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Abstract

Large Language Models (LLMs) have become
essential for offensive language detection, yet
their ability to handle annotation disagreement
remains underexplored. Disagreement sam-
ples, which arise from subjective interpreta-
tions, pose a unique challenge due to their am-
biguous nature. Understanding how LLMs pro-
cess these cases, particularly their confidence
levels, can offer insight into their alignment
with human annotators. This study systemat-
ically evaluates the performance of multiple
LLMs in detecting offensive language at vary-
ing levels of annotation agreement. We analyze
binary classification accuracy, examine the re-
lationship between model confidence and hu-
man disagreement, and explore how disagree-
ment samples influence model decision-making
during few-shot learning and instruction fine-
tuning. Our findings reveal that LLMs strug-
gle with low-agreement samples, often exhibit-
ing overconfidence in these ambiguous cases.
However, utilizing disagreement samples in
training improves both detection accuracy and
model alignment with human judgment. These
insights provide a foundation for enhancing
LLM-based offensive language detection in
real-world moderation tasks.

Disclaimer: The paper contains content that
may be profane, vulgar, or offensive.

1 Introduction

Motivation. A fundamental challenge in offen-
sive language detection is annotation disagree-
ment—cases where human annotators provide con-
flicting labels for the same text. Disagreement
arises due to differences in individual perception,
cultural context, and linguistic ambiguity, mak-
ing offensive language detection inherently subjec-
tive (Aroyo et al., 2019; Basile, 2020; Uma et al.,
2021b). However, prior research predominantly
treats this task as a binary classification problem,
assuming consensus among annotators and failing

to account for the inherent subjectivity in offensive
language perception.

While large language models (LLMs) have been
extensively applied to offensive language detection
(Kumar et al., 2024; Huang et al., 2023), exist-
ing studies primarily evaluate their performance
on datasets with binary labels, overlooking their
ability to handle cases where annotators disagree.
This oversimplification limits our understanding
of how well LLMs align with human judgment in
ambiguous cases. Moreover, models may exhibit
overconfidence in cases where human annotators
themselves are uncertain, raising concerns about
their reliability for real-world moderation.

Research Objectives. To bridge this gap, we
systematically evaluate LLMs’ ability to process
disagreement samples, analyzing both classifica-
tion accuracy and model confidence. Through this,
we seek to determine whether LLMs can effectively
navigate subjective offensive language judgments
and align with human reasoning. An ideal model
should express high confidence for unanimously
labeled cases and lower confidence for ambigu-
ous samples, reflecting their inherent uncertainty
(Weerasooriya et al., 2023; Baumler et al., 2023;
Uma et al., 2021a; Leonardelli et al., 2023). Our
study provides insights into whether LLMs cap-
ture these nuances or exhibit overconfidence in
disagreement cases, which could undermine their
trustworthiness in content moderation.

This paper systematically investigates how
LLMs handle annotation disagreement in offen-
sive language detection. Specifically, we address
the following research questions: (RQ1) To what
extent can LLMs accurately detect offensive lan-
guage in cases of human annotation disagreement?
(RQ2) How do disagreement samples shape LLM
learning and influence decision-making?

To answer RQI1, we evaluate multiple open-
source and closed-source LLMs in a zero-shot set-



Agreement Degree ~ Example Hard Label ~ Soft Label
Nt Stand for something or else fall for anything. #BlackLivesMatter 0 0
Hello world! What a great day to be alive #Trump2020 #MAGA
Nt Come on man! Lock’em up!!! #maga Not the first time. You all 0 02
misspelled #blacklivesmatter. Speak up! @user ’
NO Set fire to Fox News (metaphorically) @user is outing #BLACK- 0 0.4
LIVES-MATTER as a cult! HE IS CORRECT! ’
0P #DISGUSTING #Democrats terrorize old folks just before #elec- 1 06
tions2020 I love this shit! #BlackLivesMatter ’
+ @user You're a bumbling fool #elections2020 Elections 2020: Red
O . . 1 0.8
Rapist v. Blue Racist
o++ Y’all trending about kpop stans instead of #BlackLivesMatter big 1 1

fack you Crazy idiots. This is batshit bullshit. #elections2020

Table 1: Eamples with different degrees of annotation agreement, where N denotes non-offensive language and
O denotes offensive language. The superscripts ++, +, and 0 represent unanimous, medium, and low agreement,
respectively. These samples are collected from the MD-Agreement dataset (Leonardelli et al., 2021).

ting, analyzing both classification accuracy and
the relationship between annotation agreement and
model confidence. For RQ2, we examine the im-
pact of disagreement samples in few-shot learning
and instruction fine-tuning, assessing how different
agreement levels affect model performance.

Contributions. We summarize the contributions
of this paper as follows:

* We provide the first systematic evaluation of
LLMs’ performance in offensive language de-
tection under annotation disagreement, reveal-
ing key insights into model reliability and
human-AI alignment.

* We conduct an extensive empirical study on
LLMs’ handling of disagreement cases, exam-
ining models’ performance, confidence, and
alignment with human judgment.

* We analyze the impact of training on disagree-
ment samples, demonstrating how few-shot
learning and instruction fine-tuning on these
samples influence LLLM decision-making in
offensive language detection.

2 Preliminary

2.1 Dataset

Since annotation disagreements can stem from both
intrinsic linguistic ambiguity and labeling error, se-
lecting an appropriate benchmark dataset requires
meeting two key criteria: (1) high annotation qual-
ity to ensure reliability, and (2) open access to unag-
gregated annotations to facilitate fine-grained anal-
ysis. To ensure a robust evaluation, we employ the
MD-Agreement dataset (Leonardelli et al., 2021),

a high-quality corpus for offensive language detec-
tion. It contains 10,753 tweets, each labeled by
five trained human annotators, ensuring a reliable
annotation process.

The dataset provides both hard labels (majority-
voted labels) and soft labels, which indicate the
level of agreement among annotators. The soft
labels are categorized into three levels:

 Unanimous agreement (A™): All five anno-
tators agree on the label.

 Mild agreement (A™): Four out of five anno-
tators agree.

» Weak agreement (A®): Only three annotators
agree, while two disagree.

Each sample in the dataset is also classified as ei-
ther offensive or non-offensive, following the same
agreement-level framework:

+ Offensive samples (O™, Ot, O%: In-
stances labeled as offensive, where the agree-
ment level corresponds to the unanimous,
mild, or weak agreement, respectively.

* Non-offensive samples (N T, N*, N°): In-
stances labeled as non-offensive, with the
same agreement-level distinctions.

Thus, the agreement notation (+-+, +, 0) applies
uniformly across both offensive and non-offensive
categories, ensuring consistency in the dataset’s an-
notation schema. To facilitate subsequent research,
we convert the soft labels into floating-point num-
bers in the range [0, 1] by averaging the hard labels
from five annotators (offensive as 1, non-offensive
as 0) for each sample.



