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Abstract

Graph Neural Networks (GNNs) have become an essential tool in relational learn-
ing. However, most research has focused on undirected graphs, overlooking the
directional structure that shapes many real-world systems. Directionality encodes
important asymmetries in domains such as traffic routing, social networks, and
causal modeling, where ignoring edge orientation may lose semantic information
and hinder predictive performance. At the same time, message passing in GNNs
is limited by over-squashing and long-range dependency, challenges that can be
alleviated by modifying the graph topology. While recent rewiring techniques
based on spectral graph theory have shown promise for undirected graphs, they
do not extend naturally to directed settings. In this work, we introduce a rewiring
framework for directed graphs that improves information flow while preserving
inherent asymmetries and reachability constraints. Our method directly tackles
over-squashing and long-range dependency issues, advancing graph rewiring into
the directed regime and broadening the use of GNNss in critical real-world tasks.

1 Introduction

Graph Neural Networks (GNNs) [1-3] have achieved remarkable success in domains such as recom-
mendation systems [4], molecular property prediction [5], and material sciences [6]. Their power lies
in the message-passing paradigm [7], where nodes iteratively update their representations by aggre-
gating information from their neighbors. Despite this success, most GNN research and benchmarks
focus on undirected graphs. Standard datasets [8, 9] are either inherently undirected or preprocessed
by symmetrizing edges, thereby erasing the directional nature of information flow that is fundamental
in many real-world systems.

In applications such as traffic routing, knowledge graphs, and online influence modeling, edge
direction encodes critical asymmetries [10]. Ignoring this structure discards semantic richness and
risks undermining predictive performance. Indeed, directionality is central not only in graph data
but also in broader machine learning contexts: sequence and causal models operate over directed
acyclic structures [11], from word order in language [12] to algorithm execution [13], and temporal
graphs [14]. Recent theory further highlights the unique challenges of directed graphs [11, 12],
including oversquashing in high in-degree regions and difficulties generalizing out-of-distribution.
These observations underscore the need for GNNs explicitly designed for directed settings.

At the same time, message passing faces two long-standing limitations: oversquashing [15], where
information is compressed through narrow structural bottlenecks, and poor long-range dependency
modeling [9], since many rounds are required for signals to traverse distant nodes. A growing body
of work addresses these issues through graph rewiring, i.e., modifying the topology to improve
information flow. For undirected graphs, strategies based on spectral properties [16] such as curvature
[17] and effective resistance [18, 19] have shown promise. Yet these tools do not naturally extend
to directed graphs, which lack symmetry, straightforward spectral decompositions, and mutual
reachability. As a result, principled rewiring techniques for directed graphs remain largely unexplored.
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In this work, we close this gap by introducing a rewiring framework tailored to directed graphs. Our
approach quantifies information flow in directed structures and proposes rewiring strategies that
alleviate oversquashing and extend long-range dependency modeling. By handling challenges unique
to directed graphs, such as inherent asymmetries and reachability constraints, our method expands
the scope of graph rewiring and enables GNNs to better capture the structure of real-world data.

2 Information Bottlenecks in Directed Message Passing

We represent a directed graph as G = (V, &), with nodes V, directed edges £ C V x V, and node
features X € R"*4. Each edge (u,v) € € indicates a one-way connection from u to v, and u — v
means that node v is reachable from node w.

Directed message passing. Extending message passing neural networks (MPNNs) to directed
graphs requires explicitly modeling edge orientation. Approaches include magnetic Laplacian filters
in MagNet [20], direction-aware attention in transformer architectures [21-23], and Dir-GNN [10],
which separates in- and out-neighbors. For example, the Dir-GNN update at layer k is:

m{}) = AGGREGATE(Y ({1 (x* "V x{* " e;) : (j.i) € £}) , 1
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On the other hand, rewiring usually modifies the graph itself, offering a model-agnostic way to relieve
bottlenecks. Most existing methods, however, are designed for undirected graphs, making it essential
to study how such bottlenecks can be tackled in directed graphs.

