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Causal-driven Large Language Models with Faithful Reasoning
for KnowledgeQuestion Answering

Anonymous Authors

ABSTRACT
In Large Language Models (LLMs), text generation that involves
knowledge representation is often fraught with the risk of “halluci-
nations”, where models confidently produce erroneous or fabricated
content. These inaccuracies often stem from intrinsic biases in the
pre-training stage or from the incorporation of human preference
biases during the fine-tuning process. To mitigate these issues,
we take inspiration from Goldman’s causal theory of knowledge,
which asserts that knowledge is not merely about having a true
belief but also involves a causal connection between the belief and
the truth of the proposition. We instantiate this theory within the
context of Knowledge Question Answering (KQA) by constructing
a causal graph that delineates the pathways between the candidate
knowledge and belief. Through the application of the do-calculus
rules from structural causal models, we devise an unbiased estima-
tion framework based on this causal graph, thereby establishing
a methodology for knowledge modeling grounded in causal infer-
ence. The resulting CORE framework (short for “Causal knOwledge
REasoning”) is comprised of four essential components: question
answering, causal reasoning, belief scoring, and refinement. To-
gether, they synergistically improve the KQA system by fostering
faithful reasoning and introspection. Extensive experiments are con-
ducted on ScienceQA and HotpotQA datasets, which demonstrate
the effectiveness and rationality of the CORE framework.

CCS CONCEPTS
• Computing methodologies → Computer vision representa-
tions; Natural language generation; Reasoning about belief
and knowledge.

KEYWORDS
Large Language Models, Causal Theory of Knowledge, Knowledge
Question Answering

1 INTRODUCTION
With the development of instruction tuning techniques, large lan-
guage models (LLMs) have demonstrated impressive performance
across tasks in natural language understanding and generation.
These models have shown great potential in human-like capabilities
of common sense, logical reasoning and tool manipulation, which
can understand and harness knowledge to improve problem-solving

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Language
Question: Think about the magnetic force between the magnets in each 
pair. Which of the following statements is true?
Context: The images below show two pairs of magnets. The magnets 
in different pairs do not affect each other. All the magnets shown are 
made of the same material.
Options: 

Vision

(A) The magnetic force is stronger in Pair 1.

(B) The magnetic force is stronger in Pair 2. 

(C) The strength of the magnetic force is the same in both pairs.

Input

Answer: The answer is A. BECAUSE: Distance affects the strength of 
the magnetic force. When magnets are closer together, the magnetic 
force between them is stronger. The magnets in Pair 1 are closer 
together than the magnets in Pair 2. So, the magnetic force is stronger in 
Pair 1 than in Pair 2.

Pair 1 Pair 2
SN NS

2 in 3 in
NS SN

Response

Figure 1: A typical example of a KQA task, which requires
in-depth knowledge of multimodal information to answer
the question.

and decision-making tasks. However, many studies [3, 5, 8, 11, 18]
have found that LLMs may produce some hallucinations that are
neither accurate nor factual. Hallucinations in LLMs occur when
they produce incorrect or misleading information, often linked to
shortcomings in two types of knowledge: intrinsic and extrinsic.
Intrinsic knowledge refers to common sense, and logical reason-
ing abilities, which LLMs may sometimes fail to utilize, leading
to nonsensical or factually wrong outputs. Extrinsic knowledge is
about grasping new, contextual, or specific tool-based information,
which LLMs may not always interpret accurately. Influenced by
biases in their training data, both knowledge types can lead to LLMs
delivering coherent, yet factually incorrect or misleading responses.

To address these issues, there are mainly two types of research
works proposed to reinforce LLMs, i.e. reasoning-based method
and confidence-based method. Reasoning-based methods [6, 12, 28,
32, 40, 45] are proposed to enhance the capability of LLM not by
retraining models but through reasoning with knowledge of LLMs,
allowing LLMs to improve decision-making on a continual thought
process. Confidence-based methods [14, 17, 21, 23, 31, 34, 35] are de-
signed to explore various reasoning paths and employ a verifier that
checks the correctness or self-consistency of each reasoning step
to leading a unique answer throughout the multi-path reasoning.
While both types of methods have been found to be effective, there
is a notable absence of a rational explanation regarding the neces-
sity of incorporating all these designs. In addition, whether these
two approaches are intrinsically related still needs to be further
explored.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In fact, there is a specific philosophical definition of “knowledge”,
which has been discussed comprehensively in Goldman’s causal
theory of knowledge [10]. The causal theory posits that true knowl-
edge is derived from a causal connection between a proposition
and a belief. In the LLM context, the “Proposition” represents the
input and output information from LLMs. The “Causal Connec-
tion” is the critical step, wherein the LLM must establish a logical
and factual link between the proposition and the potential belief.
This involves not only recalling information from its vast train-
ing dataset but also applying logical reasoning to ensure that the
connections made are rational and grounded in causality. Finally,
the “Belief” is the confidence to the proposition of whether it is a
faithful knowledge, which should be a true reflection of the causal
and logical processing undertaken in the previous step.

