© o N o o A~ W N =

Generalizable Insights for Graph Transformers in Theory
and Practice

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph transformers (GTs) have demonstrated strong empirical performance; however,
current architectures exhibit significant variations in their utilization of attention
mechanisms, positional embeddings (PEs), and expressivity. Existing expressivity
results are often tied to specific design choices and lack comprehensive empirical
validation on large-scale data. This leaves a gap between theory and practice, preventing
the generation of generalizable insights that extend beyond particular application
domains. Here, we propose the Generalized-Distance Transformer (GDT). This GT
architecture incorporates many advancements for GTs from recent years, and develops a
fine-grained understanding of the GDT’s representation power in terms of attention and
PEs. Through extensive experiments, we identify design choices that consistently
perform well across various applications, tasks, and model scales, demonstrating strong
performance in a few-shot transfer setting without the need for fine-tuning. We distill
our theoretical and practical findings into several generalizable insights about effective
GT design, training, and inference.

1 Introduction

Graphs are a fundamental data structure for representing relational data and are widely used across
various scientific and industrial domains. They naturally model interactions in multiple domains, e.g., in
chemistry [Gilmer et al.l 2017, Jumper et al.l 2021]], recommendation systems [[Ying et al., 2018} [Wu
et al.,2020], or code analysis [[Allamanis et al.,|2018| [Hellendoorn et al., [2021]]. While graph neural
networks (GNNs) [Zhou et al.| [2020} Bronstein et al., [2021]), specifically message-passing neural networks
(MPNNGs) [Gilmer et al., 2017], remain the most prominent architectures in graph learning, recently, graph
transformers (GTs) have emerged [Miiller et al.|[2024]] and have found success in applications such as
protein folding [Abramson et al., 2024, weather forecasting [Price et al.,2025], or robotics [Vosylius and
Johns| 2025]]. Moreover, due to the generality of graphs as a modeling language, GTs can be seen as
generalizations of traditional transformer architectures [[Vaswani et al., 2017, |Devlin et al.,|2019, Brown
et al.| 2020]. As such, theoretical and practical insights about GTs can be leveraged to improve our
understanding of transformers’ reasoning abilities and representation power [Sanford et al., 2024, Cheng
et al.}2025]). In addition, LLMs with causal masking can be seen as GTs on special types of directed
acyclic graphs, and tools from graph learning can be used to study and understand their behavior at
inference time [Barbero et al., 2024, [2025]). Despite these promises, the progress of GTs is hindered by a
lack of standard methods to obtain generalizable insights. Specifically, we identify three main obstacles in
the current literature: architecture-tied expressivity, limited evaluation, and graph-specific attention. Here,
architecture-tied expressivity refers to the shortcoming that current expressivity results are often tied to
specific architectural designs, such as special attention mechanisms [Zhang et al., 2023, |Ma et al., [2023]
Miiller et al., 2024} Black et al.,|2024]] or choices of positional embeddings (PEs) [Tsitsulin et al., 2022,
Ma et al., 2023} Kim et al., [2022, Miiller and Morris} 2024]). In addition, empirically, GTs are often
evaluated and compared on small-scale datasets [Rampasek et al.l 2022, Ma et al.| [2023]] where otherwise

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40

41
42
43
44
45

46
47

48

49
50

51
52
53

54

55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
7
72
3

~

Tokenization

Figure 1: Overview of the GDT and accompanying evaluation. Top left: We support node- and edge-level
tokenization with corresponding absolute PEs (depicted below each token). Top right: We incorporate
relative PEs and edge features via the attention bias. Bottom left: We provide effective and streamlined
implementations for incorporating edge features and PEs. Botfom right: All empirical evaluations are done
on large-scale datasets spanning various applications.

negligible implementation choices can be more prominent, leading to limited insights. Finally, regarding
graph-specific attention, most GTs deviate far from the traditional transformer architecture, making it
challenging to derive generalizable insights about transformers beyond particular application domains.

Present work This work aims to overcome the above obstacles and provide a general and powerful
graph transformer architecture. Through rigorous theoretical and empirical analysis, we develop the
Generalized-Distance Transformer (GDT), a general graph transformer architecture whose expressivity can
be characterized by the powerful Generalized-Distance Weisfeiler—Leman algorithm [Zhang et al.; [2023]].
Concretely, the GDT

1. captures MPNNs, most graph transformers, and many other transformer models, e.g., causal and
bi-directional transformers;

2. is effective across application domains, as well as on graph-, node-, and edge-level prediction tasks; and

3. is evaluated at a sufficient data scale and can learn transferable representations, allowing for few-shot
transfer and extrapolation.

Our provably expressive GDT architecture, supported by a rigorous empirical evaluation, represents a
significant step toward developing highly effective, general-purpose graph models that enable generalizable
insights across diverse domains.

2 Generalized-Distance Transformer

In this section, we derive the GDT by combining various methods from the recent graph learning
literature, while maintaining standard attention that is compatible with most traditional transformer models.
Moreover, we prove that the GDT is powerful enough to simulate the general and expressive GD-WL
algorithm [Zhang et al.l 2023]. We will first introduce some notation and necessary background, and then
develop our theoretical framework.

Expressivity and Weisfeiler-Leman variants We consider finite graphs G := (V(QG), E(G), ¢y, {g)
with nodes V(G), edges E(G). Note that for simplicity we assume that the nodes and edges are already
embedded via node embeddings ¢y : V(G) — RY, and edge embeddings ¢z : V(G)? — RY, where
d € N7 is the embedding dimension and £z (v, w) is simply the all-zero vector if there is no edge between
nodes v and w. We always fix an arbitrary order on the nodes V' (G) to be consistent with vectorial
representations such as those used in transformers. We study the expressivity of a graph model via its
ability to distinguish non-isomorphic graphs, which is common practice for graph neural networks
and GTs [Morris et al., 2019} |/Abboud et al.l 2022, |[Zhang et al., 2023} Black et al., 2024, [Miiller and
Morrish 2024]]. Such a notion of expressivity is often studied in the context of the new k-dimensional
Weisfeiler—Leman algorithm (k-WL) [Cai et al.l|1992], a hierarchy of graph isomorphism heuristics with
increasing expressivity and computational complexity as k£ > 0 grows. MPNNs without PEs typically have
1-WL expressivity. Another important graph isomorphism heuristic in the context of this work is the
GD-WL variant [Zhang et al.| |2023|], which we formally introduce here. Concretely, given a graph
G = (V(G), E(G), ty), we seek to iteratively update colors for each node v € V(G), denoted x5 (v),

74
75
76

77
78
79
80
81
82

83

84
85
86
87
88
89

20
91
92
93
94

95
96
97
98
99

100
101

102
103

104
105
106
107
108

109
110
111
112
113
114
115

116

117
118
119
120
121

where ¢t > 0 denotes the iteration number. We initialize x% (v) with the node colors consistent with £y,
that is x% (v) = x&(w) if and only if £y (v) = £y (w), for all pairs of nodes v, w. Then, the GD-WL
updates the color x5 (v) of node v € V(G), as

X&' (v) = hash({(da (v, w), xg(w)) : w € V(G)}), ¢y

where dg: V(G)? — RT is a distance between nodes in G and hash is an injective function, mapping
each distinct multiset to a previously unused color. The expressivity of the GD-WL depends on the choice
of dg. Setting d (v, w) = 1 if and only if v and w have an edge in G, yields 1-WL expressivity. In
practice, the GD-WL is often realized with a GT where d is incorporated via modified attention [Ma
et al.,|2023||Zhang et al.,2023]. In Section@ for the first time, we prove that a GT with standard
attention can simulate the GD-WL, with dg being incorporated as a PE.

2.1 Defining the GDT

While many variations of GTs exist, we consider the standard transformer encoder based on [Vaswani et al.
[2017]. Concretely, the GDT processes a matrix of initial token embeddings X° € RZ*¢, derived from G,
using scaled dot-product attention and subsequent application of a multi-layer perceptron (MLP). Here
L € NT denotes the number of tokens, typically in the order of the number of nodes, and d denotes
the embedding dimension. We now describe tokenization and attention, and how we incorporate edge
embeddings into the GDT.

Tokenization For this study, we will consider two possible tokenizations: (a) node-level tokenization,
where each token corresponds to a node in G and the initial token embeddings are constructed from node
embeddings /y/; and (b) edge-level tokenization, where each token corresponds to either a node or an
edge in GG and the initial token embeddings are constructed from the node embeddings ¢y and the edge
embeddings ¢ for node- and edge-tokens, respectively.

Special tokens As a convention, and following many prior works on transformer encoders, we use a special
[c1s] token to read out graph-level representations from the GT. For simplicity, we treat the [c1s] token as
corresponding to an additional virtual node, connected to all other nodes. This virtual node is also equipped
with a unique node embedding ¢y, ([c1s]) and unique edge embeddings ¢ ([c1s],v) = g ([cls],w)
and £ (v, [cls]) = g (w, [cls]), for all pairs of nodes v, w € V(G).

Attention For the attention, let Q, K,V € REX*? and B € RE*L be the attention bias. We define
biased attention as

Attention(Q, K,V ,B) = softmax(d*% QK" + B)V,

where softmax is applied row-wise. While many variations of the standard transformer layer exist, it
generally takes the form

X' = MLP (Attention(X'Wq, X' W, X'Wy, B)), 2)

where Wy, Wi, Wy € R4 are learnable linear transformations, and we use a two-layer MLP
commonly found in transformer encoder layers; see Appendix [B]for a formal definition. In practice,
transformers typically have additional normalizations and residual connections. They are implemented
using multi-head attention with attention bias tensor B € RZ*L*" where h is the number of attention
heads; see Appendix [B]for a formal definition.

Absolute and relative PEs We can incorporate two classes of PEs, absolute PEs such as RWSE [Dwivedi
et al.; 2021], LPE [Kreuzer et al.l[2021] [Miiller and Morris} [2024]], and SPE [Huang et al., 2024], which are
added at the token-level, and relative PEs such as RRWP [Ma et al.,|2023]], which describe relational
information between two tokens. We note that the GDT is permutation-equivariant if and only if the
absolute and relative PEs used are permutation-equivariant. Since we always assume the presence of,
potentially trivial, edge embeddings, the GDT has, at the very least, an embedding of the adjacency matrix
as its attention bias, forming a kind of default relative PE. We will refer to this PE as NoPE.

2.2 The expressive power of the GDT

We now have the necessary definitions to formally state our theoretical result for the expressivity of the
GDT. Importantly, our result allows us to study GT expressivity exclusively through the choice of PE,
effectively decoupling model expressivity from the selection of attention. Concretely, we show that the
GDT, with absolute and relative PEs, is sufficient to simulate the GD-WL, as well as that the GD-WL
provides an upper bound on the expressivity of the GDT; see Appendix |D|for the proof.

122

123
124

125
126

127
128
129
130
131
132
133
134
135

136
137

138

140
141

142

143
144
145
146
147
148
149

150
151
152
153
154
155

156
157
158
159

161

162
163
164
165
166

167

168
169
170
171
172
173

Theorem 1 (informal). The following holds:

1. For every choice of distance function, there exists a choice of PEs and a parameterization of the GDT
sufficient to simulate the GD-WL.

2. For every choice of PEs and parameterization of the GDT, there exists a distance function and an initial
coloring of the GD-WL sufficient to simulate the GDT.

The central problem we face when proving the first statement is how to injectively encode the multisets in
Equation (T) with softmax-attention. This is because softmax-attention computes a weighted mean, whereas
existing results for encoding multisets use sums [Xu et al.; 2019}, Morris et al.| 2019} Zhang et al.| 2023]].
To overcome this limitation, we first note that the weighted mean of softmax-attention is essentially a
normalized sum of exponential numbers. We then leverage a classical result from number theory, namely
that sums of distinct exponential numbers are linearly independent over algebraic numbers, a result known
as the Lindemann-Weierstrass theorem [Baker, |[1990]. In the proof of Theoremm we show that this linear
independence property is sufficient for injectivity, provided that there are at least two distinct token
embeddings, a property always satisfied in the presence of the [CLS] token.

[Insight 1: The expressivity of biased attention can be characterized by the GD-WL.]

A consequence of Theorem [I]is that the GDT with NoPE is equivalent to 1-WL; see Appendix D] for a
formal discussion of this fact. With Theorem [T} we have characterized the expressivity of the GDT in terms
of the GD-WL. In the next section, we show that this expressivity can be enhanced using PEs. To this
end, we present a range of new PE expressivity results, providing the most fine-grained picture of GT
expressivity.

3 The expressive power of positional embeddings

This section provides a comprehensive theoretical expressiveness hierarchy of PEs based on the works
of Black et al.|[2024] and [Zhang et al.| [2024], including novel results on PE expressiveness. With
theoretical results obtained from Section[2.2] we expand on GDT expressiveness by introducing PE
expressiveness, building a pathway between our transformer architecture and incorporating graph structure
information. Furthermore, leveraging the PE expressiveness results, we obtain initial guidelines for
empirically evaluating PE design choices. Here, we introduce the four PEs central to our theoretical and
empirical study; see Appendix [E] for results for additional PEs.

PEs We consider random-walk-based PEs and PEs based on the eigenvalues of the graph Laplacian.
Random-walk-based PEs are embeddings of the random-walk probabilities obtained from multiple powers
of the degree-normalized adjacency matrix of the graph. We consider RWSE [Dwivedi et al.,2021]], an
absolute PE that uses only the return probabilities of random walks for each node and has linear-time
complexity, and RRWP [Ma et al.| [2023]], a relative PE, which uses all random walk probabilities between
two nodes and has quadratic runtime complexity.

Laplacian PEs are embeddings of the eigenvectors and eigenvalues of the graph Laplacian; see Appendix B
for a definition. Here, we consider LPE [Kreuzer et al., 2021} Miiller and Morris| [2024]], an absolute PE
which uses a linear-time embedding method but suffers from a lack of basis-invariance, making the PE
non-equivariant to the permutation of nodes [Lim et al., 2023]. In addition, we consider SPE [Huang et al.,
2024], an absolute PE which is permutation-equivariant but has quadratic runtime complexity. Further
details and formal definitions are presented in Appendix

1-WL and random-walk PEs Tonshoff et al.|[2023]] already show that there are pairs of graphs with n
nodes, distinguishable by the 1-WL, requiring random walks with at least O(n) steps to be distinguished.
Here, we show that RWSE is incomparable to the 1-WL. This holds independently of the number of random
walk steps, and as a result, we can consider RWSE to provide additional information as a PE to a pure
transformer architecture by differentiating 1-WL indistinguishable graphs; see Appendix [E] for the proof.

Theorem 2. The RWSE embedding is incomparable to the 1-WL test.

We briefly highlight the most essential proof idea. Concretely, the selected trees introduced by |Cvetkovic
(1988]l, shown in Figure[f] are known not to be distinguishable using their eigenvalues and graph angles.
However, all trees can be distinguished by the 1-WL test [[Cai et al.l [1992]. At the same time, it is
well-known that RWSE can distinguish indistinguishable CSL graphs by the 1-WL [Dwivedi et al., [2021].
Further, we note that Theorem [2] provides not only a single pair of graphs but rather an infinite number of
trees indistinguishable by RWSE. Finally, we show the following result relating RRWP to RWSE.

174

175
176
177
178
179
180

181

182
183
184

185
186

187
188
189

190

191
192
193
194
195
196
197

198
199
200
201
202

203
204
205
206
207
208
209
210
211
212

—e— 15M (RRWP) 15M (LPE) ~ —e— 15M (RWSE) ~ —e— 90M (LPE) ~ —e— 90M (RWSE) —e— 160M (LPE) 160M (RWSE)

Bridges — Cycle detection COCO - Pascal Extrapolation on MST

1.000 050 SOTA e e
.

s

0.995 0.45 &
i@’ o

o
/-7 0.40
0.990 . o / @
5035 S 0.90
&
0.985

/ 3 4
\y 0.30
/ 0.25 0.85
0.980 | ¢ 0.20
K

0.15 0.80
20 40 60 3 4 5 6 7 50 100 150 200 250
shots (graphs) # shots (graphs) - log scale # nodes

\
\
A=

Score

Figure 2: Results of inference-time experiments. From left to right: Few-shot transfer from BRIDGES to
CYCLES with 3-NN over 3 random seeds; few-shot transfer from COCO to PASCAL with 5-NN over 10
random seeds; extrapolation beyond training data on MST over 3 random seeds.

Proposition 3. RRWP is strictly more expressive than RWSE, given the same random walk length.

Random-walk PEs and eigen PEs We provide results for RWSE, RRWP, LPE, and SPE. In contrast to
previous works [Ma et al.,[2023| |[Zhang et al.,[2024]], we analyze the expressivity of RRWP directly,
without using the GRIT architecture. We find that RRWP is approximated by SPE, which in turn is strictly
weaker than the 3-WL test [Zhang et al.,|2024]]. Further, we expand on proofs by |Lim et al.|[2023]] to
approximate RWSE using LPE. Taken together, we obtain a fine-grained hierarchy of PEs, which we
summarize in the following result.

Proposition 4. SPE is at least as expressive as LPE and RRWP, LPE is at least as expressive as RWSE.
We obtain an even more fine-grained hierarchy of Eigen-vector-based PEs by including additional

embeddings as discussed in Appendix [E] As a consequence of the hierarchy, all PEs considered in this
section can distinguish graphs not distinguishable by the 1-WL or, equivalently, the GDT with NoPE.

[Insight 2: Any PE in {RWSE, RRWP, LPE, SPE} enhances the expressivity of the GDT.]

We present a summary of our results in Figure[6]and highlight our contributions to a completed theoretical
expressiveness hierarchy of PEs, complementing the work of Zhang et al.| [2024]] and Black et al.|[2024].
Together with the theoretical insights obtained in Section 2] we arrive at a detailed understanding of the
expressivity of the GDT with four popular PEs.

