
Detecting Pipeline Failures through Fine-Grained Analysis of Web Agents

Anonymous ACL submission

Abstract001

Web agents powered by large language mod-002
els (LLMs) can autonomously perform com-003
plex, multistep tasks in dynamic web environ-004
ments. However, current evaluations mostly005
focus on the overall success while overlook-006
ing intermediate errors. This limits insight into007
failure modes and hinders systematic improve-008
ment. This work analyzes existing benchmarks009
and highlights the lack of fine-grained diag-010
nostic tools. To address this gap, we propose011
a modular evaluation framework that decom-012
poses agent pipelines into interpretable stages013
for detailed error analysis. Using the SeeAct014
framework and the Mind2Web dataset as a case015
study, we show how this approach reveals ac-016
tionable weaknesses missed by standard met-017
rics - paving the way for more robust and gen-018
eralizable web agents.019

1 Introduction020

AI agents powered by large language models021

(LLMs) are increasingly deployed in real-world ap-022

plications that require complex, multistep decision-023

making, such as coding assistance (Qiao et al.,024

2023), question answering (Liu et al., 2023), au-025

tomated fact verification (Sun et al., 2023; Xiong026

et al., 2025) and web navigation (Yin et al., 2024;027

He et al., 2024a; Zheng et al., 2024, 2025). These028

systems typically decompose tasks into modular029

pipelines, allowing structured reasoning across sev-030

eral intermediate steps. However, evaluation meth-031

ods predominantly focus on end-to-end task suc-032

cess, offering limited visibility into intermediate033

reasoning and decision-making processes. This034

coarse-grained perspective obscures how and why035

agents fail - hindering systematic debugging, er-036

ror diagnosis, and safe deployment in real-world037

scenarios where failures can lead to inefficiencies,038

degraded user experiences, or unintended behavior.039

Web navigation presents a particularly challeng-040

ing setting for LLM-based agents, requiring mul-041

Figure 1: Modular evaluation of the SeeAct agent re-
veals performance across distinct pipeline stages.

timodal reasoning over structured HTML, natu- 042

ral language, and visual elements. In this context, 043

agents must interpret dynamic and often ambigu- 044

ous information while executing a sequence of in- 045

terdependent actions. Small errors in early stages 046

- such as misinterpreting context or selecting the 047

wrong subgoal - can propagate through the pipeline 048

and lead to final task failure. Yet, most existing 049

benchmarks and studies, such as those based on the 050

Mind2Web dataset (Zheng et al., 2024; Deng et al., 051

2024), evaluate only final task outcomes. This lim- 052

its our understanding of where errors occur and 053

how agent decisions break down in practice. 054

To address this gap, we propose a modular eval- 055

uation that decomposes web agent pipelines into 056

interpretable stages, including subgoal planning, 057

information grounding, and action selection, and 058

enables fine-grained error analysis across each 059

step. Our goal is not only to expose failure modes 060

more systematically, but also to motivate a shift 061

toward diagnostic evaluation practices for LLM- 062

based agents. 063

As a case study, we apply our modular evaluation 064

to SeeAct (Zheng et al., 2024), a multimodal web 065

agent that uses vision-language models (VLMs) 066

to perceive and act within web interfaces. Our 067

1



contributions are as follows:068

• Introduction of a a conceptual modular evalua-069

tion that captures reasoning quality at each stage070

of the agent pipeline, providing a comprehensive071

error analysis.072

• Extending of the SeeAct architecture by en-073

hancing input representations and improving the074

heuristic action selection.075

• Augmentation of the Mind2Web evaluation076

protocol by introducing alternative valid ac-077

tion annotations, addressing limitations of rigid078

single-ground-truth assumptions and better re-079

flecting real-world flexibility.080

Our experiments show that modular evaluation081

reveals systematic challenges such as context frag-082

mentation, grounding errors, and ambiguity in083

HTML-based interfaces - issues often missed by084

standard metrics. By enabling step-wise diagnosis,085

our approach supports debugging, robustness test-086

ing, and system improvement - key capabilities for087

advancing reliable and generalizable LLM-based088

web agents. We release1 our evaluation toolkit089

and SeeAct reimplementation to facilitate further090

research in this direction.091

2 Related Work & Background092

2.1 Web Agents093

Web agents are systems designed to execute action094

sequences on web interfaces based on natural lan-095

guage instructions (Mazumder and Riva, 2021; Xu096

et al., 2021). Traditional agents have struggled with097

diverse layouts and the complexity of web struc-098

tures. Recent advances in large language models099

(LLMs) have enabled agents to infer contextually100

appropriate actions from natural language inputs,101

greatly expanding their versatility across tasks (Fu-102

ruta et al., 2024; Gur et al., 2023; Sodhi et al., 2024;103

Wang et al., 2024).104

A persistent challenge lies in effectively inter-105

preting HTML content, which often lacks semantic106

clarity or task-specific grounding, making accurate107

action selection difficult (Deng et al., 2024; Gur108

et al., 2024; Kim et al., 2024; Lo et al., 2023). To109

address this, several systems incorporate vision-110

language models (VLMs) that combine visual per-111

ception with language understanding—improving112

both generalization and task success rates. Zheng113

et al. (2024) introduced a multimodal agent that114

uses screenshots of web pages for visual under-115

standing and acting on the web. Hong et al. (2024)116

1Anonymous Github Repo

extended this idea with a generalist agent capa- 117

ble of reasoning across diverse visual domains. 118

Shahbandeh et al. (2024) further integrate multi- 119

modal inputs to enhance contextual understanding 120

in their functionality-guided navigation agent. Sev- 121

eral other systems have also leveraged VLMs to 122

boost generalization (He et al., 2024b; Zhang et al., 123

2025) 124

Web Agent Planning & Evaluation
Grounding Granularity

He et al. (2024b) ✗ End-to-End
Shahbandeh et al. (2024) ✓ End-to-End
Lai et al. (2024) ✓ End-to-End
Iong et al. (2024) ✓ End-to-End
Zheng et al. (2024) ✓ End-to-End
Ours ✓ Fine-Grained

Table 1: Comparison of evaluation granularity.

