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ABSTRACT

Fine-tuning of large pre-trained image and language models on small customized
datasets has become increasingly popular for improved prediction and efficient
use of limited resources. Fine-tuning requires identification of best models to
transfer-learn from and quantifying transferability prevents expensive re-training
on all of the candidate models/tasks pairs. In this paper, we show that the statistical
problems with covariance estimation drive the poor performance of H-score (Bao
et al., 2019) — a common baseline for newer metrics — and propose shrinkage-
based estimator. This results in up to 80% absolute gain in H-score correlation
performance, making it competitive with the state-of-the-art LogME measure by
You et al.[(2021). Our shrinkage-based H-score is 3 — 55 times faster to com-
pute compared to LogME. Additionally, we look into a less common setting of
target (as opposed to source) task selection. We demonstrate previously over-
looked problems in such settings with different number of labels, class-imbalance
ratios etc. for some recent metrics e.g., NCE (Tran et al., 2019), LEEP (Nguyen
et al., [2020) that resulted in them being misrepresented as leading measures. We
propose a correction and recommend measuring correlation performance against
relative accuracy in such settings. We also outline the difficulties of comparing
feature-dependent metrics, both supervised (e.g. H-score) and unsupervised mea-
sures (e.g., Maximum Mean (Long et al.}2015) and Central Moment Discrepancy
(Zellinger et al.| 2019)), across source models/layers with widely varying feature
embedding dimension. We show that dimensionality reduction methods allow for
meaningful comparison across models, cheaper computation (6x) and improved
correlation performance of some of these measures. We investigate performance
of 14 different supervised and unsupervised metrics and demonstrate that even
unsupervised metrics can identify the leading models for domain adaptation. We
support our findings with ~ 65,000 (fine-tuning trials) experiments.

1 INTRODUCTION

Transfer learning (TL) is a set of techniques of using abundant somewhat related source data
(X)) to ensure that a model can generalize well to the target domain, defined as either little
amount of labelled data p(X ), Y(V)) (supervised), and/or a lot of unlabelled data p(X (")) (unsuper-
vised TL). TL is most commonly achieved either via fine-tuning or co-training. Fine-tuning (FT) is
a process of adapting a model trained on source data by using target data to do several optimization
steps (for example, SGD) that update the model parameters. Co-training on source and target data
usually involves reweighting the instances in some way or enforcing domain irrelevance on feature
representation layer, such that the model trained on such combined data works well on target data.
Fine-tuning is becoming increasing popular because large models like ImageNet (Krizhevsky et al.,
2012), Bert (Devlin et al.| 2018) etc. are released by companies and are easily modifiable. Training
such large models from scratch is often prohibitively expensive for the end user.

In this paper, we are primarily interested in effectively measuring transferability before training of
the final model begins. Given a source data/model, a transferability measure (TM) quantifies how
much knowledge of source domain/model is transferable to the target model. Transferability mea-
sures (TMs) are important for various reasons: they allow understanding of relationships between
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different learning tasks, selection of highly transferable tasks for joint training on source and target
domains, selection of optimal pre-trained source models for the relevant target task, prevention of
trial procedures attempting to transfer from each source domain and optimal policy learning in rein-
forcement learning scenarios (e.g. optimal selection of next task to learn by a robot). If a measure
is capable of efficiently and accurately measuring transferability across arbitrary tasks, the problem
of task transfer learning is greatly simplified by using the measure to search over candidate transfer
sources and targets.

Contributions We study both supervised and unsupervised TMs in the context of FT.
For supervised TMs, our contributions are three-fold:

1. We show that H-score, commonly used as a baseline for newer supervised TMs, suffers from
instability due to poor estimation of covariance matrices. We propose shrinkage-based estimation
of H-score with regularized covariance estimation techniques from statistical literature. We show
80% absolute increase over the original H-score and show superior performance in 9/15 cases
against all newer TMs across various FT scenarios.

2. We present a fast implementation of our estimator that is 3 — 55 times faster than state-of-the-art
LogME measure. Unlike LogME, our optimized implementation for our estimator is tractable
even for really high-dimensional feature embeddings ~ 10°.

3. We identify problems with 3 other supervised TMs (NCE, LEEP and N'LEEP) in target task
selection when either the number of target classes or the class imbalance varies across candidate
target tasks. We propose measuring correlation against relative target accuracy (instead of vanilla
accuracy) in such scenarios.

For unsupervised TMs, we outline computational challenges and propose dimensionality reduction
methods for better estimation and effective comparison of such measures when the feature dimen-
sions are large and/or different across various source models. We show that with our proposed mod-
ifications, even unsupervised TMs can be effective in identifying the best source ImageNet model.
Our large set of 65,000 FT experiments with multiple ImageNet models and different regimes gen-
erated from CIFAR-100 and CIFAR-10 image datasets shows usefulness of our proposals.

This paper is organized as follows. Section [2| describes general FT regimes and transfer learning
tasks. Section [3]discusses supervised TM and addresses shortcomings of the pioneer TM (H-Score)
that arise due to limited target data (subsection[3.T)). In subsection[3.2]we demonstrate problems with
recent NCE, LEEP and AN'LEEP metrics and propose a way to address them. Section [4] highlights
shortcomings of different commonly used unsupervised measures for source selection and proposes
alternatives that offer improvements. Finally, Section 5] presents a meta study of all metrics.

2 TRANSFERABILITY SETUP

We consider the following FT scenarios based on existing literature.

(1) Source Model Selection (SMS): For a particular target data/task, this regime aims to select the
“optimal” source model (or data) to transfer-learn from, from a collection of candidate models/data.
(i) Target Task Selection (TTS): For a particular (source) model, this regime aims to find the most
related target data/task.

In addition, we primarily consider two different FT strategies:

(i) Linear FT/head only FT: All layers except for the penultimate layer are frozen. Only the weights
of the head classifier are re-trained while fine-tuning.

(ii) Nonlinear FT: Any arbitrary layer can be designated as a feature extractor, up to which all the
layers are frozen; the subsequent layers include nonlinear transformations and are re-trained along
with the head on target data.

3 SUPERVISED TRANSFERABILITY MEASURES

Related Work Recent literature in transfer learning has proposed computationally efficient TMs.
We categorize measures that require target labels as supervised TMs. Inspired by principles in
information theory, Negative Conditional Entropy (NCE) Tran et al.[(2019) uses pre-trained source
model and evaluates conditional entropy between target pseudo labels (source models’ assigned
labels) and real target labels. Log Expected Empirical Predictor (LEEP) (Nguyen et al.l [2020)
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modifies NCE by using soft predictions from the source model. Both NCE and LEEP do not directly
use feature information, hence they are not applicable for layer selection.

