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Abstract

Benefiting from the availability of extensive navigation trajectories, both manually
and automatically annotated, current graphical user interface (GUI) agents have
achieved remarkable advancements in performance. However, these annotated
datasets often contain substantial noise, which impedes effective agent training
and underscores the necessity for rigorous trajectory quality assessment. In con-
trast to existing prompting-based evaluators that rely on proprietary multimodal
large language models (MLLMs), we propose an Uncertainty-aware Reinforced
Self-Training (URST) framework to train lightweight MLLMs for efficient and
reliable trajectory evaluation. URST iteratively fine-tunes MLLMs using their
own generated thoughts and judgments to enable self-improvement, while its
uncertainty-aware sampling strategy ensures the selection of the most informative
training examples. To further enhance reasoning and judgment capabilities, we
propose a simplified group policy optimization approach that effectively lever-
ages diverse positive and negative samples for evaluator learning. Our evaluator
demonstrates superior judgment performance across both in-domain and out-of-
domain datasets. When used to filter navigation datasets, it consistently leads to
performance improvements in training GUI agents.

1 Introduction

With the powerful language under-
standing and generation abilities,
(multimodal) large language model-
based agents [53} 162} [7, 28, 138, 145]]
can perform more effectively across
diverse and complex tasks, demon-
strating greater generality and adapt-
ability. In a graphical user inter-
face (GUI) scenario, the paradigm
for building agents has shifted from
framework-based [42, 57, [1]] to na-
tive agents [6, 14} 20, 31]. In the
early stage, many works [42] 57, |1
61, [16] leverage the advanced founda-
tion models by designing task-specific
workflows and optimizing prompts
to construct framework-based agents.
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Figure 1: Comparison of uncertainty-aware reinforced self-
training (URST) method with prompting-based methods. Our
URST iteratively fine-tunes lightweight MLLMs with self-
generated thoughts via reinforcement learning.
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The human-defined workflows make the agents hard to adapt to continuously evolving environ-
ments [31]. A promising paradigm is to build native agents by learning GUI navigation tasks in an
end-to-end manner, ensuring the scalability and adaptability of agents.

The main challenge of building native agents is the requirement for large-scale GUI navigation data.
Recently, a growing number of navigation trajectory datasets [34, 159, 47, 2, 15, 24] have emerged,
collected through various schemes ranging from manual to semi-automated and fully automated
approaches. Although these datasets have driven significant progress in native agent development,
their inherent noise and quality issues continue to hinder further improvement [S9,27,41]]. These data
deficiencies demand automated evaluation methods that can act as a quality filter. Current autonomous
trajectory evaluation approaches [27, 50, 51} [13]] mainly rely on advanced proprietary multimodal
large language models (such as GPT-4V, QwenVL-Max, Gemini, etc.) with tailored prompting and
continuous API calls. These prompting-based evaluators suffer from two main limitations: (1) the
significant domain gap between general and GUI scenarios; (2) the substantial computational cost
and delay associated with proprietary MLLM API calling.

To address these challenges, we devise an uncertainty-aware reinforced self-training (URST) method
to train an open-sourced lightweight MLLM as an efficient trajectory evaluator. In contrast to
supervised fine-tuning on a well-constructed dataset, we explore a self-training strategy that eliminates
the need for thought annotations while still enhancing the model’s reasoning and judgment capabilities.
Our URST method iteratively fine-tunes the model on self-generated data, achieving model self-
improvement. In each iteration, our method first performs sampling-based data collection, then fine-
tunes the model on newly generated data. In contrast to existing self-training methods [56, 12} 39],
we propose a novel uncertainty-aware sampling method to prevent the inclusion of easy samples in
the generated dataset. To facilitate efficient learning with diverse positive and negative samples, we
devise a simplified group policy optimization method to replace the rejection sampling fine-tuning.
To mitigate the difficulty bias, our SGPO eliminates the standard deviation normalization and equally
treats each training input, enabling an accurate measurement of sample advantage.

The experiments reveal superior performances of URST in both in-domain (an average gain of 2.45%)
and out-of-domain (an average gain of 2.89%) datasets, compared to the state-of-the-art prompting-
based methods. This comparison suggests that domain-specific adaptation through self-training can
outweigh the general reasoning power of large foundation models. Notably, evaluators (84.13%)
trained with self-generated synthetic data exhibit significantly larger performance than those (79.01%)
trained on data from proprietary MLLMs, highlighting the potential of self-generated data. We also
implement some self-training works and compare them with URST. The results show that URST
outperforms these methods by a margin of 6%, thanks to advanced sampling and policy optimization
techniques. We also perform GUI agent training with the self-trained evaluator and obtain consistent
performance improvements on two navigation datasets. Overall, our findings suggest reinforced
self-training as a promising approach to training powerful GUI evaluators.

The key contributions of this work are:

* We introduce URST that enables learning from self-generated data for training efficient
MLLM-based evaluators, which is the first fine-tuning work for GUI trajectory evaluation.

» We devise a novel uncertainty-aware sampling method for generating more valuable samples
for effective fine-tuning. Meanwhile, simplified group policy optimization is proposed to
leverage positive and negative samples for reasoning and judgment enhancement.

» Extensive experiments demonstrate the effectiveness of our URST on two automatically
or manually collected datasets. The evaluator trained with URST achieves superior perfor-
mances in judgment accuracy and shows a positive effect on navigation performance.

2 Related Works

GUI Agents. Recently, multimodal large language models (MLLMs) [43 21} 13 137,19 [17]] have
significantly advanced agent research by enabling richer perception and reasoning across various
domains such as gaming environments [45} |18, [19]], and GUI interaction [31} 48]]. GUI Agents can
be categorized into Agent Frameworks and Native Agent Models based on whether they fine-tune the
base model on the GUI domain [31]. Agent Framework systems [60, 46, |44, [1]] leverage the general
understanding and reasoning capabilities of advanced MLLMs. These works enhance the flexibility



of task execution by designing task-specific modules such as planning, execution, memory, reflection,
etc., and optimizing prompts for each component. However, agent frameworks depend on manually
encoding GUI domain knowledge through custom prompts, external scripts, or tool-usage heuristics,
which inherently limit their adaptability to evolving GUI scenarios without human expert involvement.
Recent advancements [47, 4, [31} [11} [20] have shifted towards constructing large-scale GUI operating
trajectories for fine-tuning MLLMs, thereby enabling end-to-end perception, planning, and execution
natively within the GUI domain. These native agent models reduce the need for human-engineered
workflows by utilizing either manually annotated or automatically collected trajectories, providing the
potential for self-evolution as environments change. In contrast, our work tries to build an evaluator
to measure trajectory quality, remove ineffective samples automatically, and ultimately enhance the
performance of GUI agents.

Autonomous Evaluation by LLMs. Recently, LLM-as-a-judge approaches have been proposed
to evaluate the correctness of the trajectory. AutoEval [27] prompts a general advanced MLLM to
evaluate task completion with the last screenshot. WebVoyager [[13]] further inputs all screenshots
for judgment. Some works [50} 411 140] also incorporate a general LLLM to evaluate sample quality
during dataset construction. Webjudge [51]] proposes an evaluation pipeline with key screenshots
identification to reduce token consumption. These approaches rely on general proprietary LLMs,
which lack domain-specific knowledge tailored to GUI environments. In contrast, we advocate
transitioning from prompting-based to fine-tuned evaluators, facilitating domain-specific evaluation
via model self-improvement.

Reinforcement Learning with LLMs. Reinforcement Learning (RL) has been demonstrated
to significantly enhance model performance during the post-training phase of LLMs Early works
utilized RL to align LLM outputs with human preferences [55]] through algorithms such as Proximal
Policy Optimization [35] and Direct Preference Optimization [32]]. More recently, Deepseek [36,
10] proposes group relative policy optimization (GRPO) by introducing group-level advantage
estimation, and substantially augments the reasoning capabilities of LLMs. Following this pioneering
work, a growing body of studies [26 58| 22| [29]] have applied GRPO across various domains,
consistently reporting notable performance gains. Our work leverages group-level policy optimization
for enhancing the trajectory evaluator’s reasoning ability in self-evolved training. To the best of our
knowledge, this is the first study to employ reinforcement learning for evaluating GUI trajectories.

