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ABSTRACT

Machine learning models are routinely used to support decisions that affect indi-
viduals – be it to screen a patient for a serious illness or to gauge their response to
treatment. In these tasks, we are limited to learning models from datasets where
the labels are subject to noise. In this work, we study the impact of learning under
label noise at the instance level. We introduce a notion of regret for this regime,
which measures the number of unforeseen mistakes when learning from noisy la-
bels. We show that standard approaches to learn models from noisy labels can
return models that perform well at a population level while subjecting individuals
to a lottery of mistakes. We develop machinery to estimate the likelihood of mis-
takes at an instance level from a noisy dataset, by training models over plausible
realizations of datasets without label noise. We present a comprehensive empir-
ical study of label noise in clinical prediction tasks. Our results reveal how our
failure to anticipate mistakes can compromise model reliance and adoption, and
demonstrate how we can address these challenges by anticipating and abstaining
from regretful decisions.

1 INTRODUCTION

Machine learning models are routinely used to support or automate decisions that affect individuals
– be it to screen a patient for a mental illness [47] or estimate their risk for an adverse treatment
response [2]. In such applications, we fit models from datasets with label noise – i.e., where the
labels reflect a noisy observation of the outcome that we wish to predict. In practice, label noise
may arise as a result of human annotation [e.g., due to inherent ambiguity 26] or measurement
error [e.g., due to noisy readings from a wearable sensor 20]. In such cases, label noise can have
detrimental effects on model performance [10].

Over the past decade, these challenges have led to extensive work on learning from noisy
datasets [see 10, 45, for surveys]. These advances have improved our ability to mitigate label noise
at a population level. In contrast, there has been little work studying the effects of label noise at
an instance level. At a high level, this oversight reflects the fact that we cannot provide meaning-
ful guarantees on individual predictions under label noise. Even in the best-case scenario, where
we have perfectly specified distributional assumptions on label noise, we may learn a model that
performs well on average but cannot identify the points where mistakes are made (see Fig. 1).

As shown in Fig. 1, when we learn under label noise, we build a model that predicts accurately but
cannot determine where it makes its mistakes. In this regime, individuals are subject to a “lottery”
of erroneous predictions. These effects handicap model reliance, as well as any downstream ap-
plications that rely on the correctness of individual predictions - e.g., model explanations [43, 44],
post-hoc analyses [22, 30], clinical decision support [31].

In effect, label noise arises in many real-world applications where we use models to support or
automate individual decisions [see, e.g., 52, for a recent metareview of 72 cases in medicine]. In
decision support applications, our failure characterize the correctness of predictions may lead to
overreliance – as physicians to rely on predictions that may be incorrect [5, 25, 29]. In applications
for automation , our failure to characterize the correctness or confidence of predictions at an instance
level– e.g., debugging [1, 22] or by abstention [9, 16].

In this work, we study how label noise affects these individual predictions. Our work is motivated by
the fact that – even as we may be unable to resolve the effects of label noise at an instance level – we
can mitigate harm and reap benefits from models through exposition and uncertainty quantification.
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True Labels

Noisy Labels

Predictions

1 0 0 0 0“Mistakes”

Regret 1 0 0 1 0

Noisy Labels

Predictions

0 0 0 1 0“Mistakes”

Regret 0 1 1 0 0

Noise Draw 2

Noise Draw 1

Figure 1: Prediction problems with noisy labels only contain a single draw of label noise. In such tasks, we
can learn a model that performs well at a population level but cannot anticipate its mistakes at an individual
level. In such cases, regret characterizes the number of individuals who are subjected to a lottery of mistakes
by measuring the difference between anticipated mistakes and actual mistakes.

Our goal is to reveal these effects and develop machinery to mitigate them. To this end, the main
contributions of our work are as follows:

1. We introduce a notion of regret when learning from noisy datasets. Regret captures how uncer-
tainty in labels affects individual predictions and can be generalized to other settings where a
dataset exhibits uncertainty.

2. We show how learning under label noise leads to inevitable regret. Our analysis characterizes
key limitations in a wide class of methods to learn from label noise.

3. We develop a method to flag regretful predictions by training models on plausible realizations
of a clean dataset. Our method can measure the sensitivity of individual predictions under label
noise and explore common noise assumptions while allowing control over plausibility.

4. We present results from a comprehensive empirical study on clinical prediction tasks. The results
highlight the practical implications of label noise at the instance level, and demonstrate how our
approach can support safety by flagging potential mistakes.

Related Work Our work is related to a stream of research on learning from noisy labels. We
focus on applications where we cannot resolve label noise by acquiring clean labels [see e.g., 10, 45,
for surveys]. Many methods learn models in this regime by hedging for uncertainty in labels [28,
36, 39]. As we show in Section 2, these approaches can mitigate loss in model performance at
a population level yet assign unpredictable mistakes. In practice, the individuals who are subject
to unpredictability exceeds the noise rate – meaning that many of them are subject to a lottery of
mistakes. Our work highlights the limitations of this regime. In this sense, our results complement
the work of Oyen et al. [38], who characterize the lack of robustness to label noise at a population
level under general distributional assumptions.

We propose to mitigate these issues through a principled approach for uncertainty quantification.
Our approach ties in with recent work on model multiplicity, which shows how changes in the
machine learning pipeline can produce models that assign conflicting predictions [3, 6, 18, 32, 35,
48, 49] and lead to downstream effects on fairness, explanations, and recourse [4, 15, 23, 33]. With
respect to the literature on label noise, our approach is similar to the work of Reed et al. [42], who
propose training an ensemble of deep neural networks by sampling alternative realizations of clean
labels. In contrast, our procedure samples plausible realizations of clean labels and retrains plausible
models to quantify uncertainty at an individual level rather than to predict.

2 FRAMEWORK

We consider a classification task where we wish to learn a model f : X → Y to accurately predict a
label y ∈ Y from a feature vector x ∈ X ⊆ Rd.
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In a standard classification task, we would be given a datasetD = {(xi, yi)}ni=1 where each example
(xi, yi) is drawn from a joint distribution of random variables X and Y . Given the dataset, we
would fit a model f : X → Y that performs well in deployment – i.e., that minimizes the true risk
R(f) := EX,Y [I [f(X) ̸= Y ]].

We consider a variant of this task where we are given a noisy dataset D̃ = {(xi, ỹi)}ni=1 where each
noisy label ỹi represents an uncertain observation of a true label yi. We represent the uncertainty
through binary variable ui := I [yi ̸= ỹi], which indicates that the noisy label ỹi has been flipped
from its true value yi. Given ui, we can express the noisy labels in terms of true labels and vice-
versa:

ỹi := yi ⊕ ui yi := ỹi ⊕ ui.

Given a noisy dataset, we denote the flips for all n examples as a vector that we call the noise draw.
Definition 1. Given a binary classification task with n examples, the noise draw u = [u1, . . . , un] ⊆
{0, 1}n is a realization of n random variables U := [U1, . . . , Un] ⊆ {0, 1}n,

Given an example (xi, yi), each ui is drawn from Bernoulli distribution with parameters pu|yi,xi
:=

Pr(Ui = 1 | X = xi, Y = yi). Thus, each noisy label ỹi is generated by the random process:

Ui ∼ Bern(pu|yi,xi
)

ỹi = yi ⊕ Ui

We assume that the parameters pu|yi,xi
are specified by a noise model such as those in Table 1. In

what follows, we write pu|yi,xi
instead of pu when its conditioning is clear from context.

We view the noise in a noisy dataset as the output of a single draw of label noise. We refer to this
draw as the true draw and denote it utrue := [utrue

1 , . . . , utrue
n ]. In practice, the true draw utrue is fixed

but unknown. From the perspective of a practitioner, utrue could be any realization of the random
variable U . If they knew utrue, they could trivially resolve label noise as they could recover the true
labels for each point as yi = ỹi ⊕ utrue

i .

Noise Model PGM Parameteric Representation Inference Requirements Sample Use Case

Uniform

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu = Pr (U = 1) qu = Pr (U = 1) Uniform measurement error

Class Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu|y = Pr (U = 1 | Y = y)

qu|ỹ = Pr
(
U = 1 | Ỹ = ỹ

) πy = Pr (Y = y)

Data-driven discovery tasks where Ỹ is an
experimental outcome confirmed by a
hypothesis test with type I/II error [14]

Subgroup Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu|y,g = Pr (U = 1 | Y = y,G = g)

qu|ỹ,g = Pr
(
U = 1 | Ỹ = ỹ, G = g

) πy,g = Pr (Y = y | G = g)

Tasks where noise Ỹ changes based on
annotator characteristics [46] or across
patient subpopulations [12].

Feature Level

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y
X

G
U

Y G
U

Y

UU

Y X
U

pu|y,x = Pr (U = 1 | Y = y,X = x)

qu|ỹ,x = Pr
(
U = 1 | Ỹ = ỹ, X = x

) πy,x = Pr (Y = y,X = x)

Chest X-ray diagnosis where label noise Ỹ

changes based on image quality X and the
disease Y [e.g., pneunomia vs COVID 13].

