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Abstract

Label noise is a common and critical challenge in
real-world machine learning, especially in tabu-
lar data settings where mislabeled instances can
severely degrade model performance and gener-
alization. The proposed study investigates the
robustness of the Tabular Prior-Data Fitted Net-
work (TabPFN), a transformer-based model un-
der varying levels of label noise in binary clas-
sification tasks. Using 15 publicly available tab-
ular datasets from OpenML, we systematically
inject label noise at multiple levels (0%, 1%,
5%, 10%, 20%, 25%, and 30%) and evaluate
TabPFN against seven traditional classifiers, in-
cluding Random Forest (RF), Extreme Gradient
Boosting (XGBoost), Light GBM (LGBM), Sup-
port Vector Machine (SVM), K-Nearest Neigh-
bor (kNN), Category Boosting (CatBoost), and
Decision Tree (DT). All models are assessed us-
ing 2×5-fold stratified cross-validation, and their
performance is reported in terms of average ac-
curacy and AUC-ROC. Our experimental results
reveal clear performance trends across classifier
types. Boosting-based models are most sensitive
to label noise. RF demonstrates moderate robust-
ness and maintains relatively stable performance
across noise levels. In contrast, TabPFN consis-
tently exhibits superior resilience to noise. These
findings confirm the potential of TabPFN as a
robust and noise-tolerant solution for real-world
tabular classification tasks.

1. Introduction
Tabular data is one of the most widely encountered
data modalities in practical machine learning applications
(Shwartz-Ziv & Armon, 2022). It forms the backbone of
structured datasets in healthcare, banking, fraud detection,
manufacturing, cybersecurity, and software analytics, etc.
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Unlike unstructured data types such as images or text, tab-
ular data often lacks spatial or temporal continuity and
presents unique challenges due to its mixed data types, miss-
ing values, and irregular feature distributions (Adnan &
Akbar, 2019). One of the most pervasive issues in tabu-
lar datasets is label noise, or class noise, where incorrect
target labels are introduced into the training data, which
may result from human annotation errors, instrumentation
faults, ambiguous class definitions, or procedural inconsis-
tencies (Johnson & Khoshgoftaar, 2022). For example, in a
credit approval dataset, an applicant labeled as rejected may
have met all approval criteria but was mislabeled due to a
processing error. Such label noise distorts the learning pat-
terns and impairs the ability of models to capture underlying
patterns (Song et al., 2022). In supervised learning, label
noise severely impacts model generalization, particularly in
high-capacity classifiers such as boosting models or deep
networks, which tend to memorize noise rather than gen-
eralize from clean patterns (Song et al., 2022). Traditional
methods to counter label noise include robust loss functions,
reweighting schemes, and noise filtering, but these often
require additional assumptions or introduce computational
complexity (Frénay & Verleysen, 2013).

Recently, the Tabular Prior-Data Fitted Network (TabPFN)
has emerged as a promising architecture tailored for tab-
ular classification. TabPFN, (Hollmann et al., 2025) is a
transformer-based model trained on millions of synthetically
generated tabular tasks. At inference time, it performs a sin-
gle forward pass to compute the Bayesian posterior predic-
tive distribution for classification, making it highly efficient
and data-agnostic. Its prior-data fitting approach allows it to
adapt quickly to new datasets with few training samples and
no explicit hyperparameter tuning. Despite its excellent per-
formance on datasets, the robustness of TabPFN under noisy
label conditions has not been systematically evaluated.

Objectives

To assess the robustness of TabPFN under label noise, we
evaluate the performance of TabPFN alongside other classi-
fiers under increasing levels of symmetric label noise (0%,
1%, 5%, 10%, 20%, 25%, 30%).
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Table 1. Summary of Classifiers: Definitions and Key Parameters

Model Definition Key Parameters / Characteristics

TabPFN Transformer-based model that performs
Bayesian posterior inference over tabu-
lar datasets.

Single forward-pass inference; robust to
small data and noise.

Decision Tree (DT) Classical CART model that splits fea-
tures to maximize information gain.

criterion=”gini”, max depth=None

RF Ensemble ofDT built using bagging and
random feature selection.

n estimators=100, max depth=None, boot-
strap=True

XGBoost (XGB) Gradient boosting framework that se-
quentially builds trees to minimize resid-
ual errors.

n estimators=100, learning rate=0.1,
max depth=6

LGBM Fast, histogram-based leaf-wise boost-
ing tree algorithm optimized for speed
and accuracy.

boosting type=”gbdt”, learning rate=0.1,
num leaves=31

Support Vector Ma-
chine (SVM)

Margin-based classifier that finds the op-
timal separating hyperplane using ker-
nels.

kernel=”rbf”, C=1.0, probability=True

k-Nearest Neighbors (k-
NN)

Non-parametric algorithm that assigns
class based on majority vote among k-
nearest neighbors.

n neighbors=5, metric=”minkowski”

Category Boosting (Cat-
Boost)

Gradient boosting library with native
categorical support and ordered boost-
ing.

iterations=100, depth=6, learning rate=0.1,
verbose=0

2. Related Work
Several studies have examined the sensitivity of traditional
classifiers to synthetic and real-world label noise.