2.2 Evaluation of Web Agents 125

Despite the increasing complexity of web agents, 126

most evaluation protocols remain coarse-grained, 127

focusing solely on the final, end-to-end task suc- 128

cess, instead of taking also intermediate steps into 129

account. Zhou et al. (2023), for instance, evaluate 130

agents based on final task correctness, and Li and 131

Waldo (2024) introduce a taxonomy of web actions 132

to categorize failure types. Other approaches such 133

as Pan et al. (2024), Mühlbacher et al. (2024) and 134

Xu et al. (2025) propose multi-level or composite 135

metrics (e.g., Success, Partial Success), yet they 136

still operate at the task level and do not expose 137

failure propagation across intermediate steps. 138

These evaluations provide only limited insight 139

into why agents fail, particularly in multistep set- 140

tings in which reasoning, grounding and execution 141

are interacting closely with each other. Without 142

visibility into intermediate stages, debugging be- 143

comes difficult, and iterative improvement remains 144

guesswork. In contrast, our work introduces a mod- 145

ular evaluation framework that decomposes the 146

agent pipeline into interpretable stages, enabling 147

fine-grained performance tracking at the level of 148

planning and grounding. This not only supports 149

targeted debugging but also opens the door to bet- 150

ter understanding of failure sources and their fre- 151

quency across tasks. 152

Table 1 compares recent web agents along key 153

dimensions relevant to evaluation: whether they im- 154

plement explicit planning and grounding, whether 155

2

https://anonymous.4open.science/r/WebAgent-08F1/


they support modular evaluation, and the granular-156

ity of their evaluation protocols. As shown, all prior157

work uses end-to-end evaluation, with no mecha-158

nism for inspecting or isolating failures within the159

pipeline. Our improved SeeAct agent is the only160

system to support modular evaluation with stage-161

level granularity, while also achieving a higher suc-162

cess rate than the original SeeAct baseline. This163

comparison highlights the broader need for diag-164

nostic tools that go beyond task-level metrics to165

enable deeper analysis of web agent behavior.166

3 Methodology167

We propose a modular evaluation for LLM-based168

web agents that enables fine-grained diagnosis of169

reasoning and grounding failures. Rather than as-170

sessing only the final task outcome, our approach171

decomposes an agent pipeline into interpretable172

stages and evaluates each step independently. This173

helps to localize error sources, understand failure174

propagation, and guide system improvement.175

3.1 A Modular Evaluation Framework176

Our framework evaluates web agents by decom-177

posing their complex behavior into distinct, inter-178

pretable stages (Figure 1). This modular approach179

allows for fine-grained diagnosis, as small errors180

in early stages can otherwise cascade and lead to181

task failure in ways that are obscured by end-to-182

end metrics. Each stage is evaluated with tailored183

metrics designed to reflect reasoning quality and184

alignment with the ground-truth action.185

Stage 1: Action Prediction (Planning) In this186

initial stage, the agent observes its environment187

(e.g., HTML, screenshots) and, based on the task188

instruction, performs reasoning to identify relevant189

elements and decide on the next abstract action.190

We assess this stage with two metrics:191

• Relevant Element Accuracy (RE Acc.): Mea-192

sures the effectiveness of candidate generation. It193

is the percentage of instances where the ground-194

truth element is successfully included within the195

set of candidate elements presented to the agent.196

• Action Prediction Accuracy (AP Acc.): Mea-197

sures the core planning decision. Given a candi-198

date set known to contain the ground-truth ele-199

ment, this is the percentage of times the agent’s200

abstract prediction correctly identifies that ele-201

ment as the target for its next action.202

Stage 2: Grounding. Here, the agent’s abstract203

intent from the planning stage is translated into a204

concrete, executable action triplet (Element, Action, 205

Value). We evaluate this with a single, strict metric: 206

• Grounding Accuracy: The percentage of in- 207

stances where the fully-grounded action triplet 208

produced by this stage exactly matches the 209

ground-truth triplet. For evaluations involving 210

parallel batches, we only assess the batch that 211

contains the ground-truth action in its candidate 212

set. 213

Stage 3: Action Selection. This final stage re- 214

solves the outputs from the agents that have batch 215

processing. Since each webpage section is pro- 216

cessed as an independent batch, multiple viable, 217

grounded actions are often generated. The task 218

is to select the single correct action from this ag- 219

gregated set of candidates. We assess two distinct 220

strategies: 221

• First Viable: A simple heuristic baseline that 222

measures the accuracy if we simply choose the 223

first valid (non-None) candidate from the aggre- 224

gated list. 225

• LLM Select: Our proposed strategy measures 226

the accuracy of an LLM prompted to evaluate all 227

available viable candidates and choose the single 228

best one. 229

This modular structure supports plug-in evalua- 230

tion on any agent pipeline that outputs intermediate 231

predictions. We demonstrate its utility on the See- 232

Act agent and the Mind2Web benchmark. 233

3.2 Case Study: SeeAct + Mind2Web 234

To exemplify our framework, we apply it to the 235

SeeAct web agent (Zheng et al., 2024) and evaluate 236

performance on the multimodal Mind2Web dataset 237

(Deng et al., 2024). Below, we briefly introduce 238

both components and describe the adaptations we 239

made to support modular evaluation. 240

3.2.1 Mind2Web Dataset 241

Mind2Web is a benchmark of 2,000 multistep 242

tasks designed for web-based decision making (e.g., 243

“Rent the cheapest SUV starting today”). Each 244

task contains HTML structure, full-page screen- 245

shots, and ground-truth user actions. Action in- 246

clude CLICK, TYPE, SELECT, and most tasks 247

require executing multiple sequential steps. One 248

disadvantage of the dataset is, that it accepts (in- 249

cludes) only one single ground-truth path, even 250

though multiple solutions are possible to solve a 251

web-task. To support more flexible and meaningful 252

evaluation, we augment Mind2Web with alternative 253

valid actions (see Section 3.4). 254

3



Figure 2: Overview of the adapted SeeAct pipeline. The process consists of three main stages: Action Prediction
to generate an abstract action description, Grounding to map it to a specific HTML element, and Action Selection
to choose the final command from multiple parallel batch outputs. Our adaptations, such as different Prompt
Templates (e.g., Textual Grounding), Intermediate Reasoning and the final LLM Select strategy, are shown
within this modular structure.

