
Unveiling the Capabilities of Large Language Models in Detecting
Offensive Language with Annotation Disagreement

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have become001
essential for offensive language detection, yet002
their ability to handle annotation disagreement003
remains underexplored. Disagreement sam-004
ples, which arise from subjective interpreta-005
tions, pose a unique challenge due to their am-006
biguous nature. Understanding how LLMs pro-007
cess these cases, particularly their confidence008
levels, can offer insight into their alignment009
with human annotators. This study systemat-010
ically evaluates the performance of multiple011
LLMs in detecting offensive language at vary-012
ing levels of annotation agreement. We analyze013
binary classification accuracy, examine the re-014
lationship between model confidence and hu-015
man disagreement, and explore how disagree-016
ment samples influence model decision-making017
during few-shot learning and instruction fine-018
tuning. Our findings reveal that LLMs strug-019
gle with low-agreement samples, often exhibit-020
ing overconfidence in these ambiguous cases.021
However, utilizing disagreement samples in022
training improves both detection accuracy and023
model alignment with human judgment. These024
insights provide a foundation for enhancing025
LLM-based offensive language detection in026
real-world moderation tasks.027

Disclaimer: The paper contains content that028
may be profane, vulgar, or offensive.029

1 Introduction030

Motivation. A fundamental challenge in offen-031

sive language detection is annotation disagree-032

ment—cases where human annotators provide con-033

flicting labels for the same text. Disagreement034

arises due to differences in individual perception,035

cultural context, and linguistic ambiguity, mak-036

ing offensive language detection inherently subjec-037

tive (Aroyo et al., 2019; Basile, 2020; Uma et al.,038

2021b). However, prior research predominantly039

treats this task as a binary classification problem,040

assuming consensus among annotators and failing041

to account for the inherent subjectivity in offensive 042

language perception. 043

While large language models (LLMs) have been 044

extensively applied to offensive language detection 045

(Kumar et al., 2024; Huang et al., 2023), exist- 046

ing studies primarily evaluate their performance 047

on datasets with binary labels, overlooking their 048

ability to handle cases where annotators disagree. 049

This oversimplification limits our understanding 050

of how well LLMs align with human judgment in 051

ambiguous cases. Moreover, models may exhibit 052

overconfidence in cases where human annotators 053

themselves are uncertain, raising concerns about 054

their reliability for real-world moderation. 055

Research Objectives. To bridge this gap, we 056

systematically evaluate LLMs’ ability to process 057

disagreement samples, analyzing both classifica- 058

tion accuracy and model confidence. Through this, 059

we seek to determine whether LLMs can effectively 060

navigate subjective offensive language judgments 061

and align with human reasoning. An ideal model 062

should express high confidence for unanimously 063

labeled cases and lower confidence for ambigu- 064

ous samples, reflecting their inherent uncertainty 065

(Weerasooriya et al., 2023; Baumler et al., 2023; 066

Uma et al., 2021a; Leonardelli et al., 2023). Our 067

study provides insights into whether LLMs cap- 068

ture these nuances or exhibit overconfidence in 069

disagreement cases, which could undermine their 070

trustworthiness in content moderation. 071

This paper systematically investigates how 072

LLMs handle annotation disagreement in offen- 073

sive language detection. Specifically, we address 074

the following research questions: (RQ1) To what 075

extent can LLMs accurately detect offensive lan- 076

guage in cases of human annotation disagreement? 077

(RQ2) How do disagreement samples shape LLM 078

learning and influence decision-making? 079

To answer RQ1, we evaluate multiple open- 080

source and closed-source LLMs in a zero-shot set- 081
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Agreement Degree Example Hard Label Soft Label

N++ Stand for something or else fall for anything. #BlackLivesMatter
Hello world! What a great day to be alive #Trump2020 #MAGA 0 0

N+ Come on man! Lock’em up!!! #maga Not the first time. You all
misspelled #blacklivesmatter. Speak up! @user 0 0.2

N0 Set fire to Fox News (metaphorically) @user is outing #BLACK-
LIVES-MATTER as a cult! HE IS CORRECT! 0 0.4

O0 #DISGUSTING #Democrats terrorize old folks just before #elec-
tions2020 I love this shit! #BlackLivesMatter 1 0.6

O+ @user You’re a bumbling fool #elections2020 Elections 2020: Red
Rapist v. Blue Racist 1 0.8

O++ Y’all trending about kpop stans instead of #BlackLivesMatter big
fack you Crazy idiots. This is batshit bullshit. #elections2020 1 1

Table 1: Eamples with different degrees of annotation agreement, where N denotes non-offensive language and
O denotes offensive language. The superscripts ++, +, and 0 represent unanimous, medium, and low agreement,
respectively. These samples are collected from the MD-Agreement dataset (Leonardelli et al., 2021).

ting, analyzing both classification accuracy and082

the relationship between annotation agreement and083

model confidence. For RQ2, we examine the im-084

pact of disagreement samples in few-shot learning085

and instruction fine-tuning, assessing how different086

agreement levels affect model performance.087

Contributions. We summarize the contributions088

of this paper as follows:089

• We provide the first systematic evaluation of090

LLMs’ performance in offensive language de-091

tection under annotation disagreement, reveal-092

ing key insights into model reliability and093

human-AI alignment.094

• We conduct an extensive empirical study on095

LLMs’ handling of disagreement cases, exam-096

ining models’ performance, confidence, and097

alignment with human judgment.098

• We analyze the impact of training on disagree-099

ment samples, demonstrating how few-shot100

learning and instruction fine-tuning on these101

samples influence LLM decision-making in102

offensive language detection.103

2 Preliminary104

2.1 Dataset105

Since annotation disagreements can stem from both106

intrinsic linguistic ambiguity and labeling error, se-107

lecting an appropriate benchmark dataset requires108

meeting two key criteria: (1) high annotation qual-109

ity to ensure reliability, and (2) open access to unag-110

gregated annotations to facilitate fine-grained anal-111

ysis. To ensure a robust evaluation, we employ the112

MD-Agreement dataset (Leonardelli et al., 2021),113

a high-quality corpus for offensive language detec- 114

tion. It contains 10,753 tweets, each labeled by 115

five trained human annotators, ensuring a reliable 116

annotation process. 117

The dataset provides both hard labels (majority- 118

voted labels) and soft labels, which indicate the 119

level of agreement among annotators. The soft 120

labels are categorized into three levels: 121

• Unanimous agreement (A++): All five anno- 122

tators agree on the label. 123

• Mild agreement (A+): Four out of five anno- 124

tators agree. 125

• Weak agreement (A0): Only three annotators 126

agree, while two disagree. 127

Each sample in the dataset is also classified as ei- 128

ther offensive or non-offensive, following the same 129

agreement-level framework: 130

• Offensive samples (O++, O+, O0): In- 131

stances labeled as offensive, where the agree- 132

ment level corresponds to the unanimous, 133

mild, or weak agreement, respectively. 134

• Non-offensive samples (N++, N+, N0): In- 135

stances labeled as non-offensive, with the 136

same agreement-level distinctions. 137

Thus, the agreement notation (++, +, 0) applies 138

uniformly across both offensive and non-offensive 139

categories, ensuring consistency in the dataset’s an- 140

notation schema. To facilitate subsequent research, 141

we convert the soft labels into floating-point num- 142

bers in the range [0, 1] by averaging the hard labels 143

from five annotators (offensive as 1, non-offensive 144

as 0) for each sample. 145
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Split A++ A+ A N++ N+ N O O+ O++ N-Off. Off. Total
Train 2,778 1,930 1,884 2,303 1,295 1,032 852 635 475 4,630 1,962 6,592
Dev 464 317 322 346 199 171 151 118 118 1,103 387 1,103
Test 1,292 909 803 1,020 549 470 386 360 272 3,004 1,018 3,057

