Detecting Pipeline Failures through Fine-Grained Analysis of Web Agents

Anonymous ACL submission

Abstract

Web agents powered by large language mod-
els (LLMs) can autonomously perform com-
plex, multistep tasks in dynamic web environ-
ments. However, current evaluations mostly
focus on the overall success while overlook-
ing intermediate errors. This limits insight into
failure modes and hinders systematic improve-
ment. This work analyzes existing benchmarks
and highlights the lack of fine-grained diag-
nostic tools. To address this gap, we propose
a modular evaluation framework that decom-
poses agent pipelines into interpretable stages
for detailed error analysis. Using the SeeAct
framework and the Mind2Web dataset as a case
study, we show how this approach reveals ac-
tionable weaknesses missed by standard met-
rics - paving the way for more robust and gen-
eralizable web agents.

1 Introduction

Al agents powered by large language models
(LLMs) are increasingly deployed in real-world ap-
plications that require complex, multistep decision-
making, such as coding assistance (Qiao et al.,
2023), question answering (Liu et al., 2023), au-
tomated fact verification (Sun et al., 2023; Xiong
et al., 2025) and web navigation (Yin et al., 2024;
He et al., 2024a; Zheng et al., 2024, 2025). These
systems typically decompose tasks into modular
pipelines, allowing structured reasoning across sev-
eral intermediate steps. However, evaluation meth-
ods predominantly focus on end-to-end task suc-
cess, offering limited visibility into intermediate
reasoning and decision-making processes. This
coarse-grained perspective obscures how and why
agents fail - hindering systematic debugging, er-
ror diagnosis, and safe deployment in real-world
scenarios where failures can lead to inefficiencies,
degraded user experiences, or unintended behavior.

Web navigation presents a particularly challeng-
ing setting for LLM-based agents, requiring mul-

What is the website about and
which elements are relevant to

the task?
_{ Action Which web element should |

a Prediction interact with?
® — Of the potential actions |
I Grounding identified which one should |
g choose?
I® > Action Selection
&1 (“Traditiona | |

Evaluation ®

Modular
Evaluation

l—[

—» |dentification of weaknesses

Figure 1: Modular evaluation of the SeeAct agent re-
veals performance across distinct pipeline stages.

timodal reasoning over structured HTML, natu-
ral language, and visual elements. In this context,
agents must interpret dynamic and often ambigu-
ous information while executing a sequence of in-
terdependent actions. Small errors in early stages
- such as misinterpreting context or selecting the
wrong subgoal - can propagate through the pipeline
and lead to final task failure. Yet, most existing
benchmarks and studies, such as those based on the
Mind2Web dataset (Zheng et al., 2024; Deng et al.,
2024), evaluate only final task outcomes. This lim-
its our understanding of where errors occur and
how agent decisions break down in practice.

To address this gap, we propose a modular eval-
uation that decomposes web agent pipelines into
interpretable stages, including subgoal planning,
information grounding, and action selection, and
enables fine-grained error analysis across each
step. Our goal is not only to expose failure modes
more systematically, but also to motivate a shift
toward diagnostic evaluation practices for LLM-
based agents.

As a case study, we apply our modular evaluation
to SeeAct (Zheng et al., 2024), a multimodal web
agent that uses vision-language models (VLMs)
to perceive and act within web interfaces. Our

contributions are as follows:

* Introduction of a a conceptual modular evalua-
tion that captures reasoning quality at each stage
of the agent pipeline, providing a comprehensive
error analysis.

* Extending of the SeeAct architecture by en-
hancing input representations and improving the
heuristic action selection.

* Augmentation of the Mind2Web evaluation
protocol by introducing alternative valid ac-
tion annotations, addressing limitations of rigid
single-ground-truth assumptions and better re-
flecting real-world flexibility.

Our experiments show that modular evaluation
reveals systematic challenges such as context frag-
mentation, grounding errors, and ambiguity in
HTML-based interfaces - issues often missed by
standard metrics. By enabling step-wise diagnosis,
our approach supports debugging, robustness test-
ing, and system improvement - key capabilities for
advancing reliable and generalizable LLM-based
web agents. We release! our evaluation toolkit
and SeeAct reimplementation to facilitate further
research in this direction.

2 Related Work & Background
2.1 Web Agents

Web agents are systems designed to execute action
sequences on web interfaces based on natural lan-
guage instructions (Mazumder and Riva, 2021; Xu
etal., 2021). Traditional agents have struggled with
diverse layouts and the complexity of web struc-
tures. Recent advances in large language models
(LLMs) have enabled agents to infer contextually
appropriate actions from natural language inputs,
greatly expanding their versatility across tasks (Fu-
ruta et al., 2024; Gur et al., 2023; Sodhi et al., 2024;
Wang et al., 2024).

A persistent challenge lies in effectively inter-
preting HTML content, which often lacks semantic
clarity or task-specific grounding, making accurate
action selection difficult (Deng et al., 2024; Gur
et al., 2024; Kim et al., 2024; Lo et al., 2023). To
address this, several systems incorporate vision-
language models (VLMs) that combine visual per-
ception with language understanding—improving
both generalization and task success rates. Zheng
et al. (2024) introduced a multimodal agent that
uses screenshots of web pages for visual under-
standing and acting on the web. Hong et al. (2024)

! Anonymous Github Repo

extended this idea with a generalist agent capa-
ble of reasoning across diverse visual domains.
Shahbandeh et al. (2024) further integrate multi-
modal inputs to enhance contextual understanding
in their functionality-guided navigation agent. Sev-
eral other systems have also leveraged VLMs to
boost generalization (He et al., 2024b; Zhang et al.,
2025)

Web Agent Planning & Evaluation

Grounding Granularity
He et al. (2024b) X End-to-End
Shahbandeh et al. (2024) End-to-End
Lai et al. (2024) End-to-End
Iong et al. (2024) End-to-End
Zheng et al. (2024) End-to-End

Ours Fine-Grained

Table 1: Comparison of evaluation granularity.

2.2 Evaluation of Web Agents

Despite the increasing complexity of web agents,
most evaluation protocols remain coarse-grained,
focusing solely on the final, end-to-end task suc-
cess, instead of taking also intermediate steps into
account. Zhou et al. (2023), for instance, evaluate
agents based on final task correctness, and Li and
Waldo (2024) introduce a taxonomy of web actions
to categorize failure types. Other approaches such
as Pan et al. (2024), Miihlbacher et al. (2024) and
Xu et al. (2025) propose multi-level or composite
metrics (e.g., Success, Partial Success), yet they
still operate at the task level and do not expose
failure propagation across intermediate steps.