Split ATEAT A [ NTF NTN O OF OFff [ NoOff. Off. | Total
Train 2778 1930 1884 | 2303 1295 1032 852 635 475 | 4630 1962 | 6,592
Dev 464 317 322 | 346 199 171 151 118 118 | 1,103 387 | 1,103
Test 1292 909 803 | 1,020 549 470 386 360 272 | 3,004 1018 | 3,057
MD-Agreement | 4,535 3,156 3,062 | 3.669 2043 1,673 1389 1113 866 | 7.385 3,368 | 10,753

Table 2: Statistics of the MD-Agreement dataset, where IV denotes non-offensive language and O denotes offensive
language. The superscripts ++, +, and O represent unanimous, medium, and low agreement, respectively.

Examples of samples across different agreement
levels are provided in Table 1, and the overall
dataset statistics are presented in Table 2. The relia-
bility of MD-Agreement’s annotations has been in-
dependently validated in prior studies (Sandri et al.,
2023), confirming that the disagreement samples
are caused by their inherent ambiguity, rather than
labeling errors. MD-Agreement serves as the offi-
cial corpus for SemEval 2023 Task 11 (Leonardelli
et al., 2023) and has been widely utilized by re-
searchers in the field (Deng et al., 2023; Mokhbe-
rian et al., 2024). Further dataset details are pro-
vided in Appendix A.1.

2.2 Models

To ensure a comprehensive evaluation, we include
both closed-source and open-source LLMs, cover-
ing a range of architectures and parameter sizes.
For closed-source models, we evaluate widely
used proprietary LLMs, including GPT-3.5, GPT-4,
GPT-40, GPT-01, Claude-3.5, and Gemini-1.5. We
also evaluate three families of open-source LLMs
at different scales: LLaMa-3 (8B, 70B), Qwen-2.5
(7B, 72B), and Mixtral (8x7B, 8x22B). Further
details on the model versions are provided in Ap-
pendix A.4.

3 RQ1: Evaluating LLMs on Offensive
Language with Annotation
Disagreement

In this section, we evaluate the ability of LLMs to
detect offensive language in a zero-shot setting. We
focus on two key aspects: (1) binary classification
accuracy, assessing how effectively models distin-
guish offensive from non-offensive language across
varying annotation agreement levels, and (2) model
confidence, analyzing whether LLMs exhibit ap-
propriate uncertainty in ambiguous cases. These as-
pects are essential for determining whether LLMs
can reliably perform offensive language detection
in real-world scenarios, where human annotators
often disagree.

3.1 Evaluation of Binary Classification
Performance

We assess binary classification performance by
evaluating LLMs in a zero-shot setting without
additional fine-tuning. To ensure deterministic pre-
dictions, we set the temperature coefficient of the
LLMs to 0, forcing the model to select the most
probable category. We use accuracy and F1 score as
evaluation metrics to measure classification perfor-
mance. The prompt template used for offensive lan-
guage detection is provided in Appendix A.3. LLM
outputs are converted into hard predictions, where
1 indicates offensive and 0 indicates non-offensive.
We utilize all the samples from MD-Agreement for
a comprehensive evaluation. The classification re-
sults are presented in Table 3. Based on the results,
we observe the following key findings:

(1) LLMs achieve high accuracy for unani-
mous agreement (A7) samples. In the zero-
shot setting, LLMs consistently accurately classify
unanimously agreed-upon (AT 1) samples, achiev-
ing 88.28% accuracy for closed-source models
and 86.07% for open-source models. Notably,
LLaMa3-70B now performs comparably to pro-
prietary models. These results suggest that LL.Ms
perform well on clear-cut cases, driven by their
background knowledge and reasoning capabilities.

(2) LLM performance declines sharply for am-
biguous cases. As annotation agreement de-
creases, LLMs struggle to classify offensive lan-
guage consistently. GPT-40’s F1 score drops from
85.24% on A*t samples to 74.6% on AT and
57.06% on A°. Similarly, all models score below
65% on A° samples. This highlights LLMs’ in-
ability to resolve subjective cases in the real world,
where human disagreement often stems from cul-
tural, contextual, or linguistic nuances that models
fail to capture.

(3) Larger models improve accuracy but do not
resolve annotation disagreement. While larger
models generally perform better, their improve-
ment shrinks for ambiguous cases. For example,



Overall ATT AT A°
Model Acc. T F1 1 Acc. T F1 1 Acc. T F1 71 Acc. T F171
Closed-Source Large Language Models (CS-LLMs)
GPT-ol 78.35 69.03 91.95 81.29 77.50 72.03 59.08 58.63
GPT-40 80.36 70.33 93.96 85.24 80.67 74.60 59.90 57.06
GPT-4 74.18 69.07 88.64 76.75 70.12 68.91 56.96 64.63
GPT-3.5 67.07 63.45 78.99 64.02 62.39 63.28 54.25 63.18
Claude-3.5 78.56 70.93 92.59 83.13 76.39 72.02 60.03 62.61
Gemini-1.5 69.50 66.07 83.53 69.70 64.48 65.73 53.89 64.07
Avg. of CS-LLM 74.67 68.15 88.28 76.69 71.93 69.43 57.35 61.70
Open-Source Large Language Models (OS-LLMs)
LLaMa3-70B 76.93 71.06 91.40 81.36 74.46 71.96 58.03 64.37
LLaMa3-8B 71.82 65.31 85.56 70.72 68.22 66.06 55.19 61.26
Qwen2.5-72B 72.08 66.86 84.74 70.92 68.41 67.36 57.12 63.76
Qwen2.5-7B 71.10 67.14 85.34 72.02 66.92 67.25 54.31 64.06
Mixtral-8x22B 73.46 67.82 87.12 74.27 69.93 68.21 56.86 63.44
Mixtral-8x7B 70.57 65.59 82.27 67.58 67.14 66.32 56.76 63.63
Avg. of OS-LLM 72.66 67.30 86.07 72.81 69.18 67.86 56.38 63.42

Table 3: Binary classification performance of LLMs on the MD-Agreement dataset and its three subsets A*T,
AT, and A°. Avg. of CS-LLM and OS-LLM respectively denote the average performance of the close-source and
open-source LL.Ms. Results show the accuracy (Acc.) and F3 in percentage (%). The bold and underline scores

respectively represent the optimal and suboptimal values.
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Figure 1: Accuracy of LLMs on detecting offensive
and non-offensive language with different degrees of
annotation agreement.