MD-Agreement 4,535 3,156 3,062 3,669 2,043 1,673 1,389 1,113 866 7,385 3,368 10,753

Table 2: Statistics of the MD-Agreement dataset, where N denotes non-offensive language and O denotes offensive
language. The superscripts ++, +, and 0 represent unanimous, medium, and low agreement, respectively.

Examples of samples across different agreement146

levels are provided in Table 1, and the overall147

dataset statistics are presented in Table 2. The relia-148

bility of MD-Agreement’s annotations has been in-149

dependently validated in prior studies (Sandri et al.,150

2023), confirming that the disagreement samples151

are caused by their inherent ambiguity, rather than152

labeling errors. MD-Agreement serves as the offi-153

cial corpus for SemEval 2023 Task 11 (Leonardelli154

et al., 2023) and has been widely utilized by re-155

searchers in the field (Deng et al., 2023; Mokhbe-156

rian et al., 2024). Further dataset details are pro-157

vided in Appendix A.1.158

2.2 Models159

To ensure a comprehensive evaluation, we include160

both closed-source and open-source LLMs, cover-161

ing a range of architectures and parameter sizes.162

For closed-source models, we evaluate widely163

used proprietary LLMs, including GPT-3.5, GPT-4,164

GPT-4o, GPT-o1, Claude-3.5, and Gemini-1.5. We165

also evaluate three families of open-source LLMs166

at different scales: LLaMa-3 (8B, 70B), Qwen-2.5167

(7B, 72B), and Mixtral (8x7B, 8x22B). Further168

details on the model versions are provided in Ap-169

pendix A.4.170

3 RQ1: Evaluating LLMs on Offensive171

Language with Annotation172

Disagreement173

In this section, we evaluate the ability of LLMs to174

detect offensive language in a zero-shot setting. We175

focus on two key aspects: (1) binary classification176

accuracy, assessing how effectively models distin-177

guish offensive from non-offensive language across178

varying annotation agreement levels, and (2) model179

confidence, analyzing whether LLMs exhibit ap-180

propriate uncertainty in ambiguous cases. These as-181

pects are essential for determining whether LLMs182

can reliably perform offensive language detection183

in real-world scenarios, where human annotators184

often disagree.185

3.1 Evaluation of Binary Classification 186

Performance 187

We assess binary classification performance by 188

evaluating LLMs in a zero-shot setting without 189

additional fine-tuning. To ensure deterministic pre- 190

dictions, we set the temperature coefficient of the 191

LLMs to 0, forcing the model to select the most 192

probable category. We use accuracy and F1 score as 193

evaluation metrics to measure classification perfor- 194

mance. The prompt template used for offensive lan- 195

guage detection is provided in Appendix A.3. LLM 196

outputs are converted into hard predictions, where 197

1 indicates offensive and 0 indicates non-offensive. 198

We utilize all the samples from MD-Agreement for 199

a comprehensive evaluation. The classification re- 200

sults are presented in Table 3. Based on the results, 201

we observe the following key findings: 202

(1) LLMs achieve high accuracy for unani- 203

mous agreement (A++) samples. In the zero- 204

shot setting, LLMs consistently accurately classify 205

unanimously agreed-upon (A++) samples, achiev- 206

ing 88.28% accuracy for closed-source models 207

and 86.07% for open-source models. Notably, 208

LLaMa3-70B now performs comparably to pro- 209

prietary models. These results suggest that LLMs 210

perform well on clear-cut cases, driven by their 211

background knowledge and reasoning capabilities. 212

(2) LLM performance declines sharply for am- 213

biguous cases. As annotation agreement de- 214

creases, LLMs struggle to classify offensive lan- 215

guage consistently. GPT-4o’s F1 score drops from 216

85.24% on A++ samples to 74.6% on A+ and 217

57.06% on A0. Similarly, all models score below 218

65% on A0 samples. This highlights LLMs’ in- 219

ability to resolve subjective cases in the real world, 220

where human disagreement often stems from cul- 221

tural, contextual, or linguistic nuances that models 222

fail to capture. 223

(3) Larger models improve accuracy but do not 224

resolve annotation disagreement. While larger 225

models generally perform better, their improve- 226

ment shrinks for ambiguous cases. For example, 227
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Overall A++ A+ Ao

Model Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑
Closed-Source Large Language Models (CS-LLMs)

GPT-o1 78.35 69.03 91.95 81.29 77.50 72.03 59.08 58.63
GPT-4o 80.36 70.33 93.96 85.24 80.67 74.60 59.90 57.06
GPT-4 74.18 69.07 88.64 76.75 70.12 68.91 56.96 64.63

GPT-3.5 67.07 63.45 78.99 64.02 62.39 63.28 54.25 63.18
Claude-3.5 78.56 70.93 92.59 83.13 76.39 72.02 60.03 62.61
Gemini-1.5 69.50 66.07 83.53 69.70 64.48 65.73 53.89 64.07

Avg. of CS-LLM 74.67 68.15 88.28 76.69 71.93 69.43 57.35 61.70
Open-Source Large Language Models (OS-LLMs)

LLaMa3-70B 76.93 71.06 91.40 81.36 74.46 71.96 58.03 64.37
LLaMa3-8B 71.82 65.31 85.56 70.72 68.22 66.06 55.19 61.26

Qwen2.5-72B 72.08 66.86 84.74 70.92 68.41 67.36 57.12 63.76
Qwen2.5-7B 71.10 67.14 85.34 72.02 66.92 67.25 54.31 64.06

Mixtral-8x22B 73.46 67.82 87.12 74.27 69.93 68.21 56.86 63.44
Mixtral-8x7B 70.57 65.59 82.27 67.58 67.14 66.32 56.76 63.63

Avg. of OS-LLM 72.66 67.30 86.07 72.81 69.18 67.86 56.38 63.42

Table 3: Binary classification performance of LLMs on the MD-Agreement dataset and its three subsets A++,
A+, and A0. Avg. of CS-LLM and OS-LLM respectively denote the average performance of the close-source and
open-source LLMs. Results show the accuracy (Acc.) and F1 in percentage (%). The bold and underline scores
respectively represent the optimal and suboptimal values.