3.2.2 SeeAct Pipeline255

SeeAct is a multimodal agent that uses vision-256

language models (VLMs) to interpret HTML and257

screenshots. Given a task instruction and the cur-258

rent web page, it outputs an action triplet (Element,259

Action, Value). The original pipeline consists of260

following stages:261

• Preprocessing: The top-50 task-relevant HTML262

elements are selected using a fine-tuned ranking263

model (Deng et al., 2024) and split into several264

spatial batches for parallel processing.265

• Planning: A VLM analyzes each batch and pre-266

dicts the best next action as a natural language267

description.268

• Grounding: For each batch, a LLM maps the269

natural language action description to one of270

the structured HTML candidates, producing a271

grounded action triplet. If no suitable match is272

present, then it selects None.273

• Action Selection: A simple heuristic selects the274

first non-“None” grounded action from across all275

the parallel batches as the final output.276

3.3 Adaptations for Fine-Grained Analysis277

To better support modular evaluation and address278

limitations in the original SeeAct pipeline, we in-279

troduce several key improvements. We illustrate280

our full adapted pipeline in Figure 2.281

3.3.1 Input Modifications282

A key weakness in the original framework is a po-283

tential mismatch of candidate elements between284

the Planning and Grounding stages. To eliminate285

this, we modified the pipeline to ensure that both286

stages operate on the identical set of candidate el- 287

ements. We then created two adaptations to guide 288

the agent’s reasoning: 289

• Textual Grounding (TG): The top-k HTML el- 290

ements are provided to the agent as a textual list 291

with unique letter identifiers, forcing the VLM 292

to operate within a constrained, known candidate 293

set. 294

• Visual Clues (VC): Red bounding boxes high- 295

light the top-k HTML elements directly on the 296

screenshot, constraining the agent’s visual focus. 297

The Default (Def) setting serves as our baseline 298

and is defined as the configuration where neither 299

the TG nor VC adaptations are applied. 300

3.3.2 Enhancing Reasoning and Selection 301

In addition to the input modifications, we imple- 302

mented two foundational improvements that are 303

applied across all experiments: 304

• Intermediate Reasoning: We prompt the VLM 305

to first identify and explain up to five relevant 306

elements before it selects a final action. This 307

provides a chain-of-thought-like mechanism for 308

more detailed analysis. 309

• LLM-based Action Selection: We replace the 310

original heuristic ("first viable") selection strat- 311

egy with a more robust LLM-based selector. 312

Given all grounded candidates from the parallel 313

batches, this module prompts an LLM to com- 314

pare them and choose the single most plausible 315

action. 316

4



3.4 Augmented Evaluation with Flexible317

Ground Truth318

To overcome the limitations of the original319

Mind2Web labels with only one valid solution,320

we identify alternative valid actions within a task,321

focusing on interchangeable steps. For example,322

when applying two successive filters (for instance323

to buy black shoes in size 10) “size” or “color” the324

order does not play any role to finish the task.325

We mine such alternatives by checking whether326

action-relevant HTML elements appear in multiple327

steps of the same task, using minimal CSS selec-328

tors. We treat these as valid substitutes when order329

does not affect task correctness. Evaluation results330

are reported with and without these alternatives,331

providing a more realistic assessment of agent per-332

formance.333

4 Experimental Setup334

We evaluate our approach using a combination335

of state-of-the-art open-source and proprietary336

language models, including Gemini, Claude,337

InternVL2-LLaMA3 and GPT-4 variants. All ex-338

periments are conducted on a 90-task subset (490339

actions) of the multimodal Mind2Web dataset, us-340

ing three test-set splits - website, domain and task341

as used by Zheng et al. (2024). Detailed model342

configurations are provided in Appendix E.343

For optimal performance, the VC and Def adap-344

tations are evaluated using four webpage sections345

(batches), while TG is evaluated using five. Prelim-346

inary results for decision-making are provided in347

Appendix G.348

Evaluating natural language outputs from the349

Def and VC adaptations in the planning stage re-350

quires matching free-form text descriptions to spe-351

cific HTML elements. To perform this robustly, we352

employ a fine-tuned neural classifier. Specifically,353

we train a BGE-Small-en-v1.5 encoder (Xiao et al.,354

2023) using the SetFit framework (Tunstall et al.,355

2022) on 800 labeled pairs of HTML-text matches.356

For the TG adaptation, evaluation is a direct string357

comparison of the selected identifier (e.g., "C")358

against the ground truth. Further evaluation details359

are available in Appendix B.360

5 Results & Analysis361

We present the results of our modular evaluation,362

consolidated in Table 2 and Table 3. We first es-363

tablish the end-to-end performance of the agents to364

provide a "black box" view. We then leverage our365

fine-grained framework to diagnose the primary 366

sources of failure within the pipeline, demonstrat- 367

ing the critical insights that a modular approach 368

provides over a single metric. 369

5.1 Illusion of a single metric: Pinpointing 370

System-Wide Bottlenecks 371

From a traditional end-to-end perspective (‘First 372

Viable’ in Table 2), GPT-4o is the top-performing 373

model with 48.78% accuracy. However, this single 374

metric masks the true nature of agent failures. Our 375

modular analysis reveals two primary bottlenecks 376

that systematically limit performance. 377

The first major bottleneck is the initial ‘Ac- 378

tion Prediction’ stage (planning). Even the best 379

model, GPT-4o, achieves only 70.17% accuracy 380

here, meaning nearly 30% of tasks fail due to 381

flawed initial reasoning before later stages are even 382

attempted. The second bottleneck is the final 383

‘Action Selection’ stage, where performance fur- 384

ther drops. More critically, our analysis of rel- 385

ative performance decline (Figure 3) shows that 386

despite varying absolute scores, all models exhibit 387

a remarkably similar pattern of error propagation 388

across the pipeline. This suggests that the bot- 389

tlenecks are not model-specific but are systemic 390

challenges inherent to the web navigation task it- 391

self, a key insight only visible through modular 392

evaluation. 393

Figure 3: Relative performance decline across pipeline
stages for the Def adaptation. Normalizing the initial
score reveals a similar drop-off pattern across models,
pointing to a shared bottleneck.

5.2 Analysis of Adaptations 394

To understand the nature of the bottlenecks identi- 395

fied in our pipeline, we now analyze how the TG 396

and VC adaptations influence agent behavior. 397

The Textual Grounding (TG) adaptation, 398

which reframes element selection as a multiple- 399

5



Pipeline Stage: Action Prediction Action Selection

Adaption Model RE Acc. AP Acc. Grounding First Viable LLM Select

Def

Gemini-1.5-flash 61.45 56.59 52.13 28.57 37.76
Gemini-1.5-pro 62.27 56.18 52.94 35.71 38.57
Claude 3.5 Sonnet 63.89 56.58 49.27 24.08 36.53
InternVL2-Llama3-76B-AWQ 61.45 54.16 49.90 17.96 26.53
GPT-4o 74.44 70.17 62.87 48.78 54.29
GPT-4o-mini 61.25 57.18 52.13 28.78 33.88

Table 2: Modular evaluation results for the six models under the standard Default (Def) adaptation, measuring
accuracy at each stage of the agent pipeline. This data establishes a performance baseline.