4 Experiments

In this section, we empirically evaluate our GDT model on various real-world and synthetic datasets, at the
graph-, node-, and edge-levels, as well as in- and out-of-distribution settings. Specifically, we compare the
performance and efficiency of the PEs in Section [3]and examine the few-shot transfer, parameter scaling,
and size generalization capabilities of the GDT. In the process, we aim to gain a deeper understanding
of the relationship between empirical performance and expressivity, based on the results presented in
Section |3} and derive generalizable insights for GTs. Next, we describe our implementation design, the
choice of datasets, and the experiment schedule, and present our empirical results.

Real-world datasets For the real-world tasks, we evaluate our models on PCQM4Mv2 (PCQ) [Hu et al.,
2021]], a molecular property prediction dataset with 52.5M tokens, COCO [Dwivedi et al., 2022], an
image-based object detection dataset with 58.8M tokens, and OGB-Code2 (CODE) [Hu et al.l[2020], a code
summarization dataset with 56.7M tokens. For few-shot transfer, we select PASCAL [Dwivedi et al.,2022],
which has the same image domain as COCO but uses different object categories.

Algorithmic reasoning datasets In addition to real-world tasks, we add synthetic algorithmic reasoning
tasks for graph algorithms inspired by the CLRS benchmark [Velickovic et al., [2022]. Our selection
includes the minimum-spanning-tree problem (MST), detecting bridges in a graph (BRIDGES), and
calculating the maximum flow in an undirected graph (FLOW). Here, BRIDGES and MST are edge-level
tasks, and FLOW is a graph-level task. We further consider the task of detecting whether a node lies on
a cycle (CYCLES), a node-level complement to BRIDGES, to evaluate transfer learning capabilities.
Following the literature in algorithmic reasoning for transformer architectures [Zhou et al., 2022} [2024alb]]
and in particular, graph algorithmic reasoning [Diao and Loynd, 2023| |Velickovic et al.l 2022} Markeeva
et al.| 2024, [Miiller et al.| 2024], we evaluate in the size generalization setting where test-time graph
instances are up to 16 times larger than those seen during training.

213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229

230
231

232
233
234
235
236

237
238

239
240
241
242
243
244
245
246

247

248
249
250
251
252

254

Table 1: 16M parameter results for different PEs over 3 random seeds. PCQ MAE is in micro electron volt
(meV) for clarity of presentation. The mean rank is computed by sorting the models’ scores for each task.
An out-of-time (OOT) case is considered the last place for the respective task.

Mean PCQ COoCco CODE FLow MST BRIDGES
Rank MAE | F1 1 F11 MAE | F11 F1 1

NoPE 3.50 936 +0s 43.12+00ss 19.27 +0020 1.73 +000 93.29 o088 55.36 + 2404
LPE 250 927 +00 44.83 toom 1948 +o021 1.75 012 91.08 0095 91.76 + o766
SPE 4.00 941 o6 43.87 0054 1935 +0021 1.98 +014 9252 +0012 54.81 +2120
RWSE 2.67 929106 43.82+0100 1939 0047 149 £002 93.26 0045 87.34 10397
RRWP 233 904 +03 3991 +107 19.42 + o1 1.45 +006 96.04 £ 0091 99.21 + 0009

PE

Experimental design In the first step, we evaluate different PE choices from Section [3|for the GDT on
all six upstream tasks. We also consider NoPE, which receives information about the graph structure
solely from the edge embeddings. We fix the parameters to 15M; see Appendix [A]for the choice of
hyperparameters. Additionally, we compute the runtime and memory efficiency observed for each PE and
task. In the second step, we select the best models from the first step and evaluate them further using
few-shot transfer, scaling model size, and extrapolating graph size. In particular, we assess few-shot transfer
from COCO to PASCAL, as well as few-shot transfer from BRIDGES to CYCLES. For scaling, we train
additional models with 90M and 160M parameters for PCQ and MST. Finally, we provide extrapolation
results for up to 256 nodes (16 x the size of the training graphs) on MST.

Discussion of base models We present our task results in Table[I] as well as runtime and memory
requirements in Figure [3] RRWP performs best of all selected PEs on 4 out of 6 tasks. Most notably, RWSE
and LPE perform significantly better than NoPE and SPE for all tasks except FLOW, but do not face any
efficiency issues. Furthermore, LPE and RWSE perform similarly for each task, placing second and third,
respectively, and are often competitive with the less efficient RRWP. Due to their favorable efficiency and
competitive predictive performance, we selected LPE and RWSE for our scaling and extrapolation
experiments and few-shot transfer. For few-shot transfer from BRIDGES to CYCLES, we additionally select
RRWP due to its significantly better OOD performance on BRIDGES.

Insight 3: PE efficiency can vary greatly while predictive performance differences are less
pronounced.

Extended evaluation We present the scaling results in Figure[3|(a) found in Appendix [A] few-shot
transfer in Figure [2] (a) and (b), and extrapolation results in Figure 2] (c). For scaling, we observe that
relative performance between PEs is more or less robust to model scale. In three out of four cases, in- and
out-of-distribution performance improves consistently with an increase in model scale. The only exception
is the 160M model with LPE on MST, which drops off slightly compared to its 90M counterpart but still
outperforms both 15M models on this task.

Insight 4: Scaling the GDT generally improves in- and out-of-distribution performance and
representations learned allow for effective few-shot-transfer.

For few-shot transfer, we find that all three evaluated models can demonstrate strong performance when
transferring from BRIDGES to CYCLES with just a few shots. In particular, the 15M model with LPE
achieves near-perfect performance already with 10 shots, and is significantly better than RWSE and RRWP
up to 60 shots. When transferring from COCO to PASCAL, we observe performance increases even for
1000 shots where both RWSE and LPE surpass the current SOTA on PASCAL, despite seeing less than 10%
of the available training samples at inference-time; see Appendix [A]for an overview of state-of-the-art
performance on PASCAL. Finally, we find all PEs and model scales to extrapolate well on MST. In
particular, we still observe an F1 score of around 85 at 256 nodes or 16 x the graph sizes seen during
training.

5 Conclusion

We introduce the GDT, a generalizable and expressive graph transformer built upon the standard transformer
implementation. We demonstrate that the GDT is equivalent to the GD-WL in terms of theoretical
expressiveness, with enhanced expressivity achieved by utilizing PEs and their respective expressiveness.
Further, we demonstrate strong empirical performance across multiple domains and large-scale datasets,
determining an empirical hierarchy of PEs. We also demonstrate the GDT’s ability to learn transferable
representations, extrapolate on graph size for synthetic tasks, and achieve robust results concerning model
scale. Thereby, we provide generalizable theoretical and empirical insights for graph transformers.

255

256
257

258
259

260
261

262
263

264

265
266
267

268
269

270
271
272
273

274

275
276

277
278

279
280

281
282
283
284
285

286
287

288
289

290
291

292
293

294
295

296
297

298
299

References

R. Abboud, R. Dimitrov, and I. I. Ceylan. Shortest path networks for graph property prediction. In
Learning on Graphs Conference (LoG), 2022.

J. Abramson, J. Adler, and J. e. a. Dunger. Accurate structure prediction of biomolecular interactions with
alphafold 3. Nature, 630:493-500, 2024.

M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent programs with graphs. In
International Conference on Learning Representations (ICLR), 2018.

W. Azizian and M. Lelarge. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations (ICLR), 2021.

A. Baker. Transcendental Number Theory. Cambridge University Press, 1990.

F. Barbero, A. Banino, S. Kapturowski, D. Kumaran, J. G. M. Aratijo, A. Vitvitskyi, R. Pascanu, and
P. Velickovi¢. Transformers need glasses! information over-squashing in language tasks. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

F. Barbero, Alvaro Arroyo, X. Gu, C. Perivolaropoulos, M. Bronstein, P. Velickovi¢, and R. Pascanu. Why
do 1lms attend to the first token? Arxiv preprint, 2025.

M. Bechler-Speicher, B. Finkelshtein, F. Frasca, L. Miiller, J. Tonshoff, A. Siraudin, V. Zaverkin, M. M.
Bronstein, M. Niepert, B. Perozzi, M. Galkin, and C. Morris. Position: Graph learning will lose
relevance due to poor benchmarks. In International Conference on Machine Learning (ICML) Position
Paper Track, 2025.

L. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. Arxiv preprint, 2020.

M. Black, Z. Wan, G. Mishne, A. Nayyeri, and Y. Wang. Comparing graph transformers via positional
encodings. In International Conference on Machine Learning (ICML), 2024.

D. Bo, C. Shi, L. Wang, and R. Liao. Specformer: Spectral graph neural networks meet transformers. In
International Conference on Learning Representations (ICLR), 2023.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovi¢. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. Arxiv preprint, 2021.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wy, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

J. Cai, M. Fiirer, and N. Immerman. An optimal lower bound on the number of variables for graph
identifications. Combinatorica, 12(4):389-410, 1992.

D. Chen, L. O’Bray, and K. M. Borgwardt. Structure-aware transformer for graph representation learning.
In International Conference on Machine Learning (ICML), 2022.

D. Chen, T. H. Schulz, and K. Borgwardt. Learning long range dependencies on graphs via random walks.
In International Conference on Learning Representations (ICLR), 2025.

Z. Chen, H. Tan, T. Wang, T. Shen, T. Lu, Q. Peng, C. Cheng, and Y. Qi. Graph propagation transformer for
graph representation learning. In International Joint Conference on Artificial Intelligence (IJCAI), 2023.

X. Cheng, L. Carin, and S. Sra. Graph transformers dream of electric flow. In International Conference on
Learning Representations (ICLR), 2025.

Y. Y. Choi, S. W. Park, M. Lee, and Y. Woo. Topology-informed graph transformer. In Proceedings of the
Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), 2024.

D. Cvetkovié. Constructing trees with given eigenvalues and angles. Linear Algebra and its Applications,
105:1-8, 1988.

300
301

=]

302
303

304
305
306

307
308

309
310

311

312
313
314

315
316
317

318
319

320
321

322
323

324
325

326
327
328

329
330
331

332
3

@
@

334
335

336
337

@

338
339

340
341
342

343
344
345

B

T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In International
Conference on Learning Representations (ICLR), 2024.

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact attention
with io-awareness. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers
for language understanding. In Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019.

C. Diao and R. Loynd. Relational attention: Generalizing transformers for graph-structured tasks. In
International Conference on Learning Representations (ICLR), 2023.

J. Dong, B. FENG, D. Guessous, Y. Liang, and H. He. Flexattention: A programming model for generating
fused attention variants. In Conference on Machine Learning and Systems, 2025.

V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. Arxiv preprint, 2020.

V. P. Dwivedi, S. Kaba, R. Mascarenhas, L. Navickas, A. Salekin, A. Zela, Y. Bengio, and X. Bresson.
Graph neural networks with learnable structural and positional representations. In Advances in Neural
Information Processing Systems (NeurlPS), 2021.

V. P. Dwivedi, L. Rampasek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu, and D. Beaini. Long range
graph benchmark. In Advances in Neural Information Processing Systems (NeurIPS) Datasets and
Benchmarks Track, 2022.

S. Geisler, Y. Li, D. J. Mankowitz, A. T. Cemgil, S. Giinnemann, and C. Paduraru. Transformers meet
directed graphs. In International Conference on Machine Learning (ICML), 2023.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum
chemistry. In International Conference on Machine Learning (ICML), 2017.

V.J. Hellendoorn, Z. Ye, C. Shipwright, J. Gilmer, and D. Tarlow. Global context-aware code summarization.
In IEEE/ACM International Conference on Software Engineering (ICSE), 2021.

D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear
units. ArXiv preprint, 2016.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in Neural Information Processing Systems
(NeurlIPS), 2020.

W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec. OGB-LSC: A large-scale challenge for
machine learning on graphs. In Advances in Neural Information Processing Systems (NeurlPS) Datasets
and Benchmarks Track (Round 2), 2021.

Y. Huang, W. Lu, J. Robinson, Y. Yang, M. Zhang, S. Jegelka, and P. Li. On the stability of expressive
positional encodings for graphs. In International Conference on Learning Representations (ICLR), 2024.

J. Jumper, R. Evans, and A. e. a. Pritzel. Highly accurate protein structure prediction with alphafold.
Nature, 596:583-589, 2021.

J. Kim, D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and S. Hong. Pure transformers are powerful graph
learners. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

D. Kreuzer, D. Beaini, A. Loukas, R. Urtasun, and P. Lio. Rethinking graph transformers with spectral
attention. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

D. Lim, J. D. Robinson, L. Zhao, T. E. Smidt, S. Sra, H. Maron, and S. Jegelka. Sign and basis
invariant networks for spectral graph representation learning. In International Conference on Learning
Representations (ICLR), 2023.

L. Ma, C. Lin, D. Lim, A. Romero-Soriano, K. Dokania, M. Coates, P. H.S. Torr, and S.-N. Lim. Graph
Inductive Biases in Transformers without Message Passing. In International Conference on Machine
Learning (ICML), 2023.

a6 L. Ma, S. Pal, Y. Zhang, J. Zhou, Y. Zhang, and M. Coates. Ckgconv: General graph convolution with
347 continuous kernels. In International Conference on Machine Learning (ICML), 2024.

as L. Markeeva, S. McLeish, B. Ibarz, W. Bounsi, O. Kozlova, A. Vitvitskyi, C. Blundell, T. Goldstein,
349 A. Schwarzschild, and P. Velickovic. The clrs-text algorithmic reasoning language benchmark. Arxiv
350 preprint, 2024.

ss1 H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph networks. In
352 International Conference on Learning Representations (ICLR), 2019a.

sss H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the universality of invariant networks. In International
354 Conference on Machine Learning (ICML), 2019b.

35 C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and
356 Leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial Intelligence,
357 2019.

38 C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and leman go sparse: Towards scalable higher-order graph
359 embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in
360 Neural Information Processing Systems (NeurIPS), 2020.

o]

sst L. Miiller and C. Morris. Aligning transformers with weisfeiler-leman. In International Conference on
362 Machine Learning (ICML), 2024.

ses L. Miller, M. Galkin, C. Morris, and L. Rampések. Attending to graph transformers. Transactions on
364 Machine Learning Research (TMLR), 2024.

ss L. Miiller, D. Kusuma, B. Bonet, and C. Morris. Towards principled graph transformers. In Advances in
366 Neural Information Processing Systems (NeurIPS), 2024.

se7 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
368 L. Antiga, A. Desmaison, A. Kopf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
369 B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
370 learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

a7t O. Press, N. Smith, and M. Lewis. Train short, test long: Attention with linear biases enables input length
372 extrapolation. In International Conference on Learning Representations (ICLR), 2022.

azs L Price, A. Sanchez-Gonzalez, and F. e. a. Alet. Probabilistic weather forecasting with machine learning.
374 Nature, 637:84-90, 2025.

sz5s O. Puny, D. Lim, B. T. Kiani, H. Maron, and Y. Lipman. Equivariant polynomials for graph neural
376 networks. In International Conference on Machine Learning (ICML), 2023.

s77 M. N. Rabe and C. Staats. Self-attention does not need o(nz) memory. Arxiv preprint, 2021.

a7zs L. Rampasek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general, powerful,
379 scalable graph transformer. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

ss0 C. Sanford, B. Fatemi, E. Hall, A. Tsitsulin, M. Kazemi, J. Halcrow, B. Perozzi, and V. Mirrokni.
381 Understanding transformer reasoning capabilities via graph algorithms. In Advances in Neural
382 Information Processing Systems (NeurlPS), 2024.

sss P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. In Conference
384 of the North American Chapter of the Association for Computational Linguistics: Human Language
385 Technologies, Volume 2 (Short Papers), 2018.

ss6 J. Tonshoff, M. Ritzert, H. Wolf, and M. Grohe. Walking out of the weisfeiler leman hierarchy: Graph
387 learning beyond message passing. Transactions on Machine Learning Research (TMLR), 2023.

sss A. Tsitsulin, D. Mottin, D. Karras, E. Miiller, and M. M. Bronstein. Graph transformers with spectral
389 attention. In International Conference on Learning Representations (ICLR), 2022.

390 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin.
391 Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

392
393
394

395
396

397
398

399
400

401
402

403
404

405
406
407

409
410

411
412

413
414

415
416

417
418
419

420
421

422
423

P. Velickovic, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell, and C. Blundell.
The CLRS algorithmic reasoning benchmark. In International Conference on Machine Learning (ICML),
2022.

V. Vosylius and E. Johns. Instant policy: In-context imitation learning via graph diffusion. In International
Conference on Learning Representations (ICLR), 2025.

B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra which appears
therein. Nauchno-Technicheskaya Informatsia, 2(9):12-16, 1968.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 2020.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations (ICLR), 2019.

C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T. Liu. Do transformers really perform badly
for graph representation? In Advances in Neural Information Processing Systems (NeurIPS), 2021a.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional
neural networks for web-scale recommender systems. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018.

Z.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform
badly for graph representation? In Advances in Neural Information Processing Systems (NeurIPS),
2021b.

B. Zhang, S. Luo, L. Wang, and D. He. Rethinking the expressive power of gnns via graph biconnectivity.
In International Conference on Learning Representations (ICLR), 2023.

B. Zhang, L. Zhao, and H. Maron. On the expressive power of spectral invariant graph neural networks. In
International Conference on Machine Learning (ICML), 2024.

H. Zhou, A. Nova, H. Larochelle, A. C. Courville, B. Neyshabur, and H. Sedghi. Teaching algorithmic
reasoning via in-context learning. Arxiv preprint, 2022.