3 Method

3.1 Problem Definition

GUI navigation task requires an agent to predict a sequence of actions and interact with an environment
based on task instructions. Here, we focus on vision-based GUI navigation offline datasets, where each
sample is composed of a task instruction I, a sequence of state-action pairs S = {sq, ag, - - ., ST, a1}
In this work, s; represents a screenshot observation instead of a structural text description (like Ally
tree). Given a navigation sample, the trajectory evaluator £ produces a chain-of-thought (CoT) ¢, and
a judgment gy, which can be formulated as follows:

(c,y) = 5(.13), T = {I?S} (D

Due to the introduction of CoT reasoning, we adopt a language modeling objective to train the evalu-
ator instead of a binary classification objective. The CoT reasoning provides abundant information
about task intention, state content, and task progress to make a solid judgment.

The dominant paradigm of constructing automatic evaluators for GUI Agent is adapting a proprietary
MLLM with tailored prompts, termed prompting-based evaluator. This paradigm is quite expensive
and relies on API calls to proprietary models. Another direction is to fine-tune an open-sourced
MLLM with the training samples annotated by advanced proprietary MLLMs for low-cost local de-
ployment. However, this supervised fine-tuning method may be constrained by the limited capability
of proprietary MLLMs in domain-specific tasks. In this work, we devise a novel uncertainty-aware
reinforced self-training method to fine-tune open-sourced MLLMs as trajectory evaluators, enabling
model self-improvement through their own outputs. The whole procedure is shown in Algorithm [T}
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Figure 2: Overview of our uncertainty-aware reinforced self-training (URST) framework. We
begin by using an initial training set to adapt a general MLLM to the trajectory evaluation domain.
Subsequently, URST iteratively fine-tune the MLLM with its own thoughts and judgments, guided by
uncertainty-aware sampling and simplified group policy optimization.

3.2 Uncertainty-aware Reinforced Self-Training

Our approach first assumes access to an initial MLLM-based evaluator £, a set of training inputs
D, and a reward model R to judge the correctness of the outputs. Given a training input x = {I, S},
the MLLM-based evaluator is expected to generate (1) a CoT reasoning c, followed by (2) a final
judgment y to the given input. We require a reward model to verify the correctness of the final
judgments, rather than assessing the internal CoT reasoning process. Specifically, a proprietary
MLLM is adapted to verify the judgment as the reward model. Our method iteratively samples
multiple training inputs from D and outputs from the current evaluator £, then constructs training
datasets to fine-tune the evaluator via simplified group policy optimization.

3.2.1 Initialization

As the trajectory evaluation is not a common task in MLLM pre-training or instruction-tuning, current
open-sourced MLLMs, especially small ones, struggle with understanding high-level navigation
instructions and complex state-action pairs We construct and collect a small amount of trajectory
evaluation data D" = {(x;, ¢c;, y;) ¥ ; " to fine-tune an open-sourced MLLM as the initial evalua-
tor. To collect such data, we directly prompt an advanced proprietary MLLM to generate trajectory

judgments with detailed CoT reasoning.

Given the initial trajectory evaluation dataset D!, we fine-tune an instruction-tuned MLLM 75 as
the initial evaluator by minimizing the negative log likelihood loss:

Lsrr = —E(, c; yi)pinit [log EM ey, yilzs)] - 2

After the initialization, our MLLM-based evaluator acquires a basic ability to assess unseen trajectory
data. We start from this initial evaluator and devise an uncertainty-aware sampling method to expand
the training data and use iterative reinforced self-training to develop a more powerful evaluator.

3.2.2 Uncertainty-Aware Sampling

Given a set of training inputs D, a MLLM-based evaluator £™, we sample a subset of training inputs
{z; }j\g in the m-th iteration, and generate K output sequences {(c¥,y¥)}/_, for each training
input x; based on the current evaluator. Specifically, by setting the temperature to a value greater
than 0, the MLLM-based evaluator can produce different outputs for the same input through K
repeated inference. Based on the generated dataset D™ = { zj,C j, )| j€eINLke] } a
reward model will score these samples by verifying the correctness o‘r] their ]udgments y. In our
experiments, the reward score simply corresponds to ff =1if y;“ = 14, and O otherwise, y, is the
ground truth annotated by the reward model.

The self-generated dataset D™ with the rewards can be directly used to fine-tune the current evaluator
to yield a new evaluator for the next iteration. However, we find the random sampling of inputs is



Algorithm 1 Uncertainty-aware Reinforced Self-Training

Input: an instruction-tuned MLLM 7 g, a set of training inputs D, a reward model.
// Initialization

Generate the initial dataset D" by using a proprietary MLLM: D™ = {(x;, ¢;, y;)} V1
Fine-tune 7 to obtain the initial evaluator £*** > Cold start by supervised fine-tuning

50 — gim’t
form=0to M — 1do
/I Uncertainty-aware Sampling
Generate dataset D™ by uncertainty-aware sampling: D™ = {(z;, ¢k, y¥) | j € [L],k €
(K]} st 2 ~D,(ckyk) ~&m.
Annotate D™ with the reward 7.
/I Simplified Group Policy Optimization
Obtain £™*! by minimizing the SGPO objective in equation
end for
Output: The final evaluator £M

inefficient due to the inclusion of less informative samples. To address this issue, we propose an
uncertainty-aware sampling method to choose the hard samples in each iteration. Our method ranks
the training input based on the prediction uncertainty of the evaluator. We use the entropy of multiple
judgments over the same input to measure the prediction uncertainty. Given the generated outputs
{yé€ szl}, the entropy ¢; of the training input j is computed as follows:

€5 = —Pyes 1ngyes - (1 - pyes) IOg(l - pyes)7

K
1 (3)
pyes = ? E ]I(yf = Yes).
k=1

The value range of judgment y is { Yes, No}. I(+) is an indicator function. We select Top-L samples
with the highest entropy values to construct the generated dataset. Higher entropy means that the
evaluator can’t make a solid decision on the training input, suggesting its value to learn. Compared to
random sampling in existing self-training methods, our uncertainty-aware sampling focuses on the
most valuable samples in each iteration, and efficiently expands the training dataset to ensure the
diversity and richness of the final dataset.

3.2.3 Iterative Reinforced Self-Training

In the m-th iteration, we use the newly generated dataset D" from the uncertainty-aware sampling
phase to fine-tune the current evaluator, yielding a new evaluator £™%1. Once the evaluator is
improved, a new dataset of high-quality samples can be generated once again. The data generation
and training steps can be iteratively performed M times, resulting in a final evaluator £M.

Existing reinforced self-training methods [S6) [15} [12} [39]] use rejection sampling fine-tuning to
iteratively train the model. This fine-tuning scheme uses reward values to filter the generated samples
and keep positive outputs for training. It has one main limitation: the exclusion of negative outputs.
Incorrect outputs can also contain valuable information that helps the model identify error patterns in
generations. To address this issue, we introduce Simplified Group Policy Optimization (SGPO) in
our iterative reinforced self-training framework.

3.2.4 Simplified Group Policy Optimization

The recently proposed group relative policy optimization (GRPO) [36] compares groups of candidate
responses directly, mining discriminative positive and negative outputs within the same input. The
group-level optimization introduces comprehensive contrastive signals for efficient learning. Inspired
by GRPO and some recent variants [8, [23} |54]], we design simplified group policy optimization
(SGPO) for better group-level contrastive learning. We first design two types of rewards, format
reward and judgment reward.



* Format rewards 7: We employ a format reward model that enforces the model to put its
CoT reasoning process between “<think>" and “</think>" tags.

* Judgment rewards 7: The judgment reward model will score the samples by verifying the
correctness of their judgments y. We use the rewards in the uncertainty-aware sampling
phase as judgment rewards.