Figure 1: Accuracy of LLMs on detecting offensive
and non-offensive language with different degrees of
annotation agreement.

LLaMa3-70B outperforms LLaMa3-8B by 10.64%228

on A++ samples but only by 3.11% on A0. Sim-229

ilarly, Mixtral and Qwen2.5 show no substantial230

gain in detecting disagreement samples despite in-231

creased parameters. Model scaling alone does not232

resolve ambiguity, suggesting that larger models233

lack the nuanced human reasoning required to nav-234

igate subjective cases. Alternative training strate-235

gies, such as human-in-the-loop approaches or fine-236

tuning on disagreement samples, may be necessary.237

(4) LLMs are biased toward classifying uncer-238

tain cases as offensive. We evaluate the ac-239

curacy for offensive and non-offensive language240

across different agreement levels, as shown in Fig-241

ure 1. We observed that across all agreement levels,242

LLMs demonstrate higher accuracy in identifying243

offensive language than non-offensive language. In 244

particular, for low-agreement non-offensive sam- 245

ples (N0), accuracy drops to 45.77%, indicating a 246

strong tendency to misclassify ambiguous content 247

as offensive. This over-sensitivity could lead to 248

false positives in automated moderation systems, 249

increasing the risk of justified content removal and 250

restricting legitimate speech. 251

3.2 Evaluation of Relationship between 252

Agreement Degree and LLM Confidence 253

We analyze how well LLM confidence aligns with 254

human annotation agreement, as a well-calibrated 255

model should exhibit high confidence for clear 256

cases and lower confidence for ambiguous cases. 257

If LLMs assign high confidence to disagreement 258

samples, this may indicate overconfidence, limiting 259

their ability to reflect human-like uncertainty. To 260

evaluate this, we apply the self-consistency method 261

(Chen and Mueller, 2024; Wang et al., 2023b), 262

which resamples model outputs under varying tem- 263

perature settings to estimate confidence. 264

To measure confidence, we evaluate models un- 265

der five temperature settings: 0, 0.25, 0.5, 0.75, 266

and 1. Higher temperatures introduce more ran- 267

domness in predictions, helping assess the model’s 268

certainty across varying conditions. The final con- 269

fidence score is computed by averaging the hard 270

predictions across these temperature settings. 271

We use Mean Squared Error (MSE) to measure 272
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Overall A++ A+ Ao

Model MSE ↓ ρ ↑ MSE ↓ ρ ↑ MSE ↓ ρ ↑ MSE ↓ ρ ↑
Closed-Source Large Language Models (CS-LLMs)

GPT-4o 0.1138 0.6535 0.0514 0.8098 0.1268 0.6298 0.1928 0.2332
GPT-4 0.1716 0.6819 0.1131 0.7175 0.2064 0.5323 0.2224 0.2478

GPT-3.5 0.2163 0.5889 0.1878 0.6021 0.2430 0.4236 0.2309 0.1820
Claude-3.5 0.1306 0.6780 0.0657 0.7590 0.1544 0.5818 0.2022 0.2379
Gemini-1.5 0.2137 0.6305 0.1638 0.6970 0.2505 0.4517 0.2498 0.1877

Avg. of CS-LLMs 0.1692 0.6466 0.1164 0.7171 0.1962 0.5238 0.2196 0.2177
Open-Source Large Language Models (OS-LLMs)

LLaMa3-70B 0.1400 0.6990 0.0753 0.7634 0.1680 0.5856 0.2072 0.2369
LLaMa3-8B 0.1803 0.5912 0.1316 0.6533 0.2068 0.4572 0.2251 0.1667

Qwen2.5-72B 0.1909 0.6588 0.1380 0.6817 0.2235 0.5001 0.2359 0.2119
Qwen2.5-7B 0.1962 0.6024 0.1480 0.6638 0.2237 0.4756 0.2393 0.2056

Mixtral-8x22B 0.1810 0.6287 0.1251 0.6858 0.2112 0.4944 0.2326 0.2107
Mixtral-8x7B 0.1978 0.5921 0.1578 0.6267 0.2218 0.4709 0.2323 0.2132

Avg. of OS-LLMs 0.1810 0.6287 0.1293 0.6791 0.2092 0.4973 0.2287 0.2075

Table 4: Estimation of relationship between annotators and LLMs on MD-Agreement and its three subsets. Results
show Mean Squared Error (MSE) and Spearman’s Rank Correlation Coefficient (ρ).

Figure 2: Self-consistency of several LLMs across
varying degrees of annotation agreement with Cohen’s
Kappa (κ) as the metric.

the alignment between LLM confidence and anno-273

tation agreement, where a smaller MSE indicates274

closer alignment (Uma et al., 2021a; Leonardelli275

et al., 2023). Additionally, we employ Spearman’s276

Rank Correlation Coefficient (ρ) to assess statis-277

tical correlation. The detailed metric definitions278

are provided in Appendix A.2. The results are pre-279

sented in Table 4.280

(1) As annotation agreement decreases, the281

alignment between model confidence and hu-282

man agreement weakens. As annotation agree-283

ment decreases, LLMs become less reliable in as-284

sessing their own uncertainty. GPT-4o, which per-285

forms best overall, has an MSE of 0.05 for A++286

samples but sees this error rise to 0.2 for A0 sam-287

ples. Additionally, Spearman’s correlation (ρ) be-288

tween confidence and agreement weakens from289

above 0.7 for unanimous samples to below 0.3 for290

disagreement cases. This suggests that LLMs do291

Figure 3: Confusion matrix (raw counts and percentage)
between confidence scores of GPT-4o (x-axis) and soft
labels (y-axis).

not effectively recognize uncertainty in ambiguous 292

cases. In real-world moderation, this could lead to 293

overconfident misclassifications, where the model 294

assigns a high confidence score to an incorrect la- 295

bel, making it harder to detect errors and apply 296

human oversight. 297

298
(2) LLMs demonstrate high self-consistency but 299

may be overconfident in disagreement cases. 300

We assess self-consistency using Cohen’s Kappa 301

(κ), measuring how stable LLM outputs remain 302

across multiple sampling attempts. As shown 303

in Figure 2, self-consistency decreases for lower 304

agreement samples but remains above 0.75 even 305

for A0 cases, indicating strong internal agreement. 306

While high self-consistency is desirable for clear- 307

cut cases, it becomes problematic in ambiguous 308
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Test Set A++ A+ Ao

Model Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓
GPT-4o (zero-shot) 80.11 0.1133 93.11 0.0560 79.76 0.1242 60.86 0.1923

w/ A++ 80.93 0.1260 93.65 0.0647 81.41 0.1332 61.21 0.2107
w/ A+ 81.26 0.1144 93.65 0.0515 81.96 0.1157 61.80 0.2080
w/ A0 81.22 0.1138 93.73 0.0558 82.18 0.1171 61.33 0.1979
w/ A++/+ 83.74 0.1054 95.28 0.0361 86.03 0.1120 63.90 0.2032
w/ A++/0 83.87 0.1063 95.74 0.0416 86.14 0.1079 63.55 0.2022
w/ A+/0 82.07 0.1171 94.66 0.0500 82.18 0.1290 62.97 0.2059
w/ A++/+/0 83.51 0.1045 95.51 0.0367 85.48 0.1078 63.32 0.2035