Table 1: Common noise models expressed in terms of the noise draw U . We represent each model as a
probability distribution with parameters pu|y,x. Given a dataset with noisy labels, we infer noise draws using
a posterior distribution with parameters pu|ỹ,x and the prior distribution πy . We assume that pu|y,x < 0.5 to
ensure that there are more clean labels than noisy labels [36, 50].

On the Regret of Prediction Consider a practitioner who trains a model f : X → Y from a noisy
dataset using an algorithm to learn from noisy labels. In such settings, they may be able to recover
a model that performs well at a population level. However, they will be unable to determine where
their model makes mistakes. In this regime, individuals are subject to a lottery of mistakes. We say
that an individual are assigned a regretful prediction if they “win" this lottery.
Definition 2. Consider a classification task with label noise where we train a model f : X → Y .
We measure the regret for an example (xi, ỹi) as:

Regret(f(xi), ỹi, Ui) := I
[
epred(f(xi), ỹi) ̸= etrue(f(xi), yi(Ui))

]
(1)

Here, epred(f(xi), ỹi) denotes an anticipated mistake, and etrue(f(xi), yi(Ui)) :=
I [f(xi) ̸= yi(Ui)] denotes an actual mistake with respect to the true label yi(Ui) = ỹi ⊕ Ui.
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In practice, epred(·) is determined by how we account for noise, if at all. If we fit a model via
standard ERM on the noisy labels, then epred(f(xi), ỹi) = I [f(xi) ̸= ỹi]. If we fit a model using
noise-tolerant ERM [e.g., 36, 39], then epred(f(xi), ỹi) := ℓ̃01(f(xi), ỹi) where ℓ̃01(·) is a unbiased
loss defined so that EU [ℓ̃01(xi, yi(Ui))] = ℓ01(f(xi), ỹi).

One of the key benefits of studying regret in this setting is for exposition. Regret captures the
irreducible error we incur due to aleatoric uncertainty in the noise draw U i. In online learning,
the concept of regret arises because we cannot foresee randomness in the future. In learning from
noisy labels, regret arises because we cannot infer randomness from the past. Using regret, we
can disambiguate the effects of label noise at the population level and the instance level, as shown
through the following result.
Proposition 3. Consider a classification task where we learn a classifier f from a noisy dataset.
Given a noisy example (x, ỹ) let qu|x,ỹ := Pr(U = 1 | Ỹ = ỹ, X = x). Then:

EU [Regret(f(x), ỹ, U)] = qu|x,ỹ.

Prop. 3 provides an opportunity to discuss several implications of label noise at the instance level.
On the one hand, the result states that we can use the noise rate to gauge the expected number of
anticipated mistakes. In practice, however, we cannot tell how these mistakes are distributed over
instances. In this case, each instance where qu|x,ỹ > 0 is subjected to a lottery of mistakes. In a task
where we have a uniform noise model with a noise rate of 5%, we would only to assign regretful
predictions to 5% of instances. Even so, 100% of instances could be assigned an unanticipated
mistake since the noise draw is always unknown.

On the Regret of Hedging Many algorithms for learning from noisy labels are designed to hedge
against label noise [41]. Given a noisy dataset and a noise model, hedging seeks to minimize the
expected risk over all possible noise draws. In some cases, algorithms may implement hedging
explicitly via ERM with a modified loss [see e.g., 34, 36]. In others, the hedging may be implicit
– e.g., by assigning sample weights to instances that are chosen to minimize expected risk over all
possible draws [see e.g., 28, 39, 51]. In the best-case scenario, where we can correctly specify the
noise model, we can expect algorithms that hedge to return a model that minimizes the expected
excess risk with respect to all noise draws. In this case, we have EU |X,Y [∆Error(f, D̃, U)] = 0
where:

∆Error(f, D̃;U) :=

n∑
i=1

epred(f(xi), ỹi)︸ ︷︷ ︸
Predicted Training Error

−
n∑

i=1

etrue(f(xi), yi)︸ ︷︷ ︸
True Training Error

(2)

However, the resulting model f would still incur regret:

Regret(f, D̃, U) :=

n∑
i=1

I
[
epred(f(xi), ỹi) ̸= etrue(f(xi), yi(Ui))

]
. (3)

We formalize this intuition in Prop. 3 where we show that despite ∆Error(f, D̃;U) ≈ 0,
Regret(f, D̃, U) > 0 for the classical hedging algorithm of Natarajan et al. [36].
Proposition 4. Consider training a model f : X → Y on a noisy dataset via ERM with a modified
loss function ℓ̃ : Y ×Y → R+ such that EU [ℓ̃(f(x), ỹ)] = ℓ(f(x), y) for all (x, ỹ). In this case, the
model minimizes risk for an implicit noise draw umle = [umle

1 . . . umle
n ] where each umle

i corresponds
to the value with maximal likelihood under the posterior noise model qu|ỹi,xi

.

Prop. 4 implies that learning a model by hedging will incur regret — unless the noise in the dataset
matches the implicit noise draw umle := utrue. In practice, this event is unlikely as Pr

(
umle = utrue

)
becomes vanishingly small as n→∞ (see Appendix A). In some cases, Pr

(
umle = utrue

)
= 0 in a

finite sample regime because the implicit noise draw is unrealizable.

3 ANTICIPATING MISTAKES WITH PLAUSIBLE MODELS

In this section, we describe a principled approach to anticipate regretful predictions given a dataset
of noisy labels and a noise model.
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3.1 ALGORITHM

Seeing how regret stems from our inability to anticipate mistakes at an instance level, We want
to produce information that can help us anticipate mistakes at the instance level. Specifically, we
wish to estimate the likelihood of assigning a regretful prediction to each instance, We refer to this
quantity as ambiguity and estimate it using models that we train using the procedure in Algorithm 1.
Given a noisy dataset and a noise model, this procedure generates plausible realizations of a clean
dataset and trains a set of plausible models to estimate ambiguity. In practice, we can use these
estimates as confidence scores for a model that we learn under label noise. In this way, we can reap
benefits from a wide range of techniques that use confidence scores for selective classification [11]
or for active learning [8].

Sampling Plausible Draws Given a noisy dataset D̃, noise model pu|y,x, and prior distribution
πy,x := Pr (Y = y | X = x), we sample noise draws from the posterior distribution:

qu|ỹ,x =
(1− πỹ,x) · pu|1−ỹ,x

pu|ỹ,x · (1− πỹ,x) + (1− pu|ỹ,x) · πỹ,x
(4)

In principle, one can sample noise draws from the posterior distribution in Eq. (4). In practice, this
approach can output atypical noise draws – i.e., “edge case” draws that are highly unlikely under a
given noise model.1 In settings where we wish to estimate ambiguity using a fixed number of draws,
atypical draws represent can severely bias our estimates and undermine their utility. Although we
can moderate such effects by constructing estimates using more draws, this has practical challenges:
we would need to train a large number of models. Given these challenges, we sample noise draws
in a way that can control for their atypicality.

Definition 5. Given a noise draw u ∈ {0, 1}n, let qu|ỹ := Pr(U = 1 | Ỹ = ỹ) denote its true
posterior noise rate, and q̂u|ỹ := 1

n

∑n
i=1 I [ui = 1 | ỹi = y] denote its estimate. Given any ϵ ∈ [0, 1],

the set of plausible draws contains all draws whose empirical distribution is within ϵ of the true
posterior noise rate:

Uϵ(ỹ) := {u ∈ {0, 1}n | |q̂u|ỹ − qu|ỹ| < ϵ · qu|ỹ for all u ∈ {0, 1}}.

The set of plausible draws is a strongly typical set and its behavior follows well-known results in
information theory [7]. Given a noisy dataset where n is large, for example, we can expect most
draws to concentrate in Fplaus

ϵ [see, e.g., Theorem 3.1.2 in 7]. We can control the typicality of draws
by setting the atypicality parameter ϵ, which represents the relative deviation in noise rate from
qu|ỹ . In practice, this parameter can be set apriori: given a uniform noise model with a noise rate
of qu|ỹ = 0.1, we can set ϵ = 0.2 to consider draws that flip between 8% to 12% of instances. In
settings where we wish to consider a specific noise draw u0, we can set ϵ to guarantee that u ∈ Fplaus

ϵ

with high probability (see Prop. 9 in Appendix A.2). By default, we set ϵ = 0.1 to consider draws
within 10% of what we would expect.

Training the Set of Plausible Models Given a plausible noise draw uk, we construct a plausible
realization of a clean dataset by pairing each feature vector xi with a plausible realization of the true
label ŷki = uk ⊕ ỹi.
Definition 6. The set of ϵ-plausible models contains all models trained using ϵ-plausible datasets:

Fplaus
ϵ :=

{
f̂ ∈ argmin

f∈F
R̂(f, D̂) | D̂ := {(xi, ŷ

k
i )}ni=1,u ∈ Uϵ(ỹ)

}
.