H. Zhou, A. Bradley, E. Littwin, N. Razin, O. Saremi, J. M. Susskind, S. Bengio, and P. Nakkiran. What
algorithms can transformers learn? A study in length generalization. In International Conference on
Learning Representations (ICLR), 2024a.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: A review
of methods and applications. Al Open, 1:57-81, 2020.

Y. Zhou, U. Alon, X. Chen, X. Wang, R. Agarwal, and D. Zhou. Transformers can achieve length
generalization but not robustly. Arxiv preprint, 2024b.

10

424

425
426

427

428
429
430
431
432
433

434

435
436
437

439
440
441

442
443
444
445
446
447
448
449

Table 2: Hyperparameters for our 16M models.

Hyperparameter PCQ COCO CODE FLow MST BRIDGES
Learning rate le-4 4e-4/3.5e-4 le-4/1.5e-4 le-4/2e-4 3e-4 2e-4/1e-4
Batch size 256 32 32 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Grad. clip norm 1 1 1 1 1 1
Num. layers 16 16 16 16 16 16
Hidden dim. 384 384 384 384 384 384
Num. heads 16 16 16 16 16 16
Activation ReLU ReLU ReLU ReLU ReLU ReLU
RWSE/RRWP Steps 32 32 32 16 16 16
Num eigvals/eigvecs 32 32 32 16 16 16
Hidden dim. RWSE/RRWP 768 768 768 768 768 768
Hidden dim. LPE/SPE 384 384 384 384 384 384
Num. layers ¢ 2 2 2 2 2 2
Num. layers p 2 2 2 2 2 2
GNN type p (SPE) GIN GIN GIN GIN GIN GIN
Edge encoder MLP MLP MLP MLP MLP MLP
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1 0.1 0.1
#Steps 2M M 200k 11718 11718 11718
#Warmup steps 20k 10k 2k 118 118 118

A Experimental details

Here we present hyperparameter choices, architecture design, and dataset selections for the empirical
evaluation of our GT architecture.

A.1 Data sources and licenses

PCQM4MV?2 is available at https://ogb.stanford.edu/docs/lsc/pcqm4mv2/| under a CC
BY 4.0 license. OGB-Code?2 is available at https://ogb.stanford.edu/docs/graphprop/
#ogbg- code2 under a MIT license. The COCO-SP and PASCAL-VOC-SP datasets as part of the LRGB
benchmark [Dwivedi et al.,[2022]| are available at https://github.com/vijaydwivedi75/1lrgb
under a CC BY 4.0 license. Statistics for all datasets, including the algorithmic reasoning datasets, are
available in Table]

A.2 Hyperparameters

Table 2] and Table 3| give an overview of the hyperparameters used for models highlighted in our work.
Considering the large number of hyperparameters and scale of tasks, we did not perform a grid search or
any other type of large-scale hyperparameter optimization. Nonetheless, we swept the learning rate for
each task and model size. Across the experiments, we select the hyperparameters based on the best
validation score and then evaluate on the test set. We search for suitable learning rates on the 16M models
to determine the models we select for scaling. Due to the increased computational demand, we then reduce
the learning rate for the 100M models.

For PCQ, we set the learning rate to le-4 after sweeping the learning rate over the set {7e-5, le-4, 3e-4}.
Further, we set the learning rate for COCO to 4e-4 for eigen-information-based embeddings and 3.5e-4 for
RWSE after sweeping over {7e-5, le-4, 3e-4, 4e-4}. For CODE, we reduce the learning rate to 1.5e-4
(RWSE) with the same sweep as with PCQ, and across all MST runs, we keep the learning rate at 3e-4 for
the 16M models, reducing the learning rate to le-4 (LPE) and 7e-5 (RWSE) for the 90M model and 7e-5
for the 160M model at MST with the same initial sweep as for COCO. Furthermore, for FLOW we set the
learning rate to le-4 (LPE,SPE,NoPE) and 2e-4 (RWSE, RRWP) respectively. We obtain similar results for
BRIDGES with 1e-4 (RWSE, LPE) and 2e-4 (RRWP,SPE,NoPE) as the learning rate using the initial sweep

11

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
https://ogb.stanford.edu/docs/graphprop/#ogbg-code2
https://ogb.stanford.edu/docs/graphprop/#ogbg-code2
https://ogb.stanford.edu/docs/graphprop/#ogbg-code2
https://github.com/vijaydwivedi75/lrgb

450
451
452
453
454
455
456
457
458
459
460

461

462

464

465
466

Table 3: Hyperparameters for our 90M and 160M models.

Hyperparameter PCQ(90M) MST(90M) MST(160M)
Learning rate le-4 le-4/7e-5 Te-5
Batch size 256 256 256
Optimizer AdamW AdamW AdamW
Grad. clip norm 1 1 1
Num. layers 24 24 24
Hidden dim. 768 768 1024
Num. heads 16 16 16
Activation ReLLU RelLU ReLLU
RWSE/RRWP steps 32 32 32
Num. eigvals/eigvecs 32 32 32
Hidden dim. RWSE/RRWP 768 768 768
Hidden dim. LPE/SPE 384 384 384
Num. layers ¢ 2 2 2
Num. layers p 2 2 2
GNN type p (SPE) GIN GIN GIN
Edge encoder MLP MLP MLP
Weight decay 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1
#Steps 2M 11718 11718
#Warmup steps 20k 118 118

Table 4: Dataset statistics.

Statistic PcqQ Coco CODE FLow MST BRIDGES

Graphs 3.746M 123,286 452,741 IM IM IM

Avg. Nodes 14.13 476.88 125.2 16/64 16/64 16/64

Avg. Edges 1456 3,815.08 1242 48.11/213.586 31.66/209.34 48.46/ 395.02
Prediction level ~ graph node graph graph edge edge
Metric MAE F1 F1 MAE F1 F1

from PCQ. In addition, we evaluated each PE with {8,32} random walk steps or eigenvectors and {4,16}
for algorithmic reasoning tasks. Regarding PE encoder design, we selected a simple MLP architecture with
two layers where applicable. However, we use the same number of layers, heads, and embedding dimension
for each dataset for our transformer architecture, thereby not changing the architecture. Otherwise, we
follow previous literature for initial hyperparameter choices, namely the GraphGPS [Rampasek et al.|
2022]], GRIT [Ma et al., 2023|, and Graphormer [[Ying et al.,|2021a] papers. We used an AdamW optimizer
for each experiment with 81 = 0.9 and Sz = 0.999. Further, the learning rate scheduler is given by a
cosine annealing learning rate scheduler with the warm-up steps set as one percent of the total number of
steps. Additionally, we use an L1 loss for regression targets and a cross-entropy loss for classification
targets, except CODE, where we use the proposed loss function. In Table [5|and Table[6] we further report
runtimes and memory usage of all models evaluated in our work.

A.3 Architecture
In the following, we showcase the implementation of our GT architecture and the injection of PE

information into the attention mechanism. We consider an Encoder, Processor, Decoder architecture with
additional preprocessing for the PEs and graph-specific features.

Preprocessing First, we preprocess each dataset to include the respective eigenvalues and eigenvectors of
the graph Laplacian and the powers of the random walk matrices. These are then applied to the respective

12

467
468
469
470
471

472
473
474
475
476

477
478
479

481
482
483
484

485
486
487
488

491

492
493
494
495

497
498
499
500
501
502
503

504
505
506
507

508
509
510
511
512

PE encoder, consisting of an MLP with two layers, casting the PE features to the embedding dimension.
We consider transformed graphs for edge-level tasks, such as BRIDGES and MST, as a special case. In this
case, the graph is converted to constitute the edge-level graph corresponding to the original graph. Then,
node features and PE features are computed on this transformed graph. For the GDT, we provide a
maximum context size depending on the dataset. Tokens exceeding the context size are then removed.

Encoder The node and edge features of graphs in each dataset are then applied to a linear layer, mapping
them to the embedding dimension. These feature embeddings are specific to each dataset and embed
graph-specific features. For CODE we consider additional preprocessing steps, as described by [Hu et al.
2021] to derive the respective graph structure. Further, we add a [cls] token as it is a standard practice to
read out graph-level representations [Ying et al.| 2021b].

Processor Following our description of the GDT architecture as shown in Section [2] a single layer in the
GDT architecture computes the expression shown in Definition [§|using GELU as a nonlinearity. The
absolute PEs are added to the node embeddings before the initial layer, in the case of relative PEs to the
attention bias B. The GT layer then computes full multi-head scaled-dot-product attention over node-level
tokens, adding B to the unnormalized attention matrix before applying softmax. We refer to Appendix [B.]
for a detailed discussion. From this representation, including node and edge features, relative and absolute
PEs, and the embedded graph structure, the processor computes a representation of node and graph-level
features. We then stack multiple GT layers together: 12 for the 16M model and 24 for the 100M model.

Decoder After the last layer, an MLP decoder with two layers is applied to provide the prediction head of
the model. Since each dataset has its prediction target, we provide a decoder for each dataset mapping the
last layer output to the prediction target, where W, € R%*? and Wy € R%X° are learnable weight
matrices and o is the respective output dimension for each task, i.e.,

WsLayerNorm(GELU (W x)).

For clarity, we omit bias terms throughout this section. Each result is then passed to the respective loss
function to compute the gradient step.

A.4 Algorithmic reasoning data

For our synthetic experiments, we evaluate on three out-of-distribution algorithmic reasoning tasks derived
from the CLRS benchmark [[Velickovic et al.,|2022]] for a total of 100M tokens. These tasks assess size
generalization in a controlled synthetic setting with randomly generated graphs. Unlike CLRS, we do not
train models with intermediate algorithmic steps. Here, we describe graph generation and each algorithmic
reasoning task in detail.

Graph generation We develop a heuristic graph generation method that leads to graphs with desirable
problem-specific properties, such as a reasonable distribution of shortest-path lengths or number of bridges.
Concretely, we begin by sampling an Erdos-Renyi graph G with n nodes and edge probability p and
denote the connected components of G with C, ..., C,,. For each ¢ € [m|, we randomly choose a
component C; with j # 7. Then, we select random nodes v € C; and w € C; and augment G with the
edge (4, j). We repeat this process several K times. We select parameters p and K for each task based on
problem-specific characteristics. We detail these choices in the task descriptions, which we provide next.

Maximum flow In FLOW, the task is to predict the maximum flow value in an edge-weighted directed
graph. The task uses discrete node features indicating whether a node is either the source of the flow, the
sink of the flow, or neither. The task uses the flow capacity between two nodes as continuous scalar-valued
edge features. FLOW is a graph-level regression task.

Minimum spanning tree In MST, the task is to predict the set of edges that forms the minimum
spanning tree (MST) in an edge-weighted graph with mutually distinct edge weights, ensuring the
uniqueness of the MST. The task uses the weight of each edge as continuous scalar-valued edge features.
MST is a binary edge classification task where the class label indicates whether an edge is contained within
the MST.

13

513
514
515

516

517
518
519
520
521
522
523
524
525
526
527
528

529
530
531
532

533
534
535
536
537

538
539
540
541
542
543
544
545

546

547
548

Table 5: 16M/90M/160M models runtime results of a single step, averaged across 1 000 steps. Each value is
given in seconds/step.

PE #Param. PCQ COCO CopE FrLow MST BRIDGES

NoPE 16M 0.079 0.105 0.0921 0.071 0.096 0.072
LPE 16M 0.084 0.109 0.104 0.071 0.106 0.088
SPE 16M 0.091 0.123 0.105 0.059 0.106 0.085
RWSE 16M 0.072 0.101 0.102 0.071 0.091 0.088
RRWP 16M 0.137 0.1352 0.219 0.066 0.1452 0.101

LPE 90M 0.167 - - - 0.184 -
RWSE 90M 0.159 - - - 0.186 -
LPE 160M 0.219 - - - 0.246 -
RWSE 160M 0.219 - - - 0.237 -

Bridges In BRIDGES, the task is to predict the set of edges that are bridges in an undirected graph. The
task does not use any node or edge features. BRIDGES is a binary edge classification task where the class
label indicates whether an edge is a bridge in the graph.

A.5 Runtime and memory

Here we provide additional information on the runtime and memory requirements of our GDT. We sample
the runtime of each experiment by running multiple steps and averaging their runtime. For memory
consumption, we consider the complete forward steps of the model and estimate the allocated memory
using PyTorch functionality. All computations were made using bfloat16 precision during computation. We
run the experiments on a single node consisting of one L40 GPU with 40GB VRAM, 12 CPU cores, and
120GB RAM for all runtime and memory computations. Due to the high memory requirements of storing
full random-walk matrices for RRWP on large datasets, we opt for computing RRWP matrices at runtime.
To allow for a fair comparison between PEs, which takes into account computational efficiency, we allocate
a compute budget of 5 GPU days for the 16M models. We further note that the presented runtimes are the
final runtimes obtained from the selected experiments, and significantly more runtime was used to obtain
the chosen hyperparameter choices. We note that the automatic compilation is performed automatically by
torch.compile, improves the runtime and memory scaling significantly across all tasks.

Table 5] shows the runtime for a single step, averaged across 1000 training steps obtained for each model.
Timings were obtained using torch functionality. Further Table [6] shows the memory requirement for 1000
steps of each model. We further note the runtime speed improvements during inference experiments from
Section 4] while using FlashAttention [Dao et al., [2022].

Hardware optimizations Efficient compilation of neural networks is already available via CUDA
implementations in PyTorch and programming languages such as Triton. We use torch.compile throughout
all our experiments. In addition, we want to highlight FlashAttention [Dao et al.| [2022]], available for the
standard transformer, and used in the GDT as an example of architecture-specific hardware optimizations
that can reduce runtime and memory requirements.

Implementation We base our implementation on the torch.nn.TransformerEncoderLayer pro-
posed in PyTorch [Paszke et al., 2019]. This allows us to use memory and runtime-efficient attention
implementations such as FlashAttention [Dao et al., 2022] and Memory Efficient Attention [Rabe and
Staats| [2021]]. In addition, we aim to harmonize implementation differences among the various PEs by
minimizing the impact of implementation-specific advantages as much as possible. This is achieved by
using the same number and width of MLP layers, as well as the same activation functions, for all PEs. A
comprehensive overview of our implemented model architecture and the datasets used is provided in

Appendix [A]
A.6 Comparison with state-of-the-art

While our study focuses exclusively on the GDT, we provide SOTA performance numbers for our
real-world tasks to understand whether the GDT performance is competitive with the best models in the

14

549
550
551
552
553
554
555
556

557

558

559

560

561

562

563
564

Table 6: 16M/90M/160M models memory requirements in MB for 1 000 steps of each model during
training.

PE #Param. PCQ COCO CODE FLow MST BRIDGES
NoPE 16M 3120.63 5117.57 9749.29 1702.69 3255.37 2456.55
LPE 16M 3221.13 5239.89 985271 1763.87 3401.60 2499.54
SPE 16M 3161.32 5157.65 9763.58 1730.19 3290.09 2490.0

RWSE 16M 3131.57 514734 976630 1713.27 3276.84 2474.63
RRWP 16M 5419.56 5223.777 19221.97 2253.85 5522.04 3723.31

LPE 90M 9844.48 - - - 10197.77 -
RWSE 90M 9659.54 - - - 9947.07 -
LPE 160M 13513.76 - - - 13986.39 -
RWSE 160M 13266.44 - - - 13647.66 -
mode (a) (b) SPE NoPE (c)
_— 15Md(LIPE) 10 ° e ‘ﬁEEE
90M (LPE) o5 35
== 15M (RWSE) & =
== 90M (RWSE) @ % £3.0 3.0
— 1283 :IF-{'\:I:IE;E) I SRwWP .L$EWSE 25 :T;VESE o RRWP
85 PCQ (Iower is better) MST (higher is better) 0.04 0.06 4000 6000 8000 10000
Million tokens / s GPU Memory [MB]

Figure 3: (a): Results on 90M and 160M models for PCQ and MST evaluated on LPE and RWSE. (b):
Number of tokens evaluated per second during training for each PE. Results are obtained by averaging
runtimes per token across tasks. (c): Average GPU memory requirement for each PE.

literature. Concretely, for PCQ without 3D positions, the best models typically achieve between 0.0809 and
0.0859 MAE [Chen et al., 2023| Miiller et al., 2024, [Ma et al., 2023, Rampasek et al.,|2022]. For COCO
and PASCAL, we find models are generally evaluated on a SO0K parameter budget and achieve up to 43.98
F1 and 49.12 F1, respectively [Chen et al., 2025]. Note that we do not adhere to this budget when training
on COCO as we find it overly restrictive given the considerable size of this dataset. Consequently, we also
use the pre-trained 15M model when performing few-shot transfer from COCO to PASCAL. Finally, on
CODE, the best models score somewhere between 19.37 [Chen et al., 2022] and 22.22 F1 [Geisler et al.,
2023]).

A.7 Scaling Results

Here we provide additional results for scaling the GDT to 90M and 160M parameters.

These results correspond to the results seen in Figure 3]

Table 7: 90M and 160M parameter results for different PEs over 2 random seeds. PCQ MAE is in micro
electron volt (meV) for clarity of presentation.
PCQ (90M) MST (90M) MST (160M)
MAE | F1¢ F1 1
LPE 89.7 +o4 92.86 + 0017 93.11 + o101

RWSE 88.9 +07 94.29 + 0068 95.80 + 0018
RRWP 86.5 +o03 - -

PE

B Background
Here, we provide background material on various concepts and definitions used in our work.
Basic notations Let N := {1,2,...} and Ny := N U {0}. The set R* denotes the set of non-negative

real numbers. For a set X, A C X denotes the strict subset and A C X denotes the subset. For n € N, let
[n] :=={1,...,n} C N. Weuse {...} todenote multisets, i.e., the generalization of sets allowing for

15

565
566
567
568
569
570

571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605

606

607

608
609

610

611

612

multiple, finitely many instances for each of its elements. For two non-empty sets X and Y, let Y X
denote the set of functions from X to Y. Given a set X and a subset A C X, we define the indicator
function 14: X — {0,1} such that 14(x) = 1ifz € A, and 14(x) = 0 otherwise. Let M be an
n x mmatrix, n > 0 and m > 0, over R, then M; ., M. ;, ¢ € [n], j € [m], are the ith row and jth
column, respectively, of the matrix M. We denote with set(M) the set of rows of M. Let IN be an
n X n matrix, n > 0, then the trace Tr(N) := > icin] N;;. In what follows, O denotes an all-zero vector

with an appropriate number of components.