These evaluations provide only limited insight
into why agents fail, particularly in multistep set-
tings in which reasoning, grounding and execution
are interacting closely with each other. Without
visibility into intermediate stages, debugging be-
comes difficult, and iterative improvement remains
guesswork. In contrast, our work introduces a mod-
ular evaluation framework that decomposes the
agent pipeline into interpretable stages, enabling
fine-grained performance tracking at the level of
planning and grounding. This not only supports
targeted debugging but also opens the door to bet-
ter understanding of failure sources and their fre-
quency across tasks.

Table 1 compares recent web agents along key
dimensions relevant to evaluation: whether they im-
plement explicit planning and grounding, whether

https://anonymous.4open.science/r/WebAgent-08F1/

they support modular evaluation, and the granular-
ity of their evaluation protocols. As shown, all prior
work uses end-to-end evaluation, with no mecha-
nism for inspecting or isolating failures within the
pipeline. Our improved SeeAct agent is the only
system to support modular evaluation with stage-
level granularity, while also achieving a higher suc-
cess rate than the original SeeAct baseline. This
comparison highlights the broader need for diag-
nostic tools that go beyond task-level metrics to
enable deeper analysis of web agent behavior.

3 Methodology

We propose a modular evaluation for LLM-based
web agents that enables fine-grained diagnosis of
reasoning and grounding failures. Rather than as-
sessing only the final task outcome, our approach
decomposes an agent pipeline into interpretable
stages and evaluates each step independently. This
helps to localize error sources, understand failure
propagation, and guide system improvement.

3.1 A Modular Evaluation Framework

Our framework evaluates web agents by decom-
posing their complex behavior into distinct, inter-
pretable stages (Figure 1). This modular approach
allows for fine-grained diagnosis, as small errors
in early stages can otherwise cascade and lead to
task failure in ways that are obscured by end-to-
end metrics. Each stage is evaluated with tailored
metrics designed to reflect reasoning quality and
alignment with the ground-truth action.

Stage 1: Action Prediction (Planning) In this
initial stage, the agent observes its environment
(e.g., HTML, screenshots) and, based on the task
instruction, performs reasoning to identify relevant
elements and decide on the next abstract action.

We assess this stage with two metrics:

* Relevant Element Accuracy (RE Acc.): Mea-
sures the effectiveness of candidate generation. It
is the percentage of instances where the ground-
truth element is successfully included within the
set of candidate elements presented to the agent.

* Action Prediction Accuracy (AP Acc.): Mea-
sures the core planning decision. Given a candi-
date set known to contain the ground-truth ele-
ment, this is the percentage of times the agent’s
abstract prediction correctly identifies that ele-
ment as the target for its next action.

Stage 2: Grounding. Here, the agent’s abstract
intent from the planning stage is translated into a

concrete, executable action triplet (Element, Action,

Value). We evaluate this with a single, strict metric:

* Grounding Accuracy: The percentage of in-
stances where the fully-grounded action triplet
produced by this stage exactly matches the
ground-truth triplet. For evaluations involving
parallel batches, we only assess the batch that
contains the ground-truth action in its candidate
set.

Stage 3: Action Selection. This final stage re-
solves the outputs from the agents that have batch
processing. Since each webpage section is pro-
cessed as an independent batch, multiple viable,
grounded actions are often generated. The task
is to select the single correct action from this ag-
gregated set of candidates. We assess two distinct
strategies:

* First Viable: A simple heuristic baseline that
measures the accuracy if we simply choose the
first valid (non-None) candidate from the aggre-
gated list.

* LLM Select: Our proposed strategy measures
the accuracy of an LLM prompted to evaluate all
available viable candidates and choose the single
best one.

This modular structure supports plug-in evalua-
tion on any agent pipeline that outputs intermediate
predictions. We demonstrate its utility on the See-
Act agent and the Mind2Web benchmark.

3.2 Case Study: SeeAct + Mind2Web

To exemplify our framework, we apply it to the
SeeAct web agent (Zheng et al., 2024) and evaluate
performance on the multimodal Mind2Web dataset
(Deng et al., 2024). Below, we briefly introduce
both components and describe the adaptations we
made to support modular evaluation.

3.2.1 Mind2Web Dataset

Mind2Web is a benchmark of 2,000 multistep
tasks designed for web-based decision making (e.g.,
“Rent the cheapest SUV starting today”). Each
task contains HTML structure, full-page screen-
shots, and ground-truth user actions. Action in-
clude CLICK, TYPE, SELECT, and most tasks
require executing multiple sequential steps. One
disadvantage of the dataset is, that it accepts (in-
cludes) only one single ground-truth path, even
though multiple solutions are possible to solve a
web-task. To support more flexible and meaningful
evaluation, we augment Mind2Web with alternative
valid actions (see Section 3.4).

Action Prediction \

J
L

HTML Markup

Adaptation
Default / Visual Clues /
Textual Grounding

f/
E

Screenshot

Preprocessing &
Batching

Top n-Relevant Web
Elements + Action
Description
Element: “The search bar”

\ Operation: “Type Carl” J

i

AN

? Grounding \

/ Action Selection \

E

Action Description +
MCQ of compressed HTML First Viable
in ith
elementsin i** batch Select the first valid element
from the batches
LLM Select
Select the optimal option
ELEMENT: C

ACTION: TYPE
VALUE: Carl

\ from all the valid elements/

/

Figure 2: Overview of the adapted SeeAct pipeline. The process consists of three main stages: Action Prediction
to generate an abstract action description, Grounding to map it to a specific HTML element, and Action Selection
to choose the final command from multiple parallel batch outputs. Our adaptations, such as different Prompt
Templates (e.g., Textual Grounding), Intermediate Reasoning and the final LLM Select strategy, are shown

within this modular structure.

3.2.2 SeeAct Pipeline

SeeAct is a multimodal agent that uses vision-
language models (VLMs) to interpret HTML and
screenshots. Given a task instruction and the cur-
rent web page, it outputs an action triplet (Element,
Action, Value). The original pipeline consists of
following stages:

Preprocessing: The top-50 task-relevant HTML
elements are selected using a fine-tuned ranking
model (Deng et al., 2024) and split into several
spatial batches for parallel processing.
Planning: A VLM analyzes each batch and pre-
dicts the best next action as a natural language
description.