LLaMa3-70B outperforms LL.aMa3-8B by 10.64%
on A+ samples but only by 3.11% on A°. Sim-
ilarly, Mixtral and Qwen2.5 show no substantial
gain in detecting disagreement samples despite in-
creased parameters. Model scaling alone does not
resolve ambiguity, suggesting that larger models
lack the nuanced human reasoning required to nav-
igate subjective cases. Alternative training strate-
gies, such as human-in-the-loop approaches or fine-
tuning on disagreement samples, may be necessary.

(4) LLMs are biased toward classifying uncer-
tain cases as offensive. We evaluate the ac-
curacy for offensive and non-offensive language
across different agreement levels, as shown in Fig-
ure 1. We observed that across all agreement levels,
LLMs demonstrate higher accuracy in identifying

offensive language than non-offensive language. In
particular, for low-agreement non-offensive sam-
ples (IV?), accuracy drops to 45.77%, indicating a
strong tendency to misclassify ambiguous content
as offensive. This over-sensitivity could lead to
false positives in automated moderation systems,
increasing the risk of justified content removal and
restricting legitimate speech.

3.2 Evaluation of Relationship between
Agreement Degree and LLM Confidence

We analyze how well LLM confidence aligns with
human annotation agreement, as a well-calibrated
model should exhibit high confidence for clear
cases and lower confidence for ambiguous cases.
If LLMs assign high confidence to disagreement
samples, this may indicate overconfidence, limiting
their ability to reflect human-like uncertainty. To
evaluate this, we apply the self-consistency method
(Chen and Mueller, 2024; Wang et al., 2023b),
which resamples model outputs under varying tem-
perature settings to estimate confidence.

To measure confidence, we evaluate models un-
der five temperature settings: 0, 0.25, 0.5, 0.75,
and 1. Higher temperatures introduce more ran-
domness in predictions, helping assess the model’s
certainty across varying conditions. The final con-
fidence score is computed by averaging the hard
predictions across these temperature settings.

We use Mean Squared Error (MSE) to measure



Overall ATT AT A°
Model MSE | pT MSE | pT MSE | ot MSE | p 1
Closed-Source Large Language Models (CS-LLMs)
GPT-40 0.1138  0.6535 0.0514  0.8098 | 0.1268  0.6298 | 0.1928  0.2332
GPT-4 0.1716  0.6819 | 0.1131 0.7175 0.2064  0.5323 0.2224  0.2478
GPT-3.5 0.2163  0.5889 | 0.1878  0.6021 0.2430  0.4236 | 0.2309  0.1820
Claude-3.5 0.1306  0.6780 | 0.0657  0.7590 | 0.1544  0.5818 | 0.2022  0.2379
Gemini-1.5 0.2137  0.6305 0.1638  0.6970 | 0.2505  0.4517 | 0.2498  0.1877
Avg. of CS-LLMs 0.1692  0.6466 | 0.1164  0.7171 0.1962  0.5238 | 0.2196  0.2177
Open-Source Large Language Models (OS-LLMs)
LLaMa3-70B 0.1400  0.6990 | 0.0753  0.7634 | 0.1680  0.5856 | 0.2072  0.2369
LLaMa3-8B 0.1803  0.5912 | 0.1316  0.6533 0.2068  0.4572 | 0.2251 0.1667
Qwen2.5-72B 0.1909  0.6588 | 0.1380  0.6817 0.2235  0.5001 0.2359  0.2119
Qwen2.5-7B 0.1962  0.6024 | 0.1480  0.6638 0.2237 04756 | 0.2393  0.2056
Mixtral-8x22B 0.1810  0.6287 | 0.1251 0.6858 02112 0.4944 | 0.2326  0.2107
Mixtral-8x7B 0.1978  0.5921 0.1578  0.6267 0.2218 04709 | 0.2323  0.2132
Avg. of OS-LLMs 0.1810  0.6287 | 0.1293  0.6791 0.2092  0.4973 0.2287  0.2075

Table 4: Estimation of relationship between annotators and LLMs on MD-Agreement and its three subsets. Results
show Mean Squared Error (MSE) and Spearman’s Rank Correlation Coefficient (p).
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Figure 2: Self-consistency of several LLMs across
varying degrees of annotation agreement with Cohen’s
Kappa (k) as the metric.

the alignment between LLM confidence and anno-
tation agreement, where a smaller MSE indicates
closer alignment (Uma et al., 2021a; Leonardelli
et al., 2023). Additionally, we employ Spearman’s
Rank Correlation Coefficient (p) to assess statis-
tical correlation. The detailed metric definitions
are provided in Appendix A.2. The results are pre-
sented in Table 4.

(1) As annotation agreement decreases, the
alignment between model confidence and hu-
man agreement weakens. As annotation agree-
ment decreases, LLLMs become less reliable in as-
sessing their own uncertainty. GPT-4o, which per-
forms best overall, has an MSE of 0.05 for AT+
samples but sees this error rise to 0.2 for A sam-
ples. Additionally, Spearman’s correlation (p) be-
tween confidence and agreement weakens from
above 0.7 for unanimous samples to below 0.3 for
disagreement cases. This suggests that LLMs do

Confidence Scores of GPT-40

Nt Nt N° 0° ot o+t Total
Nt 3334 94 45 37 43 116 3669

CIEAN  087%  042%  034%  040%  1.08% @ 34.12%
Nt 135 79 42 83 249 2043

1.26% 0.73% 0.39% 077% 2.32% 79.00%
NO 817 132 100 71 109 444 1673
7.60% 1.23% 093% 0.66% 1.01% 4.13% 15.56%

00 403 107 62 68 85 664 1389
3.75% 1.00% 0.58% 0.63% 0.79% 6.18% 12.92%

o+ 130 55 43 33 61 791 1113
127% 057% 040% 031% 0.57% 7.36% 70.35%

Soft Labels via Ensembling

o+t 45 15 15 24 40 727 866
042% 0.74% 0.74% 022% 037% 6.76% 8.05%

6184 538 344 275 421 2991
57.51% 5.00% 3.20% 2.56% 3.92% 27.82%

10753

Total 100.00%

Figure 3: Confusion matrix (raw counts and percentage)
between confidence scores of GPT-40 (x-axis) and soft
labels (y-axis).

not effectively recognize uncertainty in ambiguous
cases. In real-world moderation, this could lead to
overconfident misclassifications, where the model
assigns a high confidence score to an incorrect la-
bel, making it harder to detect errors and apply
human oversight.