SGPO computes the relative quality of K different outputs {(c;?7 yf) kK:1 based on the summation of
two rewards = 7 4 7. We can directly measure the relative quality A? as follows:

A;‘? = rf - rnean({r]l7 . ,TJK}). (€))
Note that our SGPO eliminates the standard variance normalization in the original GRPO. This
normalization can help to mitigate the influence of extreme reward values [8]], but may introduce
input-level difficulty bias [23]]. After our uncertainty-aware sampling, the standard deviations of all
output groups fall within a relatively small range ([0.23,0.47] in the first iteration), indicating the
absence of extreme reward values. In this case, the normalization term assigns greater weight to
samples with smaller standard deviations, thereby overemphasizing these less informative samples
(low standard deviation means low entropy). Thus, removing normalization can yield positive gains
by treating each training input equally.

Then SGPO optimizes the evaluator £ by minimizing the following objective:

K
(min (h?A?, clip(hg‘f7 1—7,1+ T)Af) - BDkL) |, 5

=1

Lsapo =-E | —
K

k
Em (e ylxy)
g(ﬂd(cjvy? ‘T]) :
model, preventing excessive deviation from the initial evaluator, which is estimated as in [[10].

where 7 and 3 are hyper-parameters, and h? = Dg is adopted to regularize the

4 Experiments

4.1 Datasets

Table 1: Comparison of our URST with prompting-based and fine-tuned evaluators on three test sets,
AITW-ID-traj, AITW-OOD-traj, and AW-OOD-traj. “Iter.” denotes iterative training process. We
adopt QwenVL-Max and Qwen2.5VL-3B as the base MLLM for prompting-based and fine-tuning-
based methods, respectively. “URST*” use Qwen2VL-2B as the base MLLM. “AutoEval*” uses the
last two screenshots as input, which is in line with the fine-tuning methods.

Method Tter AITW-ID-traj AITW-OOD-traj AW-OOD-traj Overall
" | Acc. F1 | Acc. F1 | Acc. Fl | Acc. F1
Prompting-based Methods
AgentTrek [50] X 84.17 87.58 | 90.00 70.00 73.54 69.74 | 80.56 76.80
WebVoyager [[13]] X 85.83 88.74 | 88.33 65.00 81.61 77.10 | 84.45 80.54
WeblJudge [52] X 82.50 85091 | 85.71 66.67 77.58 70.59 | 79.43 77.64
AutoEval [27] X 83.33 86.30 | 94.16 80.00 80.72 7394 | 84.88 79.77
AutoEval* X 85.00 88.00 | 94.16 80.00 82.06 75.90 | 8595 81.48
Fine-tuning-based Methods
SFT X 84.17 87.42 | 94.17 78.79 77.58 71.91 | 83.59 79.01
STaR [56] v | 81.67 8451 | 95.00 81.25 78.03 68.39 | 83.37 76.60
ReSTEM [39] v | 84.17 8725 | 91.67 72.22 79.82 70.59 | 84.02 78.11
URST* v | 8250 86.79 | 89.17 71.11 81.61 7853 | 83.80 81.01
URST v | 87.50 9045 | 94.16 82.05 81.61 79.60 | 86.39 84.13

We collect and construct a training set and three test sets for GUI trajectory evaluation. The training
set is built on a subset of Android-in-the-Wild (AITW) datasets. As analyzed in [27], about 36%
of the human demonstrations in this dataset are actually incorrect. We randomly sample 1500



trajectories from AITW training set, and use Qwen-VL-Max to generate the thoughts and judgments
for supervised fine-tuning. In the self-training setting, we only sample 300 trajectories with the
thoughts and judgments generated from Qwen-VL-Max as the initial training set.

AITW-ID-traj and AITW-OOD-traj are in-domain and out-of-domain test sets built on AITW
dataset. Each of these two test sets contains 120 tasks and was manually annotated in [27]]. AITW-ID-
traj and AITW-OOD-traj share the task goals, but have different trajectory distributions. Following
OS-genesis [41], we also collect some agent-executed trajectories from an online environment,
AndroidWorld. After manually annotation and filtering, we keep 223 trajectories and obtain a new
out-of-domain test set, AW-OOD-traj. The implementation details can be found in Appendix.

4.2 Main Results

To comprehensively assess the advantages of our method, we compare it with prompting-based works,
AgentTrek [50], WebYoyager [13]] , Webjudge [52], and AutoEval [27], following the settings in
the original papers. Meanwhile, we also implement some representative self-training methods as
fine-tuning-based baselines (i.e., STaR [56], ReSTFM [39]), which are originally designed for LLM
post-training instead of trajectory evaluator training. The implementation details of these self-training
methods can be found in Appendix.

The results in Table [T] show that our URST consistently achieves the highest F1 score with an
average of 84.13%. Among the prompting-based methods, WebVoyager and AutoEval demonstrate
superior performances across all datasets. WebVoyager uses all screenshots of each trajectory as
input, achieving better performance than methods with incomplete screenshots, but it suffers from
significant token overload. Following the setting of fine-tuning methods, we augment AutoEval with
the last two screenshots, resulting in an advanced AutoEval* with the best performance among the
prompting-based works. Despite the success of these methods, URST still outperforms them by
leveraging a reasoning-enhanced self-training strategy.

To fully showcase its advantages, we compare our URST with supervised fine-tuning (SFT) and
various self-training methods. SFT uses the thoughts and judgments generated by an advanced
proprietary MLLM (Qwen-VL-Max), which can be treated as Distillation. By inheriting the reasoning
patterns of a larger base MLLM, the smaller model Qwen2.5VL-3B demonstrates comparable
evaluation capability (81.48% vs. 79.01%). Self-training methods try to use self-generated thoughts
and judgments to achieve model self-improvement. We find current self-training approaches, STaR
and ReST®M indicate inferior results to SFT with externally generated thoughts, which can be
attributed to the less valuable training examples and limited reasoning enhancement ability of
rejection fine-tuning. In contrast, URST achieves the highest results across all metrics, highlighting
the value of uncertainty-aware sampling and group-level policy optimization.

4.3 Ablation Studies

We conduct the ablation studies for our URST with Qwen2.5VL-3B to examine the effectiveness
of uncertainty-aware sampling and group relative policy optimization. As shown in Table 2] elim-
inating uncertainty-aware sampling and SGPO decreases the overall performance by 6.00% and
9.49%, demonstrating the significant value of these two key components. Without uncertainty-aware
sampling, our method cannot identify the most valuable training data, and is prone to overfitting
due to excessive fine-tuning (—3.73%). SGPO can mitigate this overfitting problem and maintain its
generalization on OOD evaluation datasets (0.0% on AITW-OOD-traj and +1.46% on AW-OOD-traj)
compared to SFT. On the other hand, without SGPO, uncertainty-aware sampling can maintain the out-
of-domain performance (from 78.95% to 78.79% on AITW-OOD-traj) under the same environment,
but impair the out-of-domain capability (from 71.91% to 63.22% on AW-OOD-traj) across different
environments, compared to SFT. Incorporating advantage normalization consistently decreases the
performance, underscoring the importance of accurately measuring sample advantages.

Impact of multiple iterations. As shown in Figure[3] our results show that multiple iterations can
consistently enhance the performance of the evaluator, especially on F1 scores. The performance
gains across three iterations are 0.65%/1.55%, 1.50%/3.42%, 0.44%/1.28% in terms of accuracy
and F1 score, respectively. Iteration 1 leads to the biggest performance increase, while performing



Table 2: Ablation studies for different components of the proposed URST. We report the F1 score.

Method | AITW-ID-traj AITW-OOD-traj AW-OOD-traj Overall

URST 90.45 82.05 79.60 84.13
w/o uncertainty-aware sampling 83.69 78.79 73.37 78.13
w/o SGPO 85.33 78.95 63.22 74.64
w/o normlization removing 89.61 78.95 77.95 82.69

SFT \ 87.42 78.79 71.91 79.01

more iterations slightly reduces the gain effect due to the relatively low quality of the newly sampled
training data, as shown in Figure 4]
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Figure 3: Analysis of the iteration number M. Figure 4: The change of entropy distributions

Our URST consistently boosts the performance  over various iterations. We present entropy dis-

of the evaluator. tributions of different sampling methods, random
and uncertainty-aware sampling.