Long-range dependency. Message passing is inherently local: after £ layers, a node only accesses

its £-hop receptive field RS,Z). Capturing long-range dependencies therefore requires many layers,
which increases cost and risks over-smoothing [24]. Solutions include skip connections, positional
encodings, and rewiring strategies that shorten path lengths, such as diffusion-based edges [25, 26] or
curvature-based modifications [17, 27]. Yet these rely on spectral tools suited to undirected graphs,
making extensions to directed settings challenging due to asymmetry and reachability.

Oversquashing. Oversquashing arises when signals from many nodes are forced through a few
intermediaries, compressing them into indistinguishable embeddings [15] which leads to information
loss. While oversquashing is more likely to arise with long-range dependencies, their formal
relationship remains an open research question [9]. Rewiring has proven effective in undirected
graphs—via resistance [18], commute time [28], or curvature [17]—but these approaches again
depend on spectral formalisms. In directed or DAG-like structures, oversquashing has been linked to
high in-degree nodes and poor dispersion [29, 30]. This motivates our work: model-agnostic strategies
tailored to directed graphs, designed to improve information flow while respecting asymmetry.

3 Methodology

We propose a rewiring framework for directed graphs that builds on shortcut sets and edge connectivity
to address long-range dependency and oversquashing, while also handling the unique challenges of
asymmetry and reachability and maintaining its scalability and efficiency.

3.1 Shortcut set rewiring

We address the long-range dependency challenge using the concept of a shortcut set. Let G = (V, €)
be a directed graph, and let TC(G) = (V, £*) denote its transitive closure. A set of edges S C £* is
called a d-shortcut set if the augmented graph H = (V, € U S) preserves the same reachability as G,
and for every reachable pair u,v € V, there exists a path from u to v in H of length at most d. In
essence, the shortcut set compresses long paths, reducing the graph’s diameter while maintaining its
asymmetric reachability structure.
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To construct such a shortcut set efficiently, we adopt the classic \/n-sampling algorithm [31], which
guarantees d = O(y/n) with only O(n) additional edges. The algorithm proceeds as follows: each
node is independently sampled with probability 1/1/n to form a landmark set L. Then, for every
pair (a,b) € L x L, if b is reachable from « in G, we add the edge (a, b) to the shortcut set S. The
intuition is that long paths in GG are likely to pass through landmarks near their endpoints, allowing a
single shortcut to dramatically reduce path length. With high probability, this yields an augmented
graph H with diameter O(+/n), unchanged reachability, and a linear number of added edges.

In our framework, we treat the shortcut edges in S as rewired edges. This rewiring strategically
reduces the diameter and enhances the model’s ability to capture long-range dependencies, while
preserving directed reachability constraints for modeling asymmetric systems. The linear edge budget
further ensures that our approach remains efficient and scalable.

3.2 Greedy edge-connectivity rewiring

Another limitation of message passing is oversquashing, where information from many nodes is
funneled through a few edges and compressed. Prior work has addressed this with influence-based
metrics such as effective resistance [18], but these are spectral and not well-suited for directed graphs.
We instead use edge connectivity, defined as the number of edge-disjoint u—v paths, which directly
captures topological bottlenecks and naturally extends to asymmetric settings.

To keep the method scalable, we restrict computation to ¢-hop edge connectivity, where £ matches
the number of message-passing layers. Preserving this locality is also beneficial, as locality-aware
rewiring has been shown to reduce the loss of structural information from the original graph [19]. For
each source node u, we run a BFS to depth £ to build the layered subgraph

<UV,5 {(z,y) € £: 2 € Vi(u), y6%+1(u)f0rsomet<€}>,

where Vi (u) = {v € V : dg(u,v) = t} is the ¢-hop neighborhood of u. The directed (-hop edge
connectivity from u to v is then defined as

9 (u — v) = max{k : there exist k edge-disjoint . — v paths in Dy(u)}.