(2) LLMs demonstrate high self-consistency but
may be overconfident in disagreement cases.
We assess self-consistency using Cohen’s Kappa
(k), measuring how stable LLM outputs remain
across multiple sampling attempts. As shown
in Figure 2, self-consistency decreases for lower
agreement samples but remains above 0.75 even
for A" cases, indicating strong internal agreement.
While high self-consistency is desirable for clear-
cut cases, it becomes problematic in ambiguous



Test Set AT AT A°

Model Acc.t MSEJ| | Acc.T MSE| Acc. T MSE | | Acc.t MSE|]

GPT-4o0 (zero-shor) 80.11  0.1133 | 93.11  0.0560 | 79.76  0.1242 | 60.86  0.1923
77777 w/ ATT [ 8093 0.1260 | 93.65 00647 | 8141  0.0332 | 6121 02107

w/ At 81.26  0.1144 | 93.65 0.0515 | 81.96  0.1157 | 61.80  0.2080

w/ A° 8122  0.1138 | 9373  0.0558 | 8218  0.1171 | 6133  0.1979
77777 w/ AYH/T [ 8374 01054 | 9528  0.0361 | 86.03  0.1120 | 63.90 02032

w/ ATH/0 83.87 0.1063 | 9574 0.0416 | 86.14  0.1079 | 63.55  0.2022

w) AT/0 8207  0.1171 | 9466  0.0500 | 8218  0.1290 | 6297  0.2059

w/ ATT/H/0| 8351 01045 | 9551  0.0367 | 8548  0.1078 | 63.32  0.2035

Table 5: Performance of GPT-40 on the test set of MD-Agreement in few-shot learning: Accuracy (Acc.) for binary
classification and MSE for evaluating alignment degree between annotation agreement and model’s confidence. The
first row shows GPT-40’s performance in the zero-shot scenario, while the second and third sections evaluate the
model with prompts containing a single level and combinations of agreement, respectively.

cases, as it suggests that LLMs remain overconfi-
dent even when human annotators disagree. This
rigidity limits the model’s ability to adjust for nu-
anced linguistic or contextual differences.

(3) Even high-performing models exhibit over-
confidence, limiting their ability to reflect hu-
man-like uncertainty. We construct a confusion
matrix of GPT-40 to visually analyze the relation-
ship between the model’s confidence score and the
soft labels of samples, as shown in Figure 3. The re-
sult reveals that even GPT-40, the best-performing
model, assigns high confidence to its predictions re-
gardless of annotation agreement, indicating a lack
of adaptability to disagreement cases. This over-
confidence highlights a critical flaw in LLM-based
moderation: their inability to reflect the diversity
of human judgment. Overconfident models are
more likely to make systematic errors in handling
subjective content, leading to unreliable modera-
tion outcomes. Instead of relying on LLMs as sole
decision-makers, future research should explore
ensemble methods, uncertainty-aware training, or
human-Al collaboration to mitigate biases and im-
prove disagreement resolution.

We further analyze consistency across different
models in Appendix B.2, and reveal low agreement
among LLMs on disagreement samples. This high-
lights the potential of ensemble models to handle
these nuanced cases.

4 RQ2: Impact of Disagreement Samples
on LLM Learning

In this section, we examine how samples with vary-
ing annotation agreements influence LLM perfor-
mance during the learning phase. We focus on
two key learning paradigms: few-shot learning and

instruction fine-tuning. Specifically, we explore
the impact of both single-category agreement sam-
ples and different agreement-level combinations on
model performance.

4.1 Impact of Disagreement Samples on
Few-Shot Learning

We evaluate the effect of disagreement samples on
GPT-40’s binary classification accuracy and its con-
fidence alignment with human annotations during
few-shot learning.

Few-Shot Learning Setup. We evaluate both
single-category agreement samples and combina-
tions of agreement levels in few-shot learning, fol-
lowing (Leonardelli et al., 2021). We first construct
prompts using positive and negative sample pairs
randomly drawn from the MD-Agreement training
set, with each prompt including pairs correspond-
ing to the respective agreement level. For exam-
ple, the simplest setup w/ A'™ consists of only
unanimous agreement (AT ) samples, containing
one offensive and one non-offensive example. Fur-
thermore, we examine mixed setups with differ-
ent agreement configurations, consisting of sample
pairs from their respective single categories for re-
liable evaluation. For instance, w/ AT*+/0 and
w/ At*/* combine unanimous agreement sam-
ples with one level of disagreement, respectively.
Additionally, we assess a broader configuration,
w/ ATH/+/0 which includes samples from all
three agreement levels. The template details are
provided in Appendix A.3.

We evaluate model performance on the MD-
Agreement test set, analyzing both overall results
and performance across different agreement levels.
Table 6 summarizes the key findings.



Test Set ATT AT A°

Model Acc.t MSE| | Acc.t MSE| Acc.T MSE] | Acc.t MSEJ|

LLaMa3-8B (zero-shot) 7092 0.1856 | 8522  0.1350 | 66.45 02167 | 54.09  0.2288
77777 w/ ATT 7 ] 77579 01671 | 89.01  0.1064 | 73.60  0.1919 | 58.18  0.2366

w/ A* 77.04 01552 | 9040  0.0898 | 74.81  0.1815 | 59.70  0.2291

w/ A° 7399  0.1348 | 86.53  0.1020 | 70.74  0.1537 | 5631  0.1665
77777 w/ AT/ T 7778027 01340 | 9334 00643 | 7833  0.1582 | 60.86 02232

w/ ATH/O 7929  0.1292 | 9249  0.0641 | 78.11  0.1503 | 60.16  0.2138

w) A*/° 8253 0.1075 | 9520  0.0404 | 83.94  0.1160 | 61.80  0.1978

w/ ATH/H/0 8423  0.1106 | 9598  0.0379 | 8581  0.1186 | 64.37  0.2150

Table 6: Performance of LLaMa3-8B on the test set of MD-Agreement under instruction fine-tuning.

(1) Few-shot learning improves classification ac-
curacy but may increase overconfidence in am-
biguous samples. Few-shot learning enhances
classification accuracy, particularly in the medium
agreement subset (AT), where accuracy increases
by an average of 3.87%. However, for detection
of low-agreement samples (A°), few-shot learning
increases the MSE, suggesting that models become
overconfident and misaligned with ambiguous hu-
man annotations. This occurs because few-shot
learning reinforces model consistency, making it
less adaptable to subjective disagreements.

(2) Learning from disagreement samples im-
proves model generalization. Using disagree-
ment samples (A1 and A°) in few-shot learning
leads to greater performance improvements across
all evaluation metrics compared to using only unan-
imous agreement samples (A'"). Disagreement
samples often capture borderline or ambiguous
cases, which challenge the model to refine its deci-
sion boundaries. Learning from these samples en-
hances the model’s ability to differentiate nuanced
offensive language from non-offensive content.