Table 5: Performance of GPT-4o on the test set of MD-Agreement in few-shot learning: Accuracy (Acc.) for binary
classification and MSE for evaluating alignment degree between annotation agreement and model’s confidence. The
first row shows GPT-4o’s performance in the zero-shot scenario, while the second and third sections evaluate the
model with prompts containing a single level and combinations of agreement, respectively.

cases, as it suggests that LLMs remain overconfi-309

dent even when human annotators disagree. This310

rigidity limits the model’s ability to adjust for nu-311

anced linguistic or contextual differences.312

(3) Even high-performing models exhibit over-313

confidence, limiting their ability to reflect hu-314

man-like uncertainty. We construct a confusion315

matrix of GPT-4o to visually analyze the relation-316

ship between the model’s confidence score and the317

soft labels of samples, as shown in Figure 3. The re-318

sult reveals that even GPT-4o, the best-performing319

model, assigns high confidence to its predictions re-320

gardless of annotation agreement, indicating a lack321

of adaptability to disagreement cases. This over-322

confidence highlights a critical flaw in LLM-based323

moderation: their inability to reflect the diversity324

of human judgment. Overconfident models are325

more likely to make systematic errors in handling326

subjective content, leading to unreliable modera-327

tion outcomes. Instead of relying on LLMs as sole328

decision-makers, future research should explore329

ensemble methods, uncertainty-aware training, or330

human-AI collaboration to mitigate biases and im-331

prove disagreement resolution.332

We further analyze consistency across different333

models in Appendix B.2, and reveal low agreement334

among LLMs on disagreement samples. This high-335

lights the potential of ensemble models to handle336

these nuanced cases.337

4 RQ2: Impact of Disagreement Samples338

on LLM Learning339

In this section, we examine how samples with vary-340

ing annotation agreements influence LLM perfor-341

mance during the learning phase. We focus on342

two key learning paradigms: few-shot learning and343

instruction fine-tuning. Specifically, we explore 344

the impact of both single-category agreement sam- 345

ples and different agreement-level combinations on 346

model performance. 347

4.1 Impact of Disagreement Samples on 348

Few-Shot Learning 349

We evaluate the effect of disagreement samples on 350

GPT-4o’s binary classification accuracy and its con- 351

fidence alignment with human annotations during 352

few-shot learning. 353

Few-Shot Learning Setup. We evaluate both 354

single-category agreement samples and combina- 355

tions of agreement levels in few-shot learning, fol- 356

lowing (Leonardelli et al., 2021). We first construct 357

prompts using positive and negative sample pairs 358

randomly drawn from the MD-Agreement training 359

set, with each prompt including pairs correspond- 360

ing to the respective agreement level. For exam- 361

ple, the simplest setup w/ A++ consists of only 362

unanimous agreement (A++) samples, containing 363

one offensive and one non-offensive example. Fur- 364

thermore, we examine mixed setups with differ- 365

ent agreement configurations, consisting of sample 366

pairs from their respective single categories for re- 367

liable evaluation. For instance, w/ A++/0 and 368

w/ A++/+ combine unanimous agreement sam- 369

ples with one level of disagreement, respectively. 370

Additionally, we assess a broader configuration, 371

w/ A++/+/0, which includes samples from all 372

three agreement levels. The template details are 373

provided in Appendix A.3. 374

We evaluate model performance on the MD- 375

Agreement test set, analyzing both overall results 376

and performance across different agreement levels. 377

Table 6 summarizes the key findings. 378
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Test Set A++ A+ Ao

Model Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓
LLaMa3-8B (zero-shot) 70.92 0.1856 85.22 0.1350 66.45 0.2167 54.09 0.2288

w/ A++ 75.79 0.1671 89.01 0.1064 73.60 0.1919 58.18 0.2366
w/ A+ 77.04 0.1552 90.40 0.0898 74.81 0.1815 59.70 0.2291
w/ A0 73.99 0.1348 86.53 0.1020 70.74 0.1537 56.31 0.1665
w/ A++/+ 80.27 0.1340 93.34 0.0643 78.33 0.1582 60.86 0.2232
w/ A++/0 79.29 0.1292 92.49 0.0641 78.11 0.1503 60.16 0.2138
w/ A+/0 82.53 0.1075 95.20 0.0404 83.94 0.1160 61.80 0.1978
w/ A++/+/0 84.23 0.1106 95.98 0.0379 85.81 0.1186 64.37 0.2150

Table 6: Performance of LLaMa3-8B on the test set of MD-Agreement under instruction fine-tuning.