Impact of the number K of generated outputs per trajectory. Table [3|reveals how training
with different numbers of K affects evaluator performance. Generally, increasing the sampling
number K consistently enhances the evaluator’s performance across in-domain and out-of-domain
datasets. When increasing K from 4 to 8, F1 score of AITW-OOD-traj has the largest performance
gain of 12.5%), indicating the significant OOD generalization effect from comprehensive group-level
contrastive learning. However, further enlarging K to 16 led to a performance decrease. We speculate
that a large sampling number forces the model to generate overly homogeneous responses, leading to
overfitting. Overall, ' = 8 shows the best F1 scores across all trajectory evaluation datasets.

Table 3: Analysis of the sampling number K. We perform the comparison experiments under the
setting of one iteration.

Sampling Number K | AITW-ID-traj ~AITW-OOD-traj AW-OOD-traj  Overall

4 84.51 75.00 72.19 77.55
8 86.11 87.50 72.41 79.43
16 84.72 87.50 71.76 78.61

Impact of the entropy. Our uncertainty-aware sampling uses sampling-based entropy to measure
the uncertainty of the evaluator, which is inspired by self-consistency methods in LLM [63]]. Besides
the proposed metric, we also devise an alternative metric, prediction-based entropy, which uses
greedy decoding to generate a single judgment of each training input, and computes the probability
entropy of the judgment prediction. In the Table 4] we compare these two metrics with our URST.
Sampling-based entropy consistently outperforms prediction-based entropy across all test sets. Our
sampling-based entropy uses temperature sampling and entropy of multiple outputs to measure the
uncertainty of the evaluator, which could explore various reasoning paths for answer generation and
provide a reliable assessment of the model’s confidence. However, prediction-based entropy uses
greedy decoding to generate a single output for entropy computation, and is prone to suffer from the
over-confidence issue of LLM [49]], thus making less reliable measurement.



Table 4: The comparison of entropy variants in our uncertainty-aware sampling.

URST | AITW-ID-traj | AITW-OOD-traj | AW-OOD-traj | Overall
w/ prediction-based entropy 89.47 73.68 75.68 81.07
w/ sampling-based entropy 90.45 82.05 79.60 84.13

4.4 The enhancement of GUI Agent

By using an evaluator to filter the incorrect trajectories, we can improve the quality and reliability of
the dataset. We choose two GUI navigation datasets to conduct filtered Behavior Cloning training with
our trained evaluator. One is AITW dataset [34], which is constructed by human experts. Another is
automatically collected OS-Genesis dataset [41]. We first filter the original navigation dataset D by
discarding the trajectories identified as failures. This filtering process will produce a new dataset D¢
by using the trained evaluator. The same number of trajectories from the original and filtered datasets
is randomly sampled to train GUI Agents.

Table 5: Comparisons of GUI navigation performances with original and filtered datasets. The base
MLLM is Qwen2.5VL-3B. We choose AITW and OS-Genesis as the representatives of manually
and automatically generated noisy datasets and evaluate them under the settings of standard and high
noise. We report the step success rate, average time cost of filtering samples, and cost per 1M tokens.

. AITW OS-Genesis
Datasets Time (5) | Cost®) | grandard  High | Standard  High
Original D° 0 0 6350 2088 | 4683 4643
D¢ by AutoEval* | 599 | 041 | 6498 3893 | 4726  47.65
D¢ by SFT 2.17 0 6432 3259 | 4718  47.22
D¢ by URST 217 0 65.02 4041 | 47.66 4826

We conducted some comparison experiments by using two settings, Standard-Noise and High-Noise.

» Standard-Noise: Discarding all incorrect trajectories, and using all steps in each trajectory
for training GUI agents.

* High-Noise: Discarding all incorrect trajectories, and using the last 40% of steps in each
trajectory for training GUI agents. The underlying rationale is that the majority of incorrect
trajectories tend to fail in the last few steps. When tasks are highly challenging or involve
unseen environments, the data automatically collected by the agent often contains high
levels of noise, meaning that the entire trajectory is wrong from the very beginning.

Based on the Table[5] we can conclude that 1) our URST can consistently outperform other baselines
(including AutoEval* and SFT) in filtering noisy datasets. 2) When the noisy level rises, all filters
(based on AutoEval*, SFT, and URST) can achieve a greater impact on agent performance, with
URST consistently achieving the best result by a significant margin. 3) URST demonstrates a clear
overall advantage, delivering optimal outcomes in time cost, expenditure, and performance.

In an online environment, the trajectory evaluator can serve  Table 6: Comparison of online naviga-
as a reward signal to enhance an existing GUI agent at tjon performance of M3A [33]] using the
inference time, using the Reflexion technique [38]]. Specif- Reflexion technique [38] with different
ically, a GUI agent first attempts a task, and an external evaluators. We report the success rate.

evaluator is used to judge whether its attempt was success-
ful or not. The agent will be prompted to reflect on the fail-  Methods ‘ AndoridWorld
ure and retry unsuccessful tasks. We conduct experiments

on the most popular online benchmark, AndroidWorld, ﬁgﬁ + AutoEval* ii;
with M3A agents [33]]. The best prompting-based method, M3A + URST 46.6

AutoEval*, and our URST are used as a reward signal for
eliciting reflection. Table [6] shows that URST achieves
superior performance, with a 1.8% improvement over AutoEval*, underscoring its clear advantage in
enhancing GUI agents.




4.5 Further Analysis

The change of entropy distribution over various iterations. In Figure[d] we illustrate the entropy
distributions of different sampling methods across various iterations. The training data sampled
by our URST exhibits significantly higher entropy, indicating its high quality. As the number of
iterations increases, the entropy of the training examples gradually decreases, due to the improved
capability of the evaluator.

Case Study. To further illustrate the reasoning capabilities of the proposed method, we present a
qualitative case study comparing URST with SFT baseline in trajectory evaluation tasks, as shown
in Figure 5] Unlike models that passively imitate annotated thoughts, often leading to shallow
reasoning or hallucination issues, our URST maintains high reasoning accuracy by generating
its own intermediate thoughts and conducting group-level contrastive training. In out-of-domain
scenarios, URST demonstrates greater robustness by accurately leveraging contextual cues and
interface semantics.

Task Goal: Change the sorting order of the notes to
organize them by 'Title'.

Task Goal: In app clock, Task-Oriented: Set an alarm for

Task Goal: Search for "macbook pro 15 inch" on
16:00 that repeats every Sunday, Monday, and Tuesday.

walmart.com, select the first entry, and add it to the cart.

However, ... there is no indication that the
item has been added fo the cart. Therefore, the task has
not been completed as per the user's intent.</think>
<answer>NO</answer> ? *

<think>... added it o the cart as indicated by the
quantity selector showing "1" and the shopping cart icon

.. However, the last state shows the notes
sorted by created date, which means the sorting has not
been changed to 'Title'. ....</think>

<answer>NO</answer> ? *

<think>... last state ... confirms that the notes are
now sorted by 'Title', as indicated by the list of notes

<think>... the last state of the screen shows that
the alarm is set for Sunday, Monday, and Tuesday, which
matches the user's intent. ..</think>
<answer>YES</answer> ? *

<think>... However, the last state of the screen
shows that only Sunday is selected as a repeat day, not

arranged alphabetically by their titles. ....</think>

with a number 3 next to it.</think> PS
<answer>YES</answer>

Monday and Tuesday. ...</think> P
<answer>YES</answer>

<answer>NO</answer>

Figure 5: Illustration of some trajectory evaluation tasks with the model-generated reasoning. The left
one is an in-domain task, and the others are out-of-domain tasks. URST produces correct judgments
through precise reasoning, whereas SFT fails.