Cui et al.| (2018) propose representing each output class by the mean of all images from that class
and computing Earth Mover’s distance between the centroids of the source classes and target classes.
Bao et al.[(2019); |L1 et al.| (2021); [Huang et al.| (2021); [You et al.| (2021); Deshpande et al.| (2021}
proposed metrics that capture information from both the (learnt) feature representations and the real
target labels. These metrics are more appealing as these can be broadly applicable for models that are
pre-trained in either supervised or unsupervised fashion. [Li et al.| (2021) proposed N'LEEP that fits
a Gaussian mixture model on the target feature embeddings and computes the LEEP score between
the probabalistic assignment of target features to different clusters and the target labels. Huang
et al.| (2021) proposed TransRate — a computationally-friendly surrogate of mutual information
(using coding rate) between the target feature embeddings and the target labels. Bao et al.| (2019)
introduced H-score that takes into account inter-class feature variance and feature redundancy. |[You
et al.|(2021) proposed LogME that considers an optimization problem rooted in Bayesian statistics to
maximize the marginal likelihood under a linear classifier head. |Deshpande et al.|(2021) introduced
LFC to measure in-class similarity of target feature embeddings across samples.

Finally, Tan et al.|(2021) used Optimal Transport to evaluate domain distance, and combined it, via a
linear combination, with NCE. To learn such a measure, a portion of target tasks were set aside, the
models were transferred onto these tasks and the results were used to learn the coefficients for the
combined Optimal Transport based Conditional Entropy (OTCE) metric. While the resulting metric
appears to be superior over other non-composite metrics like H-score and LEEDP, it is expensive
to compute since it requires finding the appropriate coefficients for the combination. Additionally,
our results indicate that both components of the measure seem to be individually sub-optimal in
measuring transferability against corresponding supervised and unsupervised measures.

3.1 IMPROVED ESTIMATION OF H-SCORE FOR LIMITED TARGET DATA

H-score (Bao et al.,[2019)) is one of the pioneer measures that is often used as a baseline for newer su-
pervised TMs, which often demonstrate the improved performance. It characterizes discriminatory
strength of feature embedding for classification:

H(f) = u(Z0) 7 56) )

where, d is the embedding dimension, f; = h(:cgt)) € R? is the target feature embeddings when the

feature extractor (h : R? — R%) from the source model is applied to the target sample mgt) e Rp,
F ¢ R™*? denotes the corresponding target feature matrix, Y = Y® € Y = {1,--. | C} are the
target data labels, (/) € R?*? denotes the sample feature covariance matrix of f, z = E[f|Y] €
R¢ and Z € R™*9 denotes the corresponding target conditioned feature matrix, 3(*) ¢ R4*4
denotes the sample covariance matrix of z. Intuitively, H(f) captures the notion that higher inter-
class variance and small feature redundancy results in better transferability.

We hypothesize that the sub-optimal performance of H-Score (compared to that of more recent
metrics) for measuring transferability in many of the evaluation cases, e.g., in (Nguyen et al.||2020),
is due to lack of robust estimation of H-Score — see Fig. (1| for a synthetic example showing the
non-reliability of empirical H-score over various sample sizes when compared with its population
version. Given that many of the deep learning models in the context of TL have high-dimensional
feature embedding space — typically larger than the number of target samples — the estimation of
the two covariance matrices in H-score becomes challenging: the sample covariance matrix of the
feature embedding has a large condition numbeIF_-] in small data regimes. In many cases, it cannot
even be inverted. Bao et al.[(2019) used a pseudo-inverse of the covariance matrix >N, However,
this method of estimating a precision matrix can be sub-optimal as inversion can amplify estimation
error (Ledoit & Wolf] |2004). We propose to use well-conditioned shrinkage estimators motivated
by the rich literature in statistics on the estimation of high-dimensional covariance (and precision)
matrices (Pourahmadi, 2013). We show that the use of such shrinkage estimators can offer significant
gain in the performance of H-score in predicting transferability. In many cases, as our experiments
show, the gain is so significant that H-score becomes a leading TM, surpassing the performance of
state-of-the-art measures.

! Condition number of a positive semidefinite matrix A, is the ratio of its largest and smallest eigenvalues.
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Proposed Transferability Measure We propose the fol- 801, :
lowing shrinkage based H-score: —— H(O-Population

o 60 , *  H(f)-Empirical

Ho(f)=u (507 (1-0=@), @ g U
540 ',

Estimating 25{ ) While there are several possibilities mzo "...
to obtain a regularized covariance matrix (Pourahmadil .
2013)), we present an approach that considers a linear op- 0] et
eration on the eigenvalues of the sample version of the 10? 10° 10

. . . .. . Number of samples
feature embedding covariance matrix. Similar ideas of P

using well-conditioned plug-in covariance matrices are
used in the context of discriminant analysis (Hastie et al.|
2001). In particular, we improve the conditioning of
the covariance matrix by considering its weighted convex
combination with a scalar multiple of the identity matrix:

Figure 1: Stability of original H(f) and
the shrinkage-based H,, (f) with respect
to number of samples. The original H-
Score is ~ 75 times larger than the
population version of the H-Score (es-
Et(xf) =(1— a)E(f) +acly, (3) timated with a sample size of 10%). In
contrast, the shrinkage-based H-Score

where a € [0, 1] is the shrinkage parameter and o is the is significantly more reliable.

average variance computed as tr(2(f)) /d. The linear op-
eration on the eigenvalues ensures the covariance estimator is positive definite. Note that the inverse

of ng ) can be computed for every a, by using the eigen-decomposition of (/). The shrink-
age parameter controls the bias and variance trade-off; the optimal o needs to be selected. This
distribution-free estimator is well-suited for our application as the explicit convex linear combina-
tion is easy to compute and makes the covariance estimates well-conditioned and more accurate
(Ledoit & Wolf, [2004; |Chen et al., [2010; [Schafer & Strimmer, [2005)).

Understanding (1 — ) X(®) The scaling factor (1 — a) can be understood in terms of regularized
covariance matrix estimation under a ridge penalty:

1/(1+X) - 2 = argming || — 53|12 + A3 12 €

where A > 0 is the ridge penalty. Choosing A = a/(1 — ), it becomes clear that (1 — )% (%) is the
regularized covariance matrix.