(1) Few-shot learning improves classification ac-379

curacy but may increase overconfidence in am-380

biguous samples. Few-shot learning enhances381

classification accuracy, particularly in the medium382

agreement subset (A+), where accuracy increases383

by an average of 3.87%. However, for detection384

of low-agreement samples (A0), few-shot learning385

increases the MSE, suggesting that models become386

overconfident and misaligned with ambiguous hu-387

man annotations. This occurs because few-shot388

learning reinforces model consistency, making it389

less adaptable to subjective disagreements.390

(2) Learning from disagreement samples im-391

proves model generalization. Using disagree-392

ment samples (A+ and A0) in few-shot learning393

leads to greater performance improvements across394

all evaluation metrics compared to using only unan-395

imous agreement samples (A++). Disagreement396

samples often capture borderline or ambiguous397

cases, which challenge the model to refine its deci-398

sion boundaries. Learning from these samples en-399

hances the model’s ability to differentiate nuanced400

offensive language from non-offensive content.401

(3) Combining different agreement levels en-402

hances performance, but excessive variation re-403

duces accuracy. Incorporating both unanimous404

agreement samples and disagreement samples (e.g.,405

w/ A++/0 or w/ A++/+) improves model per-406

formance compared to using only disagreement407

samples (w/ A+/0). However, including too many408

agreement categories (w/ A++/+/0) does not fur-409

ther enhance accuracy and may even decrease per-410

formance. The increased variation makes it harder411

for the model to establish clear decision boundaries,412

potentially leading to inconsistent classifications.413

These results indicate that strategically balanc-414

ing agreement levels is critical in few-shot learning.415

A well-chosen mix of clear and ambiguous cases416

helps the model generalize effectively, whereas ex-417

cessive variation may introduce confusion and de- 418

crease performance. 419

To verify the robustness of our findings, we repli- 420

cate the experiment using the open-source LLM 421

Qwen2.5-72B. The results align closely with those 422

of GPT-4o, suggesting that these insights general- 423

ize across different LLM architectures. Detailed 424

results are provided in Appendix B.3. 425

4.2 Impact of Disagreement Samples on 426

Instruction Fine-tuning 427

We analyze how instruction fine-tuning with dif- 428

ferent annotation agreement levels affects model 429

performance, using LLaMa3-7B as the backbone. 430

Instruction Fine-tuning Setup. We fine-tune 431

an equal number of instances from each agreement 432

level in the MD-Agreement dataset. Specifically, 433

we extract 1,800 samples each from A++, A+, and 434

A0, based on the least-represented A0 category. 435

The instruction template remains consistent with 436

that used in the zero-shot setting (see Appendix 437

A.3). We also evaluate combinations of multi- 438

ple agreement levels, using the same experimental 439

markers as in Section 4.1. Table 5 presents the 440

results, leading to the following conclusions: 441

(1) Medium-agreement (A+) samples yield the 442

best balance in fine-tuning. Fine-tuning with 443

high-agreement (A++) samples improves classifi- 444

cation accuracy, while low-agreement (A0) sam- 445

ples enhance confidence alignment with human 446

annotations, reducing MSE. However, exclusive re- 447

liance on A0 samples may lead to catastrophic for- 448

getting, where the model becomes overly attuned 449

to ambiguous cases at the cost of general classifica- 450

tion accuracy. A+ samples offer the best trade-off, 451

allowing the model to capture nuanced decision 452

boundaries while maintaining robust performance. 453

(2) Combining multiple agreement levels fur- 454

ther enhances performance. Fine-tuning with 455
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all three agreement levels (w/ A++/+/0) achieves456

the best overall results, yielding performance com-457

parable to GPT-4o in few-shot learning (see Ta-458

ble 5). Among two-category combinations, mix-459

ing disagreement samples (w/ A+/0) provides the460

most improvement, reinforcing the importance of461

disagreement-aware learning.462

These results confirm that strategically select-463

ing disagreement samples is essential for instruc-464

tion fine-tuning. A well-balanced combination en-465

hances both classification performance and confi-466

dence calibration, ensuring better alignment with467

human judgments.468

We replicate the instruction fine-tuning exper-469

iment with Qwen2.5-7B using the same training470

and test data. The results closely align with those471

of LLaMa3-7B, confirming that these insights gen-472

eralize across different model architectures. See473

Appendix B.4 for details.474

5 Related Work475

Large Language Model. In recent years, large476

language models (LLMs) have rapidly emerged,477

showcasing extensive world knowledge and strong478

reasoning capabilities (Kojima et al., 2022; Ouyang479

et al., 2022; OpenAI, 2023). Many researchers have480

proposed diverse tasks to deeply analyze the rela-481

tionship between the model’s outputs and human482

judgments (Xu et al., 2024; Fan et al., 2024). In483

addition, the confidence of LLMs in their outputs484

has also attracted attention from researchers, which485

is often used to assess the reliability and robustness486

of the generated content (Jiang et al., 2021). Vari-487

ous methods for estimating confidence have been488

proposed (Zhang et al., 2020; Wang et al., 2023b;489

Tian et al., 2023; Lin et al., 2022). In this study,490

we employ the most straightforward approach, self-491

consistency, to estimate the model’s confidence.492

Offensive Language Detection. Researchers493

have developed various methods for detecting of-494

fensive language (Founta et al., 2018; Davidson495

et al., 2017; Mathew et al., 2021). As research496

advances, many studies argue that treating offen-497

sive language detection as a binary classification498

is an idealized assumption (Basile et al., 2021;499

Basile, 2020; Plank, 2022), as annotation disagree-500

ment are inherent in datasets for such subjective501

task (Pavlick and Kwiatkowski, 2019; Uma et al.,502

2021b). Using majority voting for annotation agree-503

ment leads to information loss (Davani et al., 2022),504

as these disagreements arise from the subtlety of505

the samples, not labeling errors (Uma et al., 2022). 506

Leonardelli et al. (2023) emphasizes that detection 507

models should recognize this disagreement, rather 508

than just improving classification performance. 509

Recently, several studies have begun evaluating 510

the potential of LLMs for detecting offensive lan- 511

guage (Kumar et al., 2024; Roy et al., 2023), and 512

designing detection methods based on them (Park 513

et al., 2024; Wen et al., 2023). Some studies (Wang 514

et al., 2023a; Huang et al., 2023) leverage the gen- 515

erative capabilities of LLMs to provide explana- 516

tions for offensive language, assisting human an- 517

notation. Furthermore, Giorgi et al. (2024); Zhang 518

et al. (2024) assess the sensitivity of LLMs to de- 519

mographic information in the context of offensive 520

language. Though great efforts have been made, 521

these studies lack focus on the phenomenon of of- 522

fensive language with annotation disagreement. In 523

this paper, we aim to fill this research gap. 524

6 Conclusion 525

This study examines how LLMs handle annotation 526

disagreement in offensive language detection, a 527

critical challenge in real-world moderation. We 528

evaluate multiple LLMs in a zero-shot setting and 529

find that while they perform well on unanimously 530

agreed-upon samples, their accuracy drops signif- 531

icantly for disagreement cases. Moreover, their 532

overconfidence leads to rigid predictions, misalign- 533

ing them with human annotations. 534

To address this, we investigate the impact of 535

disagreement samples in few-shot learning and in- 536

struction fine-tuning. Our results show that incorpo- 537

rating these samples improves detection accuracy 538

and human alignment, enabling LLMs to better 539

capture the subjective nature of offensive language. 540

We further find that balancing agreement levels 541

in training data prevents overfitting to ambiguous 542

cases, ensuring model robustness. 543

Key findings of this work include: (1) a system- 544

atic evaluation of LLMs on annotation disagree- 545

ment, (2) insights into how disagreement samples 546

improve learning, and (3) guidelines for leveraging 547

disagreement-aware training strategies. These re- 548

sults emphasize the need for model calibration tech- 549

niques to mitigate overconfidence and for training 550

strategies that incorporate disagreement to improve 551

generalization. Future research should explore 552

dynamic fine-tuning approaches and confidence- 553

aware moderation systems to bridge the gap be- 554

tween LLM decisions and human subjectivity. 555
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Limitations556

(1) Due to the scarcity of high-quality offensive lan-557

guage datasets with unaggregated labels, we only558

utilize the MD-Agreement dataset for experiments,559

which has been widely used in the field. Consider-560

ing that relying on a single dataset may introduce561

bias or randomness, we mitigate this by conduct-562

ing experiments with multiple closed-source and563

open-source LLMs to ensure the consistency and564

reliability of our findings, reducing the impact of565

bias. In future work, we plan to further explore the566

performance of LLMs in other subjective text anal-567

ysis tasks, such as humor detection and misogyny568

detection, particularly in understanding samples569

with annotation disagreement.570

(2) Due to usage restrictions, we are unable571

to evaluate the detection performance of several572

emerging LLMs, such as GPT-o3. We plan to fur-573

ther assess these more advanced models as soon574

as experimental conditions allow. Additionally,575

due to space limitations, the potential of certain576

techniques for detecting offensive language with577

annotation disagreement, such as reinforcement578

learning methods, are not discussed. We plan to579

explore these methods in future work and investi-580

gate effective strategies for enabling LLMs to fully581

leverage disagreement samples, thereby enhancing582

their detection capabilities.583

(3) In evaluating the confidence of LLMs, we584

adopt a straightforward approach based on tem-585

perature resampling. We have noted another com-586

mon method, the Logit-based approach (Guo et al.,587

2017; Zhang et al., 2020), which involves using588

the logits of category-specific tokens to compute589

statistical probabilities within the model’s output.590

This method may provide deeper insights into the591

decision-making mechanisms of LLMs when han-592

dling disagreement samples. We plan to explore593

and evaluate this method in future work.594

Ethics Statement595

The opinions and findings contained in the sam-596

ples of this paper should not be interpreted as rep-597

resenting the views expressed or implied by the598

authors. Accessing the MD-Agreement dataset re-599

quires users to agree to the creators’ usage agree-600

ments. The usage of these samples in this study601

fully complies with these agreements.602
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A Experimental Details880