By Menger’s theorem, this value is equal to the size of the minimum edge cut separating v and v
within Dy(u). Low values of x(*) indicate bottlenecks that are most vulnerable to oversquashing.
Given a budget of k edges to add, we first sample K > k candidate node pairs (u, v) and retain only
those where v is reachable from  in G. For each remaining pair, we compute r(*) (u — v), rank
the pairs by ascending connectivity, and select the top &, excluding edges already in £. Because all
shortcuts are chosen from the transitive closure TC(G), reachability is preserved. In this way, our
method reinforces the weakest connections, reducing oversquashing while maintaining locality.

3.3 Combined strategy with R-GNN

Rewiring augments the graph with new edges that play different roles: original edges preserve
structural information, while rewired edges improve connectivity. Standard GNNs treat all edges
uniformly, leading to suboptimal trade-offs. To address this, we use relational GNNs (R-GNNs) [32],
which assign separate parameters to different edge types. An R-GNN layer updates node v as

hq(]k+1) (}11()16)7 gz ue%:(v) Vpr (h( ) ) )

where R denotes a relation type, such as original or rewired edges. This setup lets the model learn
when to rely on local structure and when to exploit rewired edges for long-range communication. By
parameterizing vy, separately, the R-GNN balances locality and connectivity, which is especially
valuable in directed graphs where both asymmetry and bottlenecks must be respected.

4 Experiments

Additional details of results, datasets and experiment setup are in Appendix B and C.
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4.1 Synthetic datasets

Since there are no benchmarks dedicated to long-range dependency and oversquashing in directed
graphs, we construct synthetic datasets to probe these properties directly. We design three algorithmic
tasks—cycle detection (Cycle), reachability (Reach.), and topological sort (Topo.)—on random
directed graphs. These tasks are inherently global: detecting cycles, checking reachability, or
recovering a valid topological order cannot be solved using only local information. Directionality is
also crucial, as preserving asymmetry is key to faithfully modeling these problems.

Most existing rewiring strategies focus on
undirected graphs and rely on spectral prop-
erties that do not extend naturally to the

Table 1: Performance of rewiring strategies on synthetic
datasets (mean =+ std). Best in red, second best in blue.

directed setting. As a directed baseline,

. . .. Method Cycle Reach. Topo.
we adopt Stochastic Discrete Ricci Flow Y P
(SDRF) [17] and compare it with our two ~ None 68.46 = 1.65 71.53£6.93 2.75£0.64
proposed methods based on shortcut set EE}EF . gg;g i gg ;‘;gé i ggg 38} i }83
L ortcu . . . . . .
Shortcut and greedy edge connectivity 5 4 'pe 69'00 £ 310 77.12 £ 7.23 316+ 0.45

Greedy EC. We use Dir-GCN [10] as
the base model. Table 1 shows that both
shortcut-based and greedy rewiring outperform the vanilla baseline. Gains are most significant on
reachability, where reducing the effective diameter improves information propagation. Greedy edge
connectivity achieves the best results across tasks, underscoring the importance of directly targeting
structural bottlenecks while preserving locality.

4.2 Real-world datasets

To complement the synthetic experiments, we evaluate on two real-world heterophilic webpage
graphs, Chameleon and Squirrel [33], which are particularly challenging since neighboring nodes
often have dissimilar labels and directionality is proved to be informative [10]. We test three base
models (Dir-GCN, Dir-GAT, Dir-SAGE [10]). We also include a Combined method that applies
shortcut set and edge connectivity together, using the same settings as in their individual variants and
assigning relation type 1 and 2 in R-GNN, respectively.

Table 2 summarizes the results. On both heterophilic datasets, rewiring consistently improves
performance over the baseline, with shortcut sets and greedy edge connectivity providing the largest
gains. However, we observe that the Combined variant underperforms the individual strategies, likely
due to the difficulty of R-GNN in balancing multiple edge types and the possibility of conflicting
signals between the two rewiring methods. Finally, we note that gains on these real-world datasets
are smaller than in the synthetic tasks, underscoring the need for benchmarks explicitly designed to
test long-range dependency in directed graphs.