Drawing from Goldman’s causal theory of knowledge, we pro-
pose a CORE framework (short for “Causal knOwledge REasoning”)
to process Knowledge Question Answering (KQA) tasks, in which a
typical KQA process is as illustrated in Figure 1. The CORE frame-
work suggests a reasoning structure where each decision or output
follows a clear path: Proposition→ Causal Connection→ Belief.
To this end, we translate the reasoning structure into a practical
application by creating a causal graph that outlines the connections
among knowledge theory and training biases of LLMs. Meanwhile,
we apply do-calculus rules from structural causal models [27] to de-
rive an unbiased estimation framework for this causal graph. Based
on the estimation formulation, the CORE framework consists of
four key components, each playing a crucial role in enhancing
KQA systems with robust and reliable reasoning capabilities: 1)
Question Answering. This module aims to provide a preliminary
answer hypotheses to a KQA question as illustrated in Figure 1.
2) Causal Reasoning. This component focuses on establishing a
logical and factual link between a given question-answering re-
sponse (the Proposition) and the potential confidence (the Belief).
3) Belief Scoring. This module assesses the logical consistency and
faithful accuracy of KQA output, aligning with the principles of
causal reasoning. 4) Refinement. This last component fine-tunes the
outputs, ensuring that the reasoning process aligns with the causal
mechanisms outlined in the previous causal reasoning process.

By incorporating the CORE framework, LLMs can be guided to
process information in a manner that mimics human-like causal rea-
soning to produce knowledge, termed as “Faithful Reasoning” [6,
12, 13], potentially reducing instances of hallucinations and en-
hancing the model’s ability to generate more accurate and reliable
responses. This approach aligns with the intrinsic and extrinsic
knowledge frameworks, ensuring that the LLM’s reasoning is not
only based on the data it has been trained on but also the logical
coherence and factual accuracy of the information. Further, this
“Faithful Reasoning” method can synergize with existing reasoning-
based and confidence-based methods. By integrating causal theory
into these approaches, LLMs can be better equipped to navigate
the complex reasoning paths, assess the self-consistency of their
outputs, and arrive at conclusions that are not only confident but
also causally and logically sound. By conducting experiments on
two real-world datasets, we have illustrated the superiority of our
proposed framework on both overall performance comparison and
micro-scope studies.

The main contributions of this work are summarized as follows:

• We introduce a causal knowledge reasoning framework,
which is a novel approach integrating Goldman’s causal the-
ory of knowledge into large language models, particularly
in the KQA context. This framework is designed to enhance
the reliability and accuracy of knowledge understanding in
LLMs by establishing a clear pathway from proposition to
belief through causal connections.

• Causal graph and do-calculus rules from structural causal
models are employed to create an unbiased estimation frame-
work within LLMs. Four key components are constructed,
namely, Question Answering, Causal Reasoning, Belief Scor-
ing, and Refinement, which allow for a more reliable and
accurate knowledge representation and understanding in
LLMs, leading to more faithful reasoning capabilities.

• Extensive experiments are conducted on ScienceQA and Hot-
potQA datasets, which demonstrate the rationality and ef-
fectiveness of the CORE method. Additionally, we will make
the implementations available to the research community to
facilitate further research1.

2 RELATEDWORKS
2.1 Knowledge in LLMs
The exploration of knowledge in pre-trained LLMs has been a cen-
tral theme in recent research, reflecting the advances and challenges
in harnessing LLMs for enhancing decision-making and problem-
solving in multimodal contexts.

Yang et al. [38] examine the capabilities of GPT-4V, a model
that augments LLMs with multi-sensory skills, including visual
understanding. This research demonstrates the potential of LLMs
in harnessing both intrinsic and extrinsic knowledge, highlight-
ing their utility in diverse applications. Similarly, Yin et al. [42]
provide an extensive survey on multimodal large language mod-
els, elucidating their surprising emergent capabilities and potential
paths toward artificial general intelligence. These studies collec-
tively showcase the significant strides made in LLMs, especially in
terms of multimodal understanding and logical reasoning. On the
other hand, Davis and Aaronson [8] bring to light the limitations of
LLMs in interfacing with external tools likeWolfram Alpha, particu-
larly in solving math and science problems. Their findings resonate
with the challenges LLMs face in processing intrinsic and extrin-
sic knowledge accurately, often leading to incorrect or misleading
outputs. Complementing this perspective, Arkoudas [3] critically
evaluates GPT-4’s reasoning abilities, underlining its shortcomings
in logical reasoning and problem-solving, which are core aspects
of intrinsic knowledge.

These studies collectively underscore the dual nature of LLMs’
advancements. On one hand, they demonstrate significant progress
in multimodal understanding and logical reasoning. On the other
hand, they reveal the persistent challenges of hallucinations and bi-
ases, emphasizing the need for improved models that can accurately
harness intrinsic and extrinsic knowledge without succumbing to
inaccuracies and misleading information. To this end, we aim to
enhance the reasoning capabilities of LLMs, ensuring more reliable
and accurate knowledge processing in line with the principles of
“Faithful Reasoning”.
1Please see the supplementary files in the ACMMM submission system.
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2.2 Faithful Reasoning in LLMs
Advancements in LLMs have been centered around enhancing
“Faithful Reasoning”, mainly categorized into reasoning-based and
confidence-based methods.