Graphs An (undirected) graph G is a pair (V(G), E(G)) with finite sets of vertices V(G) and
edges E(Q) C {{u,v} C V(G) | u # v}. vertices or nodes V(G) and edges E(G) C {{u,v} C
V(G) | u # v}. The order of a graph G is its number |V (G)| of vertices. If not stated otherwise, we
set n == |V(G)| and call G an n-order graph. We denote the set of all n-order (undirected) graphs
by G,, and the set of all (undirected) graphs up to n vertices by G<,,. In a directed graph, we define
E(G) C V(G)?, where each edge (u,v) has a direction from u to v. Given a directed graph G
and vertices u,v € V(G), we say that v is a child of u if (u,v) € E(G). A (directed) graph G is
called connected if, for any u,v € V(G), there exist r € N and {u1,...,u,} € V(G), such that
(u,u1), (u1,uz),. .., (ur,v) € E(G), and analogously for undirected graphs by replacing directed
edges with undirected ones. We say that a graph G is disconnected if it is not connected. For a graph G and
an edge e € E(G), we denote by G \ e the graph induced by removing edge e from G. For an n-order
graph G € G,,, assuming V' (G) = [n], we denote its adjacency matrix by A(G) € {0,1}"*", where
A(GQ)yw = 1if and only if {v,w} € E(G). The neighborhood of a vertex v € V(G) is denoted by
Ng(v) = {u € V(G) | {v,u} € E(G)}, where we usually omit the subscript for ease of notation, and
the degree of a vertex v is [N (v)|. A graph G is a tree if connected, but G \ e is disconnected for any
e € E(G). A tree or a disjoint collection of trees is known as a forest.

A rooted tree (G, 1) is a tree where a specific vertex r is marked as the root. For a rooted (undirected) tree,
we can define an implicit direction on all edges as pointing away from the root; thus, when we refer to the
children of a vertex u in a rooted tree, we implicitly consider this directed structure. For S C V(G), the
graph G[S] := (S, Eg) is the subgraph induced by S, where Es = {(u,v) € E(G) | u,v € S}. A
(vertex-)labeled graph is a pair (G, {¢) with a graph G = (V(G), E(G)) and a (vertex-)label function
lg: V(G) — X, where X is an arbitrary countable label set. For a vertex v € V(G), £g(v) denotes its
label. A Boolean (vertex-)d-labeled graph is a pair (G, £¢) with a graph G = (V(G), E(G)) and a label
function £ : V(G) — {0, 1}%. We denote the set of all n-order Boolean d-labeled graphs as G;; ;. An
attributed graph is a pair (G, ag) with a graph G = (V(G), E(G)) and an (vertex-)attribute function
ag: V(G) — R4 for d > 0. That is, contrary to labeled graphs, vertex annotations may be from an
uncountable set. The astribute or feature of v € V(G) is ag(v). We denote the class of all n-order graphs
with d-dimensional, real-valued vertex features by g}f} a

Two graphs G and H are isomorphic if there exists a bijection ¢: V(G) — V(H) that preserves
adjacency, i.e., (u,v) € E(G) if and only if (¢(u), p(v)) € E(H). In the case of labeled graphs, we
additionally require that £ (v) = £x(¢(v)) for v € V(G). Moreover, we call the equivalence classes
induced by ~ isomorphism types and denote the isomorphism type of G by 7(G). A graph class is a set of
graphs closed under isomorphism. Given two graphs G and H with disjoint vertex sets, we denote their
disjoint union by GU H.

B.1 Transformers

Here, we will introduce attention with an additive attention bias and the transformer architecture.

Definition 5 (Attention (with bias)). Let Q, K,V € R"*? and B € R™*", with n,d € N*. We define
biased attention as

Attention(Q, K,V ,B) = softmax(d_% QK" + B)V,
where softmax is applied row-wise and defined, for a vector & € R'*", as

_ (@) _ @)
Zie[n] exp(z;) Eie[n] exp(x;) |’

Definition 6 (Multi-head attention (with bias)). Let X € R"*% B € R™*"*" andlet Wo, Wik, Wy €
R4 W, € R4*4 be learnable parameters, with n,d € Nt. Let h € NT be the number of heads, such

softmax(x) =

16

613
614

615

616

617

618
619
620
621

622
623

624
625
626

627
628
629
630
631

632
633
634
635
636
637

638
639
640

641

642
643
644
645
646

647

that a dj, € NT for which d = h - dj,. We call d}, the head dimension and define h-head attention over X
as

MHA(X,B) = [X; ... X,|Wo,
where, for all ¢ € [h],

X, = Attention(XWé;), XWI((i), XW‘(}), B;),

with B; € Q™*"™ denoting the attention bias for the i-head, indexed along the third dimension of B,
Wy W W e R and

Note that Equation (2) and Definition [6]are a general formulation whose special cases include the local GT
[Dwivedi and Bresson, |2020]], an attention-based variant of MPNNs with B;; = 0 if nodes 4 and j share an
edge and B;; = —oo else; attention with causal masking [Vaswani et al., 2017]] with B;; = 0if + < j and
B;; = —oo else; as well as many relative PEs [Shaw et al., 2018, |Beltagy et al., {2020, Press et al., 2022].

Definition 7 (Two-layer MLP). Let X € R"*? with n,d, d; € NT, where d; is the hidden dimension.
We define a two-layer MLP as
MLP(z) == o(xW;)Wa,

where MLP is applied independently to each row & € R'* in X. Here, W; € R?* %/ is the in-projection
matrix, Ws € R% %@ ig the out-projection matrix, and o : R — R is an element-wise activation function
such as GELU [Hendrycks and Gimpel, [2016].

Tokenization As discussed in Section [2| we provide both node-level and edge-level tokenization.
In practice, we use the fact that edge-level tokenization is equivalent to node-level tokenization on a
transformation G’ of G, with V/(G') == {(v,v) | v € V(G)}UE(G) and E(G’) == {((u,v), (w, 2)) |
u=wVu=2zVv=wVv =z} This enables us to use node-level tokenization strategies across all
tasks.

Absolute and relative PEs Following from Section 2| we provide a definition of absolute and relative
PEs as used in the GDT. We consider RWSE [Dwivedi et al., [2021]], LPE [Kreuzer et al., 2021, Miiller and
Morris} 2024]] and SPE [Huang et al.| 2024]] as absolute PEs and RRWP [Ma et al.| [2023] as a relative PE.
Concretely, an absolute PE takes the form P € RE*4d where the row P; is the embedded PE vector
corresponding to token ¢. We then project and add P; to the node embedding of token ¢ to obtain the initial
token embeddings, or formally,

X; = Zv(l) + P,Wp,

where Wp € R%*4 ig a learnable weight matrix. Moreover, a relative PE takes the form U € RExLxd,
which we project and add to the edge embeddings to construct the attention bias B. Note that we only
consider relative PEs in node-level tokenization. Concretely, for all pairs of nodes i, j € V(G)U{[cls]},

Bij = p(eE('Lv])) + UijWUv

where Wiy € R is a learnable weight matrix.

Edge embeddings To incorporate edge embeddings into the GDT, we distinguish between node-level and
edge-level GT. For the edge-level GT, edge embeddings are incorporated explicitly via the edge tokens. For
the node-level case, we adapt the strategy from Bechler-Speicher et al.|[2025], which is itself adapted from

Graphormer [[Ying et al.,2021al], to incorporate edge embeddings into the attention bias via an additional
projection to the number of attention heads. Formally, for all pairs of nodes i, j € V(G) U {[c1s]},

Bij = p(le(i,])),

where p: R? — R" is a neural network, such as a linear transformation or an MLP.

17

648
649

650

651
652
653
654
655

656

657

658
659
660
661
662

663
664
665

666

667

668
669

670

671

672
673
674

Table 8: Overview of learnable parameters in the GDT, excluding embedding parameters. Here, d € Nt is
the embedding dimension, dy € N T is the hidden dimension, and 7' € N is the number of layers. The
suffix xT indicates that the parameters occur in each of the 7" layers.

Params. Dims. Module Description

ly([els]) 1xd Learnable embedding for the [c1s] token

lp(Lels],-) 1xd . Learnable embedding for the out-going edges from the [c1s] token
lp(-, [cls]) 1xd Token embeddings Learnable embedding for the in-coming edges to the [c1s] token
Wp dxd Weight matrix for the node-level PEs

p (dxdyg,ds x h) Lo MLP applied to the edge embeddings

Wy 1xh Attention bias Weight matrix for the relative PEs in the attention bias

Wq xT dxd Query weight matrix in multi-head attention

Wy xT dxd MHA Delinilinn Key weight matrix in multi-head attention

Wy xT dxd Value weight matrix in multi-head attention

Wi xT dxdy MLP Deﬁ"mo" Input projection of the MLP

Wy xT dy x d Output projection of the MLP

Definition 8 (Transformer architecture). Let X € R™*? be a token matrix and B € R™*™ be an attention
bias, with n,d € N*. The ¢ 4 1-th transformer layer updates token representations X* € R"*? as
X' < X' + MHA(LayerNorm(X"), B),
X'« X' 4+ MLP(LayerNorm(X")),
where MLP is defined in Definition [7]

Making predictions For supervised learning with the GDT, we can make graph-, node-, and edge-level
predictions by applying an MLP head to the [c1s] token embedding, the node token embeddings, and the
edge token embeddings. Note that we can leverage edge-level tokenization for edge-level tasks, which
provides explicit edge token embeddings. We apply k-nearest-neighbors (k-NN) to the token embeddings
after the last layer for few-shot transfer without additional fine-tuning.

B.2 Extended notation for the theoretical analysis of the GDT

Here, we introduce some notation for the GDT that we will use in our theoretical analysis.

Learnable parameters We give an overview of all learnable parameters of the GDT in Table[§] In
practice, node and edge features are typically present as integers or continuous feature vectors, and we
embed them using learnable MLPs. We refer to such parameters as embedding parameters. Note that in
Table @ we exclude embedding parameters, as for simplicity, we assume in our framework that node and
edge features are already embedded.

Letd,ds,T,h € Nt denote the number of embedding dimensions, the number of hidden dimensions,
the number of layers, and the number of attention heads, respectively. Then, the number of learnable
parameters (excluding embedding parameters) is given by

params = 3d + d* + ddy + dgh + h + 3Td”® + 2Tdd;
= (3T + 1)d* + (2T + 1)dd; + 3d + (dy + 1)h.
We denote the complete set of learnable parameters in Table 8| with O(d, d, T, h).

Graph transformer representations Here, we introduce some short-hand notation for graph transformer
representations. Given token matrix X and attention bias B, we write X *(v) to denote the representation
of node v € V(Q) after ¢ transformer layers with X and B as input. Note that, since we fix an arbitrary

order of the nodes, if v is the i-th node in this order, Xt(v) = Xf

B.3 Extended notation for the theoretical analysis of PEs
Here we introduce notations of |[Zhang et al.[[2024] used in their paper on PE expressiveness. We adapt this

notation to fit LPE [Miiller and Morris| 2024]], SAN [Kreuzer et al.| 2021], and SignNet [Lim et al.; 2023
and use it in our proofs in Appendix [E} We introduce the color refinement algorithm notation and propose a

18

675
676

677
678
679
680
681
682

683
684
685
686
687
688

689

690

691
692
693

694
695

696
697
698

699
700
701

702

704
705

707

708
709

710

711
712

713
714

715

716

77
718
719

color refinement algorithm for each PE. The respective algorithms for BasisNet [Lim et al., |2023]] and SPE
[Huang et al., 2024] are given by Zhang et al.|[2024].

Definition 9. [Zhang et al.l[2024] We call any graph invariant a k-dim color mapping. The family of k-dim
color mappings is denoted by Mj,. Each color mapping defines an equivalence relation ~, between
rooted graphs G, H,, marking k vertices and G* ~,, H" iff x(u) = xu(v). Further, we denote the
family of k-dim spectral color mappings by M, ,é\ Similar to Mj, the family of spectral color mappings is
obtained from the color mappings acting on {(G,, \): G, € G, A € AM(G)} where A (G) denotes
the eigenvalues of a matrix M.

Definition 10. [Zhang et al.,2024]] A function 7" mapping from M}, to My, is called a color transform.
We assume all color transforms are order-preserving in terms of color mappings. Given T'(x) =< ., a color
transform is also called color refinement, and 7" denotes the ¢ times composition of 7". In addition 7> is
the stable color refinement obtained from 7" with ¢’ the smallest integer where further iterations do not
induce a different partition of the underlying nodes in a graph resulting in 7" o 7°° = T"°°. Following
Zhang et al.|[2024] T*° is well defined.

A coloring algorithm is then formed by concatenating a stable color transform 7°°: M — M}, and a
pooling function U : M}, — M.

Definition 11. We say that color mappings X1, x2 are equivalent given that G* ~,, H" iff G ~,, H".
Furthermore, we say that a color mapping 1 is finer/more expressive than X if G* ~,, H” = G" ~,,
H?, noted by <.

Lemma 12. [Zhang et al||2024] Let T1,T5: My, — My, and Uy,Us: My, — My, be color
refinements. If T1 < Ty and Uy <X Us then Uy o Ty < Uy o T5.

Lemma 13. [Zhang et al., 2024)] Let T’ : My, — My, and To: My, — My, be color refinements and
T°°: My, — My, be the stable refinement of My,. Furtherlet Uy : My, — My, and Uy : My, — My, be
color refinements. Then it follows. If TooUgy 0T olU; = UgoTCoUj then UyoTT°olU; X T5°oUsoUs.

The two lemmas above provide a straightforward approach to determining whether architecture A; is more
expressive than architecture A, [Zhang et al.|[2024]). To prove that A; is more expressive than A,, we
show that 75 o T7° = T7° holds, with 7} being the color refinement of A; respectively.

Definition 14. [Zhang et al.l|2024] We define the following color refinements corresponding to the induced
refinements of each algorithm. We define global pooling as providing an injective coloring using a
hash function of a multiset. In this case, we consider the multiset over nodes in a graph. Other pooling
operations are defined below.

Global pooling: Define Tgp: M7 — My and x € M such that for a graph G and a color mapping
X € M; it holds:

[Tar(X)(G) = hash(fxc(u): u e V(G)}).

The 1-WL refinement gives us the 1-WL coloring update generalized to all nodes in the graph instead of
neighboring graphs.

1-WL refinement: Given Ty : M; — M; such that for any choice of x € M;:

[TwL()la(u) = hash(xa(u), {(xa(v), atpg (u, v)): v € V(G)}).

We then define one—and two-dimensional spectral pooling, which allows for pooling over distinct
eigenvalues similar to the global pooling refinement.

Spectral Pooling: Define Tspy: M4 — M and Tsp;: M{» — M, such that for y € M3 and
X € M

[Tse1 (X)) (u) = hash(fxc (A w): A € AM(G)}).

[TSPZ(X)]G(U7 U) = haSh({{XG(Aa U, U) tAE AM(G)}}>
A pooling variant without the spectrum is denoted by Tps and Tp.

To allow for an examination of BasisNet and SPE, we consider the 2-IGN refinement. This refinement is
obtained from evaluating the expressiveness of a 2-IGN and its basis functions as defined by Maron et al.
[2019a].

19

720
721

722
723

724

725

726
727
728
729

730
731

732
733
734

735
736

737
738
739
740
41

742

743
744
745
746
747
748
749
750
751

2-IGN refinement: With Tign: Mo — My, x € M as any color mapping and d,,,,(¢) = ¢ given u = v,
otherwise O:

[Tion (X)]a(u,v) = hash(xc(u, v), xa(u,), xG (v, v), X6 (v, u), dus (XG (u, u)),
{xc(u,w): w e V(G }, {xe(w,u): we V(GQ)},

{xcv,w): we V(@) }, {xa(w,v): we V(GQ)},

{xe(w,w): we V(G)}, {xa(w,z): w,z € V(G)},

duv({xa(u,w): w € V(G)}), buo(fxa(w,u): w € V(G)}),

(51“,({)((;(71},71)): w e V(G)}})7 5uv({{XG(w7x): w,x € V(G)}}))

Further, we use the BasisNet pooling refinement and Siamese IGN refinement to describe the process of the
BasisNet computation.

BasisNet Pooling: Given Tgp: M{ — M and y € M3

[TBP(X)]G(Aa U) = haSh(XG(Aauv U)? {{XG(AvuarU) HCAS V(G)}a
{xa\v,u): v e V(G {xae(A,v,v): v e VG }, {xac(\ v,w): v,w e V(G)}).

Siamese IGN refinement: Given Tsjay : M3 — M3 and x € M3

(Tstam(X)]c (A u, v) = [Tion (X (A, -5))]a (u, v).