(Frénay & Verleysen, 2013) presented a comprehensive sur-
vey that categorizes label noise into symmetric and asym-
metric, and reviewed techniques ranging from noise-tolerant
algorithms to instance filtering strategies. They highlight
that DT and K-Nearest Neighbor (kNN) are highly suscepti-
ble to noise, while ensemble methods like Random Forests
(RF) provide moderate resilience due to bootstrapped aggre-
gation.

(Patrini et al., 2017) proposed a label noise correction mech-
anism based on estimating the noise transition matrix, of-
fering robustness in deep neural networks. However, such
techniques require accurate noise estimation, which is non-
trivial in real-world settings. (Han et al., 2018) introduced
co-teaching, a training paradigm in which two neural net-
works collaboratively learn from clean samples, excluding
suspected noisy labels during training . While effective, it
is tailored for deep networks and assumes availability of
large-scale data. Recent benchmarking by (Wei et al., 2021)
revealed that gradient boosting methods such as Extreme
Gradient Boosting (XGBoost) and Light Gradient Boost-
ing Method (LGBM) are among the most noise-sensitive
models, especially when trained on high-capacity or small

datasets. In contrast, RF exhibit greater robustness due to
bagging and feature randomness.

The TabPFN, introduced by (Hollmann et al., 2025), rep-
resents a breakthrough by performing Bayesian posterior
inference directly through a single forward pass (Hollmann
et al., 2025). Trained on millions of synthetic tabular tasks
drawn from plausible generative priors, TabPFN generalizes
to unseen tasks by learning a universal prior over data distri-
butions. This makes it highly sample-efficient and robust to
noise, as it learns to ignore misleading features or examples
if such patterns were seen during training.

While TabPFN has shown strong performance on several
datasets, its application under noisy settings remains under-
explored in the literature. Our study addresses this gap
by systematically injecting class noise and evaluating its
performance against conventional classifiers to examine the
robustness of TabPFN.

3. Methodology
In this section, the detailed methodology is discussed along
with datasets.
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3.1. Datasets

We used 15 different binary classification datasets from the
OpenML repository (ope, 2025) shown in Appendix A.1, en-
suring diversity across different application domains. Only
datasets with purely numerical features were selected to
ensure compatibility with all classifiers, especially TabPFN.

3.2. Noise Induction

We applied symmetric label flipping to simulate class noise
(Dietterich, 2000). Specifically, for a given noise rate η ∈
{1%, 5%, 10%, 20%, 25%, 30%}, a random subset of the
training samples was selected and their labels were flipped
(0 → 1 or 1 → 0). The test set remained noise-free to allow
fair evaluation.

This process was implemented using the equation 1:

ynoisy[i] = 1− y[i], for randomly selected i (1)

The mechanism mimics real-world label corruption scenar-
ios and allows controlled experimentation on model robust-
ness.

3.3. Models Applied

We evaluated the following models which are summarized
in Table 1:

4. Experimental Results and Discussion
To assess the robustness of TabPFN under label noise, we
conducted a comprehensive evaluation comparing TabPFN
with other classifiers across increasing levels of symmetric
label noise i.e., 0%, 1%, 5%, 10%, 20%, 25%, and 30%. Fig-
ures 1 demonstrate the impact of increasing symmetric label
noise on model performance across different datasets using
accuracy and AUC-ROC as evaluation metrics. In Figure 1
(a), the breast-w accuracy plot reveals that while all models
perform well at 0% noise, accuracy drops noticeably for
DT, XGBoost, and LGBM as noise increases, with TabPFN
exhibiting minimal degradation and maintaining top perfor-
mance throughout. Figure 1 (b) shows a similar trend for
AUC-ROC on the same dataset, where boosting models and
DT decline sharply, but TabPFN retains good class sepa-
ration capabilities. Moving to credit-approval in Figure 1
(c), accuracy falls with increasing noise, especially for DT
and boosting models, whereas TabPFN demonstrates strong
resilience. Figure 1 (d) further highlights the sensitivity
of AUC-ROC in credit-approval, where models like k-NN
collapse under noise and boosting methods degrade signifi-
cantly, while TabPFN maintains a clear advantage. Figure 1
(e) displays credit-g accuracy trends, where TabPFN outper-
forms other models as most, including DT, XGBoost, and

LBGM, show a sharp decline. Finally, Figure 1 (f) presents
AUC-ROC for credit-g, confirming that TabPFN sustains its
discriminative strength even as k-NN, DT, and other models
deteriorate under noise. Across all figures, TabPFN consis-
tently proves to be the most robust and reliable model under
varying levels of label noise.