Grounding: For each batch, a LLM maps the
natural language action description to one of
the structured HTML candidates, producing a
grounded action triplet. If no suitable match is
present, then it selects None.

* Action Selection: A simple heuristic selects the
first non-“None” grounded action from across all
the parallel batches as the final output.

3.3 Adaptations for Fine-Grained Analysis

To better support modular evaluation and address
limitations in the original SeeAct pipeline, we in-
troduce several key improvements. We illustrate
our full adapted pipeline in Figure 2.

3.3.1 Input Modifications

A key weakness in the original framework is a po-
tential mismatch of candidate elements between
the Planning and Grounding stages. To eliminate
this, we modified the pipeline to ensure that both

stages operate on the identical set of candidate el-
ements. We then created two adaptations to guide
the agent’s reasoning:

* Textual Grounding (TG): The top-k HTML el-
ements are provided to the agent as a textual list
with unique letter identifiers, forcing the VLM
to operate within a constrained, known candidate
set.

* Visual Clues (VC): Red bounding boxes high-
light the top-k HTML elements directly on the
screenshot, constraining the agent’s visual focus.

The Default (Def) setting serves as our baseline
and is defined as the configuration where neither
the TG nor VC adaptations are applied.

3.3.2 Enhancing Reasoning and Selection

In addition to the input modifications, we imple-
mented two foundational improvements that are
applied across all experiments:

* Intermediate Reasoning: We prompt the VLM
to first identify and explain up to five relevant
elements before it selects a final action. This
provides a chain-of-thought-like mechanism for
more detailed analysis.

* LLM-based Action Selection: We replace the
original heuristic ("first viable") selection strat-
egy with a more robust LLM-based selector.
Given all grounded candidates from the parallel
batches, this module prompts an LLM to com-
pare them and choose the single most plausible
action.

3.4 Augmented Evaluation with Flexible
Ground Truth

To overcome the limitations of the original
Mind2Web labels with only one valid solution,
we identify alternative valid actions within a task,
focusing on interchangeable steps. For example,
when applying two successive filters (for instance
to buy black shoes in size 10) “size” or “color” the
order does not play any role to finish the task.

We mine such alternatives by checking whether
action-relevant HTML elements appear in multiple
steps of the same task, using minimal CSS selec-
tors. We treat these as valid substitutes when order
does not affect task correctness. Evaluation results
are reported with and without these alternatives,
providing a more realistic assessment of agent per-
formance.

4 Experimental Setup

We evaluate our approach using a combination
of state-of-the-art open-source and proprietary
language models, including Gemini, Claude,
InternVL2-LLaMA3 and GPT-4 variants. All ex-
periments are conducted on a 90-task subset (490
actions) of the multimodal Mind2Web dataset, us-
ing three test-set splits - website, domain and task
as used by Zheng et al. (2024). Detailed model
configurations are provided in Appendix E.

For optimal performance, the VC and Def adap-
tations are evaluated using four webpage sections
(batches), while TG is evaluated using five. Prelim-
inary results for decision-making are provided in
Appendix G.

Evaluating natural language outputs from the
Def and VC adaptations in the planning stage re-
quires matching free-form text descriptions to spe-
cific HTML elements. To perform this robustly, we
employ a fine-tuned neural classifier. Specifically,
we train a BGE-Small-en-v1.5 encoder (Xiao et al.,
2023) using the SetFit framework (Tunstall et al.,
2022) on 800 labeled pairs of HTML-text matches.
For the TG adaptation, evaluation is a direct string
comparison of the selected identifier (e.g., "C")
against the ground truth. Further evaluation details
are available in Appendix B.

5 Results & Analysis

We present the results of our modular evaluation,
consolidated in Table 2 and Table 3. We first es-
tablish the end-to-end performance of the agents to
provide a "black box" view. We then leverage our

fine-grained framework to diagnose the primary
sources of failure within the pipeline, demonstrat-
ing the critical insights that a modular approach
provides over a single metric.

5.1 Illusion of a single metric: Pinpointing
System-Wide Bottlenecks

From a traditional end-to-end perspective (‘First
Viable’ in Table 2), GPT-4o is the top-performing
model with 48.78% accuracy. However, this single
metric masks the true nature of agent failures. Our
modular analysis reveals two primary bottlenecks
that systematically limit performance.

The first major bottleneck is the initial ‘Ac-
tion Prediction’ stage (planning). Even the best
model, GPT-40, achieves only 70.17% accuracy
here, meaning nearly 30% of tasks fail due to
flawed initial reasoning before later stages are even
attempted. The second bottleneck is the final
‘Action Selection’ stage, where performance fur-
ther drops. More critically, our analysis of rel-
ative performance decline (Figure 3) shows that
despite varying absolute scores, all models exhibit
a remarkably similar pattern of error propagation
across the pipeline. This suggests that the bot-
tlenecks are not model-specific but are systemic
challenges inherent to the web navigation task it-
self, a key insight only visible through modular
evaluation.

1.001 Spread: 0.03

o
©
vl

Spread: 0.05

o
©
o

0.85 4 Models
Gemini Flash
Gemini Pro
Claude Sonnet
—+— [ntern-VL2
GPT4-0

—=— GPT4-0-mini

o
I
o

Relative Performance
=)
~
wv

o©
~
o

0.65 A
Rel. Elem.

AP. Acc. Grouhding LLM Select

Pipeline Stages

Figure 3: Relative performance decline across pipeline
stages for the Def adaptation. Normalizing the initial
score reveals a similar drop-off pattern across models,
pointing to a shared bottleneck.

5.2 Analysis of Adaptations

To understand the nature of the bottlenecks identi-
fied in our pipeline, we now analyze how the TG
and VC adaptations influence agent behavior.