Choice of o [Ledoit & Wolf (2004) proposed a covariance matrix estimator that minimizes mean
squared error loss between the shrinkage based covariance estimator and the true covariance matrix.
The optimization with respect to a considers the following objective:

min, , E[|Z* - 22 st. B =(1- )2 + awl, E[EV)]=3. (5)

where ||A|®> = tr(AAT)/d. This optimization problem permits a closed-form solution for the
optimal shrinkage parameter, which is given by:

o =E[||2V¥ - I2)/E[|ZY - (t(S)/d) - L|P) ©)
~wminf (1)) AT = SO/ — @ESD)/d) - Lk )

where (7)) defines a valid estimator (not dependent on true covariance matrix) for practical use. For
proof, we refer the readers to Section 2.1 and 3.3 in|Ledoit & Wolf| (2004). We provide some addi-
tional discussion on why same « is used for the two regularized covariance matrices in shrinkage-
based H-Score in Supplement Section[S2.1]

We provide validation of shrinkage-based estimation of H-Score on synthetic classification data.
We generated 1 million 1000-dimensional features with 10 classes using Sklearn multi-class dataset
generation function (Pedregosa et al.l|2011). Number of informative features is set to 500 with rest
filled with random noise. We visualize the original and the population version of the H-score and the
shrinkage-based H-Score for different sample sizes in Fig. [l We observe that the original H-Score
becomes highly unreliable as the number of samples decreases. In contrast, the shrunken estimation
of H-Score is highly stable and has a small error when compared with the population H-Score.

Efficient Computation for small target data For small target data (C' < n; < d), the naive imple-

mentation of H, (f) can be very slow. We propose an optimized implementation for our shrinkage-

)

based H-Score that exploits diagonal plus low-rank structure of E(af for efficient matrix inversion
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and the low-rank structure of 3(*) for faster matrix-matrix multiplications. We assume F' (and
correspondingly Z) are centered. The optimized computation of H, (f) is given by:

Ho(f) = (1= a)/(mao) - (1RI ~ (1= a) - vee (G)" vee (W'G)) , )

where R = [\/ni fy=1, -+ ,\/ncfy=c] € R™*Y, G =FR € R"*Y W =na0l, + FFT €
R™*"t The derivation is provided in the Supplement Section We make a timing comparison

of our optimized implementation of H,(f) against the computational times of the state-of-the-art
LogME measure and demonstrate 3 — 55 times faster computation (see Table [6]in Section [5.3).

3.2 A CLOSER LOOK AT NCE, LEEP AND N'LEEP MEASURES

Next, we pursue a deeper investigation of some

of the newer metrics that are reported to be
superior to H-Score and bring to light what
appears to be some overlooked issues with
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these metrics in Target Task Selection (TTS)
scenario. TTS has received less attention
than Source Model Selection (SMS). To our
knowledge, we are the first to bring to light
some problematic aspects with NCE, LEEP and
NLEEP, which can potentially lead to the mis-
use of these metrics in measuring transferabil-
ity. These measures are sensitive to the num-
ber of target classes (C') and tend to be smaller
when C is larger (see Fig. 2[Left]). Therefore,
use of these measures for target tasks with dif-
ferent C will most likely result in selecting the task with a smaller C'. However, in practice, it is not
always the case that transferring to a task with a smaller C' is easier; for example, reframing a multi-
class classification into a set of binary tasks can create more difficult to learn boundaries (Friedman
et al.| 2000). Furthermore, the measures are also problematic if two candidate target tasks have dif-
ferent degree of imbalance in their classes even if C' is the same. The measures would predict higher
transferability for imbalanced data regimes over balanced settings (see Fig. [JJRight]). However,
imbalanced datasets are typically harder to learn. If these measures are correlated against vanilla
accuracy, which tends to be higher as the imbalance increases e.g. for binary classification, the mea-
sures would falsely suggest they are good indicators of performance. Earlier work did not consider
both these aspects and erroneously showed good correlation of these metrics against vanilla accu-
racy to show dominance of these metrics in TTS with different C' (Nguyen et al., 2020} [Tan et al.,
2021) and imbalance (Tan et al.,[2021)).

— NCE
LEEP

—0.55{ <4 3w

—0.601 7, —— NLEEP

102 i 2 3 4 5
Class imbalance

Figure 2: Relation of NCE, LEEP & NLEEP to
[Left] number of classes (log-scale) and [Right]
class imbalance, max(ni,ng)/min(ny,ns), for
VGG19 on CIFAR100. For [Left], we randomly
select 2-100 classes. For [Right], we randomly
select 2 classes and vary the class imbalances.

Here, we propose a method to ameliorate the shortcomings of to prevent misuse of these measures,
so that they lead to more reliable conclusions. We propose to standardize the metrics by the entropy
of the target label priors, leading to the definitions in (9). This standardization considers both the
class imbalance as well as number of classes through the entropy of the target label priors.

def

n-NCE £ 1 4 NCE/H(Y), o

n-LEEP £ 1 + LEEP/H(Y), o

n-NLEEP = 1 + NLEEP/H(Y). (9)
Our proposed normalizations in (9) ensures the normalized NCE is bounded between [0, 1]. For
proof, see Supplement Section n-NCE is in fact equivalent to normalized mutual information
and has been extensively used to measure correlation between two different labelings/clustering of
samples (Vinh et al.,[2010). Given the similar behavior of LEEP and NCE to different C' and class
imbalance as shown in Fig. [2] we suggest the same normalization as given in (9). However, this
normalization does not ensure boundedness of n-LEEP score (and by extension n-A'LEEP) in the
range [0, 1] as in the case of n-NCE.

For scenarios where candidate target tasks have different C, we propose an alternative evaluation
criteria (relative accuracy) instead of vanilla accuracy — see Section [5|for more details. We provide
empirical validation of the proposed normalization to these measures in Table 2]in Section[5.1] We
also show that our proposed shrinkage-based H-Score is the leading metric even in these scenarios.
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4 UNSUPERVISED TRANSFERABILITY MEASURES

Since most of the existing TMs essentially estimate the difference between source and target distri-
butions (be it just the labels as in LEEP and NCE or between distributions of feature embeddings
and labels as in H-score or LFC), one can consider unsupervised discrepancy measures that don’t
use target labels, but rely only on source and target data feature embeddings. They have been used
for regularization in the context of domain adaptation (Li et al.l 2020} Zellinger et al.,|2019), how-
ever they have not been studied for characterizing transferability in the context of FT. It remains to
be seen how informative these metrics are as TMs for FT. These metrics are important because they
can be used with unlabeled target data when supervised metrics cannot be used.

Related Work In early work, [Ben-David et al| (2006) proposed .A-distance to estimate domain
divergence from unlabelled source and target data. This metric can be empirically estimated with
an additional model trained to predict the domain of the data (source or target) and uses the do-
main classification accuracy as a proxy. Training such a model is expensive, requires choosing an
architecture and/or tuning hyperparameters and may end up being more expensive than actual TL.