3.2 ESTIMATION

In a idealized case where we would recover a plausible draw that matches the true draw uk = utrue,
our procedure would return a plausible dataset D̂k and model f̂k that perfectly flags all regretful

1For example, a noise draw that flips 30% of labels under a uniform noise model with a noise rate of 10%.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 Generate Plausible Draws, Datasets, and Models

Input noisy dataset (xi, ỹi)
n
i=1, noise model pu|y , number of models m ≥ 1, atypicality ϵ ∈ [0, 1]]

Initialize F̂plaus
ϵ ← {}

1: repeat
2: ui ← U ∼ Bern(pu|ỹ,x) for i ∈ [n] generate noise draw by posterior inference

3: if u = [u1, . . . , un] ∈ Uϵ then check if draw is plausible (i.e., Def. 5)

4: ŷi ← ỹi ⊕ ui for i ∈ [n]

5: D̂k ← {(xi, ŷi)}ni=1 construct plausible clean dataset

6: f̂k ← argminf∈F R̂(f ; D̂k) train plausible model

7: F̂plaus
ϵ ← F̂plaus

ϵ ∪ {f̂k} update plausible models

8: until |F̂plaus
ϵ | = m

Output F̂plaus
ϵ , sample of m plausible models from Fplaus

ϵ

predictions. Seeing how utrue is unknown, we repeat this process m times and use the m plausible
models Fplaus

ϵ to estimate the prevalence of an anticipated mistake for each point in our dataset. We
refer to this measure as ambiguity and define it below.

Definition 7. Given a noisy example (x, ỹ) ∈ D̃, we measure its expected ambiguity over the set of
ϵ-plausible models as:

µ(x) := Pr
(
f(x) ̸= ŷ | f ∈ Fplaus

ϵ , ŷ = u ⊕ ỹ, u ∼ qu|ỹ
)
. (5)

Given a set of m plausible models, we can estimate ambiguity using the sample mean:

µ̂(x) :=
1

m

∑
k∈[m]

I
[
f̂k(x) ̸= ŷk

]
. (6)

Ambiguity measures the likelihood of a mistake at the instance level. This measure incorporates
information from the noise distribution (i.e., by considering multiple plausible realizations of the
true labels), and our learning process (i.e., by training models for each set of clean labels). We
formalize this intuition in Appendix B.

3.3 DISCUSSION

Overreliance

Selective Error

Selective Regret

Figure 2: Impact of misspecifying
the noise model for an LR model for
shock_mimic dataset. We consider
a setting where label noise is drawn
from a uniform noise model with a true
noise rate of 20%, but we estimate am-
biguity using a misspecified noise rates
from between [1%, 40%]. As shown,
misspecification leads to moderate ef-
fects on overreliance and selective er-
ror but does not affect selective regret.

The reliability of our estimates depends on the following mod-
eling assumptions:

Typicality of the True Noise Draw: The first assumption is that
the true noise draw utrue is a typical noise draw. Although the
true draw is unknown, we can assume that most draws to be
typical given results in typical set theory [7].

Noise Model: Our estimates will also depend on the specifica-
tion of the noise model pu. As we show in Fig. 2, the impact of
depends on the degree of misspecification. In the worse case
– e.g., if we assume the noise rate is 5% when in reality it is
20% – misspecification can lead to highly unreliable estimates
as always sample edge cases. In practice, we can moderate the
potential effect of misspecification. For example, when work-
ing with simple noise models – e.g., uniform or class level
– we can be conservative and assume a higher noise rate or
choose a higher ϵ to capture a larger set of plausible draws. In
settings where we are unsure of the noise model, we can gen-
erate a data-driven estimate using the noisy dataset [see e.g.,
27, 28, 39].
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4 EXPERIMENTS

In this section, we present results from an empirical study of label noise in clinical prediction tasks.
Our goals are to highlight the effects of label noise at the instance level, and to evaluate the ability
of our approach to identify and abstain from regretful predictions. We include additional details and
results in Appendix C, and code to reproduce our results in an anonymized repository.

Setup We work with 5 classification datasets from real-world clinical applications where models
are used to support individual medical decisions (see Table 3, and Appendix C for details). We split
each dataset into a training sample (80%, to fit a model), and a test sample (20%, to measure out-
of-sample performance). Starting with the true labels from each dataset, we generate noisy labels
by sampling noise draws from 6 noise distributions: 2 noise models (uniform, class level) × 3 noise
rates per model [5%, 20%, 40%]. We use the noisy datasets to fit a logistic regression model (LR)
and a neural network (DNN) using two training procedures: (1) Ignore, where we ignore label noise
and fit a model to predict noisy labels; and (2) Hedge where we hedge against noisy labels using
the method of Natarajan et al. [36]. This setup yields 24 models for each dataset: 6 noise regimes
× 2 model classes × 2 training procedures. For each model, train a sample of m = 200 plausible
models from a plausible set with ϵ = 10% using the procedure in Section 3, estimate the ambiguity
of each training instance as per Eq. (6).

Results In Table 3, we report summary statistics on the accuracy, reliability, and ambiguity of
predictions at a population level and an individual level (see Table 2). These results characterize a
single noise draw that is unknown to practitioners. We include results for alternate noise draws to
show that these trends generalize (see Appendix C).

Metric Definition Description

TrueError(f ) 1

n

∑
i∈[n]

e
true

(f(xi), yi) Error rate of f on true training labels

∆Error(f ) 1

n

∑
i∈[n]

e
pred

(f(xi), ỹi) − e
true

(f(xi), yi)
Difference in true error between a model trained on true labels and
and a model trained on noisy labels. Note: ∆Error(f) ≈ 0 for Hedge

Ambiguity(f ) Median
i∈[n]

(µ̂(xi)) Median estimate ambiguity across all instances subject to label noise

Regret(f ) 1

n

∑
i∈[n]

I
[
e

pred
(f(xi), ỹi) ̸= e

true
(f(xi), yi)

] Average regret over all points. Given any dataset with class-level label noise,
we have that Regret(f) =

∑
y qu|y · πy

Overreliance(f ) 1

n

∑
i∈[n]

I
[
e

true
(f(xi), yi) = 1, e

pred
(f(xi), ỹi) = 0

]
Proportion of predictions from f that are incorrectly perceived as accurate

Table 2: Overview of summary statistics in Table 3. We report these metrics for models that we train from
noisy labels using a specific training procedure, model class, noise model, and dataset. We evaluate all models
trained on a given dataset and noise model using a fixed noise draw. We assume that the noise model is correctly
specified, and that the noise draw is unknown at training time.

On Regretful Predictions Our results in Table 3 highlight several implications of learning from
label noise that we describe in Section 2. Our results highlight how we can rely on Prop. 3 to gauge
the expected number of regretful predictions in practice. In particular, we see that average regret
is roughly equal to effective noise rate in Prop. 3. We observe that Prop. 3 only characterizes the
expected prevalence of regretful predictions – meaning that it cannot help us tell which predictions
incur regret or how regretful predictions may be distributed across examples. In practice, regretful
predictions can be affect any instance that is subject to label noise. In Table 3, we show results for a
class-level noise model where we flip positive instances (yi = 1). Thus, every instance where ỹ = 0
would takes part in the lottery of mistakes.

Our results show we may fail to reap benefits from models as a result of such distributional effects
– e.g., though overreliance or disparate impact. In Table 3, we highlight these effects by report-
ing overreliance – i.e., the fraction of instances where incorrectly assume that a model assigns a
correct prediction. Overreliance is a key measure for decision support: in clinical applications, for
example, we wish to expect physicians to rely on predictions that are correct. On the lungcancer
dataset, under 40% noise, 19.7% of individuals are assigned a regretful prediction by a standard LR
model. Among them, 33.0% to 73.1% correspond to mistakes that would lead to overreliance. In
the mortality dataset, for example, we find that regret is not evenly distributed across subgroups

7

https://anonymous.4open.science/r/noise_multiplicity_iclr2025


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
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395
396
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399
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402
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405
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408
409
410
411
412
413
414
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416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

pu|y=1 = 5% pu|y=1 = 20% pu|y=1 = 40%

LR DNN LR DNN LR DNN

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [40]

True Error
∆Error

Ambiguity
Regret

Overreliance

24.0%
-1.4%
6.0%
3.0%
0.8%

23.0%
-1.7%
6.0%
3.0%
0.6%

13.1%
-1.4%
6.0%
3.0%
0.8%

11.9%
-1.3%
6.0%
3.0%
0.8%

26.7%
-1.7%
20.5%
10.1%
4.2%

24.6%
-5.0%
20.5%
10.1%

2.6%

18.3%
-2.1%
20.5%
10.1%
4.0%

26.3%
2.3%

20.5%
10.1%
6.2%

38.6%
10.0%
36.0%
19.7%
14.8%

25.1%
-8.3%
36.0%
19.7%
5.7%

28.3%
6.5%

36.0%
19.7%
13.1%

25.8%
-5.0%
36.0%
19.7%
7.3%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [19]