The Textual Grounding (TG) adaptation,
which reframes element selection as a multiple-

Pipeline Stage: Action Prediction Action Selection
Adaption Model RE Acc. AP Acc. Grounding First Viable LLM Select
Gemini-1.5-flash 61.45 56.59 52.13 28.57 37.76
Gemini-1.5-pro 62.27 56.18 52.94 35.71 38.57
Def Claude 3.5 Sonnet 63.89 56.58 49.27 24.08 36.53
¢ InternVL2-Llama3-76B-AWQ 61.45 54.16 49.90 17.96 26.53
GPT-40 74.44 70.17 62.87 48.78 54.29
GPT-40-mini 61.25 57.18 52.13 28.78 33.88

Table 2: Modular evaluation results for the six models under the standard Default (Def) adaptation, measuring
accuracy at each stage of the agent pipeline. This data establishes a performance baseline.

Pipeline Stage: Action Prediction Action Selection
Adaptation Model RE Acc. AP Acc. Grounding First Viable LLM Select
Gemini-1.5-flash 62.89 56.59 47.86 22.24 31.22
vC Gemini-1.5-pro 62.48 57.80 48.47 22.65 31.02
Claude 3.5 Sonnet 63.90 58.62 52.12 21.22 37.76
InternVL2-Llama3-76B-AWQ 68.96 55.39 51.12 18.98 30.41
GPT-40 78.29 75.04 67.54 44.08 53.27
GPT-40-mini 69.57 60.63 50.91 25.51 31.84
Gemini-1.5-flash 80.9 62.01 (67.54) 60.26 21.22 37.35
TG Gemini-1.5-pro 79.72 66.74 (70.37) 63.90 24.69 42.24
Claude 3.5 Sonnet 76.07 63.7 (66.0) 60.45 23.06 37.14
InternVL2-Llama3-76B-AWQ 82.36 64.31 (72.42) 61.87 21.22 34.49
GPT-40 83.79 72.83 (79.7) 69.59 31.84 51.02
GPT-40-mini 73.22 60.47 (67.35) 5743 18.57 31.22

Table 3: Modular evaluation results for six models across two adaptations Visual Clues (VC) & Textual Grounding
(TG), measuring accuracy at each stage of the agent pipeline. As TG employs a separate evaluation pipeline for AP
Acc that removes ambiguity, we also present results of the default pipeline (in parentheses) for comparison.

choice question (MCQ), consistently yields the
highest Relevant Element and Grounding accuracy.
This confirms that a structured format is highly
effective for isolated element identification. How-
ever, this strength reveals a critical trade-off.

The core issue stems from a combination of the
binding nature of TG and the agent’s lack of global
context. Unlike the Def setting where the agent can
predict an action on an element not in the candidate
set (often leading to a "None" action later), TG
forces the agent to choose from the provided list.
As each webpage section (batch) is processed in
parallel without awareness of others, the agent is
prone to selecting a "best-fit" action within nearly
every section, even when no action is required. This
results in a significantly higher number of viable
but unnecessary candidate actions (avg. 3.91 per
five sections). This abundance of options ulti-
mately overwhelms the final Action Selection
stage, explaining why TG’s initial gains in identifi-
cation do not consistently translate to higher final
accuracy.

The Visual Clues (VC) adaptation, which pro-
vides bounding boxes on the screenshot, yielded

highly model-dependent results. While it boosted
performance for visually capable models like GPT-
4o, it offered negligible benefit—or even harmed
performance—for others. This suggests a per-
formance threshold for many models, the cogni-
tive overhead of parsing cluttered visual informa-
tion and interpreting potentially occluded bounding
boxes outweighs the directive benefit of the clues.
This highlights the current limitations in robust,
general-purpose visual grounding, where the
"help'"' provided by visual aids can instead be-
come a source of noise. Details on bounding box
occlusion analysis are in Appendix C.

5.3 Analysis of the Final Selection Stage

The final selection stage, where the agent must
commit to a single action from a set of grounded
candidates, represents the last major hurdle. Across
all configurations, our ‘LLM Select’ strategy con-
sistently outperforms the simpler ‘First Viable’
heuristic, confirming the value of sophisticated
reasoning at this final step. However, this stage
remains a significant bottleneck.

Our analysis reveals that performance is di-

rectly impacted by the number of viable options
presented to the selector. Additional informa-
tion on viable actions and selection performance
provided in Appendix D. TG (avg. 3.91) and VC
(avg. 2.93) adaptations resulted in an increased
number of viable actions compared to the Def (avg.
2.5). As the number of choices increases, selection
accuracy across models drops sharply, from an av-
erage of 73.1% with two options, down to 56.0%
with four. This highlights a critical challenge: the
agent’s task is not just to identify a correct action,
but to disambiguate it from other plausible alterna-
tives.

Distribution of Errors
Task Error

7.6% Duplicate

Reasonable Element

Action

39.2% 20,35

21.5%
11.4%

Reasoning
Error

Filter Order

Figure 4: Manual classification of errors for a Gemini-
1.5-Pro.

This problem of ambiguity is exacerbated by
two factors. First, certain adaptations naturally
produce a larger set of viable candidates, increasing
the difficulty of the final selection. Second, and
more importantly, many of these alternatives are
only "incorrect" because of the benchmark’s rigid
single-ground-truth assumption. Our manual error
analysis (Figure 4) confirms this, showing that over
50% of errors are actually Reasonable Actions and
Filter Orders.

To quantify the impact of this benchmark rigidity,
we augmented the ground truth with a small set of
these reasonable mined candidates. As shown in
Figure 5, this addition improved performance by up
to 8.3%, directly demonstrating that a significant
portion of failure at this stage is attributable to
the benchmark’s inflexibility. While our ‘LLM
Select’ strategy handles this ambiguity better than a
simple heuristic, these findings underscore the need
for more dynamic and flexible evaluation protocols
that better reflect real-world web interaction.

0.7 grounding
first_viable

0.6 lIm_combine
)
@ 0.5
=
S o4l
p-
o
S 0.3
g v
o
wo.2

0.1

0.0 — — . ‘ ‘ L

AN AN ae L 0 A
) o o W A
e a2 S G AN 4 .0
€ ?\af: € ?;(O C’C_’Ov(\ \0‘6 © ?,‘b,
Models

Figure 5: Added performance through additionally
mined candidates (Light Shaded)

5.4 Qualitative Error Analysis

To better understand the nature of the failures iden-
tified by our modular framework, we manually clas-
sified errors from a Gemini-1.5-Pro run on Test-

Website split (168 samples) into five categories.

The distribution is shown in Figure 4.