Table 2: Performance of different rewiring strategies on real-world datasets (mean + std). The best
is highlighted in red and the second best is highlighted in blue.

Dataset Model None SDRF Shortcut Set Greedy EC Combined

Chameleon Dir-GCN  78.88 +£2.25 79.17+£1.55 79.60£1.36 79.23£2.13 78.96+1.69
Dir-SAGE  58.37£1.94 5891+1.91 5893+1.79 59.56+ 1.91 58.29+1.19
Dir-GAT  63.33£2.17 64.32+2.31 63.46+£2.10 64.91+3.34 63.77£3.04

Squirrel Dir-GCN  73.45+£1.25 7423+1.19 7459+1.82 75.02+£1.58 74.78+1.92
Dir-SAGE  45.92 £2.02 46.09 £2.98 46.74 +£1.99 46.54+2.63 46.42+2.70
Dir-GAT  65.82£2.90 66.34+2.31 65.92+2.42 66.52+2.19 66.32+2.21

5 Conclusion

We presented two model-agnostic rewiring strategies for directed GNNs—shortcut sets and greedy
edge connectivity—that reduce diameter, mitigate oversquashing, and preserve reachability. By
integrating these with relational GNNs, the model can adaptively balance local structure with long-
range connectivity. Experiments on synthetic tasks tailored for directed long-range reasoning and
on real-world citation and webpage graphs demonstrate consistent improvements. These findings
establish rewiring as a powerful tool for improving information flow in directed GNNs and underscore
the need for benchmarks that more systematically evaluate long-range reasoning in directed settings.
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A Additional Related Works

Oversquashing and graph rewiring. Oversquashing, where signals from many distant nodes
are compressed into fixed-size representations, is a well-known limitation of GNNs, particularly
in deep architectures and sparse graphs [15, 34]. This challenge arises directly from the topology
of the underlying graph. To mitigate it, a large body of work has explored graph rewiring, which
modifies the input structure to ease topological bottlenecks. Most existing approaches focus on
undirected graphs and rely heavily on spectral tools. Examples include diffusion-based rewiring
[25, 26], curvature-driven modifications [17, 27, 35], rewiring via effective resistance [18], and
methods that reduce over-smoothing or commute time [28, 36]. While effective for undirected graphs,
these strategies do not translate naturally to directed settings. The lack of a theoretical connection
between oversquashing and spectral properties in directed graphs highlights the need for alternative
approaches. This motivates the development of rewiring strategies tailored to directed graphs.

Directed graph neural networks. More recently, models explicitly designed for directed graphs
have emerged to address the shortcomings of undirected-centric methods. MagNet [20], for instance,
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introduces direction-aware spectral filters using the magnetic Laplacian and complex-valued con-
volutions. DirGNN [10] distinguishes between incoming and outgoing edges to improve effective
homophily in heterophilic graphs, although its advantages diminish when edges are symmetrized.
Transformer-based approaches such as Transformers Meet Directed Graphs [21], HoloNets [23], and
Transformers over DAGs [22] extend positional encodings, spectral methods, or causal attention to
incorporate directionality. While promising, these models rely on architecture-specific modifications
to encode directionality. In contrast, rewiring offers a model-agnostic alternative: instead of redesign-
ing message passing, it modifies the graph itself to alleviate bottlenecks and improve information
flow. Our work builds on this perspective, introducing a model-agnostic rewiring framework that can
be paired with any directed GNN architecture to reduce oversquashing and enhance learning.