Pipeline Stage: Action Prediction Action Selection

Adaptation Model RE Acc. AP Acc. Grounding First Viable LLM Select

VC
Gemini-1.5-flash 62.89 56.59 47.86 22.24 31.22
Gemini-1.5-pro 62.48 57.80 48.47 22.65 31.02
Claude 3.5 Sonnet 63.90 58.62 52.12 21.22 37.76
InternVL2-Llama3-76B-AWQ 68.96 55.39 51.12 18.98 30.41
GPT-4o 78.29 75.04 67.54 44.08 53.27
GPT-4o-mini 69.57 60.63 50.91 25.51 31.84

TG
Gemini-1.5-flash 80.9 62.01 (67.54) 60.26 21.22 37.35
Gemini-1.5-pro 79.72 66.74 (70.37) 63.90 24.69 42.24
Claude 3.5 Sonnet 76.07 63.7 (66.0) 60.45 23.06 37.14
InternVL2-Llama3-76B-AWQ 82.36 64.31 (72.42) 61.87 21.22 34.49
GPT-4o 83.79 72.83 (79.7) 69.59 31.84 51.02
GPT-4o-mini 73.22 60.47 (67.35) 57.43 18.57 31.22

Table 3: Modular evaluation results for six models across two adaptations Visual Clues (VC) & Textual Grounding
(TG), measuring accuracy at each stage of the agent pipeline. As TG employs a separate evaluation pipeline for AP
Acc that removes ambiguity, we also present results of the default pipeline (in parentheses) for comparison.

choice question (MCQ), consistently yields the400

highest Relevant Element and Grounding accuracy.401

This confirms that a structured format is highly402

effective for isolated element identification. How-403

ever, this strength reveals a critical trade-off.404

The core issue stems from a combination of the405

binding nature of TG and the agent’s lack of global406

context. Unlike the Def setting where the agent can407

predict an action on an element not in the candidate408

set (often leading to a "None" action later), TG409

forces the agent to choose from the provided list.410

As each webpage section (batch) is processed in411

parallel without awareness of others, the agent is412

prone to selecting a "best-fit" action within nearly413

every section, even when no action is required. This414

results in a significantly higher number of viable415

but unnecessary candidate actions (avg. 3.91 per416

five sections). This abundance of options ulti-417

mately overwhelms the final Action Selection418

stage, explaining why TG’s initial gains in identifi-419

cation do not consistently translate to higher final420

accuracy.421

The Visual Clues (VC) adaptation, which pro-422

vides bounding boxes on the screenshot, yielded423

highly model-dependent results. While it boosted 424

performance for visually capable models like GPT- 425

4o, it offered negligible benefit—or even harmed 426

performance—for others. This suggests a per- 427

formance threshold for many models, the cogni- 428

tive overhead of parsing cluttered visual informa- 429

tion and interpreting potentially occluded bounding 430

boxes outweighs the directive benefit of the clues. 431

This highlights the current limitations in robust, 432

general-purpose visual grounding, where the 433

"help" provided by visual aids can instead be- 434

come a source of noise. Details on bounding box 435

occlusion analysis are in Appendix C. 436

5.3 Analysis of the Final Selection Stage 437

The final selection stage, where the agent must 438

commit to a single action from a set of grounded 439

candidates, represents the last major hurdle. Across 440

all configurations, our ‘LLM Select’ strategy con- 441

sistently outperforms the simpler ‘First Viable’ 442

heuristic, confirming the value of sophisticated 443

reasoning at this final step. However, this stage 444

remains a significant bottleneck. 445

Our analysis reveals that performance is di- 446

6



rectly impacted by the number of viable options447

presented to the selector. Additional informa-448

tion on viable actions and selection performance449

provided in Appendix D. TG (avg. 3.91) and VC450

(avg. 2.93) adaptations resulted in an increased451

number of viable actions compared to the Def (avg.452

2.5). As the number of choices increases, selection453

accuracy across models drops sharply, from an av-454

erage of 73.1% with two options, down to 56.0%455

with four. This highlights a critical challenge: the456

agent’s task is not just to identify a correct action,457

but to disambiguate it from other plausible alterna-458

tives.459

Figure 4: Manual classification of errors for a Gemini-
1.5-Pro.

This problem of ambiguity is exacerbated by460

two factors. First, certain adaptations naturally461

produce a larger set of viable candidates, increasing462

the difficulty of the final selection. Second, and463

more importantly, many of these alternatives are464

only "incorrect" because of the benchmark’s rigid465

single-ground-truth assumption. Our manual error466

analysis (Figure 4) confirms this, showing that over467

50% of errors are actually Reasonable Actions and468

Filter Orders.469

To quantify the impact of this benchmark rigidity,470

we augmented the ground truth with a small set of471

these reasonable mined candidates. As shown in472

Figure 5, this addition improved performance by up473

to 8.3%, directly demonstrating that a significant474

portion of failure at this stage is attributable to475

the benchmark’s inflexibility. While our ‘LLM476

Select’ strategy handles this ambiguity better than a477

simple heuristic, these findings underscore the need478

for more dynamic and flexible evaluation protocols479

that better reflect real-world web interaction.480

Figure 5: Added performance through additionally
mined candidates (Light Shaded)