Reasoning-Based Methods. This category includes methods
that improve intrinsic reasoning capabilities of LLMs. Chain-of-
thought prompting [32], least-to-most prompting [45], and the
rethinking with retrieval approach [12] exemplify this. These meth-
ods break down complex problems into simpler steps, enhancing
logical processing abilities of LLMs. The tree of thoughts frame-
work [40] and Reflexion [28] also fall under this category, promoting
adaptive learning and strategic decision-making in LLMs.

Confidence-Based Methods. Focused on verifying the reason-
ing processes, this category includes DIVERSE [23], discriminator-
guided reasoning [14], and self-evaluation guided beam search [35].
These methods ensure the reliability and accuracy of LLM outputs
by verifying each reasoning step and employing feedback mecha-
nisms. Self-consistency methods [1, 31, 34] further exemplify this
approach by marginalizing out multiple reasoning paths to select
the most consistent answer.

In light of these developments, we provide a causal-based per-
spective grounded in Goldman’s causal theory [10] and Pearl’s
structural causal model [27], elucidating why these faithful reason-
ing methods are effective. Based on a theoretical unbiased formula,
we propose a CORE framework with four main components, which
synergistically combines these two methodological approaches to
enhance the reliability and interpretability of LLMs in processing
and generating knowledge.

2.3 Knowledge Question Answering
The KQA task, particularly in its multimodal form, presents a unique
challenge and opportunity for language modeling systems. It com-
bines objective knowledge extraction with reasoning across multi-
ple modalities, making it an ideal testbed for advanced multimodal
LLMs.

Current studies [2, 7, 9, 16, 19, 20, 24, 43, 44] mainly focus on en-
hancingmultimodal reasoning capabilities in KQA task. Innovations
such as BLIP models [7, 19, 20], ScienceQA [24], and Multimodal-
CoT [44] exemplify this trend, showcasing significant advance-
ments in the LLM ability to process and reason within text-rich
visual contexts and usingmultimodal information for more accurate
and comprehensive question-answering.

In contrast to these methods, our causal-driven approach in the
CORE framework potentially offers a unified solution for VQA tasks.
By grounding LLM reasoning in causal relationships as per Gold-
man’s causal theory, our approach aims to validate and generate
faithful knowledge, which seamlessly integrate and reason across
diverse knowledge forms, from text to visual content, in a causally
faithful manner.

3 METHODS
This section describes the formulation of an interventional causal
model for the KQA task within a visual-question answering (VQA)
context, grounded in Goldman’s causal theory [10] and Pearl’s
structural causal model [27]. Based on this theoretical method,
we build a CORE framework to facilitate faithful reasoning by

V

Q T B

U

A

(a) Original graph

V

Q T B

U

A

(b) Interventional graph

Figure 2: The proposed interventional causal graph based on
Goldman’s causal theory of knolwedge and Pearl’s structural
causal model. Causal graph: V (Visual), Q (Question), A (An-
swer), T (Causal Thoughts), B (Belief), and U (Unobservable
Confounder i.e. Dataset Bias)

implicitly accounting for confounders without direct modeling,
which mitigates dataset biases and foster the acquisition of faithful
knowledge.

3.1 Causal Model of Knowledge in LLMs
3.1.1 Causal Graph. As Goldman’s causal theory of knowledge
posits, true knowledge is derived from a causal connection between
a proposition and a belief. Since the knowledge in LLMs is acquired
during the pre-training stage, this may introduce dataset bias in
the models, leading to inaccurate knowledge understanding. To
confront these problems, we employ Pearl’s structural causal model
to obtain a causal graph between the causal theory and the learning
process of LLMs, which is illustrated in Figure 2a, where nodes
and edges represent endogenous variables and causal relationships,
respectively. To justify the rationality of the proposed causal graph,
we give detailed interpretations of the causal graph as follows.

{𝑉 ,𝑄,𝐴} → 𝑇 → 𝐵. The sequence of nodes 𝑉 ,𝑄,𝐴 represents
the input variables: the Visual information of images (V), the Textual
Question (Q), and the Answer (A), in which these variables combine
to form a VQA example. Causal Thoughts (T) are the reasoning
process about how the answer causally relates to the question
within the given multimodal context. The flow from T to Belief (B)
represents the evaluation of the causal thoughts, leading to a belief
about the accuracy of answer. This progression from question and
visual context, through causal reasoning, to belief is central to our
CORE approach to understanding and reasoning knowledge.

𝑈 → {𝑉 ,𝑄,𝐴, 𝐵}. The Unobservable Confounder (U), often rep-
resentative of Dataset Bias, is an external factor that can influence
the belief in the truth of a VQA proposition as knowledge. It is
important to recognize the potential of U to introduce training bias
into the understanding of knowledge, which can lead to incorrect
beliefs. Our CORE framework aims to address this by isolating and
mitigating the influence of U on the causal pathway from inputs
to belief, thus striving for a more accurate and unbiased reasoning
process.