We further provide additional color refinement algorithms based on the encodings introduced throughout
this work: Given the initial color refinement of SAN as xsan(A, u) = (A1, ..., A, v,,,) Where A
denote the eigenvalues and v the eigenvector of the graph Laplacian associated to the node u. Then we
define the SAN color refinement alongside the existing refinements as follows:

[Tsan(x)]le = Tep o Tenc © Tr(XsAN)-

with Tgne denoting the transformer encoder layer. The complete BasisNet refinement is given by the
concatenation of refinements given in Definition Definition T4}

[Tasisnet) ¢ = Tap © Twi 0 Tspi © Tgp © Tsiam (XBasis)-

Following the definition of BasisNet as a color refinement in Definition [T4]and assuming a message passing
GNN for p, the color refinement of SignNet using the initial SignNet color refinement xSign(\, u, w) =
(A, V¥, V%) and T,: M4 — M2 is given by:

[TSign(X)]G = TGP o T\%CI)‘ o TSP2 o T¢(XSlgl'l),

where V'* denotes the eigenvector associated to the eigenvalue A and the node u and T be the refinement
depending on the choice of ¢. However, we note Tign = T4, by definition of SignNet and BasisNet.

The refinement for the LPE encoding is given similarly to the BasisNet and SPE refinement by replacing
p with a color refinement which is 1-WL expressive. Furthermore, we assume ¢ to be a spectral
color refinement with expressiveness up to a 2-IGN. Common choices for ¢ include MLPs or GNNs
known to be less expressive than a 2-IGN. With initial colorings xppg (A, v, w) = (A, V¥, V*) and
TEPE - M3 — My the refinement follows:

[TrrE(ole = Top o Ty, © Tspa o T (xLeE),

where V" denotes the eigenvector associated to node .

Related work With GT architectures being successful in various domains, several approaches exist for
applying transformers to graph learning tasks. Apart from pure transformer architectures such as [Dwivedi
and Bresson, |2020} | Ying et al., 202 1a, |[Kim et al.| 2022, Miiller and Morris}, 2024]], most GT designs
incorporate changes to the attention mechanism [Bo et al.| [2023] Kreuzer et al.| 2021, Ma et al.| [2023], or
use attention jointly with MPNN s [Rampasek et al.| 2022} Choi et al.l [2024]]; see Miiller et al.|[2024]]
for an overview of GTs. Moreover, Zhang et al.| [2023]] propose a modified attention mechanism for
a GT to simulate the Generalized Distance Weisfeiler—Leman algorithm (GD-WL), a variant of the
Weisfeiler—Leman algorithm (1-WL) [Weisfeiler and Leman, |1968] incorporating distance information.
Indeed, there exists an extensive literature on deriving architectures more expressive than the 1-WL test,

20

752
753
754
755
756
757

759
760
761

762

763

764

766

767
768

770

771
772
773

774

775
776
777
778

779
780
781

782

784

785
786

787
788
789
790
791

792
793

794
795

both for GNNs [Azizian and Lelarge, [2021, Maron et al.||2019alb, Morris et al., 2020} [Puny et al.| [2023] as
well as GTs [Ma et al.||2024} |Zhang et al., 2023} 2024, |Kim et al.|, [2022] Miiller and Morris} 2024} Miiller
et al.,|2024]). As noted by Miiller et al.|[2024], GTs heavily rely on structural and positional information
captured by a positional embedding to increase expressiveness. Common choices include absolute PEs
such as SAN [Kreuzer et al.| [2021]], LPE [Miiller and Morris, [2024], SPE [Huang et al.,[2024], and
SignNet/BasisNet [Lim et al.; 2023|], RWSE [Dwivedi et al., 2021], RRWP [Ma et al., 2023], as well as PEs
based on substructure counting [Ying et al.l|2021al]. In terms of theoretical and empirical evaluation of GTs,
the closest related works on the theoretical side are Zhang et al.| [2024]], Black et al.|[2024]], and Rampasek
et al.|[2022]]. However, neither of these works considers standard attention or compares design choices such
as PEs on large-scale data.

B.4 Positional encodings

In the following, we define positional encodings.

RWSE

Definition 15. Let R := D~' A be the random walk matrix, with D denoting the degree matrix and A
the adjacency matrix of a graph GG. The random walk structural encodings (RWSE) are given by:

P,=[I,R R*... R,

Definition 16. Let P; ; be the RWSE encoding vector and F': R* — R4 a MLP with two layers, and d
denoting the encoding dimension. Then the RWSE encoding is computed by F'(P; ;) and denoted by
PRV (@) for a graph G with random walk length .

RRWP

Definition 17. Let R := D~ A with D as the diagonal degree matrix and A as the adjacency matrix, be
the random walk operator, and k the maximum length of the random walk. Then the relative random walk
probabilities (RRWP) are defined as:

P,;=[I,R,R*....R" ;.
The initial node encoding py is then defined as R;; for each node ¢ in the graph.
Definition 18 (RRWP Encoding Computation). Let P be the RRWP encoding tensor and MLP : R¥ — R9,
where d denotes the encoding dimension, be a multi-layer neural network. Then the encoding MLP(P, ;)

is computed element-wise by the multi-layer neural network. RRWP is then denoted by PRR(G) for a
graph G with random walk length k

Spectral Attention Networks (SAN) |Kreuzer et al.|[2021]] propose incorporating eigenvalues and
eigenvectors in a positional encoding neural network. SAN encoding can be computed using row-wise
applied neural networks by selecting the k lowest eigenvalues and associated eigenvectors.

Definition 19. Let ¢p: R — R be a linear layer and p: R — R be a transformer encoder layer with sum
aggregation. Further V; denotes the i-th column of the eigenvector matrix V'. Then the SAN encoding is
defined as follows:

SAN(V, A) = p([6(V1,A) .. (Vi A))).
A generalization of the SAN encoding is given by the LPE encoding of [Miiller and Morris| [2024] in
Definition 23]

SignNet Since the computation of eigenvectors using the eigenvector decomposition is not sign invariant,
and both V; and —V/ are valid eigenvectors of the graph Laplacian [Lim et al.|[2023]] propose the
construction of a sign invariant encoding using eigenvector information. Considering the k& smallest
eigenvalues and associated eigenvectors from the eigenvalue decomposition, SignNet computes the
corresponding encoding using a neural network architecture.

Definition 20. Let ¢1,...¢x: R — Rand p: R — R be permutation equivariant neural networks from
vectors to vectors. Then the SignNet encodings are computed using:

SignNet(V') = p([¢1(V1) + ¢1(=V1) ... (Vi) + o (=Vi)]).

Commonly, ¢1, ... ¢ are selected as element-wise MLPs or DeepSets [Lim et al.; 2023|] and p as a GIN
with sum aggregation and the adjacency matrix of the original graph.

21

796
797
798

799
800
801
802

803
804
805

806

807
808
809

810
811

812

813
814

815
816

817
818
819
820

821
822

823
824
825
826

827

828
829
830
831
832
833

834

835
836

BasisNet Proposed as an extension of SignNet by [Lim et al.| [[2023], BasisNet encodings provide an
encoding invariant to the basis of eigenspaces obtained from the graph Laplacian. Since the orthogonal
group O(1) denotes sign invariance, BasisNet also incorporates sign invariance.

Definition 21. Let V; denote the orthonormal basis of an d;-dimensional eigenspace of the graph Laplacian.
Further, [denotes the number of eigenspaces. Given unrestricted neural networks ¢q, , ... ¢4, : R = R,
shared across the subspaces with the same dimension d;, and a permutation equivariant neural network
p: R — R BasisNet encodings are computed the following:

BasisNet(V') = p([pa, (ViVIT) ... da,(VIV,T))).

Implementation wise Lim et al.|[2023] propose 2-IGNs [Maron et al., 2019a] for ¢4, and a FFN with sum
aggregation for p. They note that all neural networks could be replaced with k-IGNs, however they deemed
it infeasible for efficient computation. This reduces the computation to the following with p: R — R and

IGNy;, : R’ — R" denoting an IGN from matrices to vectors:
BasisNet(V') = FEN([IGNy, (Vi V;') ... IGN,, (ViV;1))).

SPE Following notation from |Huang et al.| [2024]], the SPE encoding is computed using the & smallest
eigenvalues and associated eigenvectors obtained from an eigenvalue decomposition. With sufficient
conditions for neural networks ¢, ..., ¢ and p, SPE is stable with respect to the graph Laplacian.

Definition 22. Given ¢, ... ¢ : R — R as Lipschitz continuous, equivariant FFNs and p: R -+ R a
Lipschitz continuous, permutation equivariant neural network. Then the SPE encoding is computed by:

SPE(V',\) = p([Vdiag(é1(\)V7 ... Vidiagdr(\) V7)),
with ¢1, ... ¢ and p applied row wise. Further, we denote the SPE embedding on a graph G by P3PE.

Commonly, ¢; is considered an element-wise MLP, and p is a GIN using the adjacency matrix of the
original graph. Huang et al.|[2024]] propose to split tensor

Q = [Vdiag(¢1(\)VT ... Vdiaggy (V) V'] € R

into n matrices of shape n x [which are then passed into the GIN p and aggregated using sum aggregation
into a single n X d matrix.

LPE [Initially introduced by |Kreuzer et al.| [2021] and generalized by Miiller and Morris|[2024]), the LPE
encodings are computed similarly to the previously introduced SPE encodings. Instead of using the
eigenvector matrix V' € R™*!, each i-th column consisting of one eigenvector denoted by V; € R is
used.

Definition 23. Let ¢: R? — R* be a row-wise applied FFN and p: R — R a permutation equivariant
network. Furthermore, ¢ € R denotes a learnable parameter. Then the LPE are given by:

LPE(V, A) = p([p(Vi", A +), ... oV A+ €))).
Setting € = 0 reduces the LPE to the encoding provided by |[Kreuzer et al.| [2021]]. As proposed by Miiller|
and Morris|[2024] p sums the input tensor with regard to its first dimension and applies an FEN. In contrast

to the SAN encoding, no transformer encoder is used to compute the encoding. Similar to previous
embeddings, we denote LPE embeddings for a graph G by PLPE with k as the number of eigenvalues used.

C Limitations

Currently, the GDT can only make use of memory-efficient attention at inference time, due to the use of a
learnable attention bias. For example, the learnable attention bias is not compatible out-of-the-box with
FlashAttention2 [Dao} 2024] or FlexAttention [Dong et al.,|2025]. Moreover, many more PE variants exist
that could be included in our study; see, for example, PEs listed in Section (I} Finally, we note that our
current implementation does not take the sparsity of the attention bias into account, which can lead to
prohibitive memory requirements for very large graphs.

D Proving that the GDT can simulate the GD-WL

Here, we prove Theorem|[I] Concretely, we formally state and prove both statements in Theorem [I)in
Appendix and Appendix respectively.

22

837

838
839
840

841
842
843
844
845
846

847

848
849

850
851
852
853
854
855
856

857
858
859
860
861

862
863
864

865
866

867
868
869

870

871
872

873

874
875

D.1 Lower-bound on the expressivity of the GDT

Here, we prove that we can compute the GD-WL [Zhang et al., [2023]] with the GDT, our GT defined
in Section 2} Concretely, given a graph G := (V(G), E(G)), recall from Section 2.2|the GD-WL as
updating the color x4 (v) of node v € V(G), as

X&' (v) = hash({(da (v, w), xg(w)) : w € V(G)}),

where d¢ is a distance between nodes in G and hash is an injective map. In the transformer, we will
represent node colors as one-hot vectors of some arbitrary but fixed dimension d. Furthermore, we will
incorporate pairwise distances through the attention bias. We then show that a single GT layer can
compute the color update in Equation (T)). We show this result by leveraging specific characteristics of
softmax-attention. For notational convenience, we will denote with X € {0, 1}#*4 the one-hot color
matrix of the GD-WL after ¢ iterations.

We begin by stating our main result. Afterwards, we develop our proof techniques and prove the result.

Stating the main result We will formally state our theorem, showing that our GT can simulate the
GD-WL. Afterwards, we give an overview of the proof, including the key challenges and ideas.

Theorem 24. Let G == (V(G), E(Q)) be a graph with n € N1 nodes and node distance function
de : V(G)?> = Q. Let d,d¢, T, h € NT denote the number of embedding dimensions, the number
of hidden dimensions, the number of layers, and the number of attention heads, respectively. Let
L:=n+1andlet X° € REX gnd B € REXL*N pe initial token embeddings and attention bias
constructed according to Section [2|using node distance d¢. Then, there exists weights for the parameters
in ©(d,dy, T, h) such that Xt =Xt for all t > 0, an arbitrary but fixed hash and using dg as the
distance function.

Proof overview The central problem we face when proving the above theorem is how to injectively
encode the multisets in Equation (I) with softmax-attention. This is because softmax-attention computes a
weighted mean, whereas existing results for encoding multisets use sums [Xu et al., 2019} Morris et al.|
2019, |Zhang et al.l 2023|]. Because these multisets are at the core of our proof, we introduce them here
formally.

Definition 25 (Distance-paired multisets). Given a graph G := (V(G), E(G)) with n € Nt nodes
and let L := n + 1, for each token v € V(G) U { [c1s]}, we construct a vector v € Q*% from the
distances of v to tokens in V/(G) U { [c1s]}, such that

v; = dg(v,w;),

where w; € V(G), for i € [n], is the i-th token in an arbitrary but fixed ordering of nodes in V' (G) and
wr, is the [c1s] token. We fix the distance of [c1s] to all tokens as max,, ,cv(a) da (v, w) + 1. We

represent node colors as one-hot vectors and stack them into a matrix X € {0, 1}**¢ with d € N* and
where X1, representing the color of the [c1s] token, receives a special color, not used by any node. We
then write the distance-paired multiset in Equation (T]) as

Wx = {(vi, Xi) }icpr)-
We can then restate the update of token v € V(G) U { [c1s]} by the GD-WL as
X&' (v) = hash([v] x+), A3)

For notational convenience, for every « € set(X), we define A(x) := {i € [L] | X; = x} as the set of
token indices with token representation a. Further, we write

[v]e = fwi |iec A(x)}
and
[V]ew = {v+w; | ve v, je L]},

again for notational convenience, where w € Q*Z is the distance vector corresponding to another node
w € V(G)U{lclsl}.

23

876
877
878

879
880
881

882
883

884
885
886

887

888
889
890
891
892
893

894
895

896
897

898
899

900

901
902

903
904
905

906

907
908
909
910
911

912
913

Recall that we introduced the distance function d into the attention via the attention bias B. Now, to
injectively encode distance-paired multisets, we want to prove that there exists weights Wo, Wi, Wy,
such that for two tokens v, w € V(G) U { [c1s]} with corresponding distance vectors v, w,

softmax(X (v)Wq (X W)™ 4 v) X Wy = softmax(X (w)Wo (X Wi)T + w) X Wy,

if and only if [v] x = [w]x. Note that for simplicity, we omit the scaling factor in the attention and that
we wrote v and w to indicate the corresponding row of B for tokens v and w, respectively. We will now
simplify, by setting Wgo = Wx = 0 and Wy = I and arrive at the condition

softmax(v) X = softmax(w)X < [v]x = [w]x.
Here, we prove the above holds under mild conditions in the following lemma. Note that we split up the
forward and backward directions of the lemma, as we will use different proof strategies for each direction.

Lemma 26. Let v, w € Q'L with max; v; = max; w; and let X € {0,1}2*4 be a matrix whose
rows are one-hot vectors, for some L, d € NT. Further, we require X to have at least two distinct rows.
Then,

softmax(v) X = softmax(w)X = [v]x = [w]x 4)
and

softmax(v) X = softmax(w)X <= [v]x = [w]x. 5)

As mentioned above, we will treat the forward and backward directions differently. The backward direction
is fairly straightforward, seeing that softmax(v)X is a function over [v] x. For the forward direction, the
idea is first to notice that the condition [v] x = [w]x, on the right side of Equation (), is equivalent to
comparing the multiset of distances paired with each distinct one-hot vector in X independently, as distinct
one-hot vectors do not have common non-zero channels; see the following lemma for a precise statement of
this property and see Appendix [F for the proof.

Lemma 27. Letv,w € QL and let X € {0, 1}L><d be a matrix whose rows are one-hot vectors, for
some L,d € N*t. Then, [v|x = [w]x, if, and only if, for every x € set(X), [v]z = [W]q.

To understand the implication of this result in the context of proving Lemma [26] let us first rearrange the
left side of Equation (4) as follows.

Lemma 28. Let v, w € Q'L and let X € {0,1}2%4 be a matrix whose rows are one-hot vectors, for
some L,d € N*t. Then, softmax(v) X = softmax(w)X, if and only if, for every x € set(X),

Z (ai - /61) = Oa
i€A(x)
where «; = softmax(v); and f3; = softmax(w);.
Lemma 2§ and Lemma [27] can be seen as complementary decompositions of the left and right side of

Equation (@) for each unique one-hot vector in X . As a result, we can restate Lemma [26]as follows.

Lemma 29 (Decomposed Lemma 26). Let v,w € Q'*L with max; v; = max; w; and let X €
{0, l}LXd be a matrix whose rows are one-hot vectors, for some L,d € NT. Further, we require X to
have at least two distinct rows. Then,

Z (i = Bi) = 0= [v]z = [W]a, (6)
i€A(x)
forall x € set(X), where o; = softmax(v); and f3; := softmax(w);, and
softmax(v) X = softmax(w)X < [v]x = [w]x. 7
To prove Lemma [29] we leverage a known result about exponential numbers (as used within softmax) from
transcendental number theory, namely that a set of exponential numbers with distinct rational coefficients is
linearly independent, also known as the Lindemann-Weierstrass theorem [Baker, |1990|. To understand

intuitively how this theorem is used, let us assume for simplicity that the softmax is unnormalized, meaning
that we can write the left side of Equation (6) as

Z (exp(v;) — exp(w;)) = 0.
i€A(x)

With the help of the Lindemann-Weierstrass theorem, we obtain the following claim, which we prove in
Appendix [

24

914

915

916
917
918

919
920

921
922
923

924

925

926
927
928

929
930
931
932
933
934
935

936
937

938
939
940

Claim 30. Let A, B C Q be finite multisets with | A| = | B|. Then, the sum
S expla) = 3 exp(b) =
a€A beB

if, and only if, A = B.