5.4 Qualitative Error Analysis 481

To better understand the nature of the failures iden- 482

tified by our modular framework, we manually clas- 483

sified errors from a Gemini-1.5-Pro run on Test- 484

Website split (168 samples) into five categories. 485

The distribution is shown in Figure 4. 486

• Reasonable Actions (39.2%): This category in- 487

cludes semantically correct but non-matching ac- 488

tions, such as clicking on the Nike brand page 489

instead of the "Shoes" category when the task is 490

to buy Nike shoes. Another example is choosing 491

to use the search bar rather than applying filters. 492

While these actions are valid and align with the 493

overall task intent, they deviate from the recorded 494

ground-truth sequence. 495

• Alternative Filter Usage and Order (11.4%): 496

These errors occur when filters are applied in a 497

different order—for example, filtering by color 498

first and then size, or vice versa. We address this 499

issue of filter order variation with our extended 500

ground truth candidate set (Section 3.4). 501

• Reasoning Errors (21.5%): These are genuine 502

failures of logic, where the agent misunderstands 503

the task or the webpage content, such as selecting 504

a clearly incorrect item. This represents the core 505

challenge for improving the models’ planning 506

capabilities. 507

• Duplicate Element Errors (20.3%): These 508

errors happen when the agent can’t tell apart 509

similar-looking elements, because the com- 510

pressed HTML doesn’t provide enough detail. 511

The agent either selects a semantically similar 512

element or fails due to insufficiently descriptive 513

compressed HTML. This highlights a key weak- 514

7



ness in the grounding stage. An example of am-515

biguous HTML scenarios in Appendix F .516

• Task Errors (7.6%): These small percentage517

of errors were attributed to suspected issues in518

the Mind2Web labeling process where actions519

don’t match the task or issues with reference520

screenshots.521

This qualitative analysis reinforces our main522

quantitative findings that the two largest sources523

of failure stem not from trivial errors, but from524

the agent’s difficulty with benchmark ambi-525

guity (Reasonable Actions) and poor ground-526

ing/selection signals (Duplicate Elements).527

6 Discussion528

Our modular evaluation has uncovered several key529

insights with broader implications for the design530

and evaluation of web agents.531

Pinpointing the Core Reasoning Failures A532

key implication of our work is that end-to-end met-533

rics mask the true nature of agent failure. By decon-534

structing the pipeline, our modular analysis reveals535

that the agent’s journey is bookended by two stages536

of intense difficulty: initial Planning and final Ac-537

tion Selection. While errors do occur at every538

step, these two high-level reasoning tasks repre-539

sent the primary bottlenecks where the majority of540

performance is lost. This finding shifts the focus541

of future research away from uniform pipeline im-542

provements and towards targeted advancements in543

the agent’s core decision-making faculties: form-544

ing an effective initial plan and disambiguating the545

best final action from a set of plausible alternatives.546

The Design Tension Our findings on the Textual547

Grounding (TG) adaptation reveal a critical design548

tension in parallelized web agents. The architec-549

ture’s choice to process webpage sections in iso-550

lated batches creates a lack of global state, which551

interacts negatively with structured-input formats552

like TG. Without inter-batch communication, each553

batch independently selects its most plausible local554

action, unable to determine if the true target has555

already been found elsewhere. This architectural556

design consistently leads to an over-generation of557

viable candidate actions. The final ‘Action Selec-558

tion’ stage is therefore burdened not with identi-559

fying a correct action, but with disambiguating it560

from a flood of plausible but unnecessary alterna-561

tives, which directly results in lower accuracy. This562

demonstrates that efficiency gains from paralleliza-563

tion can be nullified if the agent lacks a mechanism 564

to maintain a coherent, global understanding of the 565

task. 566

Rethinking Benchmarking Our analysis, partic- 567

ularly the error classification and the performance 568

boost from mined candidates, compellingly shows 569

that a significant portion of measured "errors" are 570

actually reasonable alternative solutions not cap- 571

tured by the single-ground-truth paradigm of bench- 572

marks like Mind2Web. This has profound implica- 573

tions for the field. It calls for an urgent shift towards 574

more flexible evaluation protocols that can accom- 575

modate multiple valid action paths. The continued 576

reliance on rigid benchmarks not only inaccurately 577

penalizes sophisticated models but also steers re- 578

search away from solving real-world ambiguity. 579

We echo the call for more dynamic, live-web eval- 580

uation environments (Zhou et al., 2023) that can 581

provide a more faithful assessment of an agent’s 582

true reasoning capabilities. 583

7 Conclusion 584

This study demonstrates the utility of modular eval- 585

uation for understanding and improving multi-step 586

web agents. Using web navigation as a case study, 587

we adapted the SeeAct framework to trace informa- 588

tion flow across stages—from perception to action 589

selection—by introducing targeted input modifi- 590

cations, refined prompting strategies, and a novel 591

LLM-based Action Selection module. Our mod- 592

ular framework supports fine-grained evaluation 593

through both LLM-based and algorithmic metrics. 594

Experiments across six models on the 595

Mind2Web benchmark not only improved See- 596

Act’s baseline performance but also uncovered key 597

design insights for future web agents: 598

• Section-aware reasoning: Incorporating global 599

page layout and structural context can aid batch- 600

wise perception and decision-making. 601

• Visual–semantic grounding: Tightening the 602

connection between screenshot regions and 603

HTML markup is crucial for robust grounding. 604

• Flexible supervision: Supporting multiple valid 605

actions, rather than relying on a single ground 606

truth, better reflects the ambiguity and flexibility 607

of real-world web tasks. 608

We hope this evaluation method encourages 609

more interpretable, diagnostic evaluation for com- 610

plex decision-making agents beyond the web set- 611

ting. 612

8



8 Limitations613

Our study demonstrates the value of modular evalu-614

ation through a case study on web navigation, but it615

is limited by its focus on a single framework (See-616

Act) and benchmark. While modular evaluation is617

beneficial for NLP research, it may not apply to618

agents where intermediate steps lack direct align-619

ment with ground truth. Additionally, although620

we evaluated six diverse V-LLMs, the inclusion621

of only one open-source model may underrepre-622

sent the performance variety in open-source SOTA623

models.624

References625

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam626
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.627
Mind2web: Towards a generalist agent for the web.628
Advances in Neural Information Processing Systems,629
36.630

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka631
Matsuo, Aleksandra Faust, Shixiang Shane Gu, and632
Izzeddin Gur. 2024. Multimodal web navigation633
with instruction-finetuned foundation models. In The634
Twelfth International Conference on Learning Repre-635
sentations.636

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa637
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-638
dra Faust. 2024. A real-world webagent with plan-639
ning, long context understanding, and program syn-640
thesis. In The Twelfth International Conference on641
Learning Representations.642

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Saf-643
dari, Austin Huang, Aakanksha Chowdhery, Sharan644
Narang, Noah Fiedel, and Aleksandra Faust. 2023.645
Understanding HTML with large language models.646
In Findings of the Association for Computational Lin-647
guistics: EMNLP 2023, pages 2803–2821, Singapore.648
Association for Computational Linguistics.649

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,650
Yong Dai, Hongming Zhang, Zhenzhong Lan, and651
Dong Yu. 2024a. Webvoyager: Building an end-to-652
end web agent with large multimodal models. arXiv653
preprint arXiv:2401.13919.654

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,655
Yong Dai, Hongming Zhang, Zhenzhong Lan, and656
Dong Yu. 2024b. WebVoyager: Building an end-to-657
end web agent with large multimodal models. In658
Proceedings of the 62nd Annual Meeting of the As-659
sociation for Computational Linguistics (Volume 1:660
Long Papers), pages 6864–6890, Bangkok, Thailand.661
Association for Computational Linguistics.662

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng663
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,664

Yuxiao Dong, Ming Ding, and 1 others. 2024. Coga- 665
gent: A visual language model for gui agents. In Pro- 666
ceedings of the IEEE/CVF Conference on Computer 667
Vision and Pattern Recognition, pages 14281–14290. 668

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai, 669
Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong, 670
and Jie Tang. 2024. OpenWebAgent: An open toolkit 671
to enable web agents on large language models. In 672
Proceedings of the 62nd Annual Meeting of the Asso- 673
ciation for Computational Linguistics (Volume 3: Sys- 674
tem Demonstrations), pages 72–81, Bangkok, Thai- 675
land. Association for Computational Linguistics. 676

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 677
2024. Language models can solve computer tasks. 678
Advances in Neural Information Processing Systems, 679
36. 680