We consider more standard discrepancy measures as unsupervised TMs. Maximum mean discrep-
ancy (MMD) (Long et al,, |2015) measures mean differences between distributions in some rich
kernel space and has been previously used to detect covariate shift between input distributions (Ra-
banser et al.l [2019). Central moment discrepancy (CMD) (Zellinger et al., 2019) measures dif-
ferences in mean and higher order moments. Similarly, correlation alignment (CORAL) (Sun &
Saenko, 2016) measures the difference in covariance matrices of source and target feature distri-
butions. Kullback-Leibler Divergence (KLD) (Kullback & Leibler, [1951) is a standard divergence
metric for two distributions, which can be calculated either by making an assumption on the distri-
butions or using non-parametric estimators. Optimal transport (OT) (Bonneel et al.,|2011) considers
the optimal energy required to shift distributions from source features to target features. We also
consider Wasserstein distance (WD) (Kantorovich, |1939), under normality assumptions for source
and target features. Supplement Section [S3.2| contains formulas for all the unsupervised TMs.

Challenges of comparing feature distribution discrepancy across task pairs Next, we discuss
challenges in using unsupervised discrepancy metrics on the feature embeddings of source and target
data across model/task pairs in both SMS and TTS scenarios. Given that none of the discrepancy
measures (mentioned above) are normalized, direct comparison of these measures across model/task
pairs leads to the following challenges:

1. Scale of the features across different source models can be arbitrary, for example ImageNet mod-
els with or without Batch Normalization layers.

2. The feature dimension (d) across different source models even for the penultimate layer can vary
significantly e.g. from 1024 in MobileNet to 4096 in VGG19. Normalization is not straight-
forward for many metrics such as MMD, KLD etc. Such differences makes source model/layer
selection for FT highly problematic.

3. d may be huge. Measuring discrepancy in high-dimensional spaces is both challenging and not
well-established due to curse of dimensionality (Rabanser et al.,[2019).

Our proposals to address challenges: We address the first challenge (outlined above) by stan-
dardizing both source and target feature embeddings via feature-wise standardization using source
features’ first and second order moments (z-score). See Supplement Section [S3.1] for more details.
This standardization is in contrast to independent z-score normalization of source and target em-
beddings, ensuring that measures that consider differences in moments e.g., CMD can effectively
capture such information even after standardization.

To address the second and third challenge (outlined above), we propose dimensionality reduction
of feature embeddings before computing unsupervised discrepancy measures. We project feature
embeddings to a lower g-dimensional space, where ¢ is taken to be the same across the competing K
models/layers and satisfies: ¢ < minga) g .. g0 |f G )\ where |.| operator denotes the cardinality
of the feature spaces. The dimensionality reduction allows for more meaningful comparison of
measures across source/target pairs; this is relevant for source/layer selection. More generally, it
also allows for faster and more robust estimate for limited target samples case (n; < d) for linear
and nonlinear FT. In the case of nonlinear FT, the intermediate layers of visual and language models
have really large d ~ 10°, see Table[S2|in Supplement Section for examples.
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We consider Principal Component Analysis (PCA) and Gaussian Random Projection (RP). Both use
a linear transformation matrix V' to derive the transformed features F' = FV; the former derives
an optimal orthogonal transformation to capture as much of the variance in the data, while the latter
samples components from A (0, %) to preserve pairwise distances between any two samples of the
dataset. Untrained auto-encoders (AE) are other alternatives that have been used to detect covariate
shifts in input distributions by Rabanser et al.|(2019). It is not known how sensitive these untrained
AE are to the underlying architecture—using trained AE is less appropriate for use in transferabil-
ity measurement for FT as those maybe more time-consuming than the actual FT. We demonstrate
improved correlation performance of unsupervised discrepancy measures with dimensionality re-
duction in Table Blin Section[3.1]for TTS and Table[lin Section3.2]for SMS.

5 EXPERIMENTS

We evaluate existing TMs and our proposed modifications in various FT regimes and data settings.
We draw inspiration from [Nguyen et al.| (2020) who consider TTS and SMS. The experimental
setup highlights important aspects of TMs, e.g., dataset size for computing empirical distributions,
covariance matrices and discrepancy measures, number of target classes, and feature dimension etc.
Some of these aspects have been overlooked when evaluating TMs, leading to improper conclusions.

Recent work usually considers either supervised or unsupervised domain adaptation. The proposed
measures to quantify transferability have mostly relied on the availability of target labels; hence, they
have been evaluated in supervised domain adaptation with FT. It has not been previously shown how
these measures compare against metrics that only rely on feature distributions e.g. MMD, CMD etc.
Therefore, we also provide an empirical evaluation of these measures and demonstrate that even
these measures can be effective at identifying the best model to transfer from—this allows for a
much broader applicability of the use of these discrepancy measures.

Fine-tuning with hyperparameter optimization The optimal choice of hyperparameters for FT is
not only target data dependent but also sensitive to the domain similarity between the source and
target datasets (Li et al.,|2020). We thus tune the hyperparameters for FT: we use Adam optimizer
and tune batch size, learning rate, number of epochs and weight decay (L2 regularization on the
classifier head). For tuning, we set aside a portion of the training data (20%) and try 100 random
draws from hyperparameters’ multi-dimensional grid. With this additional tuning complexity, we
performed 650 x 100 FT experiments. See additional information and motivation in Supplement[S4]

Evaluation criteria TMs are often evaluated by how well they correlate with the test accuracy after
FT the model on target data. Following Tran et al.|(2019); Nguyen et al.|(2020); Huang et al|(2021),
we used Pearson correlation. We include additional results with respect to rank correlations (e.g.,
Spearman) in Supplement Section We argue that considering correlation with the target test
accuracy is flawed in some scenarios. In particular, for TTS, it is wrong to compare target tasks
based on accuracy when C'is different e.g 5 vs 10 classes. In such a case, task with 10 classes will
have a high chance of arriving at lesser test accuracy compared to that for task with 5 classes. In this

case, it is more appropriate to consider the gain in accuracy achieved by the model over it’s random
Accuracy—1/C

baseline. Hence we use relative accuracy (for balanced classes): —jc This measure is
more effective in capturing the performance gain achieved by the same model in transferring to two
domains with different C. This also highlights the limitation of NCE, LEEP and A'LEEP which are
sensitive to C' and tend to have smaller values with higher C; these measures do not provide useful
information about how hard these different tasks when evaluated on the original accuracy scale.

Correlations marked with asterisks (*) in Tables are not statistically significant (p-value
> (0.05). Hyphen (-) indicates the computation ran out of memory or was really slow.