3.1.2 Causal Intervention and Estimation. Given images and ques-
tions, LLM-based VQA models can perform natural language gener-
ation to answer the questions. However, the generated answers may
be incorrect because of the training bias of the LLMs. To further
verify the beliefs of the generated knowledge based on the causal
model, we aim to estimate the true belief of knowledge using LLMs
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without the impact of the training biases. Therefore, we need to
estimate the interventional conditional probability of the beliefs of
whether the answers correctly answer the questions, which is not
equal to the observational conditional probability:

𝑃 (𝑏 |𝑑𝑜 (𝑣), 𝑑𝑜 (𝑞), 𝑑𝑜 (𝑎)) ≠ 𝑃 (𝑏 |𝑣, 𝑞, 𝑎), (1)

where the 𝑑𝑜 (·) operation for input variables show that we want
to pursue the true causal effect of knowledge {𝑉 ,𝑄,𝐴} to beliefs 𝐵
by intervention [27]. This circumvents hallucinations from biases
derived from 𝑈 and ensures the reliability of the model outputs
within the KQA tasks.

To this end, we employ causal intervention to disentangle the
influence of dataset bias (i.e., the unobservable confounder𝑈 ) from
the knowledge reasoning process, as depicted in Figure 2b. We
adopt do-calculus rules [27] to derive an unbiased belief estimation,
focusing on a causal-driven process that considers only the variables
of interest while controlling the confounding influences. Let ·̂ be
the intervention operator 𝑑𝑜 (·) for blocking the dataset bias, the
causal intervention process can be described mathematically as
follows:

𝑃 (𝑏 |𝑣, 𝑞, 𝑎)
=

∑︁
𝑡

𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

𝑟𝑢𝑙𝑒2
=

∑︁
𝑡

𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

𝑟𝑢𝑙𝑒2
=

∑︁
𝑡

𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

𝑟𝑢𝑙𝑒3
=

∑︁
𝑡

𝑃 (𝑏 |𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

=
∑︁
𝑡

∑︁
𝑣′,𝑞′,𝑎′

𝑃 (𝑏 |𝑡, 𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑣 ′, 𝑞′, 𝑎′ |𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

𝑟𝑢𝑙𝑒2
=

∑︁
𝑡

∑︁
𝑣′,𝑞′,𝑎′

𝑃 (𝑏 |𝑡, 𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑣 ′, 𝑞′, 𝑎′ |𝑡)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

𝑟𝑢𝑙𝑒3
=

∑︁
𝑡

∑︁
𝑣′,𝑞′,𝑎′

𝑃 (𝑏 |𝑡, 𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑡 |𝑣, 𝑞, 𝑎). (2)

This derivation process is similar to the methods [30, 33, 37] based
on the front-door criterion [27], which transforms the intervention
probability estimation task with the 𝑑𝑜 (·) operator into an associa-
tion probability estimation task. Since 𝑃 (𝑡 |𝑣, 𝑞, 𝑎) is an encoder for
mapping multimodal question-answering inputs to causal thoughts,
then the probability of 𝑃 (𝑡𝑣,𝑞,𝑎 |𝑣, 𝑞, 𝑎) equals to one if this causal
reasoning model is assumed to have an deterministic thought pro-
cess 𝑡𝑣,𝑞,𝑎 to explain how well the answer response to the question.
This means that Equation 2 can be further transformed as follows:

𝑃 (𝑏 |𝑣, 𝑞, 𝑎)
=

∑︁
𝑡

∑︁
𝑣′,𝑞′,𝑎′

𝑃 (𝑏 |𝑡, 𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑣 ′, 𝑞′, 𝑎′)𝑃 (𝑡 |𝑣, 𝑞, 𝑎)

= 𝑃 (𝑡𝑣,𝑞,𝑎 |𝑣, 𝑞, 𝑎) E
𝑣′,𝑞′,𝑎′

𝑃 (𝑏 |𝑡𝑣,𝑞,𝑎, 𝑣 ′, 𝑞′, 𝑎′). (3)

This formula indicates that the probability of the true belief 𝑏 of a
proposition {𝑣, 𝑞, 𝑎} can be unbiasedly calculated by averaging the
expectations over supporting samples that follow the same causal
thought process 𝑡𝑣,𝑞,𝑎 . Therefore, identifying different proposition

{𝑣 ′, 𝑞′, 𝑎′} that support the causal explanation 𝑡𝑣,𝑞,𝑎 is the key to
the estimation of the true belief. In practical question-answering
scenarios, the visual 𝑣 ′ and question 𝑞′ generally remain constant
within a given context, meaning 𝑣 ′ = 𝑣 and 𝑞′ = 𝑞. This implies
that our estimation should primarily focus on exploring diverse
answers𝑎′ that coincide with the established causal thought process
𝑡𝑣,𝑞,𝑎 . This recognition plays an important role in estimating the
confidence in knowledge generated by the model in response to a
visual-question inquiry.

3.2 CORE Framework
Based on the unbiased estimation of the interventional target of
knowledge as outlined in Equation 3, we aim to estimate it within
the context of the VQA task. Given textual inquiry 𝑞 and the corre-
sponding visual information 𝑣 , we first generate an answer 𝑎 to the
question, and then propose the causal thought process 𝑡 to support
or repel the proposition {𝑣, 𝑞, 𝑎}. After that, our goal is to refine
the same question {𝑣, 𝑞} using different perspective responses 𝑎′
to eventually improve the expected accuracy of beliefs 𝑏.