A.1 Details of Dataset881

In this section, we provide a detailed introduction882

to the annotation quality control process of our883

used MD-Agreement dataset (Leonardelli et al.,884

2021). The researchers implemented a two-stage885

annotation process: First, three linguists annotated886

a subset of the samples, and those with unanimous887

agreement were used as the gold standard for the888

annotation process. Following this, trained anno-889

tators from Amazon Mechanical Turk were em-890

ployed to annotate the complete samples based on891

the established gold standard. After the task was892

completed, annotations from workers who did not893

achieve at least 70% accuracy were discarded. Ad-894

ditionally, it was ensured that each sample in the895

final dataset received five annotations. These mea-896

sures help ensure the accuracy of the annotations.897

Sandri et al. (2023) further manually reviewed a898

random selection of 2,570 samples with annota-899

tion disagreement from the MD-Agreement dataset.900

The results showed that only 12 samples contained901

annotation errors, accounting for less than 0.5%,902

demonstrating the high quality and reliability of903

the dataset.904

A.2 Description of Metrics905

This section introduces the metrics used to assess906

the relationship between LLM confidence and the907

degree of human annotation agreement.908

Mean Squared Error (MSE): The MSE is a909

widely used evaluation metric in regression tasks,910

measuring the difference between predicted and911

actual values. In this study, we adopt MSE for912

alignment estimation, as described by Leonardelli913

et al. (2023), where a smaller MSE indicates closer914

alignment between LLM confidence and agreement915

degree. We first obtain soft labels y and soft pre-916

dictions ŷ of samples by averaging their discrete917

0-1 annotation sequences Y and the LLM outputs918

Ŷ across different samplings, as follows:919

yi =
1

n

n∑
i=1

Yi, ŷi =
1

n
.

n∑
i=1

Ŷi, (1)920

where n is the number of observations, set to n = 5921

in this paper, representing the number of annotators922

and LLM outputs. Then, the MSE is calculated as:923

MSE =
1

m

m∑
i=1

(yi − ŷi)
2, (2)924

Range of Coefficient ((ρ) Correlation Degree

(0.7, 1.0] High Correlation
(0.3, 0.7] Medium Correlation
(0.0, 0.3] Low Correlation

0.0 No Correlation
[−1.0, 0.0) Negative Correlation

Table A1: Correlation degree corresponding to different
coefficient values (ρ).

Range of Kappa (κ) Agreement Degree

[0.8, 1.0] High Agreement
[0.6, 0.8) Good Agreement
[0.4, 0.6) Moderate Agreement
(0.0, 0.4) Poor Agreement

0.0 No Agreement
[−1.0, 0.0) Negative Correlation

Table A2: Agreement degree corresponding to different
kappa values (κ).

where m is the total number of samples. 925

Spearman’s Rank Correlation Coefficient (ρ): 926

The Spearman’s Rank Correlation Coefficient is 927

a non-parametric test that quantifies the degree of 928

monotonic relationship between two variables. Un- 929

like Pearson correlation, which assumes normally 930

distributed variables, Spearman’s correlation does 931

not require this assumption and can be applied to 932

discrete data. This makes it an ideal choice for 933

assessing the statistical correlation between anno- 934

tation agreement and LLM confidence, which is 935

computed as follows: 936

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, (3) 937

where di is the difference between the ranks of cor- 938

responding values of soft labels y and predictions ŷ. 939

The correlation degrees corresponding to different 940

ρ are shown in Table A1. 941

Cohen’s Kappa (κ): Cohen’s Kappa is widely 942

used to evaluate the consistency between annota- 943

tors, especially in classification tasks. Compared 944

to simple percentage agreement, which directly cal- 945

culates the proportion of agreement between two 946

evaluators, Cohen’s Kappa provides a more precise 947

measure as it accounts for the influence of random 948

agreement. In this paper, we use Cohen’s Kappa 949

to estimate the consistency of LLM outputs Ŷ . We 950

first compute the kappa value between the i-th and 951

the j-th LLM output of samples, i.e., Ŷi and Ŷj , 952

using the following formula: 953
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Offensive language refers to words or expressions
intended to insult, harm, or belittle individuals or groups.
This includes:
· Insulting, derogatory, or combative language
· Discriminatory language based on race, religion, gender,
or other personal attributes
· Profanity, violence, or vulgar expressions
· Sarcastic or harmful humor
Based on the above definition, determine if the following
sentence is offensive language. Return only “yes” or “no”.

<If in the Few-shot Learning>
Example_1:
Input: [text of example_1]
Output: [label_1]
Example_2:
Input: [text of example_2]
Output: [label_2]
<Other Examples>

Here is the sample to be detected:
Input: [sample to be detected]
Output: [prediction]

Table A3: Prompt template of the LLM, consisting
primarily of three parts: task definition, examples (only
for the few-shot scenario), and the sample to be detected.

κi,j =
Poi,j − Pei,j

1− Pei,j

, (4)954

where Poi,j represents the observed agreement,955

which is the proportion of agreement between Yi956

and Yj , and Pei,j refers to the expected agreement,957

calculated based on the probability of selecting958

categories, namely 0 or 1. We then calculate the959

average value of the kappas as follows, which is960

used as the metric:961

κ =
1

C(n, 2)

∑
1≤i<j≤5

κi,j (5)962

The agreement degrees corresponding to different963

κ are shown in Table A2.964

A.3 Design of Prompt Template965

To enhance the reproducibility of our study, we966

avoided conducting complex prompt engineering.967

Instead, we directly referenced (Roy et al., 2023)968

to design a straightforward prompt template, as969

shown in Table A3. The template includes three970

parts: first, the definition of offensive language,971

which aligns with that used in the MD-Agreement972

dataset (Leonardelli et al., 2021) to ensure the accu-973

racy of the evaluation; second, examples of varying974

degrees of disagreement in a few-shot scenario; and975

finally, the sample to be detected.976

Model Version

GPT-o1 o1-preview-2024-09-12

GPT-4o gpt-4o-2024-08-06

GPT-4 gpt-4-turbo-2024-04-09

GPT-3.5 gpt-3.5-turbo-0125

Claude-3.5 claude-3-5-sonnet-20240620

Gemini-1.5 gemini-1.5-pro

LLaMa3-70B Meta-Llama-3-70B-Instruct

LLaMa3-8B Meta-Llama-3-8B-Instruct

Qwen2.5-72B Qwen2.5-72B-Instruct

Qwen2.5-7B Qwen2.5-7B-Instruct

Mixtral-8x22B Mixtral-8x22B-Instruct-v0.1

Mixtral-8x7B Mixtral-8x7B-Instruct-v0.1

Table A4: Specific versions of used LLMs.

