigenvalues and eigenvectors from the input to each embedding by using1298

the eigenvectors Vi passed to LPE. Using a sufficiently expressive ϕ and ρ LPE is able to approximate1299

(1− λi)
k. This follows directly from the assumption of ϕ and ρ to be permutation equivariant MLPs or1300

more expressive neural network architectures, thereby able to approximate the given functions as in the1301

SAN case [Lim et al., 2023].1302

For SPE, a slightly different case has to be considered. Since SPE uses the projection matrices obtained1303

from VVT , the eigenvectors must be recovered.1304

Instead of directly recovering eigenvectors, we use the properties of the underlying projection matrices.1305

From this, we can directly recover the eigenvectors needed from Vdiag(ϕi(λ))V
T for a suitable1306

ϕ, which can be reverted by ρ to retain the eigenvectors. For the eigenvalues, we consider ϕi to be1307

eigenvalue-preserving functions, allowing us to recover the eigenvalues from the diagonalized representation.1308

The remaining proof follows from the observations made by Lim et al. [2023] for SignNet and BasisNet. In1309

addition, SignNet and BasisNet Lim et al. [2023] prove that both embeddings can approximate the RWSE1310

embedding given suitable ϕ and ρ.1311

Proposition 47 (RRWP and SPE). Given the SPE embeddings P SPE
k (G),P LPE

k (H) for two non-isomorphic1312

graphs G,H with k nodes it follows:1313

P SPE
k (G) = P SPE

k (H)⇒ P RR(G) = P RR(H),

for a pair of RRWP embeddings P RR(G),P RR(H) and an arbitrary number of random walk steps.1314

With the partial hierarchy obtained for LPE and SPE, we want to look further at random walk-based PEs.1315

Since RWSE is upper bounded by LPE and incomparable to the 1-WL, it remains to propose an upper1316

bound of RRWP, known to be more expressive than RWSE from Proposition 3.1317

Proof of Proposition 47 Following Zhang et al. [2024] with their proof of a representation of the1318

page rank distance using projection matrices, we show that RRWP can be represented using the page1319

rank distance and that such distance can be approximated using information recovered from the SPE1320

embedding. We note that a proof of SPE being more expressive than GRIT is provided by Zhang et al.1321

[2024]. Nonetheless, we reduce the proof only to involve the RRWP embedding to align with our theory1322

framework.1323

First, we consider the representation of the RRWP embedding using the generalized PageRank distance.1324

For this, we consider RRWP as a distance-based embedding of the form1325

PRR
k (u, v) = [D−1A(u, v), (D−1A)2(u, v), . . . , (D−1A)k(u, v)],

for nodes u, v ∈ V (G). Thereby, the RRWP embedding for a selection of nodes can be represented by the1326

multi-dimensional page rank distance PR for a given weight sequence γi:1327

PR(u, v) =

∞∑
i=0

γi(D
−1A)i(u, v).

From Zhang et al. [2024] we obtain the following equality satisfying the needed relation between page rank1328

distance and projection matrices.1329

∞∑
k=0

γk(D
−1A)k =

∑
i

( ∞∑
k=0

γk(1− λi)
k

)
Pi(u, v)(deg(u)−1/2)(deg(v)−1/2)

with Pi(u, v) denoting the element at position (u, v) of the i-th projection matrix. However, we still need1330

to recover node degree information from the SPE encoding and prove that SPE retains the projection matrix1331

information.1332

Given the property of projection matrices to recover the underlying matrix using eigenvalue decomposition1333

[Zhang et al., 2024], we recover node degree information using the diagonal of the graph Laplacian. Since1334
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SPE uses the graph Laplacian to compute eigenvalues and eigenvectors, we can directly recover relevant1335

degree information via the following equation.1336

L =

n∑
i=1

λiPi

diag(L) = diag(
n∑

i=1

λiPi) =

n∑
i=1

λidiag(Pi)

Luu =

n∑
i=1

λi(Pi(u, u))

Following the definition of the SPE encoding, eigenvalues and the elements of the projection matrix can be1337

recovered using suitably expressive ϕ and ρ. Given ϕ to be a 2-IGN and ρ to be a MLP or 1-WL expressive1338