True Error
∆Error

Ambiguity
Regret

Overreliance

21.9%
-1.2%
5.5%
2.5%
0.7%

21.3%
-1.3%
5.5%
2.5%
0.6%

15.3%
-1.9%
5.5%
2.5%
0.3%

15.2%
-1.8%
5.5%
2.5%
0.4%

24.3%
-2.4%
18.5%
10.2%
3.9%

20.9%
-6.0%
18.5%
10.2%
2.1%

18.5%
-6.5%
18.5%
10.2%
1.8%

16.5%
-6.7%
18.5%
10.2%
1.8%

33.1%
5.5%

33.0%
19.8%
12.7%

21.2%
-11.8%
33.0%
19.8%
4.0%

29.1%
2.2%

33.0%
19.8%
11.0%

25.9%
-11.7%
33.0%
19.8%
4.1%

lungcancer

n = 62, 916

d = 40

NCI [37]

True Error
∆Error

Ambiguity
Regret

Overreliance

31.6%
-0.5%
5.5%
2.5%
1.0%

31.2%
-0.7%
5.5%
2.5%
0.9%

30.0%
-1.1%
5.5%
2.5%
0.7%

29.5%
-0.7%
5.5%
2.5%
0.9%

32.5%
-0.1%
18.5%
10.0%
4.9%

31.3%
-3.0%
18.5%
10.0%
3.5%

31.4%
-0.3%
18.5%
10.0%
4.8%

30.2%
-3.3%
18.5%
10.0%
3.3%

39.3%
9.0%

31.5%
19.7%
14.4%

31.6%
-6.7%
31.5%
19.7%
6.5%

43.2%
13.6%
31.5%
19.7%
16.7%

29.6%
-5.4%
31.5%
19.7%
7.2%

mortality

n = 20, 334

d = 84

Le Gall et al. [24]

True Error
∆Error

Ambiguity
Regret

Overreliance

20.1%
-1.3%
5.0%
2.2%
0.5%

20.1%
-1.5%
5.0%
2.2%
0.4%

17.6%
-1.4%
5.0%
2.2%
0.4%

18.0%
-1.3%
5.0%
2.2%
0.5%

21.2%
-3.9%
18.0%
9.8%
2.9%

19.7%
-6.2%
18.0%
9.8%
1.8%

19.2%
-4.1%
18.0%
9.8%
2.9%

18.1%
-5.9%
18.0%
9.8%
1.9%

30.6%
3.0%

31.5%
19.5%
11.2%

19.9%
-10.9%
31.5%
19.5%
4.3%

27.1%
0.1%

31.5%
19.5%

9.8%

18.7%
-10.6%
31.5%
19.5%
4.4%

support

n = 9, 696

d = 114

Knaus et al. [21]

True Error
∆Error

Ambiguity
Regret

Overreliance

33.7%
-0.2%
6.0%
2.6%
1.2%

33.5%
-0.5%
6.0%
2.6%
1.1%

28.7%
0.5%
6.0%
2.6%
1.6%

29.3%
-0.0%
6.0%
2.6%
1.3%

35.4%
1.5%

20.5%
10.0%
5.8%

33.5%
-2.4%
20.5%
10.0%

3.8%

32.0%
3.2%

20.5%
10.0%
6.6%

35.4%
1.5%

20.5%
10.0%
5.7%

42.7%
12.4%
36.5%
19.6%
16.0%

34.1%
-4.5%
36.5%
19.6%
7.6%

41.2%
14.9%
36.5%
19.6%
17.3%

42.1%
14.4%
36.5%
19.6%
17.0%

Table 3: Accuracy, reliability, and ambiguity of models across model classes, training procedures, and noise
regimes. We show results when learning from a noisy dataset where under a class-level noise model where we
flip 5%, 20% and 40% of instances (e.g., diagnostic error). We include results for other draws of the noise in
Appendix C.

defined by age or sex. Specifically, we find that 40% label noise leads to twice the regret in older
patients than younger patients, despite noise rates being uniform across both subgroups (Fig. 5 in
Appendix C). We find similar effects across datasets, model classes, and noise regimes. Overall,
these results underscore the need to measure the effects of label noise empirically – especially in
tasks where we care about how a model performs over subclasses and subpopulations.

On Learning by Hedging Our results highlight can learn models that are robust to noise at a
population level but but that assign mistakes by lottery. As shown in Table 3, we observe that
∆Error ≈ 0 and Regret(f) > 0 across experimental conditions. In general, we find that Hedge can
moderate the impact of label noise at a population level – leading to lower values of ∆Error ≈ 0.
On the mortality dataset, for example, Hedge reduces the error rate by almost 10% compared to
Ignore for a DNN model under 40% label noise. As shown, these issues do not resolve regret.

On Promoting Safety by Anticipating Mistakes The only way to flag regretful predictions is
by obtaining clean labels, which is often impossible or infeasible in practice. Our method in Algo-
rithm 1 flags these points using the noise model and noisy dataset, without clean labels. We train
plausible models on plausible versions of the clean dataset to flag "mistakes". Our results show
this reliably detects regretful instances. As seen in Table 3, median ambiguity correlates with re-
gret across datasets and noise rates. This holds for multiple label noise draws (see Appendix C).
In practice, our approach supports tasks like selective classification or active learning. For exam-
ple, in clinical predictions, we can abstain from uncertain predictions using ambiguity estimates.
We use a confidence threshold rule I [conf(xi) ≤ τ ] where conf(xi) is the confidence score (either
1−µ(xi) or p̂(ỹi | xi)). Fig. 3 shows that abstaining on 20% of the dataset (keeping 80% coverage)
reduces regret by 5% and risk by 6%. By contrast, the standard approach requires abstaining from
all predictions to achieve comparable regret.
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-6.1%

Ambiguity
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-4.9%
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Figure 3: Risk-coverage curves for an LR model on the shock_mimic dataset when we abstain from
uncertain predictions using predicted probabilities (red) and ambiguity (blue). We show the selective error
(left) and selective regret (right) when we abstain from predictions using a confidence-based threshold rule
I [conf(xi) ≤ τ ] as vary τ ∈ (0, 1), setting conf(xi) := 1− xi for our approach, and conf(xi) := p̂(ỹi | xi)
for the standard approach. As shown, due to the ability of Ambiguity to effectively identify uncertain predic-
tions, we can achieve lower error and lower regret by abstaining on fewer instances.

5 DEMONSTRATION

We now demonstrate how our approach can benefit data-driven gene-enhancer pair identification.
We consider a classification task where our dataset encodes the conditions and outcomes of expen-
sive in-vitro experiments. These datasets exhibit label noise due to hypothesis test outcomes with
known Type I and II errors. Our goal is to train a reliable model on these experimental outcomes to
predict results for new experiments, enabling the prioritization of experiments. This improves the
discovery rate of enhancers, a crucial step in the drug discovery pipeline.

Setup We work with a noisy dataset that summarizes the conditions and outcomes of n = 9, 372
in-vitro experiments. Here, each experiment is associated with a noisy example (xi, ỹi), where
xi encodes d = 13 characteristics of the experimental unit, and ỹi represents the outcome of a
hypothesis test – i.e., ỹi = 1 if we reject a null hypothesis. Here, each label is subject to label
noise as a result of Type I and Type II error of each hypothesis test: We can consider this scenario
as class level noise: Type 1 occurs when ỹ = 1, y = 0, and Type 2 when ỹ = 0, y = 1. Type 1
error is controlled at 5%, while Type 2 varies by the statistical power of the experiment. Our dataset
contains these values for each instance. We use these values to specify the parameters of our noise
model. In this case, the resulting noise model exhibits label noise across labels and subgroups.

We split our dataset into a training sample (80%) and a test sample (20%). We use the training
sample to train a classifier using ERM, and the test sample to estimate its performance. In this case,
we are specifically interested in evaluating the reliability of predictions for “successful" experiments.
We identify these cases using test instances where the true experimental outcome was a significant
result, and evaluate the performance of our model using test AUPRC and Accuracy. Using this setup
we compare two different approaches: (1) a standard approach where we would abstain on uncertain
experiments according to p̂(ỹi | xi) or (2) our proposed approach where we identify and abstain on
ambiguous experiments using Algorithm 1.

Results We report the results in Fig. 4. As shown, we can improve accuracy (+1.4%) and AUPRC
(+19.5%) compared to standard confidence-based abstention, with a modest 4% abstention rate
(Fig. 4). This demonstrates a real-world scenario where our methods can identify mistakes to im-
prove model performance. Our methods can enhance data-driven discovery by accurately predicting
experimental outcomes before they take place, accounting for inherent Type I and Type II error
rates. This can help optimize laboratory resource allocation and increase the discovery rate of EG
regulatory elements.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

+1.4%

+19.5%

Ambiguity Ambiguity

Confidence

Confidence

Figure 4: Demonstration of selective classification performance for an LR model on the enhancer dataset.
When we abstain from uncertain instances according to ambiguity rates (blue), we can improve both accuracy
(+1.4%) and AUPRC (+19.5%) compared to a standard approach (red) by abstaining on only 4% of instances.
The noise model here comes from Type 1 and Type 2 errors from statistical hypothesis testing.