To operationalize this theory in VQA, we develop the CORE
framework, which integrates four principal components: Question
Answering 𝑃 (𝑎 |𝑣, 𝑞), Causal Reasoning 𝑃 (𝑡 |𝑣, 𝑞, 𝑎), Belief Scoring
𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡), and Refinement 𝑃 (𝑎′ |𝑣, 𝑞, 𝑎, 𝑡). As illustrated in Fig-
ure 3, each component serves a unique function in the faithful
reasoning process, working collaboratively to ensure a reliable esti-
mation of the interventional target. Below, we detail the specific
functions of each component and outline their implementation
within the prompting strategy.

3.2.1 Question Answering. The Question Answering 𝑃 (𝑎 |𝑣, 𝑞) mod-
ule is the foundational component of our framework, tasked with
generating preliminary answer hypotheses based on visual inputs
𝑣 and questions 𝑞. Leveraging large language models, this module
synthesizes information across modalities to produce contextually
relevant answer.

Similar to the previous works [24], we first employ the state-of-
the-art visual-language model InstructBLIP [7] to represent the vi-
sual context of image as text, where the model has been instruction-
tuned on a wide variety of tasks based on the pretrained BLIP-2
model [19, 20]. And then, the visual context is concatenated to
the question context to form a visual-question input. To provide
a preliminary answer hypotheses, we follow the approach of Sci-
enceQA [24], which perform multi-option question answering task
based on a few-shot learning prompt technique. Specifically, we
build instructions using two in-context examples with components
of the question text, options, and the correct answer text. This style
of prompt enables the LLMs to answer specific questions without
parameter updates.

3.2.2 Causal Reasoning. To verify the faithful accuracy of the an-
swer, our CORE framework emphasizes establishing a causal con-
nection between a given question-answering response and the
corresponding belief. Central to our CORE framework, the Causal
Reasoning 𝑃 (𝑡 |𝑣, 𝑞, 𝑎) constructs causal thoughts 𝑡 that serve as
explanatory narratives that connects questions and visual cues to
potential answers.
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Figure 3: Comprehensive schematic of the CORE framework, which details the sequential interaction of the four primary
components.2

In this work, we embodies the essence of causal reasoning pro-
cesses as illustrated in Figure 3, enabling the model to observe
information and discern logical pathways by prompting the LLMs.
By integrating chain-of-thought prompting techniques to facilitate
causal reasoning, our Causal Reasoning module perform introspec-
tion and evaluate answer hypotheses through a causally-aware
process.

3.2.3 Belief Scoring. The Belief Scoring module 𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡) eval-
uates the faithful accuracy and logical consistency of the generated
answers. It assigns belief scores 𝑏 to the proposition and the causal
thought process, reflecting the degree of confidence in the correct-
ness and relevance of candidate knowledge.

To estimate the belief score effectively, our approach employs a
verbalized method for estimating model confidence. This method
is inspired by recent observations [29, 36] that LLMs have been
shown to offer more accurate measure of confidence using output
tokens, typically better-calibrated than methods using traditional
conditional probabilities. As shown in the prompt text in Figure 3,
we adopt a grading scale akin to the US five letter grades to quantify
the confidence of the initial answer being correct. Specifically, “A”
indicates Confidently Correct 100%, “B” indicates Correct with Mod-
erate Confidence [75%, 1), “C” indicates Incorrect with Some Confi-
dence [50%, 75%), “D” indicates Confidently Incorrect. [25%, 50%),
and “F” indicates No Direct Answer [0%, 25%).

3.2.4 Refinement. As the final stage of our reasoning process, the
Refinement 𝑃 (𝑎′ |𝑣, 𝑞, 𝑎, 𝑡) will polish the initial response. It harmo-
nizes initial answer 𝑎 with the causal thought 𝑡 to generate a new
answer 𝑎′ that conform the most plausible causal explanations.

To implement this, we repurpose the prompting method of Ques-
tion Answering module. By appending the original VQA response
and associated causal thoughts to the prompt of the Refinement
model, we guide the LLMs to correct their answers according to
the established reasoning path.

3.2.5 Causal-driven Faithful Reasoning. The CORE framework op-
erates through four main parts, as outlined in Algorithm 1. It starts
with the Question Answering module, which generates an initial

2Note that the figure mainly represents the core structure of the prompt text. For
comprehensive details and specific prompts, please refer to the appendix.

Algorithm 1 The pseudo code of CORE framework
Input: Textual inquiry 𝑞, Visual information 𝑣

Output: Refined answer 𝑎𝑏𝑒𝑠𝑡
Question Answering 𝑃 (𝑎 |𝑣, 𝑞)

1: Generate initial answer 𝑎 to the question 𝑞 given the visual
context 𝑣 .
Causal Reasoning 𝑃 (𝑡 |𝑣, 𝑞, 𝑎), Belief Scoring 𝑃 (𝑏 |𝑣, 𝑞, 𝑎, 𝑡)

2: Propose causal thought process 𝑡 to support or challenge the
proposition {𝑣, 𝑞, 𝑎}.