5 Conclusion

In this work, we propose an uncertainty-aware reinforced self-training (URST) framework to train
lightweight MLLMs as efficient GUI trajectory evaluators. URST integrates uncertainty-aware
sampling and simplified group policy optimization (SGPO) to effectively identify informative samples
and enhance reasoning capabilities. The approach achieves superior performance on both in-domain
and out-of-domain evaluation datasets and enhances downstream GUI agent performance by filtering
noisy training data. This work offers a scalable and promising approach for building robust GUI
trajectory evaluators, paving the way for more adaptive and capable GUI navigation agents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The formulas are numbered and cross-referenced correctly in this paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully and clearly describe the training framework in the main body, and
provide the training details and model configurations in the Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use publicly available datasets for training and a combination of publicly
available and self-collected datasets for evaluation. We add the code and data in supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed training and test configuration details in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to the high computational cost of large models, we perform only three
independent runs with different random seeds for SFT and URST. The comparison is
presented in Table [I0]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This information is provided in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeulPS code of Etics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The societal impacts are discussed in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The capability of the model that we will be releasing is limited to simple tasks,
and therefore does not have a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited the assets that we are using.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code and relevant assets including self-collected data are provided in the
supplemental material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or human subjects. Annotations
of trajectories in AW-OOD-traj are carried out by authors alone.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not involve crowdsourcing or human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We describe the methods built on LLMs in the main paper, such as sections
method, experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Trajectory Evaluation Datasets

The AITW-ID-traj and AITW-OOD-traj evaluation datasets are directly adopted from the setup intro-
duced in AutoEval [27]. Both datasets are based on the Android-in-the-Wild (AITW) [34]] benchmark,
which consists of human-executed trajectories collected in Android emulator environments.

The AITW-ID-traj test set includes 120 trajectories randomly sampled from the General, WebShop-
ping, and GoogleApps subsets of the AITW training set (40 episodes from each). These trajectories
were originally collected via human demonstrations on an Android emulator, where annotators manu-
ally executed task flows. However, the data contains significant noise. Common failure cases include
early termination, completing the wrong task, or making mistakes in task parameters. As a result, the
correctness of these episodes is not guaranteed. After manual verification, only approximately 64.2%
of the selected episodes in AITW-ID-traj were found to be successful.

The AITW-OOD-traj test set shares the same task goals as AITW-ID-traj but differs in the source of
trajectories. In this case, the trajectories were generated by CogAgent [[14], an autonomous agent
interacting with an Android emulator. The emulator was configured using Android Studio’s built-in
environment to simulate a Pixel 4 device with API level 33. Manual annotation revealed that only
14.2% of the generated trajectories successfully completed the assigned tasks.

Following OS-Genesis [41]], we adopt a fully automated data collection process to construct the
AW-OO0D-traj test set. This set is built using automatically generated task goals and agent-executed
trajectories within the AndroidWorld [33]] environment. We employ a reverse task synthesis approach
to create a diverse range of high-level task goals that align with dynamic environments. The agent
from Agent Q [30] is then used to interact with the environment based on these task goals, generating
approximately 500 new trajectories. We filter out low-quality trajectories that are too short or based
on invalid task goals. After filtering, each remaining trajectory is manually annotated using a major
voting scheme, resulting in the final AW-OOD-traj test set containing 223 trajectories. 43.0% of
trajectories in this test set are annotated as successful.

Table 7: The statistics of three trajectory evaluation datasets.

Datasets \ #Success #Total Success Rate
AITW-ID-traj 77 120 64.17%
AITW-OOD-traj 17 120 14.17%
AW-00D-traj 96 223 43.05%

B Experimental Details

B.1 Implementation Details

All experiments were conducted on 4 NVIDIA A100 40GB GPUs. The key hyperparameters used in
our experiments are summarized in Table[§] The model is trained for 2 epochs using 300 samples
annotated with Qwen-VL-Max during the initialization SFT stage. For SRPO training, each iteration
involves 4 epochs of training on 400 samples sampled via URST. Consequently, after 3 iterations,
the total number of training samples amounts to 1500. Both Initialization and subsequent SGPO
training are conducted with full-parameter fine-tuning. In each Iteration, the learning rate is warmed
up linearly from O to le-6 across 5 global steps and then reduced to a minimum of 0 using cosine
decay. We adopt a 3 value of 0.001, which balances the reward signal and divergence constraint in
the policy update. To manage training efficiency and computational cost, the maximum pixel limit for
each visual input was set at 802,816. If an input image exceeds this limit, it is cropped and resized
while preserving the original aspect ratio. To further enhance memory efficiency and scalability,
all experiments are conducted using DeepSpeed’s Zero-3 optimization stage, and flash attention is
employed to accelerate training. During both the uncertainty-aware sampling and SGPO training, we
apply the temperature set to 1.0, top-k sampling with k& = 50, and nucleus (top-p) sampling with p =
0.9 to ensure the diversity of the outputs.

An example of the prompt format used during training and inference is illustrated in Figure [0}
Specifically, we incorporate the last two states of the trajectory into the input of the MLLM. This
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Table 8: Hyperparameter settings used in the experiments.

Hyperparameter Value
SFT training epoch at initialization stage 2
SRPO training epoch 4
sample size per iteration 400
B 0.001
learning rate le-6
warmup ratio 0.05
max pixels 802,816
per device train batch size 2
DeepSpeed optimization stage Zero-3
temperature 1
top-k 50
top-p 0.9

design enriches the prompt with critical state transition information while avoiding excessive context
length and token overhead. Furthermore, the action history is refined to explicitly include both click
coordinates and scroll directions, offering a more fine-grained representation of user interactions.
These enhancements provide the model with richer transition cues, thereby improving its ability to
make informed and accurate predictions.

During the data filtering process for Behavior Cloning training, we leverage our trained evaluator to
assess and filter the original navigation dataset D°, resulting in a cleaned dataset D¢. The retention
rate of the trajectories is reported in Table[9] In the subsequent training of the GUI navigation agent,
we employ SFT with Qwen2.5-VL-3B for 2 epochs. The prompt templates used during training and
inference for the AITW and OS-Genesis datasets are illustrated in Figure [I5]and Figure[I6]

Table 9: The retention rate of trajectories in two GUI navigation datasets after being filtered by our
trained evaluator.

AITW
General WebShop GoogleApps  Total

81.25%  40.20% 81.85% 67.77% | 45.14%

‘ OS-Genesis

B.2 The compared methods

To comprehensively assess the advantages of our method, we compare it with prompting-based
works, AgentTrek [50], WebVoyager [13]] , Webjudge [51]], and AutoEval [27]], following the settings
in the original papers. The prompt templates used for these prompting-based evaluation methods
can be found in Figure [T0] [T} [I2] [I3] Following the fine-tuning methods, we also implement
an advanced version of AutoEval by providing the last two screenshots, termed AutoEval*. The
prompt template used for AutoEval* is illustrated in Figure[T4] Meanwhile, we also implement some
representative self-training methods as fine-tuning-based baselines, which are originally designed for
LLM post-training instead of trajectory evaluator training. Here, we briefly introduce the compared
self-training methods.

* Self-Taught Reasoner (STaR) [56] employed greedy decoding instead of temperature
sampling for data generation, which is restricted to one model-generated response per input
during data collection. Here, we adopt temperature sampling to generate responses and
choose one of the correct responses as training data.

* Reinforced Self-Training with Expection-Maximization (ReSTEM) [39] is a simplified
and advanced version of ReST [12]], which decouples data collection and policy optimization
in the reinforcement learning pipeline. ReST iteratively conducts self-generated data collec-
tion and reward-weighted fine-tuning to achieve self-improvement of the policy. However,
it has one main restriction: requiring human-generated outputs, which are unavailable in
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our experiments. The main differences of ReST# from ReST are the exclusion of human-
generated outputs and the iteratively fine-tuning on the base model instead of the model
from the previous iteration. Here, we set the cut-off threshold for the maximum number of
responses per input to 4.

To ensure a fair comparison, we implement all the above methods on a dataset matching the size of

the final dataset (1500 training inputs) in our URST method, which includes data from the initial
phase and all iterative sampling steps.

C More Analyses
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Figure 6: Visualization of the training process over various iterations. We present the changes in key
training metrics, including total reward, reward standard deviation, response length, and gradient
norm with respect to training steps.