5.1 TARGET TASK SELECTION

We consider Small balanced (S-B) target data, small imbalanced (S-IB) and Large Balance (L-B).
See additional details in Supplement Section [S6|

Validation of H, (f) against Supervised TMs We empirically compare the shrinkage-based H-
score against the original measure by (Bao et al}[2019) with pseudo-inverse matrix of the sample
feature covariance. Table |l|demonstrates 80% absolute gains in correlation performance of H,, (f)



Under review as a conference paper at ICLR 2022

over H(f), making it a leading metric in many cases in small target data regimes. Table [2{demon-
strates how various supervised TMs perform on TTS when the number of target classes varies.
H, (f) dominates the performance in both cases, surpassing all supervised TMs.

Table 1: Correlation comparison of supervised TMs against FT target accuracy. Larger correla-
tions indicate better identifiability as quantified by TM. We compared our proposed H,, (f) against

original H(f) and state-of-the-art measures.

Fine-tuning  Target Data Model Regime H(f) H. (f) NCE LEEP  NLEEP  TransRate LFC LogME
VGGI19 SB 0.138% 0807 0656  0.647 0.800 0.564 0750 0.848
CIFAR-100 SIB 0.030% 0771 0573 0605 0.703 0.462 0.473 0.748
ResNeso 5B 0.034% 0.865 0663 0684 0.807 0273 0.773 0.833
Lincar SIB 0.103 0785 0560 0569 0.699 0437 0.518 0.819
VGG SB 0.004% 0.671 0523 059% 0.612 0415 0.437 0.735
CIFAR-I0 SIB 0.00T% 0808 0746 0817 0.830 0.287 0320  0.886
ReeNeso _SB 0.291 0733 0427 044 0,611 0.019* 0.565 0.705
S1B 0.170% 0.893 0656 0.703 0.752 0279 0,005 0832
) SB 0.165* 0729 0575 0589 0.674 0,029+ 0.700 B
Nonlinear  CIFAR-100  VGG19 SIB 0.032% 0487 0487 0542 0.551 0.480 0.173

Table 2: Correlation performance of TMs against relative accuracy for Large Balanced CIFAR-100
data with different number of classes across target sets.

Model H(f) Ha(f) NCE n-NCE | LEEP  n-LEEP | NLEEP n-NLEEP | TransRate  LogME
VGGI19 0.876 0.971 -0.949 0.655 -0.947 0.661 -0.932 0.945 0.681 0.968
ResNet50 | 0.950 0.979 -0.950  -0.736 | -0.950 -0.728 -0.936 -0.626 0.562 0.959

Validating Dimensionality Reduction for Unsupervised TMs Table [3| shows that unsupervised

discrepancy measures greatly benefit
from dimensionality reduction (DR).
Our findings are summarized below:

Table 3: Correlation performance of unsupervised TMs
(see Section ) in FT with/without DR in target task se-
lection for ImageNet Models.

e MMD and KLD greatly benefit
frOm .dll"nenSIOI.lah'ty redu.Ctlon as Target Model Regime DR CORAL MMD CMD OT KLD WD
they indicate significant improve- None | 036 015 060 028 028 03I
: S-B RP_[-0.16* 036 055 022 037 054
me.nt in all cases where the corre- VGG19 PCA [ 045F 060 055 012 038 052
lations hold significance. None [ 021% 002 _0.19_020 _-002F 0.7
. . SIB RP_[-006* 040 0.6 031 020 032
e For both CMD and WD, dimension- PCA 02T 044 020 007 014 0727

. I CIFAR-100 ' ' ' ' d '

a]lty reductlon ]mprove the Corre]a_ None | -0.36 0.02* 054 038 -021 050
.7 S-B  RP_[035 004 054 028 009 045
tion in 2/3 cases. ResNet50 PCA | 043 020 057 035 011046
; ; ; None | 008 -0.13* 0.24% 0.25° 0407 0.15%

[} -
oT .does not gamn from DR in esti SIB  RP_[0.04 __-020F 0.17% 024% -0.16* 0.12*
mating transferability. PCA [-007F __-0.15* 024% 021F -024% 018

5.2 SOURCE MODEL SELECTION

We select 9 small to large ImageNet models. We evaluate SMS for FT under small sample set-
ting. We sample 50 images per class from all classes available in the original train split of CIFAR-
100/CIFAR-10. We designate 10 samples per class for hyperparameter tuning.

Validation of H, ( f) against supervised TMs We highlight that proposed dimensionality reduction
techniques in Sectiondare also pertinent for supervised metrics like H-score for SMS with different
feature dimensions because the metric is measured in the feature space (despite using target labels).
Given that the feature dimensions vary significantly across different models , we apply RP to project
to 128-dimensional space (¢ = 128). This allows for more meaningful comparison of H-score across
source models and provides the gains of proposed H, (f) in SMS as well for small samples as given
in Table [d] making it again a leading metric in SMS.

Table 4: Correlation of proposed H, (f) without/with Random Projection (RP) for FT in SMS of
ImageNet Models in small data regime constructed from CIFAR-100.

Regime Target H(f) Ha(f)[NoRP] H,(f)[RP] NCE LEEP NLEEP TransRate LogME

Linear CIFAR-100 | -0.190* 0.024* 0.859 0.825 0.839 0.852 -0.204* 0.705
CIFAR-10 0.276* 0.277* 0.939 0.938 0.936 0.938 0.311* 0.923

Nonlinear CIFAR-100 | -0.108* 0.125%* 0.879 0.967 0.976 0.977 - -
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Comparison of Unsupervised TMs with Supervised TMs in identifying top model Table
demonstrates which of the metrics can be used to predict the best source model (Top-3 indicates
that the best model is in top 3 predictions sorted by this metric). We show that even unsupervised
TMs, which can be used both for supervised and unsupervised domain adaptation, exhibit excellent
performance in identifying top performing source. Note this performance of unsupervised TMs is
with dimensionality reduction (as outlined in Section ). For linear FT, all of the supervised mea-
sures (except for original H-score and TransRate) and unsupervised metrics (except for OT) include
the best model in their top 3 predictions. For tuning additional layers, all unsupervised metrics are
able to do the same with random projection.

Table 5: Model identification (as measured by Top-3) by supervised/unsupervised measures for FT
in SMS of ImageNet Models in small data regime.