B Additional Experiment Results

We additionally report results on the homophilic citation graphs Cora-ML and Citeseer-Full [37]. Un-
like the heterophilic datasets in the main text, these benchmarks exhibit strong local label homophily,
meaning that neighboring nodes already provide highly informative features. As a result, rewiring
yields only minor improvements across all base models, consistent with prior observations that
directionality is less critical in homophilic settings [10]. These findings reinforce the complementary
nature of our study: while rewiring proves most valuable in heterophilic graphs where long-range
dependencies play a larger role, its impact is limited when local neighborhoods already align well
with the task. More broadly, this underscores the lack of real-world directed benchmarks that truly
stress-test long-range reasoning and oversquashing, highlighting the need for datasets that go beyond
citation graphs and webpages and better capture the structural challenges of directed settings.

Table 3: Performance of different rewiring strategies on real-world datasets (mean = std).

Dataset Model None SDRF Shortcut Set  Greedy EC Combined
Chameleon  Dir-GCN  78.88 £2.25 79.17+£1.55 79.60+1.36 79.23 +£2.12 78.96 £ 1.69
Dir-SAGE 58.37+1.94 5891+191 5893+1.79 59.56+1.91 58.29+1.19
Dir-GAT 63.33 £2.17 64.32£2.31 63.46+2.10 64.91+£3.34 63.77+3.04
Squirrel Dir-GCN  73.45+1.25 74.23+1.19 74.59+1.82 75.02+1.58 74.78 £1.92
Dir-SAGE 45.92 +£2.02 46.09 £2.98 46.74+1.99 46.54 £2.63 46.42+2.70
Dir-GAT 65.82+£2.90 66.34 +2.31 65.92+242 66.52+2.19 66.32£2.21
Cora-ML Dir-GCN  84.56 +£1.54 84.45+0.79 84.40+1.24 84.55+1.10 84.60=+1.29
Dir-SAGE 86.99+1.19 87.16+1.21 87.24+1.01 87.25+£1.19 86.99+1.04
Dir-GAT 86.77+1.25 86.73+1.10 87.03+1.11 86.44+1.31 86.60+1.01
Citeseer-Full Dir-GCN  93.15£0.35 93.28£0.45 93.36 £0.40 93.29 £0.59 93.40 £ 0.44
Dir-SAGE 94.21 £0.60 93.88+0.71 93.99 £0.75 93.88 £0.63 94.09 £ 0.81
Dir-GAT  94.24 £0.68 94.43+0.49 94.29+£0.55 94.19 £0.60 94.30 £0.51

C Experiment Settings

The base models we use are Dir-GCN, Dir-GAT, and Dir-SAGE, as proposed by Rossi et al. [10].
For real-world datasets, we follow their hyperparameter settings. For synthetic datasets, we adopt
the following configuration: learning rate of 0.001, hidden dimension of 64, and 3 layers. Following
Rossi et al. [10], we apply L2 normalization after each convolutional layer and use max aggregation
for jumping knowledge [38].

For rewiring-specific parameters, we use the y/n-sampling algorithm for shortcut sets on synthetic
datasets, where n is the number of nodes. For greedy edge connectivity, we add k = 100 edges from a
pool of K = 5000 sampled candidate pairs. On real-world datasets, we increase the candidate pool to
K =100,000. In addition, we perform a grid search over key hyperparameters: the number of added
edges k (ranging from 10 to 5000), the local neighborhood size ¢ (ranging from 3 to 10), and the
aggregation function used in R-GNNs to combine messages across edge relation types, considering
attention, sum, concat, max, and mean.
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C.1 Synthetic Datasets

All synthetic datasets are generated from 1,000 random directed acyclic graphs (DAGs), each with
100 nodes. To ensure that oversquashing effects are present, we deliberately inject bottlenecks into
the graph generation process. The DAG construction proceeds as follows. Nodes are first partitioned
into a random number of clusters (between 5 and 20), with cluster sizes balanced so that all nodes
are assigned. Within each cluster, edges are added while preserving acyclicity: a backbone chain
connects consecutive nodes, and additional forward edges are included between earlier and later
nodes with probability 0.5. This yields dense intra-cluster connectivity while maintaining the DAG
property. To link clusters, a small number of “bridge” edges (between 1 and 5) are added from one
cluster to the next. These sparse inter-cluster connections act as bottlenecks, forcing information
to pass through narrow pathways. The resulting graphs are specifically designed to test long-range
dependencies and oversquashing in directed settings.