C.1 The training dynamics of URST

To provide more details, we report key metrics from our training process across multiple iterations,
as shown in Figure [6]

Across all three training iterations (Iteration 0, 1, and 2), total reward shows a gradual upward
trend as training progresses. The improvement from Iteration O to Iteration 1 is particularly notable,
while subsequent iterations display more modest and convergent changes. This pattern suggests that
the model adapts and learns more effectively during the earlier stages of training, and as training
progresses, the rate of improvement stabilizes.

Both the reward standard deviation and gradient norm exhibit a clear downward trend over training
steps and across iterations. This suggests that the model becomes more stable and less volatile as
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training proceeds. As the training continues, these metrics converge, reflecting increased confidence
and consistency in the model’s behavior.

Response length remains relatively stable across all iterations, without any significant increasing or
decreasing trend. This is expected, as our setup employs a cold-start initialization. Consequently, the
reasoning patterns, especially regarding output length and format, exhibit relatively limited variation
during the training process.

C.2 Statistical significance and stability

In the Table [T0} we present the statistical results of SFT and URST with three different random seeds.
URST significantly outperforms SFT across all three test sets. These improvements are statistically
meaningful given the non-overlapping confidence intervals, particularly for the F1 score, where
URST shows a substantial gain (e.g., +4.82 on AITW-OOD-traj). Moreover, the smaller standard
deviations in most metrics indicate that URST produces more stable results across different runs.
Overall, these findings demonstrate that URST not only improves performance but also enhances
result consistency.

Table 10: The statistical results of SFT and URST with three different random seeds

SFT URST
Acc. F1 Acc. F1

AITW-ID-traj 83.61£0.79 87.154+0.50 | 87.78+£0.39  90.64+0.27
AITW-OOD-traj | 93.61£1.42 78.71£3.00 | 94.72+£0.78  83.53+2.09
AW-OOD-traj 77.13£1.17  71.30+1.17 | 83.40+1.27 82.14+0.81
Overall 83.08£0.71 78.624+0.71 | 87.47£0.81 85.59+1.05

Methods

C.3 The evaluation of evaluator

As shown in Figure [3] we present the overall performance across multiple iterations. It can be
observed that all iterations consistently enhance the evaluator’s performance. However, performing
additional iterations yields diminishing gains due to the relatively low quality of the newly sampled
training data. In the Table [T} we also provide the detailed results of multiple iterations. The
performance of URST on AITW-ID-traj and AW-OOD-traj gradually increases with iterative training.
However, its performance on AITW-OOD-traj peaks at iteration 0 and exhibits fluctuations (primarily
in the F1 score) in subsequent iterations. We attribute this behavior to the severe class imbalance in
AITW-OOD-traj (success: 14%, fail: 86%), as shown in Table[7} The F1 score is highly sensitive to
even small performance variations in the minority class.

Table 11: The detailed results of URST across different iterations.

AITW-ID-traj AITW-OOD-traj AW-OOD-traj Overall
Acc. Fl | Acc. F1 | Acc. F1 | Acc. F1

Initial | 80.00 82.85 | 95.00 81.25 | 79.82 73.05 | 83.80 77.88
Iter. 0 | 83.33 86.11 | 96.67  87.50 | 78.48 72.41 | 84.45 79.43
Iter. 1 | 86.67 89.47 | 93.33 7895 | 81.61 7831 | 8595 82.85
Iter. 2 | 87.50 90.45 | 94.16  82.05 | 81.62 79.60 | 86.39 84.13

Phase

C.4 Generalization beyond mobile GUI tasks

Recently proposed AgentRewardBench [25] is the first benchmark to assess the effectiveness of
MLLM-based evaluators for evaluating web agents. It contains 1302 web trajectories across 5
benchmarks and 4 agents. Due to the lack of training data, we split AgentRewardBench into two sets,
1047 trajectories for the training set and 255 for the test set, and ensure a similar class distribution, as
shown in Table

We evaluate the prompting-based (WebJudge, AutoEval*) and fine-tuning-based (SFT, URST)
methods on this web benchmark, and report the results in the Table URST is trained under the
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Table 12: The statistics of trajectory evalua- Table 13: Comparison of our URST with

tion datasets constructed from AgentReward- prompting-based and fine-tuned evaluators on
Bench [25]]. AgentRewardBench [25].
Datasets | #Success #Total ~ Success Rate M AgentRewardBench
ethods Ace Fl
Training 1047 293 27.99% .
Test 255 63 24.71% WebJudge | 83.07 68.15

AutoEval* | 85.10 74.67
SFT 84.31 74.36
URST 87.06 77.85

setting of initial-300 samples, iter. 0-200 samples, iter. 1-200samples, and SFT is trained with the
same total number of samples. Our URST achieves the highest performance on AgentRewardBench,
reaching 87.06% accuracy and 77.85% F1 score, substantially outperforming the other baselines.
These comparisons underscore the effectiveness and generalization of URST.

C.5 Case study

Here we present more qualitative cases comparing URST with the SFT baseline in trajectory evalua-
tion tasks, as shown in Figure

* Example 1 (left). The SFT model incorrectly concludes that the task is completed, reasoning
that the appearance of a protection plan pop-up “typically appears after adding an item
to the cart.” However, this might be a case of over-reliance on common patterns without
a comprehensive check. In contrast, URST correctly identifies that the product has not
actually been added to the cart, noting that the last screen only shows the protection plan
dialog “instead of the actual product being added to the cart.” This shows URST’s ability to
discern subtle differences in interface feedback.

» Example 2 (middle). The SFT model falsely claims that “the option to display folders
first is not selected,” resulting in a wrong NO judgment. While URST provides a more
accurate analysis. It grounds its reasoning directly in the Ul evidence, avoiding unsupported
assumptions. This case highlights URST’s advantage in mitigating hallucinations.

* Example 2 (right). The SFT model incorrectly concludes that the task is incomplete due to
the “lack of explicit confirmation” in the last two screen states. This reflects a weakness
in tracking fine-grained transitions and recognizing subtle but semantically meaningful
changes in the GUI elements. In contrast, URST successfully identifies this transition by
integrating an action history that includes the precise click location, demonstrating a strong
sensitivity to GUI elements and their associated semantic cues.

To further analyze the limitations of our proposed method, we present several representative failure
cases observed during trajectory evaluation, as illustrated in Figure 8]

* Example 1 (left): Failure Due to Insufficient Observation. The evaluator is unable
to determine whether the correct item has been deleted, as the last two visual states and
action history do not provide sufficient evidence to verify the deletion of the specific entry
"New Jacket". While a deletion action is present, there is no direct indication that it
affected the correct item in the last two states. This case exposes the trade-off between
limited observation and reasoning accuracy: relying on only the last two states can reduce
computational overhead, but sometimes omits essential information for task validation.
Finding a balance between context efficiency and task-specific observability remains an
open challenge.

* Example 2 (middle): Failure Due to GUI elements Misinterpretation. Although the
evaluator correctly identifies the selection of the paint bucket tool and color, it falsely
concludes the task is complete. The confusion arises from an orange cursor widget visible
at the bottom of the screen, which the model incorrectly interprets as the filled canvas area.
This case highlights a common failure mode where the model lacks domain-specific visual
understanding, confusing GUI indicators (like cursors or tool previews) with actual content
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Task Goal: Clear the shopping cart on newegg.com. Task Goal: Use Markor to sort the files in the
Search for "razer naga" on newegg.com, select the first '/storage/emulated/0/Documents’ by name and enable the
entry, and add it to the cart. options to display folders first and include dotfiles.

Task Goal: Mark the 'Avocado Toast with Egg' recipe as
a favorite in the Broccoli app.

osman

<think>...The last screen shows a pop-up for adding

protection plans, which <think>... However, <thinko... However, there is

. , which means it has
] dd‘:s(s/:ag:::s fhaighecasnibes S not been enabled yet.</think> - or any indication ...</think> S
uccessTully added ...</Thi g <answer>NO</answer> . <answer>NO</answer> -
<answer>YES</answer> * * *
<think>... However, the last screen shows a <think>... confirms that the files are sorted by . e q

protection plan of fer instead of the actual product being name and that the options for displaying folders first typicall i‘::iT:;;‘s.:'\‘:r‘T(?:a'a‘ h::rz zbsw:sf;cs:i; it
added to the cart. Therefore, the task has not been and including dotfiles are enabled. Therefore, ... </rhink>y 9 P o
completed as intended. </think> () successfully.</think> (] <answersYES</answers (]
<answer>NO</answer> <answer>YES</answer>

Figure 7: Illustration of some trajectory evaluation tasks with the model-generated reasoning. URST
produces correct judgments through precise reasoning, whereas SFT fails.