(3) Combining different agreement levels en-
hances performance, but excessive variation re-
duces accuracy. Incorporating both unanimous
agreement samples and disagreement samples (e.g.,
w/ ATH/9 or w/ A+t*/*) improves model per-
formance compared to using only disagreement
samples (w/ A1/9). However, including too many
agreement categories (w/ A+*/*/9) does not fur-
ther enhance accuracy and may even decrease per-
formance. The increased variation makes it harder
for the model to establish clear decision boundaries,
potentially leading to inconsistent classifications.
These results indicate that strategically balanc-
ing agreement levels is critical in few-shot learning.
A well-chosen mix of clear and ambiguous cases
helps the model generalize effectively, whereas ex-

cessive variation may introduce confusion and de-
crease performance.

To verify the robustness of our findings, we repli-
cate the experiment using the open-source LLM
Qwen2.5-72B. The results align closely with those
of GPT-40, suggesting that these insights general-
ize across different LLM architectures. Detailed
results are provided in Appendix B.3.

4.2 Impact of Disagreement Samples on
Instruction Fine-tuning

We analyze how instruction fine-tuning with dif-
ferent annotation agreement levels affects model
performance, using LL.aMa3-7B as the backbone.

Instruction Fine-tuning Setup. We fine-tune
an equal number of instances from each agreement
level in the MD-Agreement dataset. Specifically,
we extract 1,800 samples each from ATT, AT, and
AP based on the least-represented A" category.
The instruction template remains consistent with
that used in the zero-shot setting (see Appendix
A.3). We also evaluate combinations of multi-
ple agreement levels, using the same experimental
markers as in Section 4.1. Table 5 presents the
results, leading to the following conclusions:

(1) Medium-agreement (A™") samples yield the
best balance in fine-tuning. Fine-tuning with
high-agreement (A" ) samples improves classifi-
cation accuracy, while low-agreement (A°) sam-
ples enhance confidence alignment with human
annotations, reducing MSE. However, exclusive re-
liance on AY samples may lead to catastrophic for-
getting, where the model becomes overly attuned
to ambiguous cases at the cost of general classifica-
tion accuracy. A1 samples offer the best trade-off,
allowing the model to capture nuanced decision
boundaries while maintaining robust performance.

(2) Combining multiple agreement levels fur-
ther enhances performance. Fine-tuning with



all three agreement levels (w/ AT+/*/0) achieves
the best overall results, yielding performance com-
parable to GPT-40 in few-shot learning (see Ta-
ble 5). Among two-category combinations, mix-
ing disagreement samples (w/ A/0) provides the
most improvement, reinforcing the importance of
disagreement-aware learning.

These results confirm that strategically select-
ing disagreement samples is essential for instruc-
tion fine-tuning. A well-balanced combination en-
hances both classification performance and confi-
dence calibration, ensuring better alignment with
human judgments.

We replicate the instruction fine-tuning exper-
iment with Qwen2.5-7B using the same training
and test data. The results closely align with those
of LLaMa3-7B, confirming that these insights gen-
eralize across different model architectures. See
Appendix B.4 for details.

5 Related Work

Large Language Model. In recent years, large
language models (LLMs) have rapidly emerged,
showcasing extensive world knowledge and strong
reasoning capabilities (Kojima et al., 2022; Ouyang
etal.,2022; OpenAl, 2023). Many researchers have
proposed diverse tasks to deeply analyze the rela-
tionship between the model’s outputs and human
judgments (Xu et al., 2024; Fan et al., 2024). In
addition, the confidence of LLMs in their outputs
has also attracted attention from researchers, which
is often used to assess the reliability and robustness
of the generated content (Jiang et al., 2021). Vari-
ous methods for estimating confidence have been
proposed (Zhang et al., 2020; Wang et al., 2023b;
Tian et al., 2023; Lin et al., 2022). In this study,
we employ the most straightforward approach, self-
consistency, to estimate the model’s confidence.

Offensive Language Detection. Researchers
have developed various methods for detecting of-
fensive language (Founta et al., 2018; Davidson
et al., 2017; Mathew et al., 2021). As research
advances, many studies argue that treating offen-
sive language detection as a binary classification
is an idealized assumption (Basile et al., 2021;
Basile, 2020; Plank, 2022), as annotation disagree-
ment are inherent in datasets for such subjective
task (Pavlick and Kwiatkowski, 2019; Uma et al.,
2021b). Using majority voting for annotation agree-
ment leads to information loss (Davani et al., 2022),
as these disagreements arise from the subtlety of

the samples, not labeling errors (Uma et al., 2022).
Leonardelli et al. (2023) emphasizes that detection
models should recognize this disagreement, rather
than just improving classification performance.

Recently, several studies have begun evaluating
the potential of LLMs for detecting offensive lan-
guage (Kumar et al., 2024; Roy et al., 2023), and
designing detection methods based on them (Park
et al., 2024; Wen et al., 2023). Some studies (Wang
et al., 2023a; Huang et al., 2023) leverage the gen-
erative capabilities of LLMs to provide explana-
tions for offensive language, assisting human an-
notation. Furthermore, Giorgi et al. (2024); Zhang
et al. (2024) assess the sensitivity of LLMs to de-
mographic information in the context of offensive
language. Though great efforts have been made,
these studies lack focus on the phenomenon of of-
fensive language with annotation disagreement. In
this paper, we aim to fill this research gap.

6 Conclusion

This study examines how LLMs handle annotation
disagreement in offensive language detection, a
critical challenge in real-world moderation. We
evaluate multiple LLMs in a zero-shot setting and
find that while they perform well on unanimously
agreed-upon samples, their accuracy drops signif-
icantly for disagreement cases. Moreover, their
overconfidence leads to rigid predictions, misalign-
ing them with human annotations.

To address this, we investigate the impact of
disagreement samples in few-shot learning and in-
struction fine-tuning. Our results show that incorpo-
rating these samples improves detection accuracy
and human alignment, enabling LLMs to better
capture the subjective nature of offensive language.
We further find that balancing agreement levels
in training data prevents overfitting to ambiguous
cases, ensuring model robustness.

Key findings of this work include: (1) a system-
atic evaluation of LLMs on annotation disagree-
ment, (2) insights into how disagreement samples
improve learning, and (3) guidelines for leveraging
disagreement-aware training strategies. These re-
sults emphasize the need for model calibration tech-
niques to mitigate overconfidence and for training
strategies that incorporate disagreement to improve
generalization. Future research should explore
dynamic fine-tuning approaches and confidence-
aware moderation systems to bridge the gap be-
tween LLM decisions and human subjectivity.



Limitations

(1) Due to the scarcity of high-quality offensive lan-
guage datasets with unaggregated labels, we only
utilize the MD-Agreement dataset for experiments,
which has been widely used in the field. Consider-
ing that relying on a single dataset may introduce
bias or randomness, we mitigate this by conduct-
ing experiments with multiple closed-source and
open-source LLLMs to ensure the consistency and
reliability of our findings, reducing the impact of
bias. In future work, we plan to further explore the
performance of LLMs in other subjective text anal-
ysis tasks, such as humor detection and misogyny
detection, particularly in understanding samples
with annotation disagreement.