* Reasonable Actions (39.2%): This category in-
cludes semantically correct but non-matching ac-
tions, such as clicking on the Nike brand page
instead of the "Shoes" category when the task is
to buy Nike shoes. Another example is choosing
to use the search bar rather than applying filters.
While these actions are valid and align with the
overall task intent, they deviate from the recorded
ground-truth sequence.

¢ Alternative Filter Usage and Order (11.4%):
These errors occur when filters are applied in a
different order—for example, filtering by color
first and then size, or vice versa. We address this
issue of filter order variation with our extended
ground truth candidate set (Section 3.4).

* Reasoning Errors (21.5%): These are genuine
failures of logic, where the agent misunderstands
the task or the webpage content, such as selecting
a clearly incorrect item. This represents the core
challenge for improving the models’ planning
capabilities.

* Duplicate Element Errors (20.3%): These
errors happen when the agent can’t tell apart
similar-looking elements, because the com-
pressed HTML doesn’t provide enough detail.
The agent either selects a semantically similar
element or fails due to insufficiently descriptive
compressed HTML. This highlights a key weak-

ness in the grounding stage. An example of am-
biguous HTML scenarios in Appendix F .

» Task Errors (7.6%): These small percentage
of errors were attributed to suspected issues in
the Mind2Web labeling process where actions
don’t match the task or issues with reference
screenshots.

This qualitative analysis reinforces our main
quantitative findings that the two largest sources
of failure stem not from trivial errors, but from
the agent’s difficulty with benchmark ambi-
guity (Reasonable Actions) and poor ground-
ing/selection signals (Duplicate Elements).

6 Discussion

Our modular evaluation has uncovered several key
insights with broader implications for the design
and evaluation of web agents.

Pinpointing the Core Reasoning Failures A
key implication of our work is that end-to-end met-
rics mask the true nature of agent failure. By decon-
structing the pipeline, our modular analysis reveals
that the agent’s journey is bookended by two stages
of intense difficulty: initial Planning and final Ac-
tion Selection. While errors do occur at every
step, these two high-level reasoning tasks repre-
sent the primary bottlenecks where the majority of
performance is lost. This finding shifts the focus
of future research away from uniform pipeline im-
provements and towards targeted advancements in
the agent’s core decision-making faculties: form-
ing an effective initial plan and disambiguating the
best final action from a set of plausible alternatives.

The Design Tension Our findings on the Textual
Grounding (TG) adaptation reveal a critical design
tension in parallelized web agents. The architec-
ture’s choice to process webpage sections in iso-
lated batches creates a lack of global state, which
interacts negatively with structured-input formats
like TG. Without inter-batch communication, each
batch independently selects its most plausible local
action, unable to determine if the true target has
already been found elsewhere. This architectural
design consistently leads to an over-generation of
viable candidate actions. The final ‘Action Selec-
tion’ stage is therefore burdened not with identi-
fying a correct action, but with disambiguating it
from a flood of plausible but unnecessary alterna-
tives, which directly results in lower accuracy. This
demonstrates that efficiency gains from paralleliza-

tion can be nullified if the agent lacks a mechanism
to maintain a coherent, global understanding of the
task.

Rethinking Benchmarking Our analysis, partic-
ularly the error classification and the performance
boost from mined candidates, compellingly shows
that a significant portion of measured "errors" are
actually reasonable alternative solutions not cap-
tured by the single-ground-truth paradigm of bench-
marks like Mind2Web. This has profound implica-
tions for the field. It calls for an urgent shift towards
more flexible evaluation protocols that can accom-
modate multiple valid action paths. The continued
reliance on rigid benchmarks not only inaccurately
penalizes sophisticated models but also steers re-
search away from solving real-world ambiguity.
We echo the call for more dynamic, live-web eval-
uation environments (Zhou et al., 2023) that can
provide a more faithful assessment of an agent’s
true reasoning capabilities.

7 Conclusion

This study demonstrates the utility of modular eval-
uation for understanding and improving multi-step
web agents. Using web navigation as a case study,
we adapted the SeeAct framework to trace informa-
tion flow across stages—from perception to action
selection—by introducing targeted input modifi-
cations, refined prompting strategies, and a novel
LLM-based Action Selection module. Our mod-
ular framework supports fine-grained evaluation
through both LLM-based and algorithmic metrics.

Experiments across six models on the
Mind2Web benchmark not only improved See-
Act’s baseline performance but also uncovered key
design insights for future web agents:

* Section-aware reasoning: Incorporating global
page layout and structural context can aid batch-
wise perception and decision-making.

* Visual-semantic grounding: Tightening the
connection between screenshot regions and
HTML markup is crucial for robust grounding.

* Flexible supervision: Supporting multiple valid
actions, rather than relying on a single ground
truth, better reflects the ambiguity and flexibility
of real-world web tasks.

We hope this evaluation method encourages
more interpretable, diagnostic evaluation for com-
plex decision-making agents beyond the web set-
ting.

8 Limitations

Our study demonstrates the value of modular evalu-
ation through a case study on web navigation, but it
is limited by its focus on a single framework (See-
Act) and benchmark. While modular evaluation is
beneficial for NLP research, it may not apply to
agents where intermediate steps lack direct align-
ment with ground truth. Additionally, although
we evaluated six diverse V-LLMs, the inclusion
of only one open-source model may underrepre-
sent the performance variety in open-source SOTA
models.

References

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,

36.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka
Matsuo, Aleksandra Faust, Shixiang Shane Gu, and
Izzeddin Gur. 2024. Multimodal web navigation
with instruction-finetuned foundation models. In The
Twelfth International Conference on Learning Repre-
sentations.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. 2024. A real-world webagent with plan-
ning, long context understanding, and program syn-
thesis. In The Twelfth International Conference on
Learning Representations.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Saf-
dari, Austin Huang, Aakanksha Chowdhery, Sharan
Narang, Noah Fiedel, and Aleksandra Faust. 2023.
Understanding HTML with large language models.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 2803-2821, Singapore.
Association for Computational Linguistics.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024a. Webvoyager: Building an end-to-
end web agent with large multimodal models. arXiv
preprint arXiv:2401.13919.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024b. WebVoyager: Building an end-to-
end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6864—6890, Bangkok, Thailand.
Association for Computational Linguistics.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,

Yuxiao Dong, Ming Ding, and 1 others. 2024. Coga-
gent: A visual language model for gui agents. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14281-14290.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai,
Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong,
and Jie Tang. 2024. OpenWebAgent: An open toolkit
to enable web agents on large language models. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 3: Sys-
tem Demonstrations), pages 72-81, Bangkok, Thai-
land. Association for Computational Linguistics.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2024. Language models can solve computer tasks.
Advances in Neural Information Processing Systems,

36.