(like painted canvas). This failure case underscores the importance of equipping the model
with more comprehensive domain-specific knowledge about apps and a better understanding
of GUI elements.

« Example 3 (right): Failure Due to Instruction Misunderstanding. While the evaluator
correctly identifies that the default search engine has been changed to "Yahoo!", it overlooks
the second part of the instruction, “and then return to the main settings menu.” The final
screen still shows the search engine selection page, indicating that the task is only partially
complete. This failure case suggests that the evaluator sometimes lacks robust multi-step
instruction comprehension. It underscores the need for improved task decomposition and
intent modeling in trajectory evaluation settings.

Task Goal: In app chrome, Change the default search
engine in Chrome to Yahoo! and then return to the main
settings menu.

Task Goal: In Pro Expense, delete the expense entry Task Goal: In Simple Draw Pro, use the paint bucket tool
titled ‘New Jacket' with an amount of 51.5 USD. to fill an area of the canvas with the color orange.

«

’ _— <thinko... The action history shows ... including <thinko... The action history shows ... likely
H th)"‘k)l"' WDEE hls;or: s Th;“ opening the app and selecting tools. The last state of the correspond to opening Chrome and accessing its
sh o;v;ive:‘;lz :‘ Caes;ft:: :.Tlt:; ; X ctk ;,s:;iir:l s:iselr:‘or screen shows that settings. The last state of the screen confirms that the
de|e1edYTherzfare </thinks 9 search engine has been successfully changed to Yahoo!
<unswer;NO</unswe;; P </think> s </think> P
- x <answer>NO</answer> -~ % <answer>NO</answer> - %

Figure 8: Illustration of failure cases observed in trajectory evaluation.

D Limitations and Potential Social Impacts
There are multiple potential limitations in this work. First, we only fine-tuned one family of models,

Qwen2-VL / Qwen2.5-VL; however, while the absolute performance values would change, we expect
our relative findings to be consistent across model families. Additionally, while our results suggest
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that CoT reasoning is crucial to the performance improvement of evaluator training with RL, we have
not extensively explored the effects of different prompting techniques in this work, which will be an
interesting future direction. Further, due to computational limitations, our evaluator is trained only
with tasks from AITW instead of all possible tasks on the mobile or computer device. Our design
of the URST algorithm aims for maximal implementation efficiency and effectiveness, so we hope
that our approach to serve as a base algorithm for future research to build on, including algorithmic
research as well as expanding the space of tasks.

The URST framework enhances data quality through rigorous trajectory filtering, leading to agents
trained on cleaner, higher-quality examples, thus minimizing erroneous or harmful behaviors during
deployment. The framework relies on lightweight MLLMs and avoids dependence on proprietary
models, potentially democratizing access to powerful trajectory evaluation tools for institutions
or developers with limited resources. However, we also acknowledge that this work has some
potential negative impacts. If the initial training data contains biases, the self-improvement loop
could reinforce these issues, potentially resulting in unfair or incorrect judgments, especially in edge
cases or unfamiliar interface designs. Advanced GUI agents trained with URST could potentially be
used to manipulate user interfaces in unethical ways if deployed without proper safeguards.

System Prompt

You are an expert in evaluating the performance of an android navigation agent. The agent is designed to help a human user
navigate the device to complete a task. Given the user's intent, the agent's action history, and the last two states of the
screen, your goal is to decide whether the agent has successfully completed the task or not.

*Output Format*

The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning
process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think>reasoning process
here</think><answer>answer here YES or NO</answer>

User Prompt
User Intent: Access the details menu in the Camera app and explore the available settings for adjusting photo size.

Action History:

1: Open app: 'Camera’

: Tap point([y, x]): [0.8025, ©.9116]
: scroll down

: scroll up

: Tap point([y, x]): [0.0796, ©.1148]
: Tap point([y, x]): [0.8029, ©.9120]
: Tap point([y, x]): [@.1440, ©.2093]
: Status: 'successful’

ONOU A WN

The second last state and the last state of the screen are shown in the images.

Figure 9: Prompt example for fine-tuning-based methods.
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System Prompt

You are an expert in evaluating the performance of an android navigation agent. The agent is designed to help a human user
navigate the device to complete a task. Given the user's task goal, the agent's trajectory, your goal is to decide whether the
agent's execution is successful or not.

*Evaluation Criteria*
Whether the agent's trajectory is effective and corresponding to the goal

*Instructions* 1. Review the agent's actions step by step.

2. if the agent is stuck in the very first login stage, which means it fails to log into target website at the beginning, that's
a failure.

3. Determine if the agent has achieved the task goal based on the trajectory. A task can be considered successful if most
trajectory is effective.

4. the agent sometimes can't stop after finishing a task and continue doing repeated actions. these actions may be some failed
attempt after a series of correct actions. the task should be regarded as successful if the correct actions are effective and
almost reach the goal.

5. if the agent is stuck in the loop at the early stage of the task, which means they don't even get close to the goal before
they get stuck in the loop, that's a failure. for example, the agent begin to get stuck before third step.

6. when the task is to change the google account password, it can't be regarded as successful when agent finish at trying to
click "manage your account".

7. if there are over 8 correct action in the trajectory, it can be regard as a successful agent.

8. final saving action is not a must. the task is successful if the agent does most things right and just forget to save the
change at last.

9. if the original task has 2 subtasks, the agent only complete one of them, that's still a success. e.g. the task is to update
name and birthday, but agent only update name, that's fine.

10. if the task is to post a review, the agent can be considered successful when it finish writing the review and reach the step
to post it, don't have to click the post button.

11. Since we don't have a printer, some printing related task can be considered successful if the agent reach the step to click
print button.

12. if the task is finished at the initial state and the agent do nothing because of it, it should also be regarded as successful.

*IMPORTANT*

your response should be contain:

Thoughts: <your thoughts and reasoning process>
Status: "success" or "failure"

User Prompt
The goal of the task: {task_goal}

Trajectory: {history_actions}

The last state of the screen is shown in the image.

Figure 10: Prompt template for AgentTrek.

System Prompt
As an evaluator, you will be presented with three primary components to assist you in your role:

1. Task Instruction: This is a clear and specific directive provided in natural language, detailing the online activity to be
carried out.

2. Result Screenshots: This is a visual representation of the screen showing the result or intermediate state of performing a
task. It serves as visual proof of the actions taken in response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the task. It serves as textual result in response
to the instruction.

-- You DO NOT NEED to interact with screens or perform actions.

-- You SHOULD NOT make assumptions based on information not presented in the screenshot when comparing it to the instructions.

-- Your primary responsibility is to conduct a thorough assessment of the task instruction against the outcome depicted in the
screenshot and in the response, evaluating whether the actions taken align with the given instructions.

-- NOTE that the instruction may involve more than one task, for example, locating the garage and summarizing the review. Failing
to complete either task, such as not providing a summary, should be considered unsuccessful.

-- NOTE that the screenshot is authentic, but the response provided by LLM is generated at the end of state, and there may be
discrepancies between the text and the screenshots.

-- Note the difference: 1) Result response may contradict the screenshot, then the content of the screenshot prevails, 2) The
content in the Result response is not mentioned on the screenshot, choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a definitive verdict on whether the task has
been successfully accomplished, either as 'SUCCESS' or 'FAILURE'.

User Prompt
TASK: {task_goal}

Result Response: {last_action}

{num_of_all_states} screenshots at the end:

Figure 11: Prompt template for WebVoyager.
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Key Point Identification Prompt
You are an expert tasked with analyzing a given task to identify the key points explicitly stated in the task description.

**0Objective**: Carefully analyze the task description and extract the critical elements explicitly mentioned in the task for
achieving its goal.