(2) Due to usage restrictions, we are unable
to evaluate the detection performance of several
emerging LLMs, such as GPT-03. We plan to fur-
ther assess these more advanced models as soon
as experimental conditions allow. Additionally,
due to space limitations, the potential of certain
techniques for detecting offensive language with
annotation disagreement, such as reinforcement
learning methods, are not discussed. We plan to
explore these methods in future work and investi-
gate effective strategies for enabling LLMs to fully
leverage disagreement samples, thereby enhancing
their detection capabilities.

(3) In evaluating the confidence of LLMs, we
adopt a straightforward approach based on tem-
perature resampling. We have noted another com-
mon method, the Logit-based approach (Guo et al.,
2017; Zhang et al., 2020), which involves using
the logits of category-specific tokens to compute
statistical probabilities within the model’s output.
This method may provide deeper insights into the
decision-making mechanisms of LLMs when han-
dling disagreement samples. We plan to explore
and evaluate this method in future work.

Ethics Statement

The opinions and findings contained in the sam-
ples of this paper should not be interpreted as rep-
resenting the views expressed or implied by the
authors. Accessing the MD-Agreement dataset re-
quires users to agree to the creators’ usage agree-
ments. The usage of these samples in this study
fully complies with these agreements.
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A Experimental Details

A.1 Details of Dataset

In this section, we provide a detailed introduction
to the annotation quality control process of our
used MD-Agreement dataset (Leonardelli et al.,
2021). The researchers implemented a two-stage
annotation process: First, three linguists annotated
a subset of the samples, and those with unanimous
agreement were used as the gold standard for the
annotation process. Following this, trained anno-
tators from Amazon Mechanical Turk were em-
ployed to annotate the complete samples based on
the established gold standard. After the task was
completed, annotations from workers who did not
achieve at least 70% accuracy were discarded. Ad-
ditionally, it was ensured that each sample in the
final dataset received five annotations. These mea-
sures help ensure the accuracy of the annotations.
Sandri et al. (2023) further manually reviewed a
random selection of 2,570 samples with annota-
tion disagreement from the MD-Agreement dataset.
The results showed that only 12 samples contained
annotation errors, accounting for less than 0.5%,
demonstrating the high quality and reliability of
the dataset.

A.2 Description of Metrics

This section introduces the metrics used to assess
the relationship between LLM confidence and the
degree of human annotation agreement.

Mean Squared Error (MSE): The MSE is a
widely used evaluation metric in regression tasks,
measuring the difference between predicted and
actual values. In this study, we adopt MSE for
alignment estimation, as described by Leonardelli
et al. (2023), where a smaller MSE indicates closer
alignment between LLM confidence and agreement
degree. We first obtain soft labels y and soft pre-
dictions ¢ of samples by averaging their discrete
0-1 annotation sequences Y and the LLM outputs
Y across different samplings, as follows:

1 & (L
yi=—> Y, gi=-.>Y, (1)
iz na=

where n is the number of observations, setton = 5
in this paper, representing the number of annotators
and LLM outputs. Then, the MSE is calculated as:

MSE = —> (yi — 4:)°,
mia

2
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Range of Coefficient ((p)  Correlation Degree

(0.7,1.0] High Correlation
(0.3,0.7] Medium Correlation
(0.0, 0.3] Low Correlation
0.0 No Correlation
[—1.0,0.0) Negative Correlation

Table A1: Correlation degree corresponding to different
coefficient values (p).

Range of Kappa (k) Agreement Degree
[0.8,1.0] High Agreement
[0.6,0.8) Good Agreement
[0.4,0.6) Moderate Agreement
(0.0,0.4) Poor Agreement

0.0 No Agreement
[-1.0,0.0) Negative Correlation

Table A2: Agreement degree corresponding to different
kappa values (k).

where m is the total number of samples.

Spearman’s Rank Correlation Coefficient (p):
The Spearman’s Rank Correlation Coefficient is
a non-parametric test that quantifies the degree of
monotonic relationship between two variables. Un-
like Pearson correlation, which assumes normally
distributed variables, Spearman’s correlation does
not require this assumption and can be applied to
discrete data. This makes it an ideal choice for
assessing the statistical correlation between anno-
tation agreement and LLM confidence, which is
computed as follows:

6> 7 df

~n(n?2-1)
where di is the difference between the ranks of cor-
responding values of soft labels y and predictions .
The correlation degrees corresponding to different
p are shown in Table Al.

Cohen’s Kappa (x): Cohen’s Kappa is widely
used to evaluate the consistency between annota-
tors, especially in classification tasks. Compared
to simple percentage agreement, which directly cal-
culates the proportion of agreement between two
evaluators, Cohen’s Kappa provides a more precise
measure as it accounts for the influence of random
agreement. In this paper, we use Cohen’s Kappa
to estimate the consistency of LLM outputs Y. We
first compute the kappa value between the ¢-th and
the j-th LLM output of samples, i.e., Yl and Y',
using the following formula:

p=1 (3)



Offensive language refers to words or expressions
intended to insult, harm, or belittle individuals or groups.
This includes:

- Insulting, derogatory, or combative language

- Discriminatory language based on race, religion, gender,
or other personal attributes

- Profanity, violence, or vulgar expressions

- Sarcastic or harmful humor

Based on the above definition, determine if the following
sentence is offensive language. Return only “yes” or “no”.

<Ifin the Few-shot Learning>
Example_1:

Input: [text of example_1]
Output: [label_1]
Example_2:

Input: [text of example_2]
Output: [label_2]

<Other Examples>

Here is the sample to be detected:
Input: [sample to be detected]
Output: [prediction]

Table A3: Prompt template of the LLM, consisting
primarily of three parts: task definition, examples (only
for the few-shot scenario), and the sample to be detected.

P, — P,
R i, i, 4
Ki 5 1_ Peiyj ) ( )

where P, ; represents the observed agreement,
which is the proportion of agreement between Y;
and Y;, and P, ; refers to the expected agreement,
calculated based on the probability of selecting
categories, namely 0 or 1. We then calculate the
average value of the kappas as follows, which is
used as the metric:

1
C(n,2)

Y ki

1<i<j<5

(&)

R =

The agreement degrees corresponding to different
r are shown in Table A2.