GNN, deg(u)−1/2 can be approximated by ρ, whereas
∑

i

(∑∞
k=0 γk(1− λi)

k

)
can be approximated1339

by a 2-IGN as shown by Maron et al. [2019a], Lim et al. [2023]. This allows for approximating the RRWP1340

embedding via the PageRank distance using SPE as an upper bound, concluding our proof.1341

Combining the results of Lemma 45, Proposition 47, and Proposition 3, we obtain Proposition 41342

directly, supplementing the hierarchy of PEs in their theoretical expressiveness. These results provide a1343

comprehensive theoretical expressiveness hierarchy, showing that random walk-based embeddings are1344

expressive compared to the 1-WL test but are bounded by eigeninformation-based embeddings. We note1345

that all embeddings are bounded by the 3-WL test as shown by Zhang et al. [2024].1346

Additional results on theoretical expressiveness Using notation established in section Appendix B.31347

we provide additional proofs to complement the framework established by Black et al. [2024] and1348

Zhang et al. [2024] concerning theoretical expressiveness of PEs. At first, we consider the proof of1349

Lemma 48, highlighting the connection between SAN and SignNet. Then we consider SignNet and1350

BasisNet, expanding on the results of Lim et al. [2023] and adapting them to LPE. We provide these1351

additional results to improve the hierarchy of theoretical expressiveness in PEs and additional results1352

concerning LPE, relating it to other eigenvector-based embeddings.1353

Throughout these proofs, we consider the respective ϕ and ρ to be selected as MLPs or GNNs. For ϕ, we1354

choose, based on previous analysis by Zhang et al. [2024], a function mapping at most as expressive as a1355

2-IGN. Similarly, for ρ we select any 1-WL expressive GNN or MLP. Note that these assumptions differ1356

from the selections made in our empirical evaluation.1357

Lemma 48. Given a sufficiently expressive ϕ and ρ for SignNet, aligning with the implementation of Lim1358

et al. [2023] and the original implementation of the SAN embedding, SignNet is at least as expressive as1359

the SAN embedding.1360

Proof. Let SAN and SignNet be represented by the respective color refinement algorithms shown in1361

Definition 14. To show Lemma 48, we need to show that1362

TGP ◦ T∞
WL ◦ TSP2 ◦ Tϕ(χSign) ⪯ TGP ◦ TENC ◦ TL(χSAN).

Since we assume a standard transformer encoder to be at most 1-WL expressive and knowing that TGP is1363

order preserving concerning Definition 10, we can reduce the above equation to the following expression:1364

T∞
WL ◦ TSP2 ◦ Tϕ(χSign) ⪯ T∞

WL ◦ TL(χSAN).

This expression can now be evaluated. Given two non-isomorphic graphs G,H and arbitrary nodes1365

u, v ∈ V (G) and x, y ∈ V (H) the following holds true:1366

T∞
WL ◦ TSP2 ◦ Tϕ(χSign(u, v)) = T∞

WL ◦ TSP2 ◦ Tϕ(χSign(x, y))
TSP2 ◦ Tϕ(χSign(u, v)) = TSP2 ◦ Tϕ(χSign(x, y))

{{Tϕ(χSign(u, v))}} = {{Tϕ(χSign(x, y))}}
{{Tϕ(λG,V

u,Vv)}} = {{Tϕ(λH ,Vx,Vy)}}.

From the equivalence of the multisets, it follows directly that χSAN(u, v) = χSAN(x, y) holds for any1367

choice of nodes given an injective Tϕ.1368
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With the conclusion of the proof for the SAN embedding, we further evaluate the connection between1369

BasisNet and SignNet and the LPE embedding. First, we show that BasisNet can approximate SignNet, an1370

observation highlighting the differences in expressiveness noted by Lim et al. [2023]. In the second part of1371

the proof, we then conclude our comparison of eigenvector-based embeddings with the comparison of LPE1372

to BasisNet. Throughout the proof we again assume ϕSN , ϕLPE to be at most 2-IGN expressive and1373