Supervised TMs Unsupervised TMs
Regime Target |[H(f) Ho (f) NCE LEEP NLEEP TransRate LogME|[ CORAL MMD CMD oT KLD WD
None RP|None RP|None RP|None RP|None RP|None RP
Lincar CIFAR-100| v 4 v v 4 v v/ v Vv Vv |V /| /S
CIFAR-10 X v v v v X 4 X V| X V| v VX X| v/ V| X /
Nonlinear CIFAR-100| X 4 4 v v - - - I x vV V|V - V|-V

5.3 TIMING COMPARISON BETWEEN LOGME AND H,(f)

We empirically investigate the computational times of He, (f)

when computed via our optimized implementation in (). For Taple 6: Timing comparison of
this exercise, we generate synthetic multi-class classification [ ogME and our shrinkage-based
data using Sklearn (Pedregosa et al., [201 1)) multi-class dataset H-gcore. All times are in m.s.
generation function that is adapted from |Guyon| (2003). We

investigate different values for number of samples (n;), feature _n: | d | |¥] = C |LogME| H(f) | Ha(S)

500 [ 500 50 150 95 20

dimension (d) and number of classes (C). For data generation, —51500 125 300 T 300 66

we set number of informative features to be 100 with the rest 500 | 5000 50 39100 | 9680 | 1400

- . 500 | 10000 50 296000 | 80000 | 5280

of the features filled with random noise. Table [6l demonstrates  —g+o00—10 5T 6
a significant computational advantage of H (f) over LogME. 500 | 1000 | 100 358 | 202 | 69
: : : 100 | 1000 50 305 248 19

We observe 3 — 55 times faster computational times. LogME ot T=0 e B e

seems intractable both with respect to memory and time for
d ~ 105 as exposed by the nonlinear settings in Table|1|and E}

6 CONCLUSION

We study both supervised and unsupervised TMs in the context of FT. For supervised TMs, our
contributions are three-fold. First, we show that H-score measure, commonly used as a baseline for
newer supervised TMs, suffers from instability due to poor estimation of covariance matrices. We
propose shrinkage-based estimation of H-score with regularized covariance estimation techniques
from statistical literature. We show 80% absolute increase over the original H-score and show supe-
rior performance in 9/15 cases against all newer TMs across various FT scenarios and data settings.
Second, we present a fast implementation of our estimator that provides a 3—55 times computational
advantage over state-of-the-art LogME measure. Unlike LogME, our optimized implementation for
our estimator is tractable even for really high-dimensional feature embeddings ~ 10°. Third, we
identify problems with 3 other supervised TMs (NCE, LEEP and N'LEEP) in TTS (an understud-
ied FT scenario than SMS) when either the number of target classes or the class imbalance varies
across candidate target tasks. We propose an alternative evaluation scheme that measures correla-
tion against relative target accuracy (instead of vanilla accuracy) in such scenarios. For unsupervised
TMs, we identify challenges with computation and propose dimensionality reduction methods for
better estimation and effective comparison of such measures when the feature dimensions are large
and/or different across various source models. We show that even unsupervised TMs can be effec-
tive in identifying the best source ImageNet model with our proposals. Our large set of 65,000 FT
experiments with multiple ImageNet models and different regimes generated from CIFAR-100 and
CIFAR-10 image datasets demonstrates usefulness of our proposals. We leave it for future work to
explore how predictive various TMs are for co-training regimes (as opposed to FT).
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SUPPLEMENTARY MATERIAL

S1 ACRONYMS

Table S1: List of acronyms used in the paper.

Terms Acronyms
Transferability Measure ™
Target Task Selection TTS
Source Model Selection SMS
Fine-tuning FT
Dimensionality Reduction DR
Principal Component Analysis PCA
Random Projection RP
Small-Balanced S-B
Small-Imbalanced S-1B
Large-Balanced L-B

S2 SUPERVISED TRANSFERABILITY METRICS

S2.1 ADDITIONAL DISCUSSION ON SAME SHRINKAGE o FOR THE TWO COVARIANCES IN

SHRINKAGE-BASED H-SCORE

The covariance X(*) can not be shrunk independently of 3(/) in the estimation of H,,(f)— the two
covariances are coupled by the law of total covariance:

»() — E[g(fy)] + 3@, (S1)

where fy denotes the feature embedding of target samples that belong to class Y € ) and Z(/v) =
Cov(f|Y') denotes the class-conditioned covariances. We can write

(1-a)2¥) =1 - )E[E)) 4+ (1-a)xn®),

(g(f)) tr(g(f))

t
e, ) = (1 - )2 4 o2 L= (1 - EEP)] + a2 L+ (1 - )50,

(82

Comparing (S2)) with (ST)), we see that the same shrinkage parameter « should be used when using
shrinkage estimators, to preserve law of total covariance. The first two terms on the right side in (S2)
can be understood as shrinkage of class-conditioned covariances to the average (global) variance.
The third term in (e.g. (1— oz)E(Z)) can then be understood as ridge shrinkage as in .

S2.2 CHOICE OF « IN TERMS OF IMPACT ON SHRINKAGE-BASED H-SCORE

Following the synthetic example showing the unreliability of the original H-Score in Section[3.1] we
further visualize the effect of using non-optimal values of alpha on the shrinkage-based H-Score. We
can see that the shrinkage-based H-Score with optimal shrinkage o* is much closer to the population
version of the original H-Score, especially for smaller sample cases. This validates the use of a* as
computed in equation

13
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—— H(f)-Population
—— H(f)-Empirical

60 —— Hacg(f)
@ —— Hg=0.01(f)
5 40 Hg=0.1(f)
b —— Hg=os(f)

20 Ha=0.9(f)

102 103 104
Number of samples

Figure S1: Effect of a on shrinkage-based H-Score.

S2.3 DERIVATION OF OPTIMIZED IMPLEMENTATION FOR H,(f)

We derive an optimized computation for our proposed shrinkage-based H-score H, (f) for small
target data (C' < n; < d) as follows:

Ha(f) =t (507 (- am0) = Loy (@m n “‘“)FTF> - ZTz> ,

ng s
_(-a) <<Id+ @_CV)FTF>1RRT> :

— a0
=) (1 (o) B (o, + P R)RRT). 9
= (e (TR) - (1- ) w (@TWG), &Y
= L (IR~ (1 - ) vee (@) vee (W6)). 52

where R = [w/nlfyzl, e ,./ncfyzc] eR*XC G =FReR"*® W =n,a0l,, + FFT ¢
R (S3) follows by Woodbury matrix identity (I +UV)" ' =TI -U(I +VU)"1V) (Max|
1950) and (S4) and (S3)) follow by trace properties.

S2.4 NORMALIZATION OF NCE

NCE (Tran et al., [2019) evaluates conditional entropy between target pseudo labels Z(*) (source
model’s assigned labels) and actual target labels, as given by:

1 &
NCE(Y ®|z®) = - Z log py )|z (Yil 2i) (S6)
ti=1
The conditional entropy of the target labels conditioned on the dummy labels (source model’ labels
on target data) is:

HY|1Z) =~ 3 praly2) log pyiz(y]2) (s7)
yeY,zeZ
It holds that 0 < H(Y'|Z) < H(Y) (see appendix |S2.4.1). Negative Conditional Entropy (NCE)

is given by NCE = —H(Y'|Z) and it holds that 0 < —NCE < H(Y). We normalize the NCE as
follows:

NCE

0= 70 > -1 (S8)
NCE
0§1+H(Y)§1 (89)
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where in (S8) we use the fact that entropy is greater than 0 for any practical classification task.

