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Abstract

Generation with source attribution is impor-
tant for enhancing the verifiability of retrieval-
augmented generation (RAG) systems. How-
ever, existing approaches in RAG primarily
link generated content to document-level ref-
erences, making it challenging for users to
locate evidence among multiple content-rich
retrieved documents. To address this chal-
lenge, we propose Retrieval-Augmented Gener-
ation with Visual Source Attribution (VISA), a
novel approach that combines answer genera-
tion with visual source attribution. Leveraging
large vision-language models (VLMs), VISA
identifies the evidence and highlights the ex-
act regions that support the generated answers
with bounding boxes in the retrieved document
screenshots. To evaluate its effectiveness, we
curated two datasets: Wiki-VISA, based on
crawled Wikipedia webpage screenshots, and
Paper-VISA, derived from PubLayNet and tai-
lored to the medical domain. Experimental re-
sults demonstrate the effectiveness of VISA for
visual source attribution on documents’ origi-
nal look, as well as highlighting the challenges
for improvement. Code, data, and model check-
points will be released.

1 Introduction

Retrieval-augmented generation (RAG) has be-
come a key technique for enhancing the reliabil-
ity in information-seeking processes (Gao et al.,
2024). Traditional RAG pipeline directly gen-
erates an answer to a user query from retrieved
candidate documents (Chen et al., 2017; Lewis
et al., 2020). Yet, it is hard for users to verify
the sources and appropriately trust generated an-
swers, given that models could produce halluci-
nated content (Min et al., 2023; Malaviya et al.,
2024). Recent works have introduced the genera-
tion with citation paradigm (Gao et al., 2023; Ye
et al., 2024), prompting the model to not only gen-
erate answers but also directly cite the identifiers

of the source documents. Such source attribution
approaches make it possible for users to check the
reliability of the outputs (Asai et al., 2024).
However, text-based generation with source attri-
bution faces several issues: First, citing the source
at the document level could impose a heavy cogni-
tive burden on users (Foster, 1979; Sweller, 2011),
where users often struggle to locate the core ev-
idence at the section or passage level within the
dense and multi-page document. Despite such
granularity mismatch could be addressed through
passage-citation-based generation methods — link-
ing answers to specific text chunks, it requires non-
trivial extra engineering efforts to match the chunk
in the document source. Moreover, visually high-
lighting text chunks in the source document is more
intuitive for users, but it remains challenging as it
requires control over document rendering, which is
not always accessible, such as in PDF scenarios.
Inspired by the recent document screenshot em-
bedding retrieval paradigm — dropping the docu-
ment processing module and directly using VLM
to preserve the content integrity and encoding doc-
ument screenshots for retrieval (Ma et al., 2024),
we ask whether source attribution can also be in-
tegrated into such a unified visual paradigm to es-
tablish a fully visual, end-to-end verifiable RAG
pipeline that is both user-friendly and effective?
To this end, we propose Retrieval Augmented
Generation with Visual Source Attribution (VISA).
In our approach, a large vision-language model
(VLM) processes single or multiple retrieved docu-
ment images and not only generates an answer to
the user query but also returns the bounding box of
the relevant region within the evidence document.
As illustrated in Figure 1, this method enables di-
rect attribution by visually pinpointing the exact
position within the document, allowing users to
quickly check the supporting evidence within the
original context for the generated answer. VLMs
are not restricted by document format or rendering,
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Figure 1: Comparison between (a) Text-based generation with source attribution in a RAG pipeline. and (b)
Visual-based generation with source attribution in a V-RAG pipeline. VISA directly pinpoint the source evidence of
the answer for user query in the original document with a bounding box.

making them more versatile for diverse use cases.
Moreover, this task serves as a meaningful evalu-
ation of VLMs, assessing their ability to provide
self-explanations and accurately localize support-
ing information within their original input in an
RAG paradigm.