6 CONCLUDING REMARKS

Learning under label noise presents many hurdles to practitioners. Even if we can learn models
that perform well on average, individuals may be subject to a lottery of mistakes – e.g., even with a
model boasting 99% accuracy, a small amount of label noise could subject anyone to mistakes.

These instance level effects are often overlooked in favor of population level performance. In this
work, we studied these limitations through the lens of regret for learning under label noise. Our
results highlighted the prevalence of regret in various healthcare decision-support tasks and the
inherent limitations of existing label noise learning strategies in mitigating for regret. We then
demonstrate an abstention procedure using our proposed measures of ambiguity which can capture
instance level uncertainty and lead to safer decisions.

Our work shows that even as regret is inevitable – we can understand and mitigate its effects through
uncertainty quantitation. In particular, we can flag regretful predictions by estimating their ambigu-
ity. This analysis can calibrate our reliance on individual predictions – signaling the need to collect
more data or avoid prediction altogether – or be used to support formal approaches such as selective
classification and active learning. By magnifying the instance level impact of label noise through
the lens of regret, we can perform more reliable and safer predictions on individuals in critical tasks.
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Appendices
A OMITTED PROOFS

A.1 RESULTS FROM SECTION 2

Proof of Prop. 3

Proof. Consider any classification task with label noise. Let ρX,Ỹ := Pr
(
U = 1 | X, Ỹ

)
denote

the noise rate for a point with (X, Ỹ ) and let ℓ01(f(X), Ỹ ) := I
[
f(X) ̸= Ỹ

]
denote the zero-one

loss.

We first start by showing that using the unbiasedness property of Hedging algorithms such as
Natarajan et al. [36], we can achieve zero error in expectation. That is, EX,Y,U [e

pred(f(X), Ỹ ) −
etrue(f(X), Y )] = 0 :

EX,Y,U

[
epred(f(X), Ỹ )− etrue(f(X), Y )

]
= EX,Y EU |X,Y

[
epred(f(X), Ỹ )− etrue(f(X), Y )

]
= 0

The last line follows from the fact that Ỹ is deterministic from U given Y , and the unbiasedness
property: EU |X,Y [e

pred(f(X), Ỹ )] = etrue(f(X), Y )

We are now ready to show that despite achieving zero error, we can still incur regret. We begin by
expressing the expected regret for any point (X, Ỹ ) and any noise draw U as:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ

[
(1− 2qu) · (epred(f(X), Ỹ ) + ℓ01(f(X), Ỹ )) + 2(qu − 1) · epred(f(X), Ỹ ) · ℓ01(f(X), Ỹ ) + qu

]
EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ ,U

[
I
[
epred(f(X), Ỹ ) ̸= I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]] ]
= EX,Ỹ EU|X,Ỹ

[
I
[
epred(f(X), Ỹ ) ̸= I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]] ]
= EX,Ỹ EU|X,Ỹ

[
epred(f(X), Ỹ )(1− I

[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

]
)

+ (1− epred(f(X), Ỹ ))I
[
f(X) ̸= Ỹ (1− U) + (1− Ỹ )U

] ]
= EX,Ỹ EU|X,Ỹ

[
epred(f(X), Ỹ )(1− I

[
f(X) ̸= Ỹ

]
(1− U)− I

[
f(X) ̸= 1− Ỹ

]
U)

+ (1− epred(f(X), Ỹ ))(I
[
f(X) ̸= Ỹ

]
(1− U) + I

[
f(X) ̸= 1− Ỹ

]
U)

]
Letting qu = Pr

(
U = 1 | X, Ỹ

)
and ℓ01(f(X), Ỹ ) = I

[
f(X) ̸= Ỹ

]
, we have:

= EX,Ỹ

[
(1− qu)(e

pred(f(X), Ỹ )(1− ℓ01(f(X), Ỹ )) + (1− epred(f(X), Ỹ ))ℓ01(f(X), Ỹ ))

+ qu(e
pred(f(X), Ỹ )(1− ℓ01(f(X), 1− Ỹ )) + (1− epred(f(X), Ỹ ))ℓ01(f(X), 1− Ỹ ))

]
EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ

[
(1− 2qu) · (epred(f(X), Ỹ ) + ℓ01(f(X), Ỹ ))

+ 2(qu − 1) · epred(f(X), Ỹ ) · ℓ01(f(X), Ỹ ) + qu
]
.

When there is no label noise, we have that qu = 0 and epred(f(X), Ỹ ) = ℓ01(f(X), Ỹ ) for all X, Ỹ .
Because they are binary terms, in this regime, we have:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ [0] = 0
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When there is label noise, we have that qu > 0 for some X, Ỹ . In this regime, we have:

EX,Ỹ ,U

[
Regret(X, Ỹ , U)

]
= EX,Ỹ [qu] > 0.

We now introduce Prop. 8 to setup the proof for Prop. 4:
Proposition 8. Minimizing the expected risk under the clean label distribution is equivalent to
minimizing a noise-corrected risk under the noisy label distribution

EX,Y [I [f(X) ̸= Y ]] = EX,Ỹ

[
(1− quI

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) ̸= 1− Ỹ

]]
(7)

Here:

• qu =
(1−πỹ,x)·pu|1−ỹ,x

pu|ỹ,x·(1−πỹ,x)+(1−pu|ỹ,x)·πỹ,x

• πỹ,x = Pr (Y = ỹ|X = x) is the clean class prior an observed noisy label,
• pu = Pr (U = 1 | Y = y,X = x) is the class-level noise probability.

Proof of Prop. 8

Proof. The result is analogous to Lemma 1 in Natarajan et al. [36]. In what follows, we include an
additional proof for the sake of completeness.

ExpectedRisk(f) = EX,Y [I [f(X) ̸= Y ]]

= EX,Ỹ ,U

[
I
[
f(X) ̸= Ỹ (1− U) + U(1− Ỹ )

]]
= EX,Ỹ EU |X,Ỹ

[
I
[
f(X) ̸= Ỹ (1− U) + U(1− Ỹ )

]]
= EX,Ỹ EU |X,Ỹ

[
I
[
f(X) ̸= Ỹ

]
(1− U) + I

[
f(X) ̸= 1− Ỹ

]
U
]

= EX,Ỹ

[
EU |X,Ỹ [I

[
f(X) ̸= Ỹ

]
(1− U)] + EU |X,Ỹ [I

[
f(X) ̸= 1− Ỹ

]
U ]
]

= EX,Ỹ

[
Pr
(
U = 0|Ỹ , X

)
I
[
f(X) ̸= Ỹ

]
+ Pr

(
U = 1|Ỹ , X

)
I
[
f(X) ̸= 1− Ỹ

]]
= EX,Ỹ

[
Pr
(
Y = Ỹ |Ỹ , X

)
I
[
f(X) ̸= Ỹ

]
+ Pr

(
Y ̸= Ỹ |Ỹ , X

)
I
[
f(X) ̸= 1− Ỹ

]]
= EX,Ỹ

[
(1− quI

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) ̸= 1− Ỹ

]]
We write qu in terms of the clean class priors and class-level noise probabilities using Bayes theorem.

Proof of Prop. 4

Proof. We define umle as a noise draw u such that using umle to minimize the Expected Risk implic-
itly coincides with the true minimizer of the Expected Risk (defined in Prop. 8). That is:

argmin
f∈F

EX,Ỹ

[
I
[
f(X) ̸= Ỹ (1− u) + u(1− Ỹ )

]]
= argmin

f∈F
EX,Ỹ

[
(1− qu)I

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) = Ỹ

]]
We can express the LHS as:

f ′ ∈ argmin
f∈F

EX,Ỹ

[
I
[
f(X) ̸= Ỹ (1− u) + u(1− Ỹ )

]]
(8)

= argmin
f∈F

EX,Ỹ

[
(1− u)I

[
f(X) ̸= Ỹ

]
+ uI

[
f(X) = Ỹ

]]
(9)
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We can denote the minimizer of the RHS:

f̂ ∈ argmin
f∈F

EX,Ỹ

[
(1− qu)I

[
f(X) ̸= Ỹ

]
+ quI

[
f(X) = Ỹ

]]
(10)

Observe that:

qu|y,x < 0.5 =⇒ f̂(X) = Ỹ

qu|y,x > 0.5 =⇒ f̂(X) = 1− Y

Thus, we have that u := I [qu > 0.5] =⇒ f̂ = f ′, as desired. Further, we can show that this umle

is likely never utrue:

lim
n→∞

Pr
(
umle = utrue) = lim

n→∞

n∏
i=1

Pr
(
umle
i = utrue

i

)
= 0 (11)