Hence, with the unnormalized softmax, the left side of Equation (6) holds if and only if [e = [W]a-
However, the full softmax also introduces normalization, which we denote with Z,, := Y_'_, exp(vy)

and Zg := >, _, exp(wy,), respectively. As a result, we have the condition

> (ai—B)=0 ®)

1€A(x)
1
=3 Z —aexp v;) Z—exp(wl) 0)
i€A(x)
exp(v;) - Zg — exp(w;) - Zo
=]
> 77, 0 (10)
i€A(x)
& Z exp(v;) - Zg —exp(w;) - Zo =0 (11)
i€A(x)
L
& > > exp(v; + wy) — exp(w; + vi) = 0. (12)
i€ A(x) k=1
& Z Zexp v; + wyg) Z Zexp w; +v;)=0. (13)
i€A(x) k=1 jEA(x) I=1

Note that the multiset of exponents in the positive exponentials is [v] ., and the set of exponents in the
negative exponentials is [w)]y .. Using Claim 30| we can now restate Lemma[29] once more as follows.

Lemma 31 (Multi-set only version of Lemma[9). Ler v, w € Q'*F with max; v; = max; w; and let
X € {0,1}£%4 be a matrix whose rows are one-hot vectors, for some L,d € N*. Further, we require X
to have at least two distinct rows. Then,

V]zw = [Weo = [V]e = [W]a, (14)
forall x € set(X) and
softmax(v) X = softmax(w)X < [v]x = [w]x. (15)

We will give the full proof with all details in this section.

First, we will review some number theory background, formally state the Lindemann-Weierstrass theorem
and its implications and then give the proof of Lemma[31] Using Lemma [3T]and in particular, the equivalent
Lemma 26 we finally prove Theorem 24]

Number theory We will formally introduce the necessary background on number theory and the
Lindemann-Weierstrass theorem. A number is algebraic if it is the root of a non-zero single-variable
polynomial with finite degree and rational coefficients. For example, all rational numbers ¢ with a,b € Nt
are algebraic, as they are the root of the polynomial ax — b with integer coefficients. On the other hand, a
number is transcendental if and only if it is not algebraic. For example, it is known that exp(a) is
transcendental if a is algebraic and non-zero. This last fact follows from the Lindemann-Weierstrass
theorem, which we state next [Baker, [1990].

Theorem 32 (Baker| [1990]], Theorem 1.4). Let aq,...,a, be distinct algebraic numbers. Then,
exp(ai),...,exp(ay) are linearly independent with algebraic rational coefficients.

Here, we will use the fact that attention uses the exp function in the softmax and use Theorem [32]to

compute injective representations of the GD-WL multisets by expressing them as sums of exponential
numbers.

25

941

942
943
944

945

946
947

948
949

950
951
952
953
954

955

956

957

958
959
960

961
962
963

964
965

966

967
968

969
970
971
972
973
974
975

976
977
978
979

980
981
982

Proving Lemma We now prove Lemma [31] equivalent to Lemma

Lemma 33 (Proof of Lemma. Let v, w € QL with max; v; = max; w; and let X € {0,1}>*4
be a matrix whose rows are one-hot vectors, for some L, d € NT. Further, we require X to have at least
two distinct rows. Then,

forall z € set(X) and

softmax(v) X = softmax(w)X <= [v]x = [w]x.

Proof. Note that by assumption X has at least two distinct rows and hence, A(x) C [L]. As a result, the
forward implication follows from the following claim.

Claim 34. For all € set(X), if max; v; = max; w; and A(x) C [n], then, [V]g.w = [W]gv =
(V] = [w]e.

Proof. Let K := max; v; = max; w;. We begin by sorting the entries in [v],, and [w],, in descending
order, obtaining sorted vectors v* and w*. By assumption, we have that v; = w] = K. Now, let
i € [|[v]]|] be the smallest number for which v} # w. If no such i exists, then [v], = [w],. Otherwise,
without loss of generality, we assume that v > w;. We now show that then, the sum v; + K appears at
least once more in [v]g 4, than in W]z 4.

First, note that there cannot exist some j > ¢ for which 'w; + K = v} + K. Second, for each j < i,
v} = wj}, meaning that for each such j where v} + K = v} + K appears in [v]g w, w} + K = v} + K
appears in [w]g o

Hence, v} + K appears at least once more in [v]y 4 than in [w]g 4, implying [v]z.w 7 [W]e0. Asa
result, we have that (V] = [W]z V [V]g,w # W]z, Which is logically equivalent to [v]g 1 = [W]z,0 =
[v]e = [W]4- This shows the statement.

To see why in Claim [34]it is important that A() is a strict subset of [n], we note that A(z) = [L] implies
[V]z,w = [W]e v, irrespective of whether [v], = [w],. Notably, the proof holds if there exists at least
one i € [L] \ A(x), irrespective of whether v; = w;.

The backward direction follows directly from the fact that softmax(v) X and softmax(w)X are functions
over [v]x and [w]x, respectively.

Together with Claim [34] this shows the statement. O

Proving the GD-WL simulation result Now that Lemma[26 has been proven, we will prove the main
result, Theorem 24] next.

Theorem 35 (Proof of Theorem[24). Let G == (V(G), E(G)) be a graph with n. € N nodes and node
distance function dg : V(G)? — Q. Let d,d 7, T, h € N denote the number of embedding dimensions,
the number of hidden dimensions, the number of layers, and the number of attention heads, respectively.
Let L :=n+ 1andlet X° € REXD and B € REXLXM pe initial token embeddings and attention bias
constructed according to Section 2 using node distance dc;. Then, there exists weights for the parameters
in ©(d,ds, T, h) such that X* = X*, for all t > 0, an arbitrary but fixed hash and using d¢ as the
distance function.

Proof. Note that the GD-WL produces a finite number of colors at each iteration and B is constructed
from dg whose co-domain is compact for graphs with finite size. Hence, and since each transformer layer
is a composition of continuous functions, the domain of each transformer layer is compact. Recall that we
want to show that the ¢-th transformer layer can simulate

X&' (v) = hash([v]x:),

forallv € V(G) U {[cls]}, where X € {0,1}£*? is a one-hot color matrix of the GD-WL colors at
iteration ¢. Let v be arbitrary but fixed. We say that v is the i-th node in an arbitrary but fixed ordering of
V(G).

26

983
984

985
986

987
988

989

990

991
992
993

994

995

996

997

998
999
1000

1001

1002

1003
1004

1005
1006

1007

1008

1009

1010

1011

1012
1013

1014
1015
1016

1017

1018

We restate the definition of the transformer layer in a simplified form, omitting multiple heads, the residual
streams and LayerNorm. In particular, we state the layer only to update the i-th row of the token matrix.

X (v)1+ = MLP(softmax(X (v)!Wo (X Wi)T + v) X Wy),

where we recall that the ¢-th row of B is v. We now set Wg = Wi to all-zeros and Wy, to the identity
matrix and obtain R R
X (v)'™! = MLP(softmax(v) X).

We prove the statement by induction over ¢. For the base case at t = 0, the token matrix X contains the
one-hot colors of the nodes in V' (G) as well as the special one-hot color of the [c1s] token. Setting

X0 := X, we have that X° € {0,1}2*¢ and X° = X°. Further, due to the [c1s] token, we know
that X © has at least two distinct rows.

Finally, note that, by construction, for each pair of distance vectors max; v; = max; w; =
max, ,cv(q) 4G (v,w) + 1 and that every distance vector v € Q'*. These two conditions hold
throughout the induction and we will use them in the induction step to apply Lemma [26]

In the induction step for ¢ > 0, we assume that
1. Xt e {0,1}1xd
2. Xt = X!
3. X' has at least two distinct rows

We want to prove that the same holds for ¢ + 1. Let v, w € V(G) U { [c1s]} be arbitrary but fixed.
Note that x*!(v) = x**!(w) if and only if [v] x+ = [w]x+. By the induction hypothesis, we have that
[v]x+ = [w]x: if and only if [v] ., = [w] x.. Further, by Lemma we have that

softmax(v) X" = softmax(w) X! <= [v] g, = [w] 4+,
and as a consequence,
softmax(v) X' = softmax(w) X' < x'*'(v) =\ (w).

Hence, there exists an injective function f that maps, for each token v € V(G) U { [c1s]} with distance
vector v, the vector softmax(v) X * to a one-hot vector of x***(v) with d dimensions. Since the domain
of the ¢-th transformer layer is compact, f is continuous. Hence, by universal function approximation, there
exists weights of the MLP such that, for each v € V(G) U {[c1s]}, X**!(v) is a one-hot vector of
X (v). As aresult,

1. Xt e {0,1}Fxd
2. Xt = Xt
3. X*+1 has at least two distinct rows.

This completes the induction and proves the statement. O

D.2 Upper-bound on expressivity of the GDT
Moreover, we can prove an expressivity upper-bound for the GDT using a technique adapted from Miiller
et al.|[2024]]. We begin by showing the following result.

Lemma 36. Let G := (V(G), E(G),{v) be a graph with n nodes and without edge embeddings, let
Wo, Wk, Wy € R¥* be arbitary but fixed weight matrices with d € N*t, and let B € Q"*™ be an
attention bias. Let

a(X,U) = Attention(XWq, XW g, XWy, B).

There exists a distance function dg over V(G) U { [cls]} and functions f,h with

f(Xi) = h({{(da(i, 1), X;) }),
such that for all X and all i, (X, U); = f(X;).

27

1019

1020
1021

1022
1023

1024

1025

1026

1027

1028

1029

1030

1031
1032
1033

1034
1035
1036
1037
1038
1039

1040
1041
1042
1043

1044

1045

1046
1047

1048
1049

1050

1051

1052
1053
1054
1055

Proof. We define dg with have co-domain Q? such that
dG(Za]) = [Bija I(’L = j)]a

forall 4,5 € V(G) U {[cls]}, where [-] is the concatenation operation and I (i = j) is the indicator
function. We denote with d¢ (4, j)x the k-th element in d (4, §), for k € {1,2}. Let

9(Xi, X;) = exp(X;Wq(X;Wg)T).

We choose h as follows. We note that by definition, 1 = d¢(i,4)2 > dg(4, j)2 for all ¢ # j. Hence, h
can decompose its input into three arguments:

1. X, identified from the tuple (dg (¢, j), X;) where d(4, j)2 = 1,1e.,i = j,
2. the multiset of distances {d¢(4,7)}.
3. the multiset of vectors {X; }.

Then, h computes
w;j = exp(g9(Xy, X;) + de (i, 7)1)

and Wi
- i
Wiy - Zk Wi
for all ¢, 5. Finally, h computes
> i X; Wy,
J
for all 4, to obtain a(X, U),. O

Intuitively, the above lemma shows that biased attention can be written as a function over the multiset in the
GD-WL if the distance function is a metric. We use this result to show that the GD-WL is at least as
expressive as a GDT with relative PEs.

Proposition 37. Let G == (V(G), E(G), v) be a graph without edge embeddings and let B € Q"*"
be an attention bias. Let d, dy, T, h € N denote the number of embedding dimensions, the number of
hidden dimensions, the number of layers, and the number of attention heads, respectively. For any choice
of parameters ©(d, dy, T, h) for the GDT, there exists a distance function dg over V(G) U { [cls]}
and a hash function hash for the GD-WL such that for all t > 0 and all pairs of nodes i,j € V(G),
X'(i) = X'(j) if and only if X! = X

Proof. We prove the statement by induction over ¢. For ¢ = 0, the statement holds by definition, as the
initial token embeddings X° without any absolute PE are simply the node embeddings ¢y and the initial
colors of the GD-WL are chosen to be consistent with the node embeddings ¢y . For ¢ > 0, we assume
by the induction hypothesis that for all pairs of nodes i, 7 € V(G), x!~1(i) = x'~1(j) if and only if
X;~! = X!~!. By definition, X" is computed via Equation , namely

X" := MLP(Attention(X'~ 'Wq, X' 'Wy, X'"'Wy, B)),
where the MLP is applied row-wise. Let

1. f denote the function in Lemma consistent with projections W g, W g, Wy, and attention
bias B,

2. onehot: [n] — {0, 1}™ denote the function that maps numbers 1, ..., n to their corresponding
n-dimensional one-hot vector.
Then, for all 7, j, we have that
MLP o f o onehot(x*~!(i)) = MLP o f o onehot(x'~'(5))
if and only if
X! =X;.

Finally, there at most n distinct rows in X*. Let & be a function that injectively maps each unique row in
X to a color in [n]. We choose hash := h o MLP o f o onehot, and have that, for all pairs of nodes
i,j € V(G), x'(i) = x*(j) if and only if X} = X¥. This completes the induction and hence concludes
the proof. O

28

1056

1057
1058
1059
1060
1061
1062

1063
1064

1065

1066

1067
1068
1069
1070
1071
1072
1073

1074
1075
1076
1077
1078
1079
1080

1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091

1092
1093

1094
1095
1096

1097
1098

1099
1100
1101

D.3 Expressivity of the GDT

Together, Theorem [24] and Proposition [37] correspond to the first and second statements in Theorem [T}
respectively. A consequence of Theorem 24]is the fact that the GDT with NoPE is equivalent to the
1-WL. In particular, let G := (V(G), E(G), v, £E) be a graph with n nodes. Let {5 (v, w) := 1, for all
v,w € V(G), where 1 is the vector containing 1 in every element. Further, let £ (v, v) := 2, for all
v € V(G), where 2 is the vector containing 2 in every element. Then, the GDT with NoPE is equivalent,
according to Theorem [24] to the following update of the GD-WL:

X&' (v) = hash({(da (v, w), xg(w)) : w € V(G)}),

where dg(v,v) = 2, dg(v,w) = 1if (v,w) € E(G), and dg(v,w) = 0, else, for all v,w € V(G).
This can be equivalently written as

X¢ ' (v) = hash((x&(v), {xa(w) : w € Na(v)})),
giving the 1-WL update rule.

E Proofs of Section

To guide our proofs of Section [3] we introduce CSL-graphs, obtaining the fact that RWSE cannot
distinguish all of these graphs. These results are then expanded to provide an introduction to Theorem 2}
We give the result and proof of Theorem [2|first with a simplified version for a minimum number of random
walk steps, leveraging results obtained by [Tonshoff et al.| [2023]. In addition, the proofs of Proposition 3]
and Proposition 47 are then given with additional details on the expressiveness hierarchy obtained from the
definition of each PE. We provide further incremental results for our selection of PEs, complementing the
results from Section[3

Warm-up: CSL graphs We begin by introducing a class of simple and intuitive, yet not 1-WL
distinguishable graphs, so-called CSL graphs. These graphs consist of a n node cycle with skip connections
of length k, [originating from each node. CSL graphs are a canonical example of a graph class requiring a
distance measure, motivating additional PEs [Rampasek et al., 2022, Miiller et al., 2024]]. Here, we show
that they cannot be fully distinguished by RWSE and provide guidance on how to find pairs of CSL graphs
indistinguishable by RWSE. We first introduce CSL graphs G, 1y and their properties to prove the
following results.

Definition 38. Let n, k be natural numbers and k < n — 1. G, 1) defines an undirected graph which
is 4-regular. The set of nodes is given by V (G, 1)) = {0,...,n — 1}. The edges are given by a
two-step process. First, to construct a cycle in the CSL graph, every edge {i,i + 1} € E(G(, 1))
for j € {0,...,n — 2}. Additionally {n — 1,0} € E(G,) holds. Furthermore, the skip links are
introduced by defining the sequence s; = 0 and s;11 = (s; + k) mod n and deriving the edges with
{si,8i41} € E(Gnpy)-

In addition, we introduce the notation used throughout the following proofs. Considering the skip links
introduced in the CSL graphs we denote such a skip link by the mapping s* : V(G (,,.1)) = V(G(n 1))
with 5(v;) = V(i1 k) moa n for nodes {v1,...,v,}. A traversal to the next node v; 1 or v;_; from node
v; is denoted by s' and s~! respectively. We further provide specific random walks using a tuple of the
visited nodes in a graph.

Proposition 39. Two CSL graphs G, i,y and Hy, i,y with ny = ng are non isomorphic if k1, ko are
co-prime natural numbers.

Given the definition of CSL graphs, it is possible to derive isomorphism results concerning such graphs.
Furthermore, we note that CSL graphs are 1-WL indistinguishable, but can be distinguished by various WL
variants such as the GD-WL [Zhang et al.,[2023]].

Proposition 40. There exists at least one pair of CSL graphs that RWSE cannot distinguish for any choice
of random walk length.

Nonetheless, we note that the expressive power of RWSE is sufficient to distinguish many 1-WL
indistinguishable graphs; for example, most CSL graphs can already be distinguished by RWSE.
Furthermore, a minimum step number is given depending on the skip length of each CSL graph.

29

1102
1103

1104

1105
1106
1107
1108
1109
1110

1111
1112
1113
1114
1115
1116
1117
1118

1119
1120
1121
1122
1123
1124

1125
1126
1127

1128
1129
1130
1131
1132
1133

1134
1135

1136
1137

Figure 4: A pair of CSL graphs G192, H10,3. We note that the path marked in blue does not exist in graph
G or has no replacement path.

Proposition 41. Letn, k € NV withn > k(k + 1) + 1. RWSE can distinguish any pair of CSL graphs
with n nodes and skip length k, k + 1, with a random walk length of k + 1.

With Definition 38 we derive the proofs for each lemma individually.