A.3 Design of Prompt Template

To enhance the reproducibility of our study, we
avoided conducting complex prompt engineering.
Instead, we directly referenced (Roy et al., 2023)
to design a straightforward prompt template, as
shown in Table A3. The template includes three
parts: first, the definition of offensive language,
which aligns with that used in the MD-Agreement
dataset (Leonardelli et al., 2021) to ensure the accu-
racy of the evaluation; second, examples of varying
degrees of disagreement in a few-shot scenario; and
finally, the sample to be detected.
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Model Version

GPT-ol ol-preview-2024-09-12
GPT-40 gpt-40-2024-08-06
GPT-4 gpt-4-turbo-2024-04-09
GPT-3.5 gpt-3.5-turbo-0125
Claude-3.5 claude-3-5-sonnet-20240620
Gemini-1.5 gemini-1.5-pro
© LLaMa3-70B  Meta-Llama-3-70B-Instruct
LLaMa3-8B Meta-Llama-3-8B-Instruct
Qwen2.5-72B Qwen2.5-72B-Instruct
Qwen2.5-7B Qwen2.5-7B-Instruct

Mixtral-8x22B
Mixtral-8x7B

Mixtral-8x22B-Instruct-ve.1
Mixtral-8x7B-Instruct-ve.1

Table A4: Specific versions of used LLMs.

A.4 Other Experimental Settings

We access closed-source LLMs via their official
APIs and deploy open-source LLMs with param-
eters downloaded from Hugging Face. To ensure
a fair comparison, we use model versions released
around the same time, as detailed in Table A4.
Since GPT-o1 only has a default temperature of
1 and does not allow adjustments, we present its
binary performance in this setting. Except for
the temperature coefficient, other hyperparameters,
such as top-p and top-k, are set to their default
values for each model. For instruction fine-tuning,
we adopt the efficient Qlora fine-tuning method.
The learning rate is set to 2e-4, with a per-device
batch size of 36. We train the model for 15 epochs
using the AdamW optimizer, applying an early
stopping mechanism. We reserve the parameters
of best-performing models based on the develop-
ment set and evaluate their performance on the test
set. The models are trained on two NVIDIA H100
80GB GPUs. All the few-shot learning and instruc-
tion fine-tuning experiments are repeated five times
with different random seeds to minimize error, and
the average results are reported.

A.5 Handling of Refusal Behavior

Handling offensive language can trigger the refusal
behavior of LLMs, as they are designed with ethi-
cal and safety considerations (Kumar et al., 2024).
Nevertheless, in our experiments, refusal occurred
only in the zero-shot evaluation setting, where
Claude-3.5, with a temperature coefficient set to 1,
failed to generate responses for 23 samples. When
the experiment was repeated with the same settings,
the model successfully provided predictions for
these samples. This phenomenon also highlights
the model’s sensitivity to offensive language.
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Figure B1: Accuracy of LLMs on detecting offensive language with different degrees of annotation agreement

under different temperature sampling settings.
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Figure B2: Consistency of outputs from different LLMs across varying degrees of annotation agreement with
Cohen’s Kappa as the metric. The color scale represents different Kappa values.

B Supplementary Experiments

B.1 Impact of Temperature Sampling on
Detection Performance of LLMs

In this section, we analyze the impact of tempera-
ture sampling on the accuracy of detecting offen-
sive language by LLMs. We select four represen-
tative models for comparison: the closed-source
models GPT-4 and Claude-3.5, as well as the open-
source models LLaMa3-70B and Qwen2.5-72B.
The experimental results are shown in Figure B1.
Based on these results, we conclude that after ad-
justing the temperature coefficient, the detection
accuracy of each LLM remains generally stable,
although some fluctuations are observed, with vary-
ing degrees of sensitivity to the temperature coef-
ficient across different models. As the tempera-
ture increases, the accuracy of most models shows
a declining trend, with the sole exception being
Qwen2.5-72B, which exhibits an increase in ac-
curacy. This may be due to differences in the
models’ training mechanisms. Nevertheless, the
performance ranking between the models remains
stable, indicating that changes in the temperature
coefficient do not notably affect the performance
differences among the models.

14

B.2 Consistency Analysis Across Different
LLMs

Building upon Section 3.2, we further explore the
consistency of hard predictions across different
LLMs when processing samples with varying de-
grees of annotation agreement. We select six repre-
sentative models, including the close-source mod-
els GPT-40, Claude-3.5, and Gemini-1.5, as well as
the open-source models Mixtral-8x22B, LLaMa3-
70B, and Qwen2.5-72B. Cohen’s Kappa is used as
the metric. The results are presented in Figure B2.
Based on the results, we can observe that:

As annotation agreement decreases, cross-model
consistency in detecting offensive language de-
clines more significantly compared to each model’s
self-consistency. For unanimous agreement sam-
ples (A™T), cross-model consistency generally ex-
hibits good agreement, with x > 0.6. However,
for low agreement samples A, consistency drops
explicitly, with many models showing poor agree-
ment (k < 0.4), despite many of these models
exhibiting similar overall performance in terms of
both binary classification accuracy and alignment
with human annotations (see Table 3 and 4). No-
tably, the lowest prediction consistency Kappa is



Overall AT AT A°
Model Acc.T MSE| | Acc.T™ MSE] Acc.T MSE] | Acc.T MSEJ|
Qwen2.5-72B (zero-shot) 72.08  0.1962 | 84.74  0.1480 | 6841 02237 | 57.12  0.2393
***** w/ AT 7 177792 01321 | 9094 00809 | 7591  0.1484 | 6040  0.1920
w/ AT 79.10  0.1275 | 9195  0.0702 | 78.66  0.1414 | 60.16  0.1993
w/ A° 82.56  0.1054 | 94.12  0.0514 | 83.50  0.1088 | 64.14  0.1832
***** w/ AT T T 8142 01127 | 93.19 00561 | 8251  0.1199 | 6250  0.1905
w/ ATH/0 82.43  0.1099 | 93.58  0.0530 84.38  0.1108 | 63.55  0.1950
w) AT/0 82.96 0.1044 | 9497 0.0427 | 8471  0.1090 | 62.97  0.1927
w/ ATH/H/0 82.04  0.1101 | 93.42  0.0544 | 84.05  0.1095 | 6273  0.1949

Table B1: Performance of Qwen2.5-72B on the test set of MD-Agreement in few-shot learning.