A.4 Other Experimental Settings 977

We access closed-source LLMs via their official 978

APIs and deploy open-source LLMs with param- 979

eters downloaded from Hugging Face. To ensure 980

a fair comparison, we use model versions released 981

around the same time, as detailed in Table A4. 982

Since GPT-o1 only has a default temperature of 983

1 and does not allow adjustments, we present its 984

binary performance in this setting. Except for 985

the temperature coefficient, other hyperparameters, 986

such as top-p and top-k, are set to their default 987

values for each model. For instruction fine-tuning, 988

we adopt the efficient Qlora fine-tuning method. 989

The learning rate is set to 2e-4, with a per-device 990

batch size of 36. We train the model for 15 epochs 991

using the AdamW optimizer, applying an early 992

stopping mechanism. We reserve the parameters 993

of best-performing models based on the develop- 994

ment set and evaluate their performance on the test 995

set. The models are trained on two NVIDIA H100 996

80GB GPUs. All the few-shot learning and instruc- 997

tion fine-tuning experiments are repeated five times 998

with different random seeds to minimize error, and 999

the average results are reported. 1000

A.5 Handling of Refusal Behavior 1001

Handling offensive language can trigger the refusal 1002

behavior of LLMs, as they are designed with ethi- 1003

cal and safety considerations (Kumar et al., 2024). 1004

Nevertheless, in our experiments, refusal occurred 1005

only in the zero-shot evaluation setting, where 1006

Claude-3.5, with a temperature coefficient set to 1, 1007

failed to generate responses for 23 samples. When 1008

the experiment was repeated with the same settings, 1009

the model successfully provided predictions for 1010

these samples. This phenomenon also highlights 1011

the model’s sensitivity to offensive language. 1012
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Figure B1: Accuracy of LLMs on detecting offensive language with different degrees of annotation agreement
under different temperature sampling settings.

Figure B2: Consistency of outputs from different LLMs across varying degrees of annotation agreement with
Cohen’s Kappa as the metric. The color scale represents different Kappa values.

B Supplementary Experiments1013

B.1 Impact of Temperature Sampling on1014

Detection Performance of LLMs1015

In this section, we analyze the impact of tempera-1016

ture sampling on the accuracy of detecting offen-1017

sive language by LLMs. We select four represen-1018

tative models for comparison: the closed-source1019

models GPT-4 and Claude-3.5, as well as the open-1020

source models LLaMa3-70B and Qwen2.5-72B.1021

The experimental results are shown in Figure B1.1022

Based on these results, we conclude that after ad-1023

justing the temperature coefficient, the detection1024

accuracy of each LLM remains generally stable,1025

although some fluctuations are observed, with vary-1026

ing degrees of sensitivity to the temperature coef-1027

ficient across different models. As the tempera-1028

ture increases, the accuracy of most models shows1029

a declining trend, with the sole exception being1030

Qwen2.5-72B, which exhibits an increase in ac-1031

curacy. This may be due to differences in the1032

models’ training mechanisms. Nevertheless, the1033

performance ranking between the models remains1034

stable, indicating that changes in the temperature1035

coefficient do not notably affect the performance1036

differences among the models.1037

B.2 Consistency Analysis Across Different 1038

LLMs 1039

Building upon Section 3.2, we further explore the 1040

consistency of hard predictions across different 1041

LLMs when processing samples with varying de- 1042

grees of annotation agreement. We select six repre- 1043

sentative models, including the close-source mod- 1044

els GPT-4o, Claude-3.5, and Gemini-1.5, as well as 1045

the open-source models Mixtral-8x22B, LLaMa3- 1046

70B, and Qwen2.5-72B. Cohen’s Kappa is used as 1047

the metric. The results are presented in Figure B2. 1048

Based on the results, we can observe that: 1049

As annotation agreement decreases, cross-model 1050

consistency in detecting offensive language de- 1051

clines more significantly compared to each model’s 1052

self-consistency. For unanimous agreement sam- 1053

ples (A++), cross-model consistency generally ex- 1054

hibits good agreement, with κ > 0.6. However, 1055

for low agreement samples A0, consistency drops 1056

explicitly, with many models showing poor agree- 1057

ment (κ < 0.4), despite many of these models 1058

exhibiting similar overall performance in terms of 1059

both binary classification accuracy and alignment 1060

with human annotations (see Table 3 and 4). No- 1061

tably, the lowest prediction consistency Kappa is 1062

14



Overall A++ A+ Ao

Model Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓
Qwen2.5-72B (zero-shot) 72.08 0.1962 84.74 0.1480 68.41 0.2237 57.12 0.2393

w/ A++ 77.92 0.1321 90.94 0.0809 75.91 0.1484 60.40 0.1920
w/ A+ 79.10 0.1275 91.95 0.0702 78.66 0.1414 60.16 0.1993
w/ A0 82.56 0.1054 94.12 0.0514 83.50 0.1088 64.14 0.1832
w/ A++/+ 81.42 0.1127 93.19 0.0561 82.51 0.1199 62.50 0.1905
w/ A++/0 82.43 0.1099 93.58 0.0530 84.38 0.1108 63.55 0.1950
w/ A+/0 82.96 0.1044 94.97 0.0427 84.71 0.1090 62.97 0.1927
w/ A++/+/0 82.04 0.1101 93.42 0.0544 84.05 0.1095 62.73 0.1949

Table B1: Performance of Qwen2.5-72B on the test set of MD-Agreement in few-shot learning.