3: Assign a belief score 𝑏 to the initial answer 𝑎 based on the
causal thought process 𝑡 .
Refinement 𝑃 (𝑎′ |𝑣, 𝑞, 𝑎, 𝑡)

4: if Belief score 𝑏 ≥ Threshold 𝜏 then
5: Refine the answer 𝑎 to 𝑎𝑟 based on the causal thought 𝑡 .
6: Re-evaluate 𝑎𝑟 using causal reasoning and belief scoring

module to get belief score 𝑏𝑟 .
7: if 𝑏𝑟 ≥ 𝑏 then
8: 𝑎𝑏𝑒𝑠𝑡 = 𝑎′

9: else
10: 𝑎𝑏𝑒𝑠𝑡 = 𝑎

11: end if
12: else
13: 𝑎𝑏𝑒𝑠𝑡 = 𝑎.
14: end if

Return Best Answer 𝑎𝑏𝑒𝑠𝑡 .

answer. Following this, the Causal Reasoning module analyzes the
answer to identify the underlying causal rationale. After that, the
Belief Scoring module evaluates the confidence level of the model
in the initial answer, based on how accurate and consistent it aligns
with the causal explanations. If any answers lack sufficient confi-
dence, the Refinement module helps by adjust them to make more
sense based on the initial answer and the causal explanations.

Note that we can perform refinement process when the belief
score of the answers is lower than a pre-defined belief threshold
𝜏 , so as to make a trade off between accuracy and efficiency. And
we set 𝜏 = 𝐴 for better accuracy by default. In addition, when an
answer undergoes refinement, the refined answer is not simply
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Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg
Human 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
ViLT [16] 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM [25] 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT [22] 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87
UnifiedQABase [15] 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12
UnifiedQABase w/ CoT [24] 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11
GPT-3.5-A 74.69 74.13 79.73 74.88 71.59 78.26 78.45 71.26 75.88
GPT-3.5-AE 77.49 73.79 81.82 77.17 72.29 81.18 81.46 71.32 77.84
GPT-3.5-ALE 77.44 74.02 83.09 77.32 72.38 81.88 81.17 72.84 78.19
CORE-A 78.37 76.04 81.73 77.86 72.98 82.23 81.53 73.76 78.76
CORE-AE 77.98 74.47 81.45 77.03 71.54 82.30 81.39 72.31 78.14
CORE-ALE 78.60 75.82 82.91 77.71 72.63 83.48 82.27 73.50 79.13

Table 1: Performance evaluation of various models across different classes in terms of accuracy (%) on ScienceQA dataset.
Format names: A = answer, AE = answer with explanation, ALE = answer with lecture and explanation. Question classes: NAT =
natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image context, NO = no context, G1-6
= grades 1-6, G7-12 = grades 7-12. Segment 1: Human performance; Segment 2: VQA baselines; Segment 3: UnifiedQA baselines;
Segment 4: GPT-3.5 baselines; Segment 5: Our CORE results. Results in bold are the best performance.

accepted; it undergoes reevaluation through the causal reason-
ing and belief scoring processes, consistent with the formulation
𝑃 (𝑏 |𝑡𝑣,𝑞,𝑎, 𝑣 ′, 𝑞′, 𝑎′) established in Equation 3. The revised answer,
denoted as 𝑎′, is adopted only if it achieves a belief score supe-
rior to its initial counterpart. Otherwise, the initial response is
retained. This iterative refinement process ensures that the frame-
work outputs are both consistent and deeply rooted in a robust
causal understanding, thus enhancing the overall reliability of the
knowledge they represents.

Overall, all these processes are inspired by the unbiased knowl-
edge evaluation process as shown in Equation 3. For more examples
and details on how each part works, please check out the case study
(section 4.6) and appendix.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. Our methodology is evaluated on two prominent
datasets, each with its unique structure and challenges. The first,
ScienceQA [24], is a comprehensive multimodal science question
dataset with annotations that include detailed lectures and explana-
tions. It encompasses a broad domain diversity with 21k multiple-
choice questions spanning 3 subjects, 26 topics, 127 categories, and
379 skills. The dataset is organized into distinct training, valida-
tion, and test sets containing 12,726, 4,241, and 4,241 examples,
respectively.

The second dataset, HotpotQA [39], consists of 113k Wikipedia-
based question-answer pairs. Its defining characteristics are as fol-
lows: (1) it necessitates the retrieval and synthesis of information
across multiple documents to construct answers, and (2) the ques-
tions are varied, avoiding restrictions from any predefined knowl-
edge bases or schemas. This dataset provides an additional level of
complexity to our evaluation, allowing us to test more advanced
prompting techniques on our proposed method. In the following
experiments, we randomly select a subset of 1,000 samples for per-
formance evaluation.