ρSN , ρLPE to be 1-WL expressive.1374

Proof. Let SignNet and BasisNet be represented by the color refinement algorithms from Definition 14.1375

Then for two non-isomorphic graphs G,H with nodes u, v ∈ V (G) and x, y ∈ V (H) we consider the1376

color refinement algorithms for both encodings. With this it follows that we have to show TGP ◦ TWL ◦1377

TSP1 ◦ TBP ◦ TSIAM(χBasis) ⪯ TGP ◦ TWL ◦ TSP2 ◦ Tϕ(χSign). Since TGP ◦ TWL is order preserving we1378

only consider the relation TSP1 ◦ TBP ◦ TSIAM(χBasis) ⪯ TSP2 ◦ Tϕ(χSign). First of all, we show that1379

TSIAM(χBasis) ⪯ Tϕ(χSign):1380

TSIAM(χBasis)(λG, u, v) = TSIAM(χBasis)(λH , x, y)

⇒ [TIGN(χBasis(λG, ·, ·))]G(u, v) = [TIGN(χBasis(λH , ·, ·))]H(x, y).

Using the definition of the IGN color refinement, we can directly approximate the eigenvalues used1381

in the initial encoding of SignNet. Furthermore, a 2-IGN architecture is at least as expressive as the1382

architectures used for ϕ in SignNet. Since the multisets of the projection matrices allow us to approximate1383

the eigenvectors used by the SignNet encoding, the initial encoding of SignNet can be approximated,1384

allowing for the approximation of Tϕ(χSign),1385

[TIGN(χBasis(λG, ·, ·))]G(u, v) = [TIGN(χBasis(λH , ·, ·))]H(x, y)

⇒ χSign(λG, u, v) = χSign(λH , x, y)⇒ Tϕ(χSign)(λG, u, v) = Tϕ(χSign)(λH , x, y).

Given that χ̄ = TSIAM(χBasis), we now only have to show that TBP(χ̄) ⪯ TSP2(χ̄). Using the same nodes1386

as above:1387

TBP(χ̄)(λ, u) = TBP(χ̄)(λ, x)

⇒ χ̄G(λ, u, u) = χ̄H(λ, x, x) ∧ {{χ̄G(λ, u, v) : v ∈ V (G)}} = {{χ̄G(λ, x, v) : v ∈ V (H)}}∧
{{χ̄G(λ, v, u) : v ∈ V (G)}} = {{χ̄H(λ, v, x) : v ∈ V (H)}}∧
{{χ̄G(λ, v, v) : v ∈ V (G)}} = {{χ̄H(λ, v, v) : v ∈ V (H)}}∧

{{χ̄G(λ, v, w) : v, w ∈ V (G)}} = {{χ̄H(λ, v, w) : v, w ∈ V (H)}}∧
⇒ TSP2(χ̄)(λ, u, v) = TSP2(χ̄)(λ, x, y).

Since both parts of the relation TBP ◦ TSIAM(χBasis) ⪯ TSP2 ◦ Tϕ(χSign) hold and all color refinements1388

are considered to be order preserving and expressiveness preserving the proof directly follows.1389

In case of the LPE embedding, the proof follows the same structure with Tϕ being replaced with T LPE
ϕ as1390

given in Definition 14. Since we do not assume Tϕ to be more expressive than T LPE
ϕ and both being1391

bounded by a 2-IGN in expressiveness, we can replace Tϕ, and therefore, we omit the proof.1392

F Additional technical proofs1393

Multiset operations Let D be a finite set with an arbitrary but fixed order. We denote with Di the i-th1394

element in the order over D. Let A be a finite multiset over D. We write A := {(ai, Di) | i ∈ [|D|]}1395

with ai ≥ 0, the multiplicity of element Di in A.1396

We define |A| :=
∑

i ai. Further, let B := {(bi, Di) | i ∈ [|D|]} be another finite multiset over D. We1397

define1398

A ∩B := {(min{ai, bi}, Di) | i ∈ [|D|]}
and1399

A \B := {(max{ai − bi, 0}, Di) | i ∈ [|D|]}.
We note that A ∩B is symmetric while B \A is not symmetric. Nonetheless, we prove that if |A| = |B|,1400

then |A \B| is symmetric.1401

Claim 49. Let A,B be two multisets over a finite domain. If |A| = |B|, then |A \B| = |B \A|.1402
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Proof. We have that1403

|A \B| =
∑
i

max{ai − bi, 0} =
∑
i

ai −min{ai, bi} = |A| − |A ∩B|.