Overall ATT AT A°
Model Acc.T MSE| | Acc.T MSEJ Acc.T MSE| | Acc.T MSE|
Qwen2.5-7B (zero-shot) 69.77  0.1998 | 8344  0.1542 | 66.12 02289 | 53.04  0.2379
77777 w/ At 7 ] 78018 0.1407 | 9296 00703 | 79.76  0.1572 | 6121 02309
w) AT 80.41  0.1347 | 93.11  0.0649 | 80.64  0.1497 | 6273  0.2211
w/ A° 80.08  0.1395 | 9257  0.0704 | 80.09  0.1533 | 60.86  0.2238
77777 w/ AT T 7 178230 01261 | 9536 0.0457 | 82.95  0.1406 | 6238 02311
w) ATH/O 82.17  0.1192 | 9450  0.0486 | 8427  0.1243 | 63.90  0.2082
w/ AT/0 81.88  0.1185 | 9443  0.0522 83.39 0.1283 | 63.90  0.2060
w) ATH/H/0 8391  0.1149 | 9582  0.0395 | 8559  0.1209 | 6542 02181

Table B2: Performance of Qwen2.5-7B on the test set of MD-Agreement under instruction fine-tuning.

only 0.28 between GPT-40 and Gemini 1.5. A
potential reason for this phenomenon is that dif-
ferent models are trained on diverse datasets and
undergo distinct value alignment processes, result-
ing in varying sensitivity to contextual features.
In future work, we will explore the relationship
between cross-model consistency and human anno-
tation agreement in offensive language detection.
Additionally, we aim to investigate the potential of
leveraging multiple LLMs for collaborative annota-
tion of offensive language.

B.3 Few-shot Learning with Qwen2.5-72B

We replicate the few-shot learning experiment from
Section 4.1 using the open-source LLM Qwen2.5-
72B, employing the same sample pairs in the
prompts. The results are shown in Table B1. Based
on the results, we observe the following:

In the few-shot learning with samples of vary-
ing annotation agreement degrees, the results of
Qwen2.5-72B align closely with the trends of GPT-
40 (see Table 5). Whether introducing samples with
a single annotation agreement degree or combina-
tions of different agreement categories, the detec-
tion performance of the model shows notable im-
provement compared to the zero-shot scenario. Ad-
ditionally, the benefit to model performance varies
explicitly depending on the annotation agreement
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degree and the combinations used as prompts.

Furthermore, compared to GPT-40, Qwen?2.5-
72B demonstrates two distinct differences: (1) On
the subset of low-agreement samples, the introduc-
tion of few-shot learning also results in a noticeable
improvement in the alignment between LLM confi-
dence and annotation agreement. This is primarily
because Qwen2.5-72B performs less effectively
than GPT-4o in detecting offensive language under
zero-shot scenarios, making it more susceptible to
performance enhancements through few-shot learn-
ing. (2) For Qwen2.5-72B, the combination of
disagreement samples, i.e., w/ At/ 0 achieves the
best performance across most subsets and metrics.
In contrast, GPT-40 performs better with combina-
tions such as w/ AT+/* and w/ A*+/0. This
highlights that the effects of learning from dis-
agreement samples differ between different LLMs,
which is closely related to the ambiguous charac-
teristics of these samples.

B.4 Fine-tuning with Qwen2.5-72B

We replicate the instruction fine-tuning experi-
ment from Section 4.2 using Qwen2.5-7B, training
with the same instruction data. Based on the re-
sults shown in Table B2, we observe conclusions
that are largely consistent with those on LLaMa3-
8B. Specifically, Qwen2.5-7B performs best with



Exp. Sentence Label GPT40 LLaMa3
(a) Why does the Minneapolis mayor look like a more Soy version of Justin Trudeau ot o° NO
(b)  This is Amerikkka! #blacklivesmatter <url> N° ot ot
Hey #BlackLivesMatter SAY THEIR NAMES! Look these are YOUR PEOPLE!

© Say The_ir Names! Do IF! Whgre is Your Outyage Now?! Come forth You 0° NO Nt
#Hypocrites! Did They Die In Vain?! Ye Generation Of Vipers! These Are Your
People Murdered!

(d) Doesn’t have a kid’s cancer charity he can draw from? #Elections2020 Nt o+t Nt

Table B3: Error analysis of samples with annotation disagreement in offensive language detection.

medium agreement (A™) when fine-tuned using
a single category of annotation agreement across
various subsets and metrics. Compared to unani-
mous agreement samples (AT ™), training with dis-
agreement samples helps the model’s confidence
better align with the degree of human annotation
agreement, resulting in a lower MSE. When fine-
tuning with combinations of different agreement
categories, using lower agreement combinations
(e.g., w/ ATH/0 and w/ A*/9) leads to higher
detection accuracy and closer alignment with the
annotations, compared to higher agreement com-
binations (w/ A*+/*), especially in the detection
of disagreement subsets. These findings further
demonstrate the importance of learning from dis-
agreement samples during instruction fine-tuning,
which enhances the model’s understanding and
judgment of offensive language, particularly for
ambiguous samples.

B.5 Error Analysis

To gain deeper insight into the challenge posed by
offensive language with annotation disagreement,
we manually inspect the set of samples misclassi-
fied by the models. The following two main types
of errors are identified, with samples and predic-
tions from GPT-40 and LLaMa3-72B shown in
Table B3 for illustration:

Type I error refers to samples that are labeled
as non-offensive but are detected as offensive. This
error primarily arises from subtle linguistic fea-
tures such as sarcasm and metaphor, which make
the judgment of the sample ambiguous. For in-
stance, in Example (a), the term “Amerikkka” is a
variant of “America” used to intensify emotional
expression. Due to insufficient context, most an-
notators do not consider it offensive. However,
GPT-40 and LLaMa3, due to their sensitivity to the
hashtag blacklivesmatter, consistently classify it as
offensive language. Similarly, in Example (b), a
sarcastic rhetorical question leads to a misclassi-
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fication by GPT-40. This phenomenon highlights
the complexity that human annotators face in de-
termining offensive language and also reveals the
issue of over-sensitivity in existing LLMs to certain
linguistic expressions, resulting in decisions that
do not align with human standards. In future work,
we will perform a more detailed analysis of expres-
sions in samples with disagreement annotation and
explore how different types of expressions affect
model detection performance.

Type II error refers to sentences labeled as of-
fensive but classified as non-offensive by the mod-
els. This error primarily arises from the models
lacking or failing to effectively integrate the neces-
sary background knowledge for detecting offensive
content, leading to an inaccurate understanding of
the sample’s true meaning. For example, in Ex-
ample (c), the comparison between the mayor of
Minneapolis and Justin Trudeau uses “Soy” as an
adjective, which implies weakness and is intended
to belittle the mayor. Both human annotators and
GPT-40 capture the offensive nature of the sample,
but LLLaMa3 fails to correctly identify its offen-
siveness due to insufficient relevant knowledge. In
Example (d), the phrase “Ye Generation of Vipers”,
areligiously charged expression, is used to strongly
criticize police brutality against black people. How-
ever, the model fails to integrate the context, lead-
ing to a missed detection. We plan to introduce
more comprehensive background knowledge to en-
hance the understanding capability of LLMs and
explore the performance of knowledge-enhanced
models in detecting disagreement samples.
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