A.2 OTHER RESULTS

On the Sample Size for Typicality and Selection of ϵ

Proof of Prop. 9. Our goal is to show:

Pr
(
utrue ∈ Uϵ(ỹ)

)
≥ 1− δ

The uncertainty set Uϵ(ỹ) defined on pu|ỹ is a strongly-typical set where the true mean pu|y and the
empirical mean is p̂u := 1

n

∑n
i=1 I [ui = 1] . Thus,

utrue ∈ Uϵ(ỹ)⇔ |p̂u − pu|ỹ| ≤ pu|ỹ · ϵ (12)

We will derive conditions to satisfy the left-hand side of Eq. (12)

Observe that we can write

|p̂u − pu|ỹ| = |(p̂u − pu) + (pu − pu|ỹ)|
≤ |p̂u − pu|+ |pu − pu|ỹ| (by the triangle inequality)

We require |p̂u − pu|ỹ| ≤ pu|ỹ · ϵ|p̂u − pu|. Therefore we need |p̂u − pu| + |pu − pu|ỹ| ≤ pu|ỹ · ϵ
which implies that |p̂u − pu| ≤ pu|ỹ · ϵ− |pu − pu|ỹ|

We can now apply Hoeffding’s inequality as utrue is a sequence of bounded, independently sampled
random variables, let α = pu|ỹ · ϵ− |pu − pu|ỹ|:

Pr (|p̂u − pu| ≥ α) ≤ 2 · exp(−2nα2)

Rearranging, we have that:

Pr
(
utrue ∈ Uϵ(ỹ)

)
= Pr (|p̂u − pu| ≤ α) ≥ 1− 2 · exp(−2nα2) = 1− 2 · exp(−2n(pu|ỹ · ϵ− |pu − pu|ỹ|)2)

We can invert this bound to obtain the following statement: with probability at least 1 − δ,
Pr (utrue ∈ Uϵ(ỹ)) if we the number of samples n obeys:

n ≥
− ln

(
δ
2

)
2(pu|ỹ · ϵ− |pu − pu|ỹ|)2

To conclude the proof, we rearrange for ϵ, that is, given a dataset:

ϵ ≥ 1

pu|ỹ

√ ln
(
2
δ

)
2n

+ |pu − pu|ỹ|


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B SUPPORTING MATERIAL FOR SECTION 3

In this Appendix, we present theoretical results related to our proposed approach.

B.1 ON AMBIGUITY AND REGRET

To see our intuition, since u ∼ qu|ỹ , we have ŷ ∼ Pr
(
Y | Ỹ = ỹ

)
, that is ŷ represents the Bayes-

optimal estimate of the true label given the noisy label.

Thus ambiguity captures the uncertainty in estimating the true label and the model’s prediction.
Specifically,

Pr
(
f(x) ̸= Y | Ỹ = ỹ

)
=
∑
y

Pr
(
f(x) = y | Ỹ = ỹ

)
· Pr
(
Y ̸= y | Ỹ = ỹ

)
The above is due to the conditional independence between f and Ŷ . Furthermore,∑

y

Pr
(
f(x) = y | Ỹ = ỹ

)
· Pr
(
Y ̸= y | Ỹ = ỹ

)
=
∑
y

Pr
(
f(x) = y | Ỹ = ỹ

)
· (1− Pr

(
Y = y | Ỹ = ỹ

)
)

=1−
∑
y

Pr
(
f(x) = y | Ỹ = ỹ

)
· Pr
(
Y = y | Ỹ = ỹ

)
Note that ∑

y

Pr
(
f(x) = y | Ỹ = ỹ

)
· Pr
(
Y = y | Ỹ = ỹ

)
≤1

2

(∑
y

(
Pr
(
f(x) = y | Ỹ = ỹ

))2
+
∑(

Pr
(
Y = y | Ỹ = ỹ

))2)
Here the inequality holds with equality when Pr

(
f(x) = y | Ỹ = ỹ

)
= Pr

(
Y = y | Ỹ = ỹ

)
.

The term
∑

y

(
Pr
(
f(x) = y | Ỹ = ỹ

))2
+
∑(

Pr
(
Y = y | Ỹ = ỹ

))2
maximizes when there

exists only one y, y′ such that Pr
(
f(x) = y | Ỹ = ỹ

)
= 1,Pr

(
Y = y′ | Ỹ = ỹ

)
= 1 –

i.e., the model prediction and the inferred true label have no ambiguity. More generally
1
2

(∑
y

(
Pr
(
f(x) = y | Ỹ = ỹ

))2
+
∑(

Pr
(
Y = y | Ỹ = ỹ

))2)
is smaller when f and Y

carry more ambiguity, achieving minimum when f(x|Ỹ ) and Y |Ỹ are uniformly distributed.

B.2 ON CHOOSING AN ATYPICALITY PARAMETER

Proposition 9. Given a set of np instances (x, ỹ) subject to noise rate pu, we can determine the
minimum ϵ to ensure with that any draw of noise falls within our set of plausible draws Fplaus

ϵ with
high probability. That is, with probability at least 1− δ, u ∈ Uϵ(ỹ) if ϵ obeys:

ϵ ≥ 1

qu|ỹ

√ ln
(
2
δ

)
2np

+ |pu − qu|ỹ|

 .

Here np represents the number of instances under the same noise model. For example, under class
level noise, this bound would need to be evaluated separately using the number of instances for each
class.

In practice, we can use this bound to set the atypicality parameter ϵ. For example, given a dataset
with n = 10, 000 instances under 20% uniform label noise, for example, a practitioner must set
ϵ ≥ 6% to ensure that the u ∈ Fplaus

ϵ with probability at least 90%.
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C SUPPORTING MATERIAL FOR SECTION 4

C.1 DATASETS

lungcancer We used a cohort of 120,641 lung cancer patients diagnosed between 2004-2016
who were monitored in the National Cancer Institute SEER study [37]. The outcome variable is
death within five years from any cause, with 16.9% dying within this period. The cohort includes
patients across the USA (California, Georgia, Kentucky, New Jersey, and Louisiana), excluding
those lost to follow-up. Features include measures of tumor morphology and histology (e.g., size,
metastasis, stage, node count and location), as well as clinical interventions at the time of diagnoses
(e.g., surgery, chemotherapy, radiology).

shock_eicu & shock_mimic Cardiogenic shock is an acute cardiac condition where the heart
fails to sufficiently pump enough blood [17] leading to under-perfusion of vital organs. These
datasets are designed to build algorithms to predict cardiogenic shock in ICU patients. Both datasets
contain identical features, group attributes, and outcome variables but they capture different patient
populations. The shock_eicu dataset includes records from the EICU Collaborative Research
Database V2.0 [40], while the shock_mimic dataset includes records from the MIMIC-III database
[19]. The target variable is whether a patient with cardiogenic shock will die in the ICU. Features
include vital signs and routine lab tests (e.g., systolic BP, heart rate, hemoglobin count) collected
within 24 hours before the onset of cardiogenic shock.

saps The Simplified Acute Physiology Score II (SAPS II) score is a risk-score designed to predict
the risk of death in ICU patients [24]. The data contains records of 7,797 patients from 137 medical
centers in 12 countries. The outcome variable indicates whether a patient dies in the ICU, with
12.8% patient of patients dying. Similar to the other datasets, saps contains features reflecting
comorbidities, vital signs, and lab measurements.

support This dataset comprises 9,105 ICU patients from five U.S. medical centers, collected dur-
ing 1989-1991 and 1992-1994 [21]. Each record pertains to patients across nine disease categories:
acute respiratory failure, chronic obstructive pulmonary disease, congestive heart failure, liver dis-
ease, coma, colon cancer, lung cancer, multiple organ system failure with malignancy, and multiple
organ system failure with sepsis. The aim is to determine the individual-level 2- and 6-month sur-
vival rates based on physiological, demographic, and diagnostic data.