S2.4.1 PROOF OF BOUNDS ON CONDITIONAL ENTROPY

H(Y|Z)=- Y pvz(y.2)logpy z(yl2) (S10)
yeY,z€Z
=Y pz(2) |- Y pyiz(yl2) log py 2 (yl2) (S11)
zEZ yey
=Y pz(2)H(Y|Z = z) (S12)
z2€Z
>0 (S13)

where (S13)) holds because H(Y'|Z = z) > 0 and holds with equality if and only if Y is a determin-
istic function of Z.

H(Y|Z) = - Z py,z(y, z)log pyz(y|2) (S14)
yeEY,ZzEZ
)2
== > przly.2) log 2¥:2(8:%) (S15)
YEY,2€2 pz(2)
y % z
= > py(y)pY’Z((y) ) log pZ(( )Z) (S16)
yey)zez pY y pY7Z y7
pyz(y,2) pz(2)
<D py(y) lo (S17)
gz v g; py(y) pv.z(y,2)
= py(y)logpy () (S18)
yey
=H(Y) (S19)

where (S17) holds by Jensen inequality.

S3 UNSUPERVISED TRANSFERABILITY MEASURES

We denote the target feature embeddings by f; = h(x t)) € R%,i € [ny] and the source feature

embeddings by g, = h( ) € R?, j € [n,], where h denotes the feature extractor from the source
model.

S3.1 SOURCE AND TARGET FEATURE EMBEDDINGS STANDARDIZATION

We standardize both source and target feature embeddings via feature-wise standardization using
source features’ first and second order moments (z-score) as follows:

gjk = (gjk — mean(g.x))/std(g..r) (520)
fit = (fir — mean(g. x))/std(g:,x) (S21)

S3.2 COMPUTATION OF UNSUPERVISED TMS

We list formulae for 6 different distribution discrepancy measures that don’t use target labels and
instead rely only on source and target feature embeddings.

o Correlation Alignment (CORAL) Sun & Saenko| (2016) measures discrepancy between the
second-order statistics (covariances) of the source and target features as given by:

1 2
CORAL = — Hg(f) _%n©)
a2 F

where (/) denotes the sample covariance of target features f and X(9) denotes the sample
covariance of source features g.

(S22)
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o Maximum Mean Discrepancy (MMD) Long et al|(2015) measures the distance of distributions
by projecting them into a rich kernel space. In practice, an estimate of the MMD compares
the L, distance between the empirical kernel mean embeddings of the learnt source and target
features. Given samples from both source and target feature embedding distributions, we calculate
an unbiased estimate:

Ns Ng ne N

MMD? = QZZ (9i,95) WZZ (gi, f5) + 222 (fi. f;), (S23)

S’Lljl i=1j=1 toi=1j=1

where x denotes the radial basis kernel given by (a,b) = e~lla=bl*/2r " To reduce sensitivity
of MMD to a particular kernel, we use a combination of radial basis kernels functions with r €
{1,5,10} as per|Long et al. (2015).

o Central Moment Discrepancy (CMD) [Zellinger et al. (2019) compares means and higher order
moments of feature embedding distributions (without projection into kernel space). Given sam-
ples from the source and target feature embedding distributions, we only consider the marginal
central moments (up to order of 5). The unbiased estimator of the CMD is given by

1
CMD = - [E () \\2+Z|b_ 7 llew (g) — e ()l - (S24)

where ¢, (f) = E [(f —-E [f])k] ,c(g) = E [(g —-E [g])k] denote the k-th order moment of

f and g respectively. a, b denotes the joint distribution support of the source and target feature
embeddings.

o Optimal Transport (OT): This measure considers the optimal energy required to shift distributions
from source features to target features. The measure has been well-studied to compare distribu-
tions, see Rubner et al.|(1998]) amongst others. In practice, we solve an optimal transport problem
given by

1 o1
OT= min 3 yres stoyl= 1 9T1=_1 (S29)
'YER jENs, k€N s
where c; .. = [|g; — fl|, denotes the cost of transporting sample feature from source distribution

to target distribution. There are entropy regularized variants that include entropy of coupling
matrix and efficiently solve the optimization problem with Sinkhorn algorithm (Cuturi, |2013).

e Kullbach Leibler Divergence (KLD) and Wasserstein Distance (WD) under Multivariate Normal
Assumption: We consider two discrepancy measures under multivariate normal distribution as-
sumptions for source and target features A'(g, £(9)) and N'(f, £(/)). The closed-form solutions
for these two measures are given below:

E(: ((B07'S0) 4 (F-g) 5O (F - g)},

KLD = — {1

WD — \/Hg —fI (2(9) L2 — 9 (2(9)1/22(1“)2(9)1/2))

S4 TUNING HYPERPARAMETERS

Current practices for FT typically involve a selection of values for hyperparameters when retraining
the model on target data. Given that the target datasets are typically small in the transfer learn-
ing scenarios, the typical strategy is to adopt the default hyperparameters for training large models
while using smaller initial learning rate and fewer epochs for FT. It has been believed that adhering
to the original hyperparameters for FT with small learning rate prevents catastrophic forgetting of
the originally learned knowledge or features. Many studies have used fixed hyperparameters (e.g.
learning rate, momentum and weight decay, number of epochs) for FT. However, the choice of hy-
perparameters is not necessarily optimal for FT on target tasks. Earlier work has reported that the
performance is sensitive to the default hyperparameter selection, in particular learning rate, momen-
tum (for stochastic gradient descent), weight decay and number of epochs (Mahajan et al., 2018;
Kornblith et al., 2019; [Li et al., [2020). The optimal choice of these parameters is not only target
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data dependent but also sensitive to the domain similarity between the source and target datasets (Li
et al.,[2020). Therefore, in order to ensure the target task accuracy (against which the correlation of
transferability metrics is measured) is optimal, we repeat the FT exercise for 100 trials of hyperpa-
rameter settings. We employ Adam for FT experiments and optimize over batch size, learning rate,
number of epochs and weight decay (L2 regularization on the classifier head). We select the space
of these hyperparameters based on existing literature on FT, e.g. the learning rate is varied in the
range [le—1, 1le — 5], the number of epochs between {25, 50, 75, 100, 125, 150, 175, 200}, the batch
size between {32, 64, 128} and the weight decay in the range [le — 6, 1le — 2].

S5 FEATURE EMBEDDING LAYERS FOR LINEAR AND NONLINEAR
FINETUNING

Table S2: Feature extraction layer in ImageNet models for nonlinear FT. The names are from pre-
trained ImageNet models in Tensorflow Keras https://keras.io/api/applications/.