Proof of Proposition For Proposition #1]we consider a subclass of CSL graphs. The minimum node
number is specifically chosen to prevent a random walk of k steps to complete a cycle in the graph, even
with using s**1 exclusively for each step. We follow a two-step process for the proof: First, we gather
paths existing in one graph but not the other. Then, in a second step, we show that all different paths of
length at most k exist in both graphs. Further, we highlight that for random walks of length less than £, the
paths are equal in both graphs.

Proof. Let Gy 1) and H(;, j.41) be two CSL graphs with skip link mappings s and s**1. Further let
n > k(k + 1) + 1. To distinguish them, we denote the same node in both graphs with vy and wy. Then,
for k random walk steps, we first examine whether there exist paths in G, 1) which are not present in
H (5, i+1)- These include (v, . .., vgx—1,v0) and (vo, . .., Vn—g+1, Vo) as valid paths in G ,, 1), which
provide two k step walks with one skip link each. However, we note that such paths are not possible in
H(p 141 as the skip link s*+1 has a length k& + 1 and therefore no corresponding walk exists. In addition,
we show that there exists no other walks in H,, 11y, which are not present in G(,,). For this, we must
consider the cases of k even or odd.

Case 1: k is even: In this case, we must consider all combinations of skip links and s', s~! functions.
Since we assume an even number of steps, we know that all return walks with an even number of skip links
or no skip links exist in both graphs. However, walks with an uneven number of skip links cannot return to
Vg Or Wy, as with the skip link size of £ or k + 1, no return walks with at most k steps exist. As can be
seen, the skip length does not influence the existence of any of the proposed walks; therefore, they exist
both in G(n,k) and H(n,k+1)'

Case 2: k is uneven: Given an uneven k, we conclude that no return walks with a length of k exist since
steps can return neither a skip link nor an uneven number of any combination of skip links and steps can
return to the origin node.

For step numbers lower than k the same cases apply in permuted order, depending on the step number.
Also, due to the minimal n chosen, no instances exist where a circumference of the graph circle occurs in
any combination of steps. As for both cases there exist no paths which are not present in Gy, 1), it follows
that there exist additional walks for G(,,) which do not occur in H,, j1). Due to the structure of CSL
graphs, the number of random walks, including both returning and non-returning random walks, is the same
across all nodes in both graphs, resulting in the statement of Proposition

Since the RWPE encoding is different if a single step returns a different return walk probability, RWPE can
distinguish G, 1), H(,,k4-1) With the given random walk steps. O

For the following pair of CSL graphs, we consider the computation of the number of returning walks. This
enables us to directly compute the random walk probabilities for a single node. Due to the design of CSL

30

1138
1139

1140

1141
1142
1143
1144
1145
1146
1147
1148

1149
1150
1151

1152

1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164

1165
1166
1167
1168
1169
1170

17
1172
1173
1174

1175
1176

1177
1178
1179
1180
1181
1182

1183
1184
1185
1186
1187

graphs, each node in a graph has the same random walk return probability, thereby allowing us to derive the
proof of Proposition [#0]

Proof of Proposition@] We consider two CSL graphs G (11 3y and H (11 4). With the computation of the
number of returning walks of length », W7 given by W" = E?:l A7, where \; denotes the eigenvalues
of the adjacency matrix, we can compute the number of returning walks for each node in both graphs, since
due to the graph structure the number of returning walks is equal for each node. Furthermore, we know that
the number of total walks is equal in both graphs, given the graph structure as seen in Figure [From this,
we compute the fraction of returning walks of varying length » for each node, resulting in the computation
of the RWSE embedding. Since both number of returning walks and total number of walks are equal for
each node in both graphs, as seen in the proof of Proposition 1] we receive the same RWSE embedding for
G(11,3) and H(11,4)~

In addition to the indistinguishability results obtained for RWSE, we want to propose a result that initially
differentiates RWSE and RRWP. We then refine this result in Proposition[42} showcasing RRWP to be
strictly more expressive than RWSE.

Proposition 42. RRWP can distinguish all pairs of non-isomorphic CSL graphs.

Proof of Proposition[d2 In contrast to RWSE, the RRWP embedding uses the complete random walk
matrix and information concerning the random walks between any two nodes. Because of this, RRWP can
capture information that is not visible to RWSE due to the restriction to the diagonal of the random walk
matrix.

Proof. We consider two arbitrary CSL graphs G ,, ;) and H,, ;) with i, j co-prime and ¢ # j. Then we
can compute the RRWP encoding for each node by computing the random walk matrix. We saw from
previous CSL graphs that the random walk matrix diagonal can be equal for both graphs, depending
on the choice of 4, j, and the number of random walk steps. However, for RRWP, we also consider
non-diagonal elements. Due to 7 # j, the RRWP tensor elements differ for each random walk of length 1,
since different nodes are connected. Given any injective MLP layer, different RRWP tensor elements result
in different RRWP embeddings for the nodes of both graphs, allowing the CSL graphs to be distinguished
by RRWP. O

Using the above results for CSL graphs, we derive a first bound associated with RWSE, depending
on the graph structure of the CSL graphs. However, CSL graphs are not distinguishable by 1-WL,
leaving a comparison between RWSE and 1-WL open. In the following, we want further to improve our
understanding of RWSE and its expressiveness. We first provide an introduction and intermediate result
given by Lemma 3| to limit the expressiveness to random walks of sufficient length. Afterwards, we
provide the proof of Theorem 2] concluding our examination of RWSE.

Introduction to Theorem[2] To prove Theorem 2] we first provide an intermediate result from leveraging
the graphs introduced by [Tonshoff et al.|[2023]] for their work. This allows us to derive graphs that need a
certain number of random walk steps, depending on their graph structure. We then expand on this concept
in our proof of Theorem 2 by giving an example of graphs not distinguishable by RWSE.

Lemma 43. There exists at least one pair of non-isomorphic graphs with order 3n — 1 that can be
distinguished by RWSE only with a random walk length of at least O(n)

Since RWSE requires returning random walks to construct the respective embedding, graphs exist that are
only distinguishable by random walks of specific length. However, we want to provide a class of graphs
requiring at least O(n) steps. Furthermore, we want these graphs to be 1-WL distinguishable, providing a
first step to Theorem [2] where we show the indistinguishability of RWSE and 1-WL. Following T6nshoff
et al.| [2023]] and their evaluation of another random walk-based GNN architecture (CraWL), we adapt their
counterexample to our evaluation of RWSE.

Proof. We provide a proof by giving a constructed graph only distinguishable by random walks of length
greater than n — 1, fulfilling the necessary condition of O(n) for the walk length. Following [Tonshoff et al.
[2023]] with their counterexample for the CraWL algorithm, we adapt the corresponding graphs for the
RWSE embedding. Since we only consider returning random walk probabilities in the RWSE embedding,
we disregard any information from other random walks.

31

1188
1189
1190
1191
1192
1193
1194
1195

1196
1197
1198

1199
1200
1201
1202

1203
1204
1205
1206
1207

1208
1209
1210

P ¢

Figure 5: A pair of graphs from the construction method provided by [Tonshoff et al.|[2023]. Note that
these graphs can only be distinguished by a returning random walk of length O(n) while being 1-WL

distinguishable.
SAN SignNet BasisNet %%if;(’f/}%
X Y2 Y X
/\
GRIT Xgﬁx\iﬁyﬁx
(b)

(a)

Figure 6: (a): Overview of our theoretical PE results in the context of existing results for PE expressivity.
A < B (A = B, A # B): algorithm A is strictly more powerful (at least as powerful, incomparable)
than/to B (b): Trees proposed by |Cvetkovi¢|[1988]] used in the proof of Theorem@

Given the graphs in Figure [5| with n nodes, we consider the blue marked nodes. Since the returning walks
are the same for both nodes for any walk of length » < n — 1, the graphs cannot be distinguished for any
RWSE embedding with a walk length of . Due to the graph construction, the corresponding walks
for all other nodes are the same in both graphs. However, due to the cycle colored in blue, the return
walk probabilities differ in both graphs for walks with a length 7/ > n. This results in a pair of graphs
only distinguishable by random walks of length at least n. Results from |Tonshoff et al.[[2023] allow
for constructing further examples with n nodes and order 3n — 1. By construction, these graphs are
distinguishable by 1-WL [Tonshoff et al.l [2023]], resulting in the stated lemma.

With the results from Lemma 43| we can now expand the set of graphs not distinguishable by RWSE, while
1-WL distinguishable. Combining both results, we can determine a set of graphs limiting the expressiveness
of RWSE and further investigate the expressive power of random walks.

We provide an example pair of trees not distinguishable by the RWSE encoding. In contrast, all trees
are known to be distinguishable by the 1-WL algorithm [Cai et al., |1992]]. Combining the findings
from Theorem [2] with the CSL graph results in Proposition 41} it follows that RWSE embeddings are
incomparable to the 1-WL color refinement algorithm.

Proof of Theorem E] For this proof, we first consider a pair of trees shown by |Cvetkovic| [[1988]].
Originally introduced as an example of trees with differing eigenvalues and graph angles, thereby being
distinguishable by the EA-invariant, these graphs are not distinguishable by the RWSE embedding for an
arbitrary number of random walk steps. The proof is split into multiple steps, containing parts of both trees
that need to be considered.

Proof. We separate the graph as shown in figure [7]into backbones I, .J and subtrees X, Y7, Y5 and the
original tree G. X stays the same throughout both graphs, whereas Y7, Y5 change their edges connecting
them to the graph. In the first step, we consider the return probability to one of the backbone nodes. Going

32

1211

1212
1213
1214
1215
1216

1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227

1228
1229
1230
1231
1232

1233
1234
1235
1236

1237
1238
1239
1240
1241

1242
1243
1244
1245

1246
1247

1248

1249
1250

from either of the backbone nodes to the original tree G has a probability of % Furthermore, going to X

from either backbone node has the probability % Once in either part of X, the return probability to the
backbone node is given by px, which is equal in both graphs. Finally, the probability of going to Y7, Y5 is
denoted by py, , py, respectively, again equal for both graphs. Further, the return probabilities Y; and Y,
are equal, as can be easily seen from the combination of Y; and Y> with the respective backbone node.
This allows for a complete evaluation of the backbone nodes, assigning them probabilities p; and p ;.

Secondly, we consider random walks only on the nodes of the subtree X, not returning to either of the
backbone nodes. Since X is equal in both graphs, the return probabilities are also the same, denoted by x.
However, they differ from the return probabilities in Y7 and Y5, given by y; and y2 respectively. Because
of that RWSE can distinguish X, Y7, Y5> without connections to the backbone nodes.

Combining our previous knowledge, we now consider return probabilities for nodes in Y; and Y5 without
restricting ourselves to the subtrees. We know that the probability of walking towards the backbone node is
given by the respective position of each node in Y7, Y5, equal in both trees. Once the random walk arrives
at either backbone node, the probability to return to said backbone is given by either p; or p; and a
probability of % to return to the originating subgraph. As py and p s are equal in both graphs and py; , py,
are equal, it follows that the return probability for nodes y; € Y7 are equal across both graphs, denoted by
Dy, T- The same holds for Y5 with the return probabilities denoted by p,, 7.

Finally, for both graphs, the nodes are assigned the RWSE probability vectors py, ps once, px 17 times,
and py, 7, Py, 8 times each. Furthermore, the two backbone nodes of both graphs cannot be distinguished
using the RWSE embedding. Therefore, the graphs are equal under RWSE, however as shown by [Cai et al.}
1992] every pair of trees can be distinguished using the 1-WL test, resulting in the incomparability of
RWSE and the 1-WL test. O

Combining the results of Proposition 0] Lemma 3] and Theorem 2} we obtain fine-grained observations
of graph structures not distinguishable by RWSE. While random walks are sufficiently robust to distinguish
many common graph structures and graphs not distinguishable by 1-WL, RWSE still fails to distinguish
specific trees and graphs originally proposed by [Tonshoff et al.| [2023]].

In the following, we provide proofs supplementing the theoretical expressiveness hierarchy introduced by
Zhang et al.|[2024]] and Black et al|[2024]. We first give an intermediate result relating RWSE and RRWP,
thereby providing a lower bound for RRWP and an upper bound for RWSE. Further, we propose adapted
results for LPE and SPE, comparing them to other PEs and to each other. The significant results are shown
in Proposition [3]and Proposition [4]

Proof of Proposition[3] The proof of Proposition 3]is given by simply evaluating the corresponding
embeddings for both RWSE and RRWP. Since both embeddings use the same MLP encoder layer, we
restrict ourselves to directly evaluating random walk matrices. We first state an extended version of
Proposition [3]and provide a proof.

Lemma 44 (Proposition 3 in the main paper). Let G, H be two non-isomorphic graphs and
Pr(G), PEV(H) the generated RWSE encodings for both graphs with a random walk length k.
Then for the generated RRWP encodings PRR(G), PRR(H) it follows:

P{M(G) = P{*(H) = P{"(G) = B{"(H).
In addition, at least one pair of graphs exists, distinguishable by RRWP, which is not distinguishable by

: ﬁiﬁf < v L

Figure 7: A pair of trees given by (Cvetkovic|[1988]. The grey node denotes an arbitrary tree concatenated
to the existing tree. Each part of the tree is colored according to its respective appearance. We further label
both backbone nodes in orange, denoting the left backbone node with I and the right backbone node with
J.

33

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

1263
1264
1265

1266
1267
1268
1269

1270
1271
1272

1273

1274
1275

1276
1277

1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292
1293
1294

Proof. Given random walk matrices Rg = DE;IAG7 Ry = D;IlA H, its power matrices up to
the power of k and the corresponding RRWP embeddings PRR(G), PRR(H) for two non-isomorphic
graphs we can directly deduce that for each tensor in the RRWP embeddings, corresponding to the
RRWP embedding for a single node in each graph, the diagonal elements of the random walk matrix
are the same for each power up to k. Therefore, it directly follows that PRR(G) = PRR(H) results in
PYV(G) = PRV (H), with PRV(GQ), PRXV (H) denoting the RWSE encodings obtained from the same
random walk matrices. We provide a simple example of a pair of graphs not distinguishable by the RWSE
embedding, whereas RRWP can distinguish between the two graphs. This example follows directly from
Proposition 40| since it is proven there that RWSE cannot distinguish this pair of graphs. However, it
directly follows from the definition of the random walk matrix. It assumes that the MLP encoder preserves
identity and that both graphs can be distinguished due to their differences in skip lengths as determined by
the definition of CSL graphs. O

We now want to consider the expressive power of LPE concerning RWSE. For this, we use results obtained
by Black et al.|[2024] and [Zhang et al.|[2024] and combine them with similar results obtained for SignNet
and BasisNet [Lim et al.} 2023]. Our additional observations are highlighted in Proposition 4]

Proof of Propositiond] We provide an expanded version of Proposition] split into three parts (Lemma &3]
Lemma[46] and Proposition 7), considering the expressive power of SAN [Kreuzer et al., [2021]] and
RWSE first, expanding the proof to LPE and SPE in Lemma 46| and finally upper bounding RRWP by
using SPE. With these three parts, we are then able to derive the proposition.

Lemma 45 (RWSE and SAN). Let the number k of eigenvalues A € R"™ and eigenvectors V. € R™*"
used in the SAN encoding be equal to the number of nodes in non-isomorphic graphs G, H. Then given the
encodings PN (G), PAN(H) with it follows:

BVY(G) = P (H) = PM(G) = PM(1),

for a pair of RWSE encodings P®V(G), PRY(H) and an arbitrary number of random walk steps.

Lemma 46. (RWSE and LPE) Given Lemmaand the LPE embeddings PEPE(G), PEPE(H) for two
non-isomorphic graphs G, H with k nodes it follows:

P™(G) = P (H) = P™(G) = P™(H),

for a pair of RWSE embeddings P®Y(G), PRV (H) and an arbitrary number of random walk steps. The
same result follows by replacing LPE with SignNet, BasisNet, or SPE as the eigenvector-based embedding.

Proof of Lemma 45/ and Lemma In the following, we provide the proofs for both lemmas. Since
Lemma 46| proposes an extension of the previous lemma, we first show the specialized case for the SAN
embedding and expand it to the more general case of eigenvector-based encodings. With proofs provided
for both lemmas, we can directly derive Proposition] by combining them with Proposition

Proof. The proof follows the proof for the comparison between SignNet and RWSE made by [Lim et al.
[2023]). Since the RWSE embedding is determined by the random walk matrix and its powers, we first
determine a corresponding relation between the random walk matrix (D~1A) and eigenvalues and
eigenvectors of the normalized graph Laplacian. Due to the definition of the random walk matrix, the
eigenvectors of said matrix are determined by v = D~'/2y;, where v; denotes the corresponding
eigenvector of the normalized graph Laplacian. This results in the following equation relating the random
walk matrix diagonal to the eigenvectors of the graph Laplacian [Lim et al.,|2023]]:

k

(diag(D1A))* = diag(Z(l — Ai)%w?) (16)

i=1

Following Lim et al.| [2023], the linear layer can approximate Zf:o and the transformer encoder to
approximate (1 — \;)* as both are permutation equivariant functions from vectors to vectors. Since
eigenvalues and eigenvectors are directly given to the SAN embedding and the linear and transformer
encoder layer being able to approximate (1 — \;)* for each \; the approximation directly follows.
This approximation assumes using all k eigenvalues and the complete eigenvectors obtained from the
decomposition.

34

1295
1296
1297

1298
1299
1300
1301
1302

1303
1304

1305
1306
1307
1308
1309
1310
1311

1312
1313

1314

1315
1316
1317

1318
1319
1320
1321
1322
1328

1324
1325

1326
1327

1328
1329

1330
1331
1332

1333
1334

For Lemma 6] we consider Equation (I6). However, for each embedding, we must consider whether
eigenvalues and eigenvectors can be recovered and (1 — \;)* can be approximated. We split the following
proof for each encoding and assume we use all eigenvalues and eigenvectors.