C.2 RESULTS FOR ADDITIONAL NOISE DRAWS
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5 20 40

LR NN LR NN LR NN

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [40]

True Error
∆Error

Ambiguity
Regret

Overreliance

23.3%
-1.2%
6.0%
2.1%
0.5%

23.4%
-1.2%
6.0%
2.1%
0.5%

11.8%
-1.2%
6.0%
2.1%
0.5%

14.0%
-0.9%
6.0%
2.1%
0.6%

27.7%
-1.3%
20.5%
10.2%
4.4%

22.6%
-4.9%
20.5%
10.2%

2.6%

17.9%
-2.1%
20.5%
10.2%
4.1%

16.8%
-4.7%
20.5%
10.2%
2.7%

38.5%
9.4%

36.5%
20.1%
14.8%

23.2%
-11.3%
36.5%
20.1%
4.4%

35.2%
12.3%
36.5%
20.1%
16.2%

27.3%
-12.7%
36.5%
20.1%

3.7%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [19]

True Error
∆Error

Ambiguity
Regret

Overreliance

21.0%
-1.3%
5.5%
2.3%
0.5%

20.2%
-1.4%
5.5%
2.3%
0.4%

15.2%
-1.8%
5.5%
2.3%
0.2%

15.5%
-1.6%
5.5%
2.3%
0.3%

23.7%
-2.7%
18.5%
9.7%
3.5%

20.2%
-6.0%
18.5%
9.7%
1.9%

17.9%
-6.5%
18.5%
9.7%
1.6%

16.2%
-5.6%
18.5%
9.7%
2.1%

33.8%
5.6%

33.0%
19.8%
12.7%

20.3%
-12.8%
33.0%
19.8%
3.5%

32.6%
5.5%

33.0%
19.8%
12.6%

25.0%
-11.2%
33.0%
19.8%
4.3%

lungcancer

n = 62, 916

d = 40

NCI [37]

True Error
∆Error

Ambiguity
Regret

Overreliance

31.2%
-0.6%
5.5%
2.4%
0.9%

31.2%
-0.7%
5.5%
2.4%
0.8%

29.7%
-1.1%
5.5%
2.4%
0.7%

29.9%
-1.1%
5.5%
2.4%
0.6%

33.6%
0.6%

18.5%
9.9%
5.3%

31.0%
-3.4%
18.5%
9.9%
3.2%

31.3%
-0.9%
18.5%
9.9%
4.5%

29.6%
-4.5%
18.5%
9.9%
2.7%

43.0%
13.2%
31.5%
19.8%
16.5%

31.4%
-6.5%
31.5%
19.8%
6.7%

49.8%
19.8%
31.5%
19.8%
19.8%

30.3%
-7.9%
31.5%
19.8%
6.0%

mortality

n = 20, 334

d = 84

Le Gall et al. [24]

True Error
∆Error

Ambiguity
Regret

Overreliance

19.4%
-1.3%
5.0%
2.3%
0.5%

19.6%
-1.4%
5.0%
2.3%
0.4%

17.4%
-1.4%
5.0%
2.3%
0.4%

17.8%
-1.3%
5.0%
2.3%
0.5%

22.0%
-3.1%
18.0%
9.7%
3.3%

19.8%
-5.6%
18.0%
9.7%
2.1%

19.1%
-3.9%
18.0%
9.7%
2.9%

18.2%
-5.5%
18.0%
9.7%
2.1%

28.2%
1.4%

31.5%
19.8%
10.6%

19.9%
-11.0%
31.5%
19.8%
4.4%

26.2%
-0.4%
31.5%
19.8%

9.7%

18.6%
-11.5%
31.5%
19.8%
4.2%

support

n = 9, 696

d = 114

Knaus et al. [21]

True Error
∆Error

Ambiguity
Regret

Overreliance

33.6%
-0.7%
6.0%
2.5%
0.9%

33.6%
-0.8%
6.0%
2.5%
0.9%

28.5%
-0.6%
6.0%
2.5%
1.0%

28.8%
-0.3%
6.0%
2.5%
1.1%

36.4%
1.6%

21.0%
10.0%
5.8%

33.9%
-2.5%
21.0%
10.0%

3.7%

31.9%
1.8%

21.0%
10.0%
5.9%

29.9%
0.5%

21.0%
10.0%
5.2%

43.7%
13.1%
37.5%
19.9%
16.5%

35.3%
-3.4%
37.5%
19.9%
8.3%

41.6%
15.3%
37.5%
19.9%
17.6%

38.6%
7.0%

37.5%
19.9%
13.5%

Table 4: Overview of performance and regret for models trained on all datasets, training procedures, and model
classes. Noise draw 2.

5 20 40

LR NN LR NN LR NN

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [40]

True Error
∆Error

Ambiguity
Regret

Overreliance

23.8%
-0.9%
6.0%
2.3%
0.7%

22.7%
-1.2%
6.0%
2.3%
0.5%

12.1%
-0.4%
6.0%
2.3%
0.9%

12.6%
-1.1%
6.0%
2.3%
0.6%

27.3%
-1.3%
20.5%
10.2%
4.4%

23.4%
-5.0%
20.5%
10.2%

2.6%

14.3%
-5.5%
20.5%
10.2%
2.3%

21.3%
-3.3%
20.5%
10.2%
3.4%

36.6%
6.9%

37.0%
18.9%
12.9%

24.5%
-10.9%
37.0%
18.9%
4.0%

27.4%
6.0%

37.0%
18.9%
12.4%

26.2%
-4.9%
37.0%
18.9%
7.0%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [19]

True Error
∆Error

Ambiguity
Regret

Overreliance

21.6%
-1.0%
5.5%
2.4%
0.7%

20.8%
-1.2%
5.5%
2.4%
0.6%

16.0%
-1.8%
5.5%
2.4%
0.3%

16.3%
-1.7%
5.5%
2.4%
0.3%

24.2%
-2.5%
18.5%
9.8%
3.6%

21.0%
-5.3%
18.5%
9.8%
2.2%

15.5%
-7.1%
18.5%
9.8%
1.3%

16.5%
-6.2%
18.5%
9.8%
1.8%

32.1%
4.3%

33.0%
19.3%
11.8%

20.5%
-11.5%
33.0%
19.3%
3.9%

33.5%
6.0%

33.0%
19.3%
12.7%

26.8%
-10.2%
33.0%
19.3%
4.5%

lungcancer

n = 62, 916

d = 40

NCI [37]

True Error
∆Error

Ambiguity
Regret

Overreliance

31.4%
-0.5%
5.5%
2.6%
1.0%

31.1%
-0.7%
5.5%
2.6%
0.9%

30.1%
-1.2%
5.5%
2.6%
0.7%

30.5%
-0.8%
5.5%
2.6%
0.9%

33.5%
0.8%

18.5%
10.0%
5.4%

30.9%
-3.3%
18.5%
10.0%
3.4%

31.7%
-0.4%
18.5%
10.0%
4.8%

29.2%
-4.9%
18.5%
10.0%
2.5%

43.3%
13.2%
31.5%
20.0%
16.6%

31.4%
-6.5%
31.5%
20.0%
6.7%

49.8%
20.0%
31.5%
20.0%
20.0%

29.4%
-6.0%
31.5%
20.0%
7.0%

mortality

n = 20, 334

d = 84

Le Gall et al. [24]

True Error
∆Error

Ambiguity
Regret

Overreliance

19.7%
-1.4%
5.0%
2.6%
0.6%

19.6%
-1.5%
5.0%
2.6%
0.6%

18.0%
-1.5%
5.0%
2.6%
0.6%

17.5%
-1.4%
5.0%
2.6%
0.6%

21.9%
-3.4%
18.0%
10.1%
3.4%

19.9%
-5.9%
18.0%
10.1%
2.1%

19.5%
-4.4%
18.0%
10.1%
2.9%

18.4%
-6.0%
18.0%
10.1%
2.0%

27.0%
0.3%

31.5%
20.1%
10.2%

20.0%
-11.8%
31.5%
20.1%
4.2%

29.4%
3.1%

31.5%
20.1%
11.6%

20.0%
-9.9%
31.5%
20.1%
5.1%

support

n = 9, 696

d = 114

Knaus et al. [21]

True Error
∆Error

Ambiguity
Regret

Overreliance

33.7%
-0.4%
6.0%
2.6%
1.1%

33.4%
-0.6%
6.0%
2.6%
1.0%

28.2%
-0.6%
6.0%
2.6%
1.0%

28.0%
-0.3%
6.0%
2.6%
1.1%

36.2%
2.0%

20.5%
10.3%
6.1%

33.8%
-2.2%
20.5%
10.3%

4.0%

31.4%
2.1%

20.5%
10.3%
6.2%

34.7%
-1.4%
20.5%
10.3%
4.4%

43.9%
13.3%
37.0%
19.6%
16.5%

33.9%
-4.7%
37.0%
19.6%
7.5%

39.2%
12.9%
37.0%
19.6%
16.3%

43.2%
13.9%
37.0%
19.6%
16.8%

Table 5: Overview of performance and regret for models trained on all datasets, training procedures, and model
classes. Noise draw 3.
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1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
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1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
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1058
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1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
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1074
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5 20 40

LR NN LR NN LR NN

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [40]

True Error
∆Error

Ambiguity
Regret

Overreliance

24.0%
-0.9%
6.0%
2.5%
0.8%

23.7%
-1.1%
6.0%
2.5%
0.7%

12.5%
-1.3%
6.0%
2.5%
0.6%

13.0%
-2.0%
6.0%
2.5%
0.3%

27.6%
-2.0%
20.5%
9.9%
4.0%

23.7%
-5.8%
20.5%

9.9%
2.1%

19.2%
-1.3%
20.5%
9.9%
4.3%

24.8%
-1.2%
20.5%
9.9%
4.4%

36.9%
8.3%

36.0%
19.8%
14.0%

24.8%
-9.8%
36.0%
19.8%
5.0%

27.2%
3.4%

36.0%
19.8%
11.6%

27.9%
-1.8%
36.0%
19.8%
9.0%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [19]