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yux- 681
uan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang, 682
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. 2024. 683
Autowebglm: A large language model-based web 684
navigating agent. In Proceedings of the 30th ACM 685
SIGKDD Conference on Knowledge Discovery and 686
Data Mining, KDD ’24, page 5295–5306, New York, 687
NY, USA. Association for Computing Machinery. 688

Eric Li and Jim Waldo. 2024. Websuite: Systemati- 689
cally evaluating why web agents fail. arXiv preprint 690
arXiv:2406.01623. 691

Chang Liu, Xiaoguang Li, Lifeng Shang, Xin Jiang, 692
Qun Liu, Edmund Lam, and Ngai Wong. 2023. Grad- 693
ually excavating external knowledge for implicit com- 694
plex question answering. In Findings of the Associ- 695
ation for Computational Linguistics: EMNLP 2023, 696
pages 14405–14417. 697

Robert Lo, Abishek Sridhar, Frank Xu, Hao Zhu, and 698
Shuyan Zhou. 2023. Hierarchical prompting assists 699
large language model on web navigation. In Find- 700
ings of the Association for Computational Linguis- 701
tics: EMNLP 2023, pages 10217–10244, Singapore. 702
Association for Computational Linguistics. 703

Sahisnu Mazumder and Oriana Riva. 2021. FLIN: A 704
flexible natural language interface for web navigation. 705
In Proceedings of the 2021 Conference of the North 706
American Chapter of the Association for Computa- 707
tional Linguistics: Human Language Technologies, 708
pages 2777–2788, Online. Association for Computa- 709
tional Linguistics. 710

Peter Mühlbacher, Nikos I Bosse, and Lawrence Phillips. 711
2024. Towards a realistic long-term benchmark 712
for open-web research agents. arXiv preprint 713
arXiv:2409.14913. 714

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei 715
Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan 716
Zhou, Tongshuang Wu, and Zhengyang Wu. 2024. 717
Webcanvas: Benchmarking web agents in online en- 718
vironments. In Agentic Markets Workshop at ICML 719
2024. 720

9

https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://doi.org/10.18653/v1/2023.findings-emnlp.185
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.18653/v1/2024.acl-demos.8
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2023.findings-emnlp.685
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://openreview.net/forum?id=O1FaGasJob
https://openreview.net/forum?id=O1FaGasJob
https://openreview.net/forum?id=O1FaGasJob


Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,721
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue722
Zhang, Lu Wang, and 1 others. 2023. Taskweaver:723
A code-first agent framework. arXiv preprint724
arXiv:2311.17541.725

Mobina Shahbandeh, Parsa Alian, Noor Nashid, and726
Ali Mesbah. 2024. Naviqate: Functionality-727
guided web application navigation. arXiv preprint728
arXiv:2409.10741.729

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan730
McDonald. 2024. Step: Stacked llm policies for web731
actions. To appear in COLM 2024.732

Hao Sun, Hengyi Cai, Bo Wang, Yingyan Hou, Xi-733
aochi Wei, Shuaiqiang Wang, Yan Zhang, and Dawei734
Yin. 2023. Towards verifiable text generation with735
evolving memory and self-reflection. arXiv preprint736
arXiv:2312.09075.737

Lewis Tunstall, Nils Reimers, Unso Eun Seo Jo, Luke738
Bates, Daniel Korat, Moshe Wasserblat, and Oren739
Pereg. 2022. Efficient few-shot learning without740
prompts. ENLSP Workshop @ NeurIPS 2022.741

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao742
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,743
Xu Chen, Yankai Lin, and 1 others. 2024. A survey744
on large language model based autonomous agents.745
Frontiers of Computer Science, 18(6):186345.746

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas747
Muennighoff. 2023. C-pack: Packaged resources748
to advance general chinese embedding. Preprint,749
arXiv:2309.07597.750

Cheng Xiong, Gengfeng Zheng, Xiao Ma, Chunlin Li,751
and Jiangfeng Zeng. 2025. Delphiagent: A trustwor-752
thy multi-agent verification framework for automated753
fact verification. Information Processing Manage-754
ment, 62(6):104241.755

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam-756
pagna, Larry Heck, James Landay, and Monica Lam.757
2021. Grounding open-domain instructions to auto-758
mate web support tasks. In Proceedings of the 2021759
Conference of the North American Chapter of the760
Association for Computational Linguistics: Human761
Language Technologies, pages 1022–1032, Online.762
Association for Computational Linguistics.763

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen,764
Zecheng Zhang, Xiang Yao, Zhiqiang Xie, Yongchao765
Chen, Shilong Liu, Bochen Qian, Anjie Yang, Zhaox-766
uan Jin, Jianbo Deng, Philip Torr, Bernard Ghanem,767
and Guohao Li. 2025. CRAB: Cross-environment768
agent benchmark for multimodal language model769
agents. In Findings of the Association for Computa-770
tional Linguistics: ACL 2025, pages 21607–21647,771
Vienna, Austria. Association for Computational Lin-772
guistics.773

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-774
athi Chandu, Kai-Wei Chang, Yejin Choi, and775
Bill Yuchen Lin. 2024. Agent lumos: Unified and776

modular training for open-source language agents. 777
In Proceedings of the 62nd Annual Meeting of the 778
Association for Computational Linguistics (Volume 779
1: Long Papers), pages 12380–12403. 780

Danqing Zhang, Balaji Rama, Jingyi Ni, Shiying He, 781
Fu Zhao, Kunyu Chen, Arnold Chen, and Junyu Cao. 782
2025. LiteWebAgent: The open-source suite for 783
VLM-based web-agent applications. In Proceedings 784
of the 2025 Conference of the Nations of the Amer- 785
icas Chapter of the Association for Computational 786
Linguistics: Human Language Technologies (System 787
Demonstrations), pages 449–455, Albuquerque, New 788
Mexico. Association for Computational Linguistics. 789

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, 790
Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song, 791
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neu- 792
big, and 1 others. 2025. Skillweaver: Web agents can 793
self-improve by discovering and honing skills. arXiv 794
preprint arXiv:2504.07079. 795

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and 796
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent, 797
if grounded. arXiv preprint arXiv:2401.01614. 798

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, 799
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue 800
Ou, Yonatan Bisk, Daniel Fried, and 1 others. 2023. 801
Webarena: A realistic web environment for build- 802
ing autonomous agents. Agent Learning in Open- 803
Endedness (ALOE) Workshop @ NeurIPS 2023. 804