4.1.2 Implementation Details and Baselines. For the ScienceQA
dataset, we establish two-shot in-context learning baselines, follow-
ing the format of “A”, “AE”, and “ALE”. This involves concatenating
question text, context of text and visual, and multiple options as
input, with predictions for answers (A), lectures (L), and expla-
nations (E) as output, aligning with the previous works [24, 44].
These prompting formats are employed in our Question Answer-
ing module and the output formatting of the Refinement module
for a fair comparison. Following the ScienceQA settings [24], our
baselines include VQA models such as ViLT [16], Patch-TRM [25],
and VisualBERT [22]; Text-to-text Language Models (LMs) like Uni-
fiedQA [15]; and our multimodal models based on GPT-3.5 [4, 26]
and InstructBLIP [7].

In evaluating our CORE framework on the HotpotQA dataset,
we further introduce three baselines using different prompting
techniques: standard prompt, zero-shot chain-of-thought [32], and
ReAct [41], with the latter having the capability to accessWikipedia
information through tool manipulation. This allows us to perform a
comparative analysis of different reasoning models with and with-
out the application of our Faithful Reasoning (FR) components
(e.g. Causal Reasoning, Belief Scoring, and Refinement). The same
prompting formats are utilized correspondingly in both our Ques-
tion Answeringmodule and for output formatting in the Refinement
module, ensuring the fairness in comparative analysis. Note that all
experiments are conducted using GPT-3.5-turbo [4, 26] to facilitate
fair comparison and allow for future re-implementation.

4.2 Overall Performance Comparison
Table 1 presents the overall experimental results, we have the fol-
lowing observations: 1) The CORE methods demonstrate notable
performance improvements when compared to both the GPT-3.5
variants and previous VQA models. Specifically, CORE methods
outperform the GPT-3.5 counterparts (“A”, “AE”, “ALE”) by 2.88%,
0.30%, and 0.94% respectively. This improvement is consistent across
the different CORE enhancements applied to the GPT-3.5 model,
indicating the effectiveness of the CORE framework in refining the
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Figure 4: Accuracy of different CORE models based on belief
scores in initial QA responses on the ScienceQA dataset.

capabilities of based models. 2) Of particular note is the CORE-A
model, which shows the largest improvement in average perfor-
mance. This suggests that applying the faithful reasoning of the
CORE framework to the model with no reasoning output signifi-
cantly enhances its ability to understand the knowledge required
to solve the scientific questions, thereby improving overall per-
formance. These gains highlight the CORE framework’s potential
to improve underlying model reasoning and comprehension in a
multimodal context.

4.3 Effectiveness of Belief Modeling
In this section, we will delve into the key capabilities of the CORE
approach in utilizing beliefs to accurately evaluate the truthfulness
of initial answers. Figure 4 illustrates the accuracy of various belief
scores within three models: CORE-A, CORE-AE, and CORE-ALE.
From this data, we can draw two primary conclusions: 1) The high-
est performance is observed when the belief score is “A”, exceeding
80% accuracy across all three models. This high level of accuracy
indicates that when the models assign an “A” grade, reflecting high
confidence in their responses, the predictions are very likely to be
correct. Such strong performance at this confidence level confirms
that the models are correctly identifying answers when they are
most certain, validating the alignment between model confidence
and answer correctness. 2) There is a clear trend of decreasing ac-
curacy as the letter grades decline from “A” to “F” in each model.
This gradient suggests that as the confidence level of the models
decreases (reflected by lower letter grades), the probability of a
VQA proposition as true knowledge also diminishes. This trend
emphasizes the relationship between the model beliefs in their
answers and the likelihood of those answers being correct, validat-
ing the reliability of using belief scores as an indicator of answer
correctness.

4.4 Refinement w.r.t Different Belief Threshold
Given the effectiveness of belief modeling, it is essential to deter-
mine whether the refinement process should be applied universally
to all initial predictions, including those with high belief scores. To
this end, we aim to improve the model’s initial outputs by refining
responses that fall below a predetermined belief threshold 𝜏 . Then
we will generate a diverse answers 𝑎′ that align with the causal
thought process 𝑡𝑣,𝑞,𝑎 and compare their beliefs with those of the
initial output to select the one with higher belief as the final answer.
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Figure 5: The visualization of the performance of the three
CORE methods across different belief threshold.

Model Avg Acc Avg Steps Avg Tokens
Standard 45.0 1.00 52.29
CoT 44.1 1.55 149.5
ReAct 44.6 3.68 2408
Standard + FR 47.3 1.59 861.1
CoT + FR 47.6 2.18 1034
ReAct + FR 48.0 4.15 5646

Table 2: Performance comparison of different reasoningmod-
els with and without the application of Faithful Reasoning
(FR) on the HotpotQA dataset. The table reports average ac-
curacy (Avg Acc), average number of reasoning steps (Avg
Steps), and average number of tokens used (Avg Tokens) for
Standard, Chain of Thought (CoT), and Reasoning and Acting
(ReAct) models.

Figure 5 illustrates the performance of three CORE methods
across different belief thresholds (A, B, C, D, F), and there are two
notable observations: 1) First, there is an observable increase in
model performance as the belief threshold rises from “F” (low-
est confidence) to “A” (highest confidence). This enhancement in
performance highlights the refinement process’s effectiveness in
improving model accuracy, regardless of the starting confidence
level. 2) When the threshold is set to “A”, all three methods exhibit
their highest performance levels. These findings indicate that re-
fining responses, even when the initial belief is high, contributes
positively to enhancing model performance. These findings sup-
port the strategy of refining model responses and estimating the
corresponding beliefs, as shown in the unbiased estimation form 3,
and then comparing their belief scores to determine the best final
answer.