Hanyu Lai, Xiao Liu, Iat Long Tong, Shuntian Yao, Yux-
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. 2024.
Autowebglm: A large language model-based web
navigating agent. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, page 5295-5306, New York,
NY, USA. Association for Computing Machinery.

Eric Li and Jim Waldo. 2024. Websuite: Systemati-
cally evaluating why web agents fail. arXiv preprint
arXiv:2406.01623.

Chang Liu, Xiaoguang Li, Lifeng Shang, Xin Jiang,
Qun Liu, Edmund Lam, and Ngai Wong. 2023. Grad-
ually excavating external knowledge for implicit com-
plex question answering. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 14405-14417.

Robert Lo, Abishek Sridhar, Frank Xu, Hao Zhu, and
Shuyan Zhou. 2023. Hierarchical prompting assists
large language model on web navigation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10217-10244, Singapore.
Association for Computational Linguistics.

Sahisnu Mazumder and Oriana Riva. 2021. FLIN: A
flexible natural language interface for web navigation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2777-2788, Online. Association for Computa-
tional Linguistics.

Peter Miihlbacher, Nikos I Bosse, and Lawrence Phillips.
2024. Towards a realistic long-term benchmark
for open-web research agents. arXiv preprint
arXiv:2409.14913.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei
Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, and Zhengyang Wu. 2024.
Webcanvas: Benchmarking web agents in online en-
vironments. In Agentic Markets Workshop at ICML
2024.

https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://doi.org/10.18653/v1/2023.findings-emnlp.185
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://openreview.net/forum?id=O1FaGasJob
https://openreview.net/forum?id=O1FaGasJob
https://openreview.net/forum?id=O1FaGasJob

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, and 1 others. 2023. Taskweaver:
A code-first agent framework. arXiv preprint
arXiv:2311.17541.

Mobina Shahbandeh, Parsa Alian, Noor Nashid, and
Ali Mesbah. 2024. Naviqate: Functionality-
guided web application navigation. arXiv preprint
arXiv:2409.10741.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan
McDonald. 2024. Step: Stacked 1lm policies for web
actions. To appear in COLM 2024.

Hao Sun, Hengyi Cai, Bo Wang, Yingyan Hou, Xi-
aochi Wei, Shuaiqiang Wang, Yan Zhang, and Dawei
Yin. 2023. Towards verifiable text generation with
evolving memory and self-reflection. arXiv preprint
arXiv:2312.09075.

Lewis Tunstall, Nils Reimers, Unso Eun Seo Jo, Luke
Bates, Daniel Korat, Moshe Wasserblat, and Oren
Pereg. 2022. Efficient few-shot learning without
prompts. ENLSP Workshop @ NeurIPS 2022.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, and 1 others. 2024. A survey
on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Cheng Xiong, Gengfeng Zheng, Xiao Ma, Chunlin Li,
and Jiangfeng Zeng. 2025. Delphiagent: A trustwor-
thy multi-agent verification framework for automated
fact verification. Information Processing Manage-
ment, 62(6):104241.

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam-
pagna, Larry Heck, James Landay, and Monica Lam.
2021. Grounding open-domain instructions to auto-
mate web support tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1022—1032, Online.
Association for Computational Linguistics.

Tiangi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen,
Zecheng Zhang, Xiang Yao, Zhigiang Xie, Yongchao
Chen, Shilong Liu, Bochen Qian, Anjie Yang, Zhaox-
uan Jin, Jianbo Deng, Philip Torr, Bernard Ghanem,
and Guohao Li. 2025. CRAB: Cross-environment
agent benchmark for multimodal language model
agents. In Findings of the Association for Computa-
tional Linguistics: ACL 2025, pages 21607-21647,
Vienna, Austria. Association for Computational Lin-
guistics.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024. Agent lumos: Unified and

10

modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12380-12403.

Danging Zhang, Balaji Rama, Jingyi Ni, Shiying He,
Fu Zhao, Kunyu Chen, Arnold Chen, and Junyu Cao.
2025. LiteWebAgent: The open-source suite for
VLM-based web-agent applications. In Proceedings
of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational
Linguistics: Human Language Technologies (System
Demonstrations), pages 449-455, Albuquerque, New
Mexico. Association for Computational Linguistics.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin,
Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neu-
big, and 1 others. 2025. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv
preprint arXiv:2504.07079.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, and 1 others. 2023.
Webarena: A realistic web environment for build-
ing autonomous agents. Agent Learning in Open-
Endedness (ALOE) Workshop @ NeurIPS 2023.

A Full Prompt Example

Table 4 presents the adapted SeeAct prompting
scheme used in our work.

B Evaluating Relevant Elements

In this section, we present the pipeline used to
evaluate the Action Prediction stage, focusing on
the creation of two key metrics: Relevant Element
(RE Acc.) and Action Prediction Accuracy (AP
Acc). These metrics assess whether the elements
involved in or the final action align with the ground
truth. Additionally, for the intermediate reasoning
stage, we determine whether each listed element is
relevant to the task based on the LLM’s description.

Due to the non-deterministic structure of the Ac-
tion Prediction output, we use an LLM (Gemini-
1.5-Flash) to extract elements from the reasoning
stage. This process generates a JSON object con-
taining the extracted text for each element along
with a Boolean value indicating its relevance, as
determined by the description in the output. An
overview of the pipeline and inputs is shown in
Figure 6.

We implemented two variants of the pipeline, de-
pending on the presence of the Textual Grounding

https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.18653/v1/2021.naacl-main.80
https://doi.org/10.18653/v1/2021.naacl-main.80
https://doi.org/10.18653/v1/2021.naacl-main.80
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://doi.org/10.18653/v1/2025.naacl-demo.36
https://doi.org/10.18653/v1/2025.naacl-demo.36
https://doi.org/10.18653/v1/2025.naacl-demo.36

System Role:

Imagine that you are imitating humans doing web navigation for a task step by step. At each
stage, you can see the webpage like humans by a screenshot and know the previous actions
before the current step decided by yourself through recorded history. You need to decide on the
first following action to take. You can click an element with the mouse, select an option, or type
text with the keyboard. (For your understanding, they are like the click(), select_option() and
type() functions in playwright respectively) One next step means one operation within the three.