True Error
∆Error

Ambiguity
Regret

Overreliance

21.3%
-1.1%
5.5%
2.5%
0.7%

20.8%
-1.4%
5.5%
2.5%
0.5%

14.8%
-1.9%
5.5%
2.5%
0.3%

15.6%
-1.9%
5.5%
2.5%
0.3%

23.8%
-2.1%
18.5%
9.7%
3.8%

20.5%
-5.6%
18.5%
9.7%
2.0%

18.1%
-5.9%
18.5%
9.7%
1.9%

17.7%
-5.1%
18.5%
9.7%
2.3%

36.4%
8.0%

33.0%
19.6%
13.8%

20.8%
-11.0%
33.0%
19.6%
4.3%

24.2%
-2.0%
33.0%
19.6%

8.8%

30.4%
-15.8%
33.0%
19.6%
1.9%

lungcancer

n = 62, 916

d = 40

NCI [37]

True Error
∆Error

Ambiguity
Regret

Overreliance

31.5%
-0.5%
5.5%
2.6%
1.1%

31.1%
-0.6%
5.5%
2.6%
1.0%

29.9%
-0.6%
5.5%
2.6%
1.0%

30.1%
-1.1%
5.5%
2.6%
0.8%

33.7%
0.6%

18.5%
10.0%
5.3%

31.1%
-3.1%
18.5%
10.0%
3.5%

31.6%
-0.6%
18.5%
10.0%
4.7%

30.0%
-3.8%
18.5%
10.0%
3.1%

42.8%
12.8%
31.5%
20.0%
16.4%

31.4%
-5.8%
31.5%
20.0%
7.1%

43.7%
14.3%
31.5%
20.0%
17.1%

30.2%
-6.2%
31.5%
20.0%
6.9%

mortality

n = 20, 334

d = 84

Le Gall et al. [24]

True Error
∆Error

Ambiguity
Regret

Overreliance

19.7%
-1.3%
5.0%
2.3%
0.5%

19.7%
-1.3%
5.0%
2.3%
0.5%

17.6%
-1.3%
5.0%
2.3%
0.5%

18.0%
-1.3%
5.0%
2.3%
0.5%

21.2%
-3.7%
18.0%
9.5%
2.9%

19.9%
-5.5%
18.0%
9.5%
2.0%

18.2%
-4.6%
18.0%
9.5%
2.4%

18.4%
-4.9%
18.0%
9.5%
2.3%

29.4%
2.0%

31.5%
19.6%
10.8%

19.8%
-11.1%
31.5%
19.6%
4.3%

25.1%
-0.9%
31.5%
19.6%

9.4%

18.9%
-10.0%
31.5%
19.6%
4.8%

support

n = 9, 696

d = 114

Knaus et al. [21]

True Error
∆Error

Ambiguity
Regret

Overreliance

33.3%
-0.4%
6.0%
2.6%
1.1%

33.4%
-0.7%
6.0%
2.6%
1.0%

28.6%
0.0%
6.0%
2.6%
1.3%

27.9%
-0.2%
6.0%
2.6%
1.2%

36.5%
2.3%

20.5%
9.9%
6.1%

33.5%
-2.4%
20.5%

9.9%
3.8%

32.3%
2.2%

20.5%
9.9%
6.1%

29.9%
-0.0%
20.5%
9.9%
5.0%

43.2%
12.7%
36.5%
19.9%
16.3%

33.6%
-5.0%
36.5%
19.9%
7.5%

40.3%
13.0%
36.5%
19.9%
16.4%

36.5%
3.9%

36.5%
19.9%
11.9%

Table 6: Overview of performance and regret for models trained on all datasets, training procedures, and model
classes. Noise draw 4.

5 20 40

LR NN LR NN LR NN

Dataset Metrics Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge Ignore Hedge

shock_eicu

n = 3, 456

d = 104

Pollard et al. [40]

True Error
∆Error

Ambiguity
Regret

Overreliance

22.9%
-1.0%
6.0%
2.7%
0.8%

22.6%
-1.2%
6.0%
2.7%
0.8%

13.1%
-1.2%
6.0%
2.7%
0.8%

13.3%
-1.0%
6.0%
2.7%
0.8%

28.1%
-1.0%
20.0%
10.7%
4.8%

23.0%
-5.4%
20.0%
10.7%

2.7%

17.6%
-3.0%
20.0%
10.7%
3.9%

20.2%
-1.7%
20.0%
10.7%
4.5%

38.5%
10.3%
36.2%
21.1%
15.7%

23.0%
-11.2%
36.2%
21.1%
5.0%

35.5%
11.3%
36.2%
21.1%
16.2%

26.0%
-4.0%
36.2%
21.1%
8.5%

shock_mimic

n = 15, 254

d = 104

Johnson et al. [19]

True Error
∆Error

Ambiguity
Regret

Overreliance

21.4%
-1.0%
5.5%
2.3%
0.7%

20.6%
-1.1%
5.5%
2.3%
0.6%

15.5%
-1.6%
5.5%
2.3%
0.4%

15.6%
-1.7%
5.5%
2.3%
0.3%

24.6%
-1.7%
18.5%
9.8%
4.0%

20.8%
-5.4%
18.5%
9.8%
2.2%

17.4%
-6.4%
18.5%
9.8%
1.7%

17.1%
-6.8%
18.5%
9.8%
1.5%

33.2%
5.7%

33.0%
19.8%
12.7%

21.2%
-11.3%
33.0%
19.8%
4.2%

29.2%
2.4%

33.0%
19.8%
11.1%

25.7%
-9.1%
33.0%
19.8%
5.3%

lungcancer

n = 62, 916

d = 40

NCI [37]

True Error
∆Error

Ambiguity
Regret

Overreliance

31.7%
-0.5%
5.5%
2.5%
1.0%

31.0%
-0.7%
5.5%
2.5%
0.9%

30.4%
-1.1%
5.5%
2.5%
0.7%

30.0%
-0.8%
5.5%
2.5%
0.9%

35.1%
1.6%

18.5%
10.2%
5.9%

31.1%
-2.9%
18.5%
10.2%
3.6%

31.4%
-0.7%
18.5%
10.2%
4.7%

30.1%
-4.9%
18.5%
10.2%
2.7%

44.0%
14.2%
31.5%
20.0%
17.1%

31.3%
-5.5%
31.5%
20.0%
7.2%

38.7%
9.2%

31.5%
20.0%
14.6%

30.0%
-6.9%
31.5%
20.0%
6.6%

mortality

n = 20, 334

d = 84

Le Gall et al. [24]

True Error
∆Error

Ambiguity
Regret

Overreliance

19.7%
-1.3%
5.0%
2.4%
0.5%

19.7%
-1.4%
5.0%
2.4%
0.5%

17.7%
-1.6%
5.0%
2.4%
0.4%

17.6%
-1.4%
5.0%
2.4%
0.5%

22.2%
-3.1%
18.0%
10.1%
3.5%

19.6%
-6.0%
18.0%
10.1%
2.1%

18.6%
-4.3%
18.0%
10.1%
2.9%

18.1%
-5.6%
18.0%
10.1%
2.2%

32.6%
4.9%

31.5%
20.3%
12.6%

19.6%
-12.2%
31.5%
20.3%
4.0%

25.6%
-1.0%
31.5%
20.3%

9.7%

19.3%
-12.4%
31.5%
20.3%
3.9%

support

n = 9, 696

d = 114

Knaus et al. [21]

True Error
∆Error

Ambiguity
Regret

Overreliance

33.4%
-0.4%
6.0%
2.7%
1.1%

33.6%
-0.5%
6.0%
2.7%
1.1%

28.5%
-0.2%
6.0%
2.7%
1.2%

28.9%
-0.1%
6.0%
2.7%
1.3%

35.5%
1.0%

20.5%
10.0%
5.5%

33.7%
-2.7%
20.5%
10.0%

3.6%

31.2%
1.1%

20.5%
10.0%
5.5%

30.2%
-0.4%
20.5%
10.0%
4.8%

44.5%
14.5%
35.5%
20.3%
17.4%

34.1%
-4.8%
35.5%
20.3%
7.8%

41.9%
14.5%
35.5%
20.3%
17.4%

39.6%
9.5%

35.5%
20.3%
14.9%

Table 7: Overview of performance and regret for models trained on all datasets, training procedures, and model
classes. Noise draw 5.
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C.3 ADDITIONAL EXPERIMENTAL RESULTS

We include additional experimental results for the mortality dataset using a LR model and class
level label noise. These results are aggregated across different initial noise draws, and also show
regret and overreliance (fnr) conditioned on class and subgroup identifiers.
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Figure 5: Complete Results for mortality Class Level Noise

21