A Full Prompt Example 805

Table 4 presents the adapted SeeAct prompting 806

scheme used in our work. 807

B Evaluating Relevant Elements 808

In this section, we present the pipeline used to 809

evaluate the Action Prediction stage, focusing on 810

the creation of two key metrics: Relevant Element 811

(RE Acc.) and Action Prediction Accuracy (AP 812

Acc). These metrics assess whether the elements 813

involved in or the final action align with the ground 814

truth. Additionally, for the intermediate reasoning 815

stage, we determine whether each listed element is 816

relevant to the task based on the LLM’s description. 817

Due to the non-deterministic structure of the Ac- 818

tion Prediction output, we use an LLM (Gemini- 819

1.5-Flash) to extract elements from the reasoning 820

stage. This process generates a JSON object con- 821

taining the extracted text for each element along 822

with a Boolean value indicating its relevance, as 823

determined by the description in the output. An 824

overview of the pipeline and inputs is shown in 825

Figure 6. 826

We implemented two variants of the pipeline, de- 827

pending on the presence of the Textual Grounding 828

10

https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2310.03720
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.1016/j.ipm.2025.104241
https://doi.org/10.18653/v1/2021.naacl-main.80
https://doi.org/10.18653/v1/2021.naacl-main.80
https://doi.org/10.18653/v1/2021.naacl-main.80
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://aclanthology.org/2025.findings-acl.1113/
https://doi.org/10.18653/v1/2025.naacl-demo.36
https://doi.org/10.18653/v1/2025.naacl-demo.36
https://doi.org/10.18653/v1/2025.naacl-demo.36


System Role: Imagine that you are imitating humans doing web navigation for a task step by step. At each
stage, you can see the webpage like humans by a screenshot and know the previous actions
before the current step decided by yourself through recorded history. You need to decide on the
first following action to take. You can click an element with the mouse, select an option, or type
text with the keyboard. (For your understanding, they are like the click(), select_option() and
type() functions in playwright respectively) One next step means one operation within the three.

Action Prediction: You are asked to complete the following task: {task}

Previous Actions: {prev_actions}

The screenshot below shows a section of a webpage. In this screenshot web elements of interest
are outlined with red bounding boxes. Ensure to focus any actions on the highlighted elements.
Follow the following guidance to think step by step before outlining the next action step at the
current stage:

(Current Webpage Identification) Firstly, think about the purpose of this webpage section. Note
that you are given section {batch_id}/{total_batches} of the webpage.

(Previous Action Analysis) Secondly, combined with the screenshot, analyze each step of the
previous action history and their intention one by one. Particularly, pay more attention to the last
step, which may be more related to what you should do now as the next step.

(Web Element Analysis) The screenshot shows {num_candidates} web elements (such as links,
buttons, and input fields) highlighted with red bounding boxes. Below is a textual description of
the {num_candidates} highlighted elements: {choices_simple}

Select up to 5 elements that are most likely to be interacted with based on the current task
and previous actions. For each of these 5 elements, describe its general function (e.g., "This
date-picker allows the user to select a date for booking a flight.") and explain if interacting with
this element is relevant to the task.

(Next Action Based on Webpage and Analysis) Then, based on your analysis, in conjunction
with human web browsing habits and the logic of web design, decide on the following action.
Note that this section of the webpage may contain no viable element to interact with. In this case,
you should issue a “None” action. In case there is a viable action clearly outline which element
in the webpage users will operate with as the first next target element, its detailed location, and
the corresponding operation.

To be successful, it is important to follow the following rules:
1. You should only issue a valid action given the current observation.
2. You should only issue one action at a time"""

Action Grounding: (Reiteration) First, reiterate your next target element, its detailed location, and the corresponding
operation.

(Multichoice Question) Below is a multi-choice question where the choices correspond to the
highlighted elements in the screenshot. The choices are sorted to correspond to their occurrence
on the website (top-left to bottom-right). From the screenshot, find out where and what each one
is on the webpage. Then, determine whether one matches your target element. Please examine
the choices one by one. Choose the matching one. If multiple options match your answer, choose
the most likely one by re-examining the screenshot, the choices, and your further reasoning.

{choices}

(Final Answer) Finally, conclude your answer using the format below. Ensure your answer is
strictly adhering to the format provided below. Please do not leave any explanation in your
answers of the final standardized format part, and this final part should be clear and certain. The
element choice, action, and value should be in three separate lines.

Format:

ELEMENT: The uppercase letter of your choice.
ACTION: Choose an action from CLICK, TYPE, SELECT.
VALUE: Provide additional input based on ACTION.

The VALUE means: If ACTION == TYPE, specify the text to be typed. If ACTION == SELECT,
specify the option to be chosen. If ACTION == CLICK, write "None". """

Table 4: Full Prompt Example

11



Figure 6: Extraction & Matching pipeline for Action Prediction evaluation

(TG) adaptation. TG simplifies the matching of829

extracted elements to the ground truth by providing830

a capital letter identifier, along with a compressed831

HTML representation, as input during the Action832

Prediction stage. The LLM detects this identifier833

(Figure 6), allowing us to match it with the ground834

truth identifier.835

Metric Value (%)
Accuracy 86.18
Precision 79.28

Recall 82.59
F1 Score 80.09

Table 5: Results of Element matching via classifier

When TG is not enabled, the matching process836

becomes more complex, as the element descrip-837

tions rely solely on visual context, losing any pre-838

defined structure. In this case, we still use the LLM839

to extract listing elements but introduce a secondary840

classification stage to verify matches. This classi-841

fier, BGE-small, was trained using the SetFit frame-842

work on 800 manually labeled samples, with 100843

additional samples used for evaluation. Each sam-844

ple consists of an extracted listing element and its845

corresponding ground truth HTML representation.846

The 800 samples were drawn from Action Predic-847

tion outputs across four different LLMs (Gemini848

Flash/Pro, GPT 4o/mini) to ensure robustness to849

Figure 7: Bounding Box Occlusion Example (parame-
ters chosen to favor occlusion)

structural variations. Evaluation results are pre- 850

sented in Table 5. 851

We also experimented with using LLMs directly 852

for matching but found their performance to be 853

suboptimal in both zero- and few-shot scenarios. 854

C Bounding-Box occlusion 855

The Visual Clues (VC, see Section 3.3.1) adapta- 856

tion introduces red bounding boxes on webpage 857

images to guide element selection during web navi- 858

gation tasks.Below we illustrate the problems that 859

can arise from creating bounding boxes based on 860

the coordinates provided by the Mind2Web dataset 861

(Deng et al., 2024). An example screenshot of a 862

webpage section is presented in Figure 7. To pro- 863

vide a clear illustration of these issues, we adjusted 864

pre-processing parameters to favor occlusion; in 865

actual pipeline inference, these effects are typically 866

less pronounced. 867

12



Model TG VC Def.