Action Prediction:

You are asked to complete the following task: {rask}
Previous Actions: {prev_actions}

The screenshot below shows a section of a webpage. In this screenshot web elements of interest
are outlined with red bounding boxes. Ensure to focus any actions on the highlighted elements.
Follow the following guidance to think step by step before outlining the next action step at the
current stage:

(Current Webpage Identification) Firstly, think about the purpose of this webpage section. Note
that you are given section {batch_id}/{total_batches} of the webpage.

(Previous Action Analysis) Secondly, combined with the screenshot, analyze each step of the
previous action history and their intention one by one. Particularly, pay more attention to the last
step, which may be more related to what you should do now as the next step.

(Web Element Analysis) The screenshot shows {num_candidates} web elements (such as links,
buttons, and input fields) highlighted with red bounding boxes. Below is a textual description of
the {num_candidates} highlighted elements: {choices_simple}

Select up to 5 elements that are most likely to be interacted with based on the current task
and previous actions. For each of these 5 elements, describe its general function (e.g., "This
date-picker allows the user to select a date for booking a flight.") and explain if interacting with
this element is relevant to the task.

(Next Action Based on Webpage and Analysis) Then, based on your analysis, in conjunction
with human web browsing habits and the logic of web design, decide on the following action.
Note that this section of the webpage may contain no viable element to interact with. In this case,
you should issue a “None” action. In case there is a viable action clearly outline which element
in the webpage users will operate with as the first next target element, its detailed location, and
the corresponding operation.

To be successful, it is important to follow the following rules:
1. You should only issue a valid action given the current observation.
2. You should only issue one action at a time"""

Action Grounding:

(Reiteration) First, reiterate your next target element, its detailed location, and the corresponding
operation.

(Multichoice Question) Below is a multi-choice question where the choices correspond to the
highlighted elements in the screenshot. The choices are sorted to correspond to their occurrence
on the website (top-left to bottom-right). From the screenshot, find out where and what each one
is on the webpage. Then, determine whether one matches your target element. Please examine
the choices one by one. Choose the matching one. If multiple options match your answer, choose
the most likely one by re-examining the screenshot, the choices, and your further reasoning.

{choices)

(Final Answer) Finally, conclude your answer using the format below. Ensure your answer is
strictly adhering to the format provided below. Please do not leave any explanation in your
answers of the final standardized format part, and this final part should be clear and certain. The
element choice, action, and value should be in three separate lines.

Format:

ELEMENT: The uppercase letter of your choice.

ACTION: Choose an action from CLICK, TYPE, SELECT.
VALUE: Provide additional input based on ACTION.

The VALUE means: If ACTION == TYPE, specify the text to be typed. If ACTION == SELECT,
specify the option to be chosen. If ACTION == CLICK, write "None". """

Table 4: Full Prompt Example

11

Textual Grounding Evaluation

(Web Element Analysis)

- ™Element F** This element is a filter for gender. It allows the user to
select a gender for the pajamas. This is relevant to the task because the
user is looking for boys' pajamas.

- ™Element G:* This element is a filter for size type. It allows the user to

select a size range for the pajamas. This is relevant to the task because
the user is looking for infant pajamas.

l/”Ex;ﬂed Data Groundtruth

~ - ~ , .
F: relevant F
G: relevant
\ J \ J

‘ LLM

(Web Element Analysis)

Default Grounding Evaluation

//, \\\

- *Element 1:**
- Description: A dropdown menu with the text "Top Cities"and a ...
- Function: Allows the user to select a city for the event search.
- Relevance: Relevant fo the task.

- *Element 2:**
- Description: A list of cities within the dropdown menu, including ...
- Function: Displays the available cities for the event search.
- Relevance: Relevant to the task.

Lf/ Extracted Data
) o ™

| (Element:
‘ LLM - Description- A dropdown menu
- Function: Allows the userto ...,
Relevant: True)

| *Element 2:%*)
\ vy
Groundtruth

Ty
@ (a Top Cities }
L)

Classifier
Medel

Figure 6: Extraction & Matching pipeline for Action Prediction evaluation

(TG) adaptation. TG simplifies the matching of
extracted elements to the ground truth by providing
a capital letter identifier, along with a compressed
HTML representation, as input during the Action
Prediction stage. The LLM detects this identifier
(Figure 6), allowing us to match it with the ground
truth identifier.

Metric | Value (%)
Accuracy 86.18
Precision 79.28

Recall 82.59
F1 Score 80.09

Table 5: Results of Element matching via classifier

When TG is not enabled, the matching process
becomes more complex, as the element descrip-
tions rely solely on visual context, losing any pre-
defined structure. In this case, we still use the LLM
to extract listing elements but introduce a secondary
classification stage to verify matches. This classi-
fier, BGE-small, was trained using the SetFit frame-
work on 800 manually labeled samples, with 100
additional samples used for evaluation. Each sam-
ple consists of an extracted listing element and its
corresponding ground truth HTML representation.
The 800 samples were drawn from Action Predic-
tion outputs across four different LLMs (Gemini
Flash/Pro, GPT 40/mini) to ensure robustness to

U mpace] I studentd T miitarff togin]I

Figure 7: Bounding Box Occlusion Example (parame-
ters chosen to favor occlusion)

structural variations. Evaluation results are pre-
sented in Table 5.

We also experimented with using LLMs directly
for matching but found their performance to be
suboptimal in both zero- and few-shot scenarios.

C Bounding-Box occlusion

The Visual Clues (VC, see Section 3.3.1) adapta-
tion introduces red bounding boxes on webpage
images to guide element selection during web navi-
gation tasks.Below we illustrate the problems that
can arise from creating bounding boxes based on
the coordinates provided by the Mind2Web dataset
(Deng et al., 2024). An example screenshot of a
webpage section is presented in Figure 7. To pro-
vide a clear illustration of these issues, we adjusted
pre-processing parameters to favor occlusion; in
actual pipeline inference, these effects are typically
less pronounced.