Hence, if |A| = |B|, then |A \B| = |A| − |A ∩B| = |B| − |A ∩B| and since |A ∩B| is symmetric,1404

|A \B| = |B| − |B ∩A| = |B \A|.1405

Claim 50 (Proof of Claim 30). Let A,B ⊂ Q be finite multisets with |A| = |B|. Then, the sum1406 ∑
a∈A

exp(a)−
∑
b∈B

exp(b) = 0,

if, and only if, A = B.1407

Proof. Let f(A,B) =
∑

a∈A exp(a) −
∑

b∈B exp(b). Note that for each element a in A that also1408

appears as b in B, we have that exp(a)− exp(b) = 0. Hence, we define A∗ := A \B and B∗ := B \A1409

and have that f(A,B) = f(A∗, B∗). Further, since according to the lemma statement |A| = |B|, we1410

have that |A∗| = |B∗|; see Claim 49.1411

We first show that f(A,B) = 0 if and only if A = B. To this end, note that the sum is 0 if the positive1412

and the negative summands cancel out, that is, if A∗ = B∗ = ∅ and hence, A = B. If A ̸= B, then the1413

above sum is a non-zero sum of exponentials with algebraic exponents, and thus, by Theorem 32, non-zero.1414

Hence, we have A = B ⇔ f(A,B) = 0.1415

Lemma 51 (Proof of Lemma 28). Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are1416

one-hot vectors, for some L, d ∈ N+. Then, softmax(v)X = softmax(w)X , if and only if, for every1417

x ∈ set(X),1418 ∑
i∈A(x)

(αi − βi) = 0,

where αi := softmax(v)i and βi := softmax(w)i.1419

Proof. We have1420

softmax(v)X − softmax(w)X =

n∑
i=1

(αi − βi) ·Xi =
∑

x∈set(X)

∑
i∈A(x)

(αi − βi) · x.

Since the rows of X are one-hot vectors, set(X) is linearly independent we have that1421 ∑
x∈set(X)

∑
i∈A(x)

(αi − βi) · x = 0,

if, and only if,
∑

i∈A(x)(αi − βi) = 0, for all x ∈ set(X).1422

Lemma 52 (Proof of Lemma 27). Let v,w ∈ Q1×L and let X ∈ {0, 1}L×d be a matrix whose rows are1423

one-hot vectors, for some L, d ∈ N+. Then, [v]X = [w]X , if and only if for every x ∈ set(X),1424

{{vi | i ∈ [n] ∧Xi = x}} = {{wi | i ∈ [n] ∧Xi = x}}.

Proof. We define, for each x ∈ set(X),1425

V (x) := {{vi | i ∈ [n] ∧Xi = x}}
W (x) := {{wi | i ∈ [n] ∧Xi = x}}.

For the forward implication, assume towards a contradiction that [v]X = [w]X but there exists an1426

x ∈ set(X) such that V (x) ̸= W (x). However, then there also exists a number v ∈ V (x) that appears1427

x times in V (x) but y times in W (x), with x ̸= y. Without loss of generality, we assume that x < y.1428

Then, the tuple (v,x) appears fewer times in [v]X than in [w]X , implying [v]X ̸= [w]X , a contradiction.1429

For the backward implication, assume towards a contradiction that for all x ∈ set(X), V (x) = W (x)1430

but [v]X ̸= [w]X . Then, there exists a tuple (v,x) that appears x times in [v]X but y times in [v]X ,1431

with x ̸= y. Without loss of generality, we assume that x < y. But then, for the vector x, there exists a1432

number v that appears fewer times in V (X) than in W (X), implying V (X) ̸= W (X), a contradiction.1433

This shows the statement.1434
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