Cycle Detection. In this task, the goal is to predict for each node whether it participates in a
directed cycle, formulated as a binary classification problem. Detecting cycles requires reasoning
over potentially long paths, since cycles can span distant parts of the graph. Directionality plays a key
role, as reversing even a single edge can alter the presence or absence of a cycle. This task directly
probes the ability of a model to capture global structural dependencies.

Reachability. Here we randomly sample a source node and ask the model to predict, for every
other node, whether it is reachable from the source. This is framed as a binary node classification
problem. Because reachability may depend on paths that extend across the entire graph, the task is
highly sensitive to bottlenecks and oversquashing, and therefore serves as a strong test of whether
rewiring improves global information flow.

Topological Sort. In this task, the objective is to recover a valid topological ordering of a DAG.
Unlike local node-level classification tasks, topological sorting requires capturing global ordering
constraints that span the entire graph. Success on this task reflects a model’s ability to propagate
long-range signals and maintain global structural consistency, making it one of the most challenging
and comprehensive evaluations of directed message passing.

C.2 Real-World Datasets

Currently, there is a lack of dedicated directed benchmarks for evaluating directed graph neural
networks. Most commonly used datasets convert directed edges into undirected ones [8], which
removes important asymmetry in information flow. Even more scarce are real-world datasets that
require long-range reasoning. For example, the Long-Range Graph Benchmark [9] has become a
standard for testing rewiring methods such as molecular prediction, but it is restricted to the undirected
setting. In this work, we select four widely used citation and webpage datasets where directed edges
are available. However, these graphs are large and often dominated by local structures, meaning
that long-range dependencies may not play a central role and oversquashing bottlenecks may be
limited. This further underscores the need for new, dedicated benchmarks designed explicitly for
directed graphs and long-range reasoning, a gap that remains largely overlooked despite the growing
importance of directed settings.

Cora and Citeseer. These citation networks consist of scientific publications as nodes, with directed
citation links as edges [37]. Node features are derived from document word vectors, and labels
correspond to research topics. Both datasets are highly homophilic, meaning that papers tend to cite
and be cited by others within the same field.

Chameleon and Squirrel. These webpage networks contain nodes representing pages and directed
edges corresponding to hyperlinks [33]. Node features are bag-of-words representations of page
content, and labels denote categories such as topic or function. Unlike citation graphs, these datasets
are heterophilic: linked webpages often belong to different categories, making long-range information
more valuable than local neighborhoods.
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Table 4: Statistics of the real-world datasets reported by Rossi et al. [10].

Dataset # Nodes # Edges # Features # Classes Unidirectional Edges Homophily
CiteSeer-Full 4,230 5,358 602 6 99.61% 0.949
Cora-ML 2,995 8,416 2,879 7 96.84% 0.792
Chameleon 2,277 36,101 2,325 5 85.01% 0.235
Squirrel 5,201 217,073 2,089 5 90.60% 0.223

D Computational Complexity

The shortcut-set construction follows a /n-sampling algorithm that yields O(n) edges and runs in
linear time, where n is the number of nodes. The greedy edge-connectivity computation is more
expensive, but we mitigate this by sampling K node pairs and restricting the search to ¢-hop BFS
subgraphs, where K is a hyperparameter and ¢ (typically < 5) is the number of GNN layers. The
main bottleneck is computing edge connectivity using Algorithm 1 in [39], which requires O(n, - my)
time and O(n, + m,) memory, where n; and m; are the number of nodes and edges in the ¢-hop
subgraph. While faster approximation algorithms exist, we leave them for future work. Additionally,
we preserve reachability, which can be computed in O(n + m) time and O(n) memory via BFS,
with more efficient computations for future work. We note that the rewired edges are precomputed
once before training and can be further accelerated through CPU parallelism.
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