Overall A++ A+ Ao

Model Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓ Acc. ↑ MSE ↓
Qwen2.5-7B (zero-shot) 69.77 0.1998 83.44 0.1542 66.12 0.2289 53.04 0.2379

w/ A++ 80.18 0.1407 92.96 0.0703 79.76 0.1572 61.21 0.2309
w/ A+ 80.41 0.1347 93.11 0.0649 80.64 0.1497 62.73 0.2211
w/ A0 80.08 0.1395 92.57 0.0704 80.09 0.1533 60.86 0.2238
w/ A++/+ 82.30 0.1261 95.36 0.0457 82.95 0.1406 62.38 0.2311
w/ A++/0 82.17 0.1192 94.50 0.0486 84.27 0.1243 63.90 0.2082
w/ A+/0 81.88 0.1185 94.43 0.0522 83.39 0.1283 63.90 0.2060
w/ A++/+/0 83.91 0.1149 95.82 0.0395 85.59 0.1209 65.42 0.2181

Table B2: Performance of Qwen2.5-7B on the test set of MD-Agreement under instruction fine-tuning.

only 0.28 between GPT-4o and Gemini 1.5. A1063

potential reason for this phenomenon is that dif-1064

ferent models are trained on diverse datasets and1065

undergo distinct value alignment processes, result-1066

ing in varying sensitivity to contextual features.1067

In future work, we will explore the relationship1068

between cross-model consistency and human anno-1069

tation agreement in offensive language detection.1070

Additionally, we aim to investigate the potential of1071

leveraging multiple LLMs for collaborative annota-1072

tion of offensive language.1073

B.3 Few-shot Learning with Qwen2.5-72B1074

We replicate the few-shot learning experiment from1075

Section 4.1 using the open-source LLM Qwen2.5-1076

72B, employing the same sample pairs in the1077

prompts. The results are shown in Table B1. Based1078

on the results, we observe the following:1079

In the few-shot learning with samples of vary-1080

ing annotation agreement degrees, the results of1081

Qwen2.5-72B align closely with the trends of GPT-1082

4o (see Table 5). Whether introducing samples with1083

a single annotation agreement degree or combina-1084

tions of different agreement categories, the detec-1085

tion performance of the model shows notable im-1086

provement compared to the zero-shot scenario. Ad-1087

ditionally, the benefit to model performance varies1088

explicitly depending on the annotation agreement1089

degree and the combinations used as prompts. 1090

Furthermore, compared to GPT-4o, Qwen2.5- 1091

72B demonstrates two distinct differences: (1) On 1092

the subset of low-agreement samples, the introduc- 1093

tion of few-shot learning also results in a noticeable 1094

improvement in the alignment between LLM confi- 1095

dence and annotation agreement. This is primarily 1096

because Qwen2.5-72B performs less effectively 1097

than GPT-4o in detecting offensive language under 1098

zero-shot scenarios, making it more susceptible to 1099

performance enhancements through few-shot learn- 1100

ing. (2) For Qwen2.5-72B, the combination of 1101

disagreement samples, i.e., w/ A+/0, achieves the 1102

best performance across most subsets and metrics. 1103

In contrast, GPT-4o performs better with combina- 1104

tions such as w/ A++/+ and w/ A++/0. This 1105

highlights that the effects of learning from dis- 1106

agreement samples differ between different LLMs, 1107

which is closely related to the ambiguous charac- 1108

teristics of these samples. 1109

B.4 Fine-tuning with Qwen2.5-72B 1110

We replicate the instruction fine-tuning experi- 1111

ment from Section 4.2 using Qwen2.5-7B, training 1112

with the same instruction data. Based on the re- 1113

sults shown in Table B2, we observe conclusions 1114

that are largely consistent with those on LLaMa3- 1115

8B. Specifically, Qwen2.5-7B performs best with 1116
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Exp. Sentence Label GPT4o LLaMa3

(a) Why does the Minneapolis mayor look like a more Soy version of Justin Trudeau O+ O0 N0

(b) This is Amerikkka! #blacklivesmatter <url> N0 O++ O++

(c)

Hey #BlackLivesMatter SAY THEIR NAMES! Look these are YOUR PEOPLE!
Say Their Names! Do It! Where is Your Outrage Now?! Come forth You
#Hypocrites! Did They Die In Vain?! Ye Generation Of Vipers! These Are Your
People Murdered!

O0 N0 N++

(d) Doesn’t have a kid’s cancer charity he can draw from? #Elections2020 N+ O++ N++

Table B3: Error analysis of samples with annotation disagreement in offensive language detection.

medium agreement (A+) when fine-tuned using1117

a single category of annotation agreement across1118

various subsets and metrics. Compared to unani-1119

mous agreement samples (A++), training with dis-1120

agreement samples helps the model’s confidence1121

better align with the degree of human annotation1122

agreement, resulting in a lower MSE. When fine-1123

tuning with combinations of different agreement1124

categories, using lower agreement combinations1125

(e.g., w/ A++/0 and w/ A+/0) leads to higher1126

detection accuracy and closer alignment with the1127

annotations, compared to higher agreement com-1128

binations (w/ A++/+), especially in the detection1129

of disagreement subsets. These findings further1130

demonstrate the importance of learning from dis-1131

agreement samples during instruction fine-tuning,1132

which enhances the model’s understanding and1133

judgment of offensive language, particularly for1134

ambiguous samples.1135

B.5 Error Analysis1136

To gain deeper insight into the challenge posed by1137

offensive language with annotation disagreement,1138

we manually inspect the set of samples misclassi-1139

fied by the models. The following two main types1140

of errors are identified, with samples and predic-1141

tions from GPT-4o and LLaMa3-72B shown in1142

Table B3 for illustration:1143

Type I error refers to samples that are labeled1144

as non-offensive but are detected as offensive. This1145

error primarily arises from subtle linguistic fea-1146

tures such as sarcasm and metaphor, which make1147

the judgment of the sample ambiguous. For in-1148

stance, in Example (a), the term “Amerikkka” is a1149

variant of “America” used to intensify emotional1150

expression. Due to insufficient context, most an-1151

notators do not consider it offensive. However,1152

GPT-4o and LLaMa3, due to their sensitivity to the1153

hashtag blacklivesmatter, consistently classify it as1154

offensive language. Similarly, in Example (b), a1155

sarcastic rhetorical question leads to a misclassi-1156

fication by GPT-4o. This phenomenon highlights 1157

the complexity that human annotators face in de- 1158

termining offensive language and also reveals the 1159

issue of over-sensitivity in existing LLMs to certain 1160

linguistic expressions, resulting in decisions that 1161

do not align with human standards. In future work, 1162

we will perform a more detailed analysis of expres- 1163

sions in samples with disagreement annotation and 1164

explore how different types of expressions affect 1165

model detection performance. 1166

Type II error refers to sentences labeled as of- 1167

fensive but classified as non-offensive by the mod- 1168

els. This error primarily arises from the models 1169

lacking or failing to effectively integrate the neces- 1170

sary background knowledge for detecting offensive 1171

content, leading to an inaccurate understanding of 1172

the sample’s true meaning. For example, in Ex- 1173

ample (c), the comparison between the mayor of 1174

Minneapolis and Justin Trudeau uses “Soy” as an 1175

adjective, which implies weakness and is intended 1176

to belittle the mayor. Both human annotators and 1177

GPT-4o capture the offensive nature of the sample, 1178

but LLaMa3 fails to correctly identify its offen- 1179

siveness due to insufficient relevant knowledge. In 1180

Example (d), the phrase “Ye Generation of Vipers”, 1181

a religiously charged expression, is used to strongly 1182

criticize police brutality against black people. How- 1183

ever, the model fails to integrate the context, lead- 1184

ing to a missed detection. We plan to introduce 1185

more comprehensive background knowledge to en- 1186

hance the understanding capability of LLMs and 1187

explore the performance of knowledge-enhanced 1188

models in detecting disagreement samples. 1189
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