Linear Fine-Tuning Nonli Fine-Tuning
Feature Embedding Layer Feature di i Feature Embedding Layer Feature Dimensions
VGG19 penultimate 4096 block3_pool 28 X 28 x 256 = 200, 704
ResNet50 penultimate 2048 conv2_block3_out 28 X 28 X 256 = 200, 704
ResNet101 penultimate 2048 conv2_block3_out 28 X 28 X 256 = 200, 704
DenseNet121 penultimate 1024 pool2_pool 28 X 28 x 128 = 100, 352
Models DenseNet201 penultimate 1920 pool2_pool 28 X 28 x 128 = 100, 352
Xception penultimate 2048 add_6 14 X 14 X 728 = 142,688
InceptionV3 penultimate 2048 mixed4 12 X 12 X 768 = 110, 592
MobileNet penultimate 1024 conv_pw_6_relu 14 X 14 X 512 = 100, 352
EfficientNetB0 penultimate 1280 block3a_activation 28 X 28 x 144 = 112,896

S6 TARGET TASK SELECTION EXPERIMENTS SETUP

This evaluation regime is motivated by task transfer policy learning in robotics/reinforcement learn-
ing. Under this regime, transferability measures can be used to greedily optimize a task transfer
policy given a collection of tasks. For instance, a robot has to automatically select which new object
to pick up. Given that the robot has learned to pick up a few objects before, it would be beneficial
for the robot to optimally select the most transferable source/task object pair and improve it’s ma-
neuvering ability throughout the process in a highly efficient manner. TMs can also shed light on
the relatedness of different tasks in reinforcement learning setups for better understanding.

We currently evaluate target task selection regime on visual classification tasks with both VGG19
(Simonyan & Zisserman, 2015) and ResNet50 (He et al., 2015) models on subsets of CIFAR-
100/CIFAR-10 data under three different dataset regimes following Nguyen et al.| (2020). In all
3 cases outlined below, 20% of the samples from the randomly generated subsets is designated as
validation set for hyperparameter tuning to find the model with with optimal validation accuracy. We
use all examples in the original test set for evaluating out-of-sample accuracy performance on the
target data. Both training and validation samples in the subsets are used for computation of transfer-
ability metrics and we report the correlation of these measures against the (relative) test accuracies
for the randomly generated subsets.

e Small-Balanced Target Data: We make a random selection of 5 classes from CIFAR-100/CIFAR-
10 and sample 50 samples per class from the original train split, out of which we designate 10
samples per class for validation. We repeat this exercise 50 times (with a different selection of
5 classes), fine-tune the model for each selection (100 hyperparameter tuning trials per selection
to find finetuned model with optimal validation accuracy) and evaluate performance of those
optimal models in terms of test accuracy. We then evaluate rank correlations of TMs across the
50 experiments with random selection of 5 sub-classes.

o Small-Imbalanced Target Data: We make 50 random selections of 2 classes from CIFAR-
100/CIFAR-10, sample between 30 — 60 samples from the first class and sample 5x the number
of samples from the second class. This makes for a binary imbalanced classification task. We
again measure performance of transferability measures against optimal target test accuracy.

o Large-Balanced Target Data with different number of classes: We randomly select 2-100 classes
from CIFAR-100 and include all samples from the chosen classes (500 samples per class). This
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constructs a range of large balanced dataset target task selection cases. We evaluate correlation of
TMs with relative target test accuracy across the variable number of target classes.

S7 SPEARMAN RANK CORRELATION PERFORMANCE OF SUPERVISED
TRANSFERABILITY MEASURES

We present rank correlation performance of all supervised TMs across various FT scenarios (tar-
get task selection and source model selection), FT strategies (linear and nonlinear) in various data
regimes. Table[S3|combines setups in Tables [T} [2] and[f]and presents Spearman correlation perfor-
mance of H, (f) against supervised TMs. Correlations marked with asterisks (*) are not statistically
significant (p-value > 0.05). Hyphen (-) indicates the computation ran out of memory on 128GB
RAM and/or was really slow.

Table S3: Spearman correlation comparison of supervised TMs. Larger correlations indicate better
identifiability as quantified by TM. We compared our proposed H, (f) against original H(f) and
state-of-the-art measures. For L-B regimes in the table we correlate against relative accuracy. For
other rows, we use vanilla accuracy.

FT scenario FT strategy ~ Target Data Model Regime | H(f) Ha(f) n-NCE n-LEEP n-NLEEP TransRate LogME
VGG19 S-B -0. 19i* 0.77 0.67 0.67 0.81 0.56 0.86
CIFAR-100 S-1IB -0.07* 0.71 0.64 0.63 0.72 0.40 0.79
L-B 0.96 0.97 0.50 0.44 0.95 0.91 0.96
. S-B 0.13% 0.80 0.63 0.65 0.78 0.19% 0.82
Target Task Selection Linear ResNetS0 15— 000 076 057 058 0.69 041 051
L-B 0.98 1.00 -0.89 -0.86 -0.74 0.90 0.99
VGG19 S-B 0.06’:‘ 0.57 0.49 0.49 0.55 0.30 0.65
CIFAR-10 S-1IB 0.21% 0.72 0.76 0.85 0.85 0.32 0.86
ResNet50 S-B -0.31 0.60 0.28 0.29 0.51 0.03* 0.59
S-IB 0.35 0.76 0.64 0.69 0.72 0.25% 0.76
R S-B -0.00% 0.76 0.61 0.62 0.71 - -
Nonlinear CIFAR-100  VGGI19 T8 0,03 039 0.62 0.62 0,68 = -
Linear CIFAR-100 - Small 0.30% 0.88 0.83 0.83 0.80 0.35% 0.83
Source Model Selection CIFAR-10 - Small 0.07* 0.88 0.93 0.92 0.92 0.07* 0.95
Nonlinear ~ CIFAR-100 - Small 0.052* 0.96 0.93 0.93 0.93 - -

With respect to Spearman correlations in the table above, our shrinkage-based H-score H,, (f) leads
in 7/15 cases and LogME leads in 8/15 cases. In terms of Pearson correlations, H,, (f) leads in 9/15
cases (Tables[I} 2| ) and LogME leads in 4/15 cases. Additionally, LogME seems to be intractable
with respect to memory and computational speed for nonlinear settings where feature dimension is
large (d ~ 10%). Our efficient implementation for H,, (f) provides a 3 — 55 times computational
advantage over LogME.

S8 EXPERIMENTAL CODE AND TYPE OF RESOURCES

We use Tensorflow Keras for our implementation. Imagenet checkpoints (Resnet and VGG) come
from Keras https://keras.io/api/applications/. For experiments, we use 2 P100 GPUs per model,
15GB RAM per GPU
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