Model TG VC Def.
Gemini Flash 4.32 299 2.68
Gemini Pro 3.69 299 234
Claude Sonnet 4.00 292 2.71
InternVL2 394 344 324
GPT-40 329 234 193
GPT-40-mini 4.23 294 2.59

Table 6: Average number of viable action per model and
adaptation

Excessive Nesting of Section Candidates This
issue occurs when the ranking model returns multi-
ple hierarchically related elements for the same
section. Consequently, multiple tightly packed
bounding boxes may overlap, obstructing the con-
tent of neighboring web elements. Additionally, the
bounding box of a parent container might intersect
with surrounding elements, further complicating
the visual representation.

Non-Visible Elements Bounding boxes may also
be created for elements that do not correspond to
visible content in the image. This can potentially
confuse the LLM’s understanding of the drawn
bounding boxes. Such elements include those with-
out visible content (e.g., elements lacking text) or
elements that are not currently displayed, such as
dropdown menu items within a collapsed dropdown
menu.

This section highlights the extra visual under-
standing required to fully benefit from Visual Clues.
While addressing occlusion issues is beyond our
scope, preliminary tests suggest that merging neigh-
boring bounding boxes could mitigate them.

D Number of viable Actions

Processing a webpage in multiple sections
(batches) causes the Grounding stage to return an
equal number of potential actions. These actions
can be viable or include a "None" action, resulting
from the LLM deciding not to act or a mismatch
between the predicted action and the grounding
candidate set. In the subsequent Action Selection
stage, only viable actions are considered. There-
fore, the number of viable actions determines the
difficulty of the action selection process by setting
the number of options to choose from.

Using the modular evaluation results, we calcu-
lated the average number of viable actions across
models and adaptations (Table 6).

13

Number of Options
Model 2 3 4
Gemini Flash 69.43 68.67 58.85
Gemini Pro 7222 66.5 59.04
Claude 80.15 7543 60.07
InternVL2 68.9 63.8 51.1
GPT-40 75.2 68.7 528
GPT-40-mini 72.92 5839 539

Table 7: LLM selection accuracy by number of options

We find that TG consistently yields the most
viable actions, followed by VC and then Def, sug-
gesting that additional constraints during the Ac-
tion Prediction stage lead to more actions returned.
Note that TG was run with 5 sections while VC
and Def were run with 4, based on optimal setups
for each adaptation. Notably, GPT4-o0 produces
the fewest viable actions across all three adapta-
tions. InternVL2 results in the highest number in
two out of three adaptations, closely matching the
maximum in the third.

In our second analysis (Table 7), we examined
how the number of choices affects action selection
accuracy.

We observed that performance declines as the
number of actions increases. Claude consistently
outperforms other models across all stages, while
InternVL2 performs the worst. Since these metrics
are based on the modular evaluation results, each
model encounters varying numbers of selections
with 2, 3, or 4 options depending on prior perfor-
mance. Excluding Claude as an outlier, selection
accuracy with two actions ranges from 68.9% to
75.2%. Indicating that even when faced with only
two viable actions models face notable uncertainty.

E Model Specifications

In Table 8 we introduce the specific model versions.
Each model was prompted with a temperature of
0.0 to ensure maximal reproducibility during ex-
periments.

For the Open-Source model (InternVL2) a single
A100 80GB GPU was utilized for inference.

F Web Element Ambiguity

Below we give a brief overview of three scenarios
in which the ambiguous choices influenced the web
agents decision making:

Model Version / Release date

Gemini 1.5 Flash
Gemini 1.5 Pro

Claude Sonnet
InternVL2-LLama3 76b

001 / May 2024
001 / May 2024
3.5/20.06.2024
Quantized Version

from Huggingface
GPT4o0 06.08.2024
GPT40-mini 18.07.2024

Table 8: Model Versions

* Identical Compressed HTML: Multiple but-
tons with the text "booking" cannot be dis-
tinguished by their representation, leading to
ambiguity. This calls for including additional
context of surrounding HTML elements to
uniquely identify each button.

Related HTML Elements: The LLM may
choose to interact with a parent element of the
ground truth element. While the action would
be viable when executed in the browser, it is
considered incorrect by Mind2Web’s evalua-
tion criteria.

Sibling HTML Elements: A checkbox fil-
ter may be accompanied by a link adjacent
to it, where clicking either has the same ef-
fect. Mind2Web considers only one as the
correct action. As SeeACT utilizes a com-
pressed HTML representation (HTML repr.)
that highlights salient features of web ele-
ments the representation of both may appear
similar: (checkbox price range 50) vs. (a price
50)

G Selecting number of webpage sections

Our experiments stretch six models and three adap-
tations totaling 18 ablations. The main hyper-
paremter to set in the SeeAct framework (Zheng
et al., 2024) is the number of webpage sections
(batches) into which the website is split for parallel
processing. We decided on using four sections for
Default (Def) and Visual Clues (VC) adaptaions
as well as five for Textual Grounding (TG). We
base this decision on selecting the optimal number
of sections through a preliminary result where we
ablated 4-5 sections using Gemini-1.5-Flash on the
Website split (168 samples). Results of this pre-
liminary study are provided in Table 9. Based on
the optimal LLM Select performance we chose the

14

aforementiond number of batches.

Metric TG VC Def
Num Batches = 4
Grounding 46.15 42.01 46.7
First Viable 22.02 19.6 25
LLM Select 26.7 29.7 36.3
Num Batches = 5
Grounding 54.51 50 4941
First Viable 18.45 22.19 22
LLM Select 32.7 284 29.76

Table 9: Results for varying number of batches on Web-
site split (168) samples using Gemini-Flash

https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B-AWQ

	Introduction
	Related Work & Background
	Web Agents
	Evaluation of Web Agents

	Methodology
	A Modular Evaluation Framework
	Case Study: SeeAct + Mind2Web
	Mind2Web Dataset
	SeeAct Pipeline

	Adaptations for Fine-Grained Analysis
	Input Modifications
	Enhancing Reasoning and Selection

	Augmented Evaluation with Flexible Ground Truth

	Experimental Setup
	Results & Analysis
	Illusion of a single metric: Pinpointing System-Wide Bottlenecks
	Analysis of Adaptations
	Analysis of the Final Selection Stage
	Qualitative Error Analysis

	Discussion
	Conclusion
	Limitations
	Full Prompt Example
	Evaluating Relevant Elements
	Bounding-Box occlusion
	Number of viable Actions
	Model Specifications
	Web Element Ambiguity
	Selecting number of webpage sections