For LPE, we can directly recover eigenvalues and eigenvectors from the input to each embedding by using
the eigenvectors V; passed to LPE. Using a sufficiently expressive ¢ and p LPE is able to approximate
(1 — X\;)*. This follows directly from the assumption of ¢ and p to be permutation equivariant MLPs or
more expressive neural network architectures, thereby able to approximate the given functions as in the
SAN case [Lim et al., 2023].

For SPE, a slightly different case has to be considered. Since SPE uses the projection matrices obtained
from VV7 the eigenvectors must be recovered.

Instead of directly recovering eigenvectors, we use the properties of the underlying projection matrices.
From this, we can directly recover the eigenvectors needed from Vdiag(¢;(\))V?! for a suitable
¢, which can be reverted by p to retain the eigenvectors. For the eigenvalues, we consider ¢; to be
eigenvalue-preserving functions, allowing us to recover the eigenvalues from the diagonalized representation.
The remaining proof follows from the observations made by |Lim et al.[[2023] for SignNet and BasisNet. In
addition, SignNet and BasisNet Lim et al.|[2023]] prove that both embeddings can approximate the RWSE
embedding given suitable ¢ and p. O

Proposition 47 (RRWP and SPE). Given the SPE embeddings Py (G), PEPE(H) for two non-isomorphic
graphs G, H with k nodes it follows:

P"(G) = P (H) = P*(G) = P*(H),
for a pair of RRWP embeddings P*®(G), PRR(H) and an arbitrary number of random walk steps.

With the partial hierarchy obtained for LPE and SPE, we want to look further at random walk-based PEs.
Since RWSE is upper bounded by LPE and incomparable to the 1-WL, it remains to propose an upper
bound of RRWP, known to be more expressive than RWSE from Proposition

Proof of Propositiond7] Following|Zhang et al. [2024]] with their proof of a representation of the
page rank distance using projection matrices, we show that RRWP can be represented using the page
rank distance and that such distance can be approximated using information recovered from the SPE
embedding. We note that a proof of SPE being more expressive than GRIT is provided by [Zhang et al.
[2024]. Nonetheless, we reduce the proof only to involve the RRWP embedding to align with our theory
framework.

First, we consider the representation of the RRWP embedding using the generalized PageRank distance.
For this, we consider RRWP as a distance-based embedding of the form

Pl,zR(u7 v) = [D ' A(u,v), (DflA)2(u7 Vg (DflA)k(u, v)],

for nodes u, v € V(G). Thereby, the RRWP embedding for a selection of nodes can be represented by the
multi-dimensional page rank distance PR for a given weight sequence ~;:

PR(U,’U) = Z’Yi(DilA)i(uarU)'

=0

From Zhang et al.| [2024] we obtain the following equality satisfying the needed relation between page rank
distance and projection matrices.

S DAk =3 (Z%(l - M)‘“)qu, v)(deg(u)~"/?)(deg(v)~1/?)
k=0 i k=0

with P;(u, v) denoting the element at position (u, v) of the i-th projection matrix. However, we still need
to recover node degree information from the SPE encoding and prove that SPE retains the projection matrix
information.

Given the property of projection matrices to recover the underlying matrix using eigenvalue decomposition
[Zhang et al.|[2024]], we recover node degree information using the diagonal of the graph Laplacian. Since

35

1335
1336

1337
1338

1339

1340
1341

1342
1343
1344
1345
1346

1347
1348
1349
1350
1351
1352
1353

1354
1355
1356
1357

1358
1359
1360

1361
1362

1363
1364

1365
1366

1367
1368

SPE uses the graph Laplacian to compute eigenvalues and eigenvectors, we can directly recover relevant
degree information via the following equation.

n

L= Z)\iPi

i=1

diag(L) = diag(i Z A;diag(P;)
=1

=2 Ai(Pile,w)

Following the definition of the SPE encoding, eigenvalues and the elements of the projection matrix can be
recovered using suitably expressive ¢ and p. Given ¢ to be a 2-IGN and p to be a MLP or 1-WL expressive

GNN, deg(u)~'/2 can be approximated by p, whereas >, (Z,;“;O Ye(1 —)\i)k) can be approximated

by a 2-IGN as shown by Maron et al.|[2019a], Lim et al.| [2023]. This allows for approximating the RRWP
embedding via the PageRank distance using SPE as an upper bound, concluding our proof.

Combining the results of Lemma [45] Proposition 7} and Proposition [3] we obtain Proposition []
directly, supplementing the hierarchy of PEs in their theoretical expressiveness. These results provide a
comprehensive theoretical expressiveness hierarchy, showing that random walk-based embeddings are
expressive compared to the 1-WL test but are bounded by eigeninformation-based embeddings. We note
that all embeddings are bounded by the 3-WL test as shown by [Zhang et al.| [2024].

Additional results on theoretical expressiveness Using notation established in section Appendix
we provide additional proofs to complement the framework established by Black et al.| [2024] and
Zhang et al.|[2024] concerning theoretical expressiveness of PEs. At first, we consider the proof of
Lemma 48] highlighting the connection between SAN and SignNet. Then we consider SignNet and
BasisNet, expanding on the results of |[Lim et al.|[2023]] and adapting them to LPE. We provide these
additional results to improve the hierarchy of theoretical expressiveness in PEs and additional results
concerning LPE, relating it to other eigenvector-based embeddings.

Throughout these proofs, we consider the respective ¢ and p to be selected as MLPs or GNNs. For ¢, we
choose, based on previous analysis by |Zhang et al.|[2024], a function mapping at most as expressive as a
2-IGN. Similarly, for p we select any 1-WL expressive GNN or MLP. Note that these assumptions differ
from the selections made in our empirical evaluation.

Lemma 48. Given a sufficiently expressive ¢ and p for SignNet, aligning with the implementation of Lim
et al.|[2023|] and the original implementation of the SAN embedding, SignNet is at least as expressive as
the SAN embedding.

Proof. Let SAN and SignNet be represented by the respective color refinement algorithms shown in
Definition[T4] To show Lemma[48] we need to show that

Tep o Ty 0 Tspr © Ty (xSign) = Tgp o Tenc © T1.(XsaN)-

Since we assume a standard transformer encoder to be at most 1-WL expressive and knowing that Tgp is
order preserving concerning Definition [I0] we can reduce the above equation to the following expression:

Tt o Tspr 0 Ty (xSign) = Tww; o Tr(xsaN)-
This expression can now be evaluated. Given two non-isomorphic graphs G, H and arbitrary nodes
u,v € V(G) and z,y € V(H) the following holds true:
Ty o Tsea o Tyy(xSign(u, v)) = Ty, © Tsea o Ty (xSign(x, y))
Tsp2 o T (xSign(u, v)) = Tspa o Tyy(xSign(z, y))
{75 (xSign(u, v)) } = {Ts(xSign(z,)}
{Ts(Aa, V., V) B = {T6(Au, VE, V) |

From the equivalence of the multisets, it follows directly that xsan(u,v) = xsan(z, y) holds for any
choice of nodes given an injective 1. O

36

1369
1370
1371
1372
1373
1374

1375
1376
1377
1378
1379
1380

1381
1382
1383
1384
1385

1386
1387

1388
1389

1390

1391
1392

1393

1394
1395
1396

1397
1398

1399

1400

1401

1402

With the conclusion of the proof for the SAN embedding, we further evaluate the connection between
BasisNet and SignNet and the LPE embedding. First, we show that BasisNet can approximate SignNet, an
observation highlighting the differences in expressiveness noted by |Lim et al.[[2023]]. In the second part of
the proof, we then conclude our comparison of eigenvector-based embeddings with the comparison of LPE
to BasisNet. Throughout the proof we again assume ¢gn, ¢rpg to be at most 2-IGN expressive and
PSN, pLpE to be 1-WL expressive.

Proof. Let SignNet and BasisNet be represented by the color refinement algorithms from Definition [T4]
Then for two non-isomorphic graphs G, H with nodes v, v € V(G) and z,y € V (H) we consider the
color refinement algorithms for both encodings. With this it follows that we have to show Tgp o Ty ©
Tspy © Tip 0 Tsiam(XBasis) = Tap © Twr © Tspz 0 T (xSign). Since Tip o Ty, is order preserving we
only consider the relation Tsp; © Tgp 0 Tsiam(XBasis) = Tsp2 0 T (xSign). First of all, we show that
Tsiam(XBasis) = T (xSign):

TSIAM(XBasis) ()‘Ga u, ’U) = TSIAM (XBasis)(AHa &€, y)
= [EGN(XBasiS()\Gv *y))]G(U, U) = [ﬂGN(XBasis()\Ha)))]H($7 y)

Using the definition of the IGN color refinement, we can directly approximate the eigenvalues used
in the initial encoding of SignNet. Furthermore, a 2-IGN architecture is at least as expressive as the
architectures used for ¢ in SignNet. Since the multisets of the projection matrices allow us to approximate
the eigenvectors used by the SignNet encoding, the initial encoding of SignNet can be approximated,
allowing for the approximation of Ty, (xSign),

[Tion (XBasis (A +» *))]a(uw, v) = [Tion(XBasis(A#, 5)] 1 (2, y)
= xSign(Ag, u,v) = xSign(Ag, z,y) = Ty(xSign)(Ag, u,v) = Ty (xSign)(Ag, x,).

Given that ¥ = Tsiam(XBasis), We now only have to show that Tgp () =< Tsp2(). Using the same nodes
as above:

Tep(X)(A, u) = Tep(X) (A, 2)
= XeMu,u) = xp\ 2, 2) AxaA\u,v): v e V(@) = {xa(N\ z,v): v e V(H) A
{xecNv,u):ve V(@Y ={xa(Xv,z):ve V(H)JA

{xc\v,0):veV(@} ={xu(\v,v):ve V(H)JA

{xecv,w):v,we V(@) } =f{xu(\,v,w): v,we V(H)EA

= Tsp2(X) (A, u,v) = Tspa (X) (A, 2, y).
Since both parts of the relation Tgp o Tsiam (XBasis) = Tsp2 © T (xSign) hold and all color refinements

are considered to be order preserving and expressiveness preserving the proof directly follows.

In case of the LPE embedding, the proof follows the same structure with 7' being replaced with T;;P E as

given in Definition (14} Since we do not assume T} to be more expressive than T(;PE and both being
bounded by a 2-IGN 1n expressiveness, we can replace Ty, and therefore, we omit the proof. O

F Additional technical proofs

Multiset operations Let D be a finite set with an arbitrary but fixed order. We denote with D; the i-th
element in the order over D. Let A be a finite multiset over D. We write A := {(a;, D;) | i € [|D|]}
with a; > 0, the multiplicity of element D; in A.

We define [A| :=). a;. Further, let B := {(b;, D;) | i € [|D|]} be another finite multiset over D. We
define

and
A\ B = {(max{a; — b;,0}, D;) | i € [|D|]}

We note that A N B is symmetric while B \ A is not symmetric. Nonetheless, we prove that if | A| = | B|,
then |A \ B|is symmetric.

Claim 49. Let A, B be two multisets over a finite domain. If |A| = | B|, then |[A\ B| = |B \ A|.

37

1403

1404
1405

1406

1407

1408
1409
1410
1411

1412
1413
1414
1415

1416
1417
1418

1419

1420

1421

1422

1423
1424

1425

1426
1427
1428
1429

1430
1431
1432
1433
1434

Proof. We have that
|A\ B| =) max{a; — b;,0} = > _a; — min{a;,b;} = |A] — |[AN B.

Hence, if |A| = |B|, then |[A\ B| = |A| — |AN B| = |B| — |AN B| and since |A N B| is symmetric,
A\ B| = B~ B4 = B\ Al O

Claim 50 (Proof of Claim[30). Let A, B C Q be finite multisets with |A| = |B|. Then, the sum
3" exp(a) — - explt) = 0.
acA beB

if, and only if, A = B.

Proof. Let f(A,B) = > ,caexp(a) — >, 5 exp(b). Note that for each element a in A that also
appears as b in B, we have that exp(a) — exp(b) = 0. Hence, we define A* := A\ Band B* := B\ A
and have that f(A, B) = f(A*, B*). Further, since according to the lemma statement |A| = | B|, we
have that |A*| = | B*|; see Claim

We first show that f(A, B) = 0 if and only if A = B. To this end, note that the sum is 0 if the positive
and the negative summands cancel out, that is, if A* = B* = @& and hence, A = B.If A # B, then the
above sum is a non-zero sum of exponentials with algebraic exponents, and thus, by Theorem 32} non-zero.
Hence, we have A = B < f(A,B) = 0. O

Lemma 51 (Proof of Lemma . Let v,w € Q™F and let X € {0, 1}7* be a matrix whose rows are
one-hot vectors, for some L,d € NT. Then, softmax(v) X = softmax(w)X, if and only if, for every

x € set(X),
Z (o — Bi) =0,
1€A(x)
where «; = softmax(v); and 3; = softmax(w);.

Proof. We have

softmax(v) X — softmax(w)X = (a; = Bi)- X;= > > (o =) =
i=1 xzeset(X) i€ A(x)
Since the rows of X are one-hot vectors, set(X) is linearly independent we have that
Z Z(aifﬂi)'w:@
zeset(X) i€ A(x)
if, and only if, 3, ¢ 4, (i — B;) = 0, for all z € set(X). O

Lemma 52 (Proof of Lemma . Let v,w € Q™ F and let X € {0, 1}2*9 be a matrix whose rows are
one-hot vectors, for some L,d € NT. Then, [v]|x = [w]x, if and only if for every x € set(X),

fviliepAX;=a} =fw; |ien]AX;=x}.

Proof. We define, for each « € set(X),

V(eg) =fv; |ienAX;, =x}

W(x) ={w;|ichANX;, =z}
For the forward implication, assume towards a contradiction that [v] x = [w]x but there exists an
x € set(X) such that V() # W (). However, then there also exists a number v € V() that appears

x times in V (x) but y times in W (x), with « # y. Without loss of generality, we assume that x < y.
Then, the tuple (v,) appears fewer times in [v] x than in [w]x, implying [v] x # [w]x, a contradiction.

For the backward implication, assume towards a contradiction that for all € set(X), V(z) = W(x)
but [v]x # [w]x. Then, there exists a tuple (v,) that appears x times in [v] x but y times in [v]x,
with z # y. Without loss of generality, we assume that x < y. But then, for the vector x, there exists a
number v that appears fewer times in V' (X) than in W (X), implying V' (X) # W (X), a contradiction.
This shows the statement. O

38

1435

1436

1437
1438

1439

1440
1441
1442
1443

1444

1445
1446
1447
1448
1449
1450
1451
1452
1453

1454

1455

1456

1457

1458

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483

1484

1485
1486

1487

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The main claims of the paper are that we propose a new model, develop an
understanding of its representation power, and evaluate it extensively on large-scale datasets to

derive generalizable insights. We describe the model in detail in Section 2] provide central
expressivity results in Section [2.2]and Section 3] and evaluate the model extensively in Section [4]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in the main paper in Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role
in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

39

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

1501
1502
1503

1504

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

1541

1542
1543

Justification: We provide detailed proofs, including all assumptions in Appendix [D| and
Appendix [E| as well as extensive background with all necessary definitions in Appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information in the main paper in Section 4 which should suffice
to reproduce the results on our real-world tasks. For the algorithmic tasks, which we design and
implement for this work, additional details on graph generation and detailed task descriptions are
required, which we detail fully in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.
« If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way to
accomplish this, but reproducibility can also be provided via detailed instructions for how
to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

40

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

Answer: [Yes]

Justification: We provide our code base in the supplementary material which is sufficient to
download or generate the data required to reproduce the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: training and test details are provided in Appendix [Al in particular in Appendix
discussing hyperparameters in detail.
Guidelines:
* The answer NA means that the paper does not include experiments.
 The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.
 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation over multiple random seeds in Table[T] as well as
standard error over multiple random seeds in Figure 2] For better clarity, we provide the standard
deviation over random seeds of our scaling experiments in Figure 3| (a) in Appendix |A|in tabular
form.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

8.

10.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide runtime and memory requirements in Appendix [A.5]in tabular form.
These requirements are computed from empirical measurements on a single L40 GPU.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the code of ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: In this work, we conduct foundational research in the area of machine learning
without any immediate positive or negative societal impact that must be addressed specifically.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

42

https://neurips.cc/public/EthicsGuidelines

1654
1655
1656
1657

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674

1675
1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690
1691

1692
1693
1694

1695
1696

1697
1698

1699

1700
1701

1702

1703
1704
1705

1706

1707

11.

12.

13.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over
time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are trained on standard benchmarks or on synthetic algorithmic tasks
without any immediate risks for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We provide licenses for each dataset in Appendix [A]

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA|
Justification: While we do introduce new synthetic tasks, we do not release these as datasets or a
new benchmark. However, we thoroughly document how to reproduce the data used in these
tasks, as well as how the models are evaluated on these tasks.
Guidelines:
* The answer NA means that the paper does not release new assets.

43

paperswithcode.com/datasets

1708
1709
1710

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

14.

15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLMs such that they impact the core method development in this
research.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

44

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Generalized-Distance Transformer
	Defining the GDT
	The expressive power of the GDT

	The expressive power of positional embeddings
	Experiments
	Conclusion
	Experimental details
	Data sources and licenses
	Hyperparameters
	Architecture
	Algorithmic reasoning data
	Runtime and memory
	Comparison with state-of-the-art
	Scaling Results

	Background
	Transformers
	Extended notation for the theoretical analysis of the GDT
	Extended notation for the theoretical analysis of PEs
	Positional encodings

	Limitations
	Proving that the GDT can simulate the GD-WL
	Lower-bound on the expressivity of the GDT
	Upper-bound on expressivity of the GDT
	Expressivity of the GDT

	Proofs of Section 3
	Additional technical proofs