Gemini Flash 4.32 2.99 2.68
Gemini Pro 3.69 2.99 2.34
Claude Sonnet 4.00 2.92 2.71
InternVL2 3.94 3.44 3.24
GPT-4o 3.29 2.34 1.93
GPT-4o-mini 4.23 2.94 2.59

Table 6: Average number of viable action per model and
adaptation

Excessive Nesting of Section Candidates This868

issue occurs when the ranking model returns multi-869

ple hierarchically related elements for the same870

section. Consequently, multiple tightly packed871

bounding boxes may overlap, obstructing the con-872

tent of neighboring web elements. Additionally, the873

bounding box of a parent container might intersect874

with surrounding elements, further complicating875

the visual representation.876

Non-Visible Elements Bounding boxes may also877

be created for elements that do not correspond to878

visible content in the image. This can potentially879

confuse the LLM’s understanding of the drawn880

bounding boxes. Such elements include those with-881

out visible content (e.g., elements lacking text) or882

elements that are not currently displayed, such as883

dropdown menu items within a collapsed dropdown884

menu.885

This section highlights the extra visual under-886

standing required to fully benefit from Visual Clues.887

While addressing occlusion issues is beyond our888

scope, preliminary tests suggest that merging neigh-889

boring bounding boxes could mitigate them.890

D Number of viable Actions891

Processing a webpage in multiple sections892

(batches) causes the Grounding stage to return an893

equal number of potential actions. These actions894

can be viable or include a "None" action, resulting895

from the LLM deciding not to act or a mismatch896

between the predicted action and the grounding897

candidate set. In the subsequent Action Selection898

stage, only viable actions are considered. There-899

fore, the number of viable actions determines the900

difficulty of the action selection process by setting901

the number of options to choose from.902

Using the modular evaluation results, we calcu-903

lated the average number of viable actions across904

models and adaptations (Table 6).905

Number of Options

Model 2 3 4

Gemini Flash 69.43 68.67 58.85
Gemini Pro 72.22 66.5 59.04
Claude 80.15 75.43 60.07
InternVL2 68.9 63.8 51.1
GPT-4o 75.2 68.7 52.8
GPT-4o-mini 72.92 58.39 53.9

Table 7: LLM selection accuracy by number of options

We find that TG consistently yields the most 906

viable actions, followed by VC and then Def, sug- 907

gesting that additional constraints during the Ac- 908

tion Prediction stage lead to more actions returned. 909

Note that TG was run with 5 sections while VC 910

and Def were run with 4, based on optimal setups 911

for each adaptation. Notably, GPT4-o produces 912

the fewest viable actions across all three adapta- 913

tions. InternVL2 results in the highest number in 914

two out of three adaptations, closely matching the 915

maximum in the third. 916

In our second analysis (Table 7), we examined 917

how the number of choices affects action selection 918

accuracy. 919

We observed that performance declines as the 920

number of actions increases. Claude consistently 921

outperforms other models across all stages, while 922

InternVL2 performs the worst. Since these metrics 923

are based on the modular evaluation results, each 924

model encounters varying numbers of selections 925

with 2, 3, or 4 options depending on prior perfor- 926

mance. Excluding Claude as an outlier, selection 927

accuracy with two actions ranges from 68.9% to 928

75.2%. Indicating that even when faced with only 929

two viable actions models face notable uncertainty. 930

E Model Specifications 931

In Table 8 we introduce the specific model versions. 932

Each model was prompted with a temperature of 933

0.0 to ensure maximal reproducibility during ex- 934

periments. 935

For the Open-Source model (InternVL2) a single 936

A100 80GB GPU was utilized for inference. 937

F Web Element Ambiguity 938

Below we give a brief overview of three scenarios 939

in which the ambiguous choices influenced the web 940

agents decision making: 941

13



Model Version / Release date

Gemini 1.5 Flash 001 / May 2024
Gemini 1.5 Pro 001 / May 2024
Claude Sonnet 3.5/ 20.06.2024
InternVL2-LLama3 76b Quantized Version

from Huggingface
GPT4o 06.08.2024
GPT4o-mini 18.07.2024

Table 8: Model Versions

• Identical Compressed HTML: Multiple but-942

tons with the text "booking" cannot be dis-943

tinguished by their representation, leading to944

ambiguity. This calls for including additional945

context of surrounding HTML elements to946

uniquely identify each button.947

• Related HTML Elements: The LLM may948

choose to interact with a parent element of the949

ground truth element. While the action would950

be viable when executed in the browser, it is951

considered incorrect by Mind2Web’s evalua-952

tion criteria.953

• Sibling HTML Elements: A checkbox fil-954

ter may be accompanied by a link adjacent955

to it, where clicking either has the same ef-956

fect. Mind2Web considers only one as the957

correct action. As SeeACT utilizes a com-958

pressed HTML representation (HTML repr.)959

that highlights salient features of web ele-960

ments the representation of both may appear961

similar: (checkbox price range 50) vs. (a price962

50)963

G Selecting number of webpage sections964

Our experiments stretch six models and three adap-965

tations totaling 18 ablations. The main hyper-966

paremter to set in the SeeAct framework (Zheng967

et al., 2024) is the number of webpage sections968

(batches) into which the website is split for parallel969

processing. We decided on using four sections for970

Default (Def) and Visual Clues (VC) adaptaions971

as well as five for Textual Grounding (TG). We972

base this decision on selecting the optimal number973

of sections through a preliminary result where we974

ablated 4-5 sections using Gemini-1.5-Flash on the975

Website split (168 samples). Results of this pre-976

liminary study are provided in Table 9. Based on977

the optimal LLM Select performance we chose the978

aforementiond number of batches. 979

Metric TG VC Def

Num Batches = 4

Grounding 46.15 42.01 46.7
First Viable 22.02 19.6 25
LLM Select 26.7 29.7 36.3

Num Batches = 5

Grounding 54.51 50 49.41
First Viable 18.45 22.19 22
LLM Select 32.7 28.4 29.76

Table 9: Results for varying number of batches on Web-
site split (168) samples using Gemini-Flash

14

https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B-AWQ

	Introduction
	Related Work & Background
	Web Agents
	Evaluation of Web Agents

	Methodology
	A Modular Evaluation Framework
	Case Study: SeeAct + Mind2Web
	Mind2Web Dataset
	SeeAct Pipeline

	Adaptations for Fine-Grained Analysis
	Input Modifications
	Enhancing Reasoning and Selection

	Augmented Evaluation with Flexible Ground Truth

	Experimental Setup
	Results & Analysis
	Illusion of a single metric: Pinpointing System-Wide Bottlenecks
	Analysis of Adaptations
	Analysis of the Final Selection Stage
	Qualitative Error Analysis

	Discussion
	Conclusion
	Limitations
	Full Prompt Example
	Evaluating Relevant Elements
	Bounding-Box occlusion
	Number of viable Actions
	Model Specifications
	Web Element Ambiguity
	Selecting number of webpage sections