**Instructions**:
1. Read the task description carefully.
2. Identify and extract **key points** directly stated in the task description.
- A **key point** is a critical element, condition, or step explicitly mentioned in the task description.
- Do not infer or add any unstated elements.
- Words such as "best," "highest," "cheapest," "latest,
"newest" must go through the sort
function(e.g., the key point should be "Filter by highest").

most recent,” "lowest," "closest," "highest-rated,” "largest," and

**Respond with**:
- **Key Points**: A numbered list of the explicit key points for completing this task, one per line, without explanations or
additional details.

Task: {task_goal}

Key Screenshot Identification Prompt
You are an expert evaluator tasked with determining whether an image contains information about the necessary steps to complete
a task.

**Objective**: Analyze the provided image and decide if it shows essential steps or evidence required for completing the task.
Use your reasoning to explain your decision before assigning a score.

**Instructions**:
1. Provide a detailed description of the image, including its contents, visible elements, text (if any), and any notable features.

2. Carefully examine the image and evaluate whether it contains necessary steps or evidence crucial to task completion:

- Identify key points that could be relevant to task completion, such as actions, progress indicators, tool usage, applied
filters, or step-by-step instructions.

- Does the image show actions, progress indicators, or critical information directly related to completing the task?

- Is this information indispensable for understanding or ensuring task success?

- If the image contains partial but relevant information, consider its usefulness rather than dismissing it outright.

3. Provide your response in the following format:
- **Reasoning**: Explain your thought process and observations. Mention specific elements in the image that indicate necessary
steps, evidence, or lack thereof.
- **Score**: Assign a score based on the reasoning, using the following scale:
- **1**: The image does not contain any necessary steps or relevant information.
- **2%*: The image contains minimal or ambiguous information, unlikely to be essential.
- **¥3%*: The image includes some relevant steps or hints but lacks clarity or completeness.
- **¥4%*: The image contains important steps or evidence that are highly relevant but not fully comprehensive.
- **¥5**: The image clearly displays necessary steps or evidence crucial for completing the task.

Respond with:

1. **Reasoning**: [Your explanation]
2. **Score**: [1-5]

Task**: {task_goal}

**Key Points for Task Completion**: {key_points}

The snapshot of the screen is shown in the image.

Outcome Judgement Prompt

You are an expert in evaluating the performance of an android navigation agent. The agent is designed to help a human user
navigate the device to complete a task. Given the user's task, the agent's action history, key points for task completion, some
potentially important states in the agent's trajectory and their reasons, your goal is to determine whether the agent has
completed the task and achieved all requirements.

Your response must strictly follow the following evaluation criteria!

*Important Evaluation Criteria*:

1: The filtered results must be displayed correctly. If filters were not properly applied (i.e., missing selection, missing
confirmation, or no visible effect in results), the task is not considered successful.

2: You must carefully check whether these snapshots and action history meet these key points. Ensure that specific filter
conditions, such as "best," "highest," "cheapest,"” "latest," "most recent,"” "lowest," "closest," "highest-rated," "largest," and
"newest" are correctly applied using the filter function(e.g., sort function).

3: Certain key points or requirements should be applied by the filter. Otherwise, a search with all requirements as input will be
deemed a failure since it cannot guarantee that all results meet the requirements!

4: If the task requires filtering by a specific range of money, years, or the number of beds and bathrooms, the applied filter
must exactly match the given requirement. Any deviation results in failure. To ensure the task is successful, the applied filter
must precisely match the specified range without being too broad or too narrow.

Examples of Failure Cases:

- If the requirement is less than $50, but the applied filter is less than $25, it is a failure.

- If the requirement is $1500-$2500, but the applied filter is $2000-$2500, it is a failure.

- If the requirement is $25-$200, but the applied filter is $@-$200, it is a failure.

- If the required years are 2004-2012, but the filter applied is 2001-2012, it is a failure.

- If the required years are before 2015, but the applied filter is 2000-2014, it is a failure.

- If the task requires exactly 2 beds, but the filter applied is 2+ beds, it is a failure.

5: Some tasks require a submission action or a display of results to be considered successful.

6: If the retrieved information is invalid or empty(e.g., No match was found), but the agent has correctly performed the required
action, it should still be considered successful.

7: If the current page already displays all available items, then applying a filter is not necessary. As long as the agent selects
items that meet the requirements (e.g., the cheapest or lowest price), the task is still considered successful.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process based on double-checking each key points and the evaluation criteria>
Status: "success" or "failure"

User Task: {task_goal}
Key Points: {key_points}
Action History: {history_actions}

The potentially important snapshots of the screen in the agent's trajectory and their reasons: {thoughts}

Figure 12: Prompt template for WebJudge.
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System Prompt

You are an expert in evaluating the performance of an android navigation agent. The agent is designed to help a human user
navigate the device to complete a task. Given the user's intent, and the final state of the screen, your goal is to decide whether
the agent has successfully completed the task or not.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>"
Status: "success" or "failure"

User Prompt
User Intent: {task_goal}

Action History: {history_actions}

The last snapshot of the screen is shown in the image.

Figure 13: Prompt template for AutoEval.

System Prompt

You are an expert in evaluating the performance of an android navigation agent. The agent is designed to help a human user
navigate the device to complete a task. Given the user's intent, the agent's action history, and the last two states of the
screen, your goal is to decide whether the agent has successfully completed the task or not.

*Qutput Format*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: <YES or NO>

User Prompt
User Intent: {task_goal}

Action History: {history_actions}

The second last state and the last state of the screen are shown in the images.

Figure 14: Prompt template for AutoEval*, which is constructed by enhancing AutoEval with the last
two screenshots.

System Prompt

You are a smart and helpful visual assistant that is well trained to manipulate mobile phones.
Your task is to navigate on the current screen to complete the user request.

- You are provided with a screenshot of the current mobile phone.

- You are provided with history actions trying to accomplish the user request.

- You are required to decide on the next single-step valid action to conduct on the current screen.

## Valid action types on the screen
- DUAL_POINT

- TYPE

PRESS_BACK

- PRESS_HOME

- PRESS_ENTER

STATUS_TASK_COMPLETE

## Output Format
Your response should be strictly structured in JSON format, consisting of the following keys and corresponding content:

"action_type":
"touch_point":

"<string, your action decision action type>",
"<list, coordinates for the touch point on the screen, [y, x], when action_type is not DUAL_POINT, it should be

[-1, -1]>",
"lift_point": "<list, coordinates for the 1lift point on the screen, [y, x], when action_type is not DUAL_POINT, it should be
[-1, -1]>",

"type_text": "<string, the text to type on the screen, only for TYPE action type, otherwise it should be an empty string>"
## Output Examplel
{"action_type": "DUAL_POINT", "touch_point": [0.8949, ©.2941], "lift_point": [0.8949, ©.2941], "type_text": ""}

## Output Example2
{"action_type": "DUAL_POINT", “"touch_point": [0.8, 0.5], "lift_point": [0.2, @.5], "type_text": ""}

## Output Example3
{"action_type": "TYPE", "touch_point": [-1.8, -1.0], "lift_point": [-1.0, -1.0], "type_text": "LiveIn"}

## Output Example4d
{"action_type": "PRESS_BACK", "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "type_text": ""}

## Output Example5
{"action_type": "PRESS_HOME", "touch_point": [-1.@, -1.0], "lift_point": [-1.0, -1.0], "type_text": ""}

## Output Example6
{"action_type": "PRESS_ENTER", "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "type_text": ""}

## Output Example7
{"action_type": "STATUS_TASK_COMPLETE", "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "type_text": ""}

User Prompt

<image>

## Actions History

{history actions}

## Generate next actions to do this task.

Figure 15: Prompt template for GUI navigation agent training with AITW dataset.
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User Prompt
<image>

You are a GUI task expert, I will provide you with a high-level instruction, an action history, a screenshot with its
corresponding accessibility tree.

High-level instruction: {high_level_instruction}

Action history: {action_history}

Accessibility tree: {accessibility_tree}

Please generate the low-level thought and action for the next step.

Figure 16: Prompt template for GUI navigation agent training with OS-Genesis dataset.
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