The results on other datasets are described in Appendix
A.2.1. Our experimental results indicate distinct perfor-
mance patterns among different classifier types. Boosting-
based models such as XGBoost, LGBM, and CatBoost
were notably the most sensitive to label noise, exhibiting
significant performance degradation across accuracy and
AUC-ROC metrics, especially visible in datasets like credit-
approval, qsar-biodeg, and diabetes. RF demonstrated mod-
erate robustness, maintaining relatively stable performance
despite increasing noise, as evidenced by its performance
on datasets such as pc3, banknote-authentication, and steel-
plates-fault. In contrast, TabPFN consistently exhibited
superior resilience, maintaining minimal performance re-
ductions across all datasets tested. This was particularly
apparent in datasets wdbc, breast-w, and climate-model-
simulation-crashes, where TabPFN sustained high accuracy
and AUC-ROC values even under high noise conditions.

5. Conclusion and Future Work
In our experiments, we demonstrate that TabPFN demon-
strates superior robustness to label noise when compared to
traditional machine learning classifiers. It performs bayesian
posterior prediction over a wide range of synthetic datasets,
allowing it to generalize well even under increasing levels of
label corruption. We found out that TabPFN is more robust
to noise than other classification models. In future work, we
aim to extend this research by examining TabPFN’s behavior
under more complex noise settings, such as asymmetric or
instance-dependent label noise. We also plan to investigate
the calibration of TabPFN outputs and explore uncertainty
quantification techniques. Additionally, we intend to ap-
ply the proposed ensemble approach to real-world domains
such as medical diagnostics and anomaly detection where
label noise is inherently present and robustness is critical
for deployment.
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((a)) breast-w accuracy ((b)) breast-w AUC-ROC

((c)) credit-approval accuracy ((d)) credit-approval AUC-ROC

((e)) credit-g accuracy ((f)) credit-g AUCROC

Figure 1. Accuracy and AUC-ROC results on a few datasets to illustrate the impact of increasing label noise on different classifiers.
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A. Appendix
A.1. Used Datsets

The utilized datasets is collected from (ope, 2025) and are highlighted in Table 2.

Table 2. Dataset Mapping
Code Dataset Name

D1 breast-w
D2 credit-approval
D3 credit-g
D4 diabetes
D5 pc4
D6 pc3
D7 kc2
D8 pc1
D9 banknote-authentication

D10 blood-transfusion-service-center
D11 ilpd
D12 qsar-biodeg
D13 wdbc
D14 steel-plates-fault
D15 climate-model-simulation-crashes

A.2. Experimental results

All classifiers were evaluated using 2×5-fold stratified cross-validation, i.e., 5-fold cross-validation repeated twice. The final
performance metrics (accuracy and AUC-ROC) were reported as the average across all 10 folds, which reduces variance and
improves the stability of the reported results.

A.2.1. ROBUSTNESS ANALYSIS UNDER DIFFERENT NOISE LEVELS

Our experimental results across a diverse set of datasets highlight the effects of increasing label noise on model performance,
measured using both accuracy and AUC-ROC. The figures 2 to 25 collectively demonstrate that boosting-based models such
as XGBoost, LGBM, and CatBoost are among the most vulnerable to label noise. This degradation is especially evident in
datasets such as qsar-biodeg (Figures 10 and 22), and diabetes (Figures 2 and 15), where these models show significant
drops in both metrics as noise levels increase.

In contrast, RF exhibits a moderate level of robustness, maintaining stable accuracy and AUC-ROC on datasets such as pc3
(Figures 3 and 15), banknote-authentication (Figures 9 and 24), and steel-plates-fault (Figures 12 and 24). Notably, TabPFN
consistently demonstrates superior resilience across all datasets and metrics. It maintains high accuracy and AUC-ROC even
at higher noise levels, as seen in wdbc (Figures 11 and 23), and climate-model-simulation-crashes (Figures 13 and 25).

In the steel-plates-fault (Figure 24), TabPFN sustains near-perfect AUC-ROC despite increasing noise, while other models,
particularly DT and SVM, deteriorate sharply. Similarly, in climate-model-simulation-crashes in Figure 25, most models
show steep declines in AUC-ROC, with boosting models and SVM being heavily affected. Yet, TabPFN remains notably
stable compared to all others, reinforcing its robustness under noisy conditions.
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Figure 2. diabetes accuracy

Figure 3. pc4 accuracy

Figure 4. pc3 accuracy
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Figure 5. kc2 accuracy

Figure 6. pc1 accuracy

Figure 7. banknote-authentication accuracy
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Figure 8. blood-transfusion-service-center accuracy

Figure 9. ilpd accuracy

Figure 10. qsar-biodeg accuracy
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Figure 11. wdbc accuracy

Figure 12. steel-plates-fault accuracy

Figure 13. climate-model-simulation-crashes accuracy
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Figure 14. diabetes AUC-ROC

Figure 15. pc4 AUC-ROC

Figure 16. pc3 AUC-ROC

11



Assessing the Robustness of Tabular Prior-Data Fitted Network Classifier

Figure 17. kc2 AUC-ROC

Figure 18. pc1 AUC-ROC

Figure 19. banknote-authentication AUC-ROC
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Figure 20. blood-transfusion-service-center AUC-ROC

Figure 21. ilpd AUC-ROC

Figure 22. qsar-biodeg AUC-ROC
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Figure 23. wdbc AUC-ROC

Figure 24. steel-plates-fault AUC-ROC

Figure 25. climate-model-simulation-crashes AUC-ROC
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