4.5 Effect on Different Prompting Techniques
To verify the effectiveness of our CORE framework in different
prompting techniques, we further conduct ablation study of the
faithful reasoning components (including Causal Reasoning, Belief
Scoring, and Refinement) on the HotpotQA dataset, as shown in
Table 2. We have the following observations: 1) The addition of
Faithful Reasoning (FR) to all models results in a marked improve-
ment in average accuracy. The most significant improvement is
observed in the ReAct model, especially when integrated with FR.
ReAct+FR achieves the highest accuracy, suggesting that our FR
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Answer: The answer is A. BECAUSE: Rubber balloons are harder
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Observed Information: The question asks "Which is harder?" and provides a context of a person's hand 
holding colorful balloons. The options given are (A) rubber balloons and (B) ceramic tea cup. The answer 
provided in the QA response is "The answer is A.
Causal Reasoning: Based on the observed information, it is clear that the question is asking about the 
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answer provided in the QA response does not align with the expected knowledge about the hardness of 
rubber balloons and ceramic tea cups. 
Belief: D

Causal Reasoning Response 1
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that the comparison is about the physical hardness of the objects.
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rubber balloons are soft and flexible. Therefore, based on their
material properties, ceramic tea cups are harder than rubber
balloons.
Belief: A

Answer: The answer is B. 
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are typically made of a hard 
and rigid material, such as 
porcelain or ceramic. In 
contrast, rubber balloons are 
soft and flexible. Therefore,
ceramic tea cups are harder
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Refinement Response

Figure 6: The causal knowledge reasoning process of the CORE framework is illustrated by a case study, which demonstrates
the transition from an initial hallucinatory output to the drawing of reasonable and accurate conclusions.

method not only complements but also amplifies the effectiveness
of complex reasoning approaches like ReAct. 2) An increase in the
number of reasoning steps and tokens across the models indicates
a more intricate reasoning process. While this complexity aids in
achieving higher accuracy, it could also lead to longer inference
times and potentially higher costs. These challenges present op-
portunities for future research aimed at improving the efficiency
of FR implementations. This could involve exploring optimization
techniques to streamline reasoning processes without compromis-
ing model performance. 3) The ReAct model, capable of executing
tool interactions to acquire extrinsic knowledge, demonstrates en-
hanced performance with the addition of FR components. This
improvement confirms the effectiveness of our model, especially by
utilizing both intrinsic reasoning knowledge and extrinsic knowl-
edge sources to improve the accuracy of reasoning.

4.6 Case Study
In Figure 6, a detailed case study illustrates the application of our
CORE framework. The visual input for this instance consists two
images: one of a ceramic cup and the other of a rubber balloon. The
corresponding textual question posed is, “Which is harder?” with
two choices presented.

Initially, the Question Answering module incorrectly selects Op-
tion A, rationalizing that “Rubber balloons are harder than ceramic
cups.” This incorrect response, misaligned with the actual scenario,
illustrates a typical hallucination phenomenon in LLMs. At the same
time, Causal Reasoning and Belief Scoring is utilized to evaluate
this response. Upon analyzing the causal reasoning response 1, it
assigns a D-level belief score, indicating a low level of confidence in
the accuracy of the initial answer. Leveraging these insights, the Re-
finement module is engaged, utilizing both the initial response and

the Causal Reasoning Response 1 as inputs. It successfully revises
the answer to Option B, providing a logically sound and accurate
explanation. This revised answer is then re-evaluated through the
Causal Reasoning, culminating in Causal Reasoning Response 2.
This final response reaffirms the correctness of the revised answer
and is awarded an A-level belief score, indicating high confidence
in its accuracy.

This case study underscores the efficacy of the CORE framework
in guiding and rectifying LLM-generated hallucinations. By sequen-
tially applying the framework’s components, the model effectively
transitions from an erroneous to a correct and unbiased answer,
guided by informed causal reasoning.

5 CONCLUSIONS AND FUTUREWORK
In conclusion, our CORE framework emerges as a unified solution
for enhancing problem-solving and decision-making capabilities in
LLMs, as evidenced by our comprehensive evaluations across two
distinct datasets, ScienceQA and HotpotQA. At the heart of this
framework are two key components: causal reasoning and belief
scoring mechanisms. These components are essential for accurately
assessing knowledge within the question answering scenarios.

While the success of framework is currently reflected through
QA dataset accuracy, more direct evaluation of the causal reasoning
and belief scoring components remains an area for further explo-
ration. Future research should aim to develop methods to directly
evaluate and optimize these modules. This direction will not only
shed light on the inner workings of these mechanisms, but also facil-
itate the development of AI systems with efficient and transparent
knowledge reasoning processes. Our work establishes a baseline
for these developments, which are critical to evolving AI towards
more nuanced, human-like reasoning capabilities.
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