To train and evaluate VISA, we curated two
datasets: Wiki-VISA and Paper-VISA. Wiki-
VISA is derived from the Natural Questions
dataset (Kwiatkowski et al., 2019). It reconstructs
the original Wikipedia webpages, using short an-
swers as generation targets and corresponding long
answer’s HTML bounding box as source attribution
targets. This dataset supports the test of model’s
ability to attribute sources across multi-document,
multi-page, and multi-modal content. On the other
hand, Paper-VISA, built from PubLayNet (Zhong
et al., 2019) with synthetic query generation, fo-
cuses on the biomedical domain by evaluating per-
formance on multi-modal scientific paper PDFs.
Together, they provide diverse and challenging
benchmarks for assessing the granularity and ac-
curacy of source attribution in RAG systems. Our
experiments, spanning both in-domain training and
zero-shot evaluation, revealed existing state-of-the-
art models like QWen2-VL-72B (Wang et al., 2024)
struggle with precise visual source attribution in
zero-shot prompting. Fine-tuning VISA on our cu-
rated datasets significantly improved model perfor-
mance in visual attribution accuracy. Further anal-
ysis highlights key areas for improvement, such
as enhancing bounding box precision for long im-
age documents, multi-documents, and zero-shot

generalization capabilities.

2 Related Work

2.1 RAG attribution

Open-domain question answering with LLMs often
suffer from two key issues: hallucinations and out-
dated internal knowledge. Retrieval-Augmented
Generation (RAG) has been recognized as an ef-
fective solution to these problems (Lewis et al.,
2020; Gao et al., 2024; Ovadia et al., 2024). In
RAG, relevant documents are first retrieved from
an external database and then fed into LLMs along-
side the question. This allows LLMs to reference
the retrieved documents during answer generation.
Furthermore, RAG can generate a list of citations
attached to the generated answers, linking them
to the retrieved documents so users can verify the
accuracy of the output. This process is known as
source attribution (Rashkin et al., 2023; Bohnet
et al., 2023; Khalifa et al., 2024).

Typically, RAG with source attribution follows
a text-only pipeline where all inputs and outputs,
such as questions, retrieved documents, generated
answers, and citations, are in textual form. Re-
cently, vision-based RAG pipelines have emerged,
where the retrieved documents are represented
as screenshot images (Ma et al., 2024; Faysse
et al., 2024), and VLMs process both textual ques-
tions and these document images to generate an-
swers (Riedler and Langer, 2024; Xia et al., 2024;
Yu et al., 2024). Compared to traditional text-only
RAG, vision-based RAG can leverage structured



and visual information from documents, such as
tables, graphs, and images, which are often chal-
lenging to extract through text-only pipelines.

Our VISA attribution method proposed in this
paper is a novel approach for vision-based RAG
pipelines: directly drawing bounding boxes around
the content in retrieved document screenshots that
potentially supports the generated answers. This
approach differs from existing attribution methods
in two ways: (1) Granularity: Existing attribution
methods often operate at the document level, re-
quiring users to read entire documents to locate
supportive content. In contrast, our method directly
attributes the answer to specific content within the
document, such as a passage, table, or image in
the screenshot. (2) Presentation: Traditional attri-
bution methods provide a list of textual citations,
whereas our method uses bounding boxes, offering
a visually-oriented form of attribution. This can
help users quickly locate the relevant information.

2.2 Bounding Box Drawing with VLM

Bounding box-based object detection is a well-
established task in computer vision (CV) (Zhao
et al., 2019; Zou et al., 2023). Traditional ap-
proaches rely on convolutional neural networks
(CNNs) (LeCun et al., 2015) or Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021) to extract fea-
tures and predict bounding boxes alongside object
classification (Ren et al., 2015; Dai et al., 2016;
Redmon et al., 2016; Carion et al., 2020).

Recent vision-language models (VLMs) like
GPT4o (OpenAl et al., 2024), QWen2-VL (Wang
et al., 2024), and PaliGemma (Steiner et al., 2024)
have shown the ability to generate bounding box co-
ordinates in an image-to-text manner, taking input
images and generate the top-left and bottom-right
coordinates of target objects. Unlike traditional
object detection that focuses on natural images,
our method applies bounding box drawing to text-
intensive document screenshots.

Additionally, grounding elements on screenshots
has been explored in GUI agent systems (Cheng
et al., 2024; Lin et al., 2024), where bounding
boxes are used to localize UI elements like but-
tons. While these approaches focus on GUI con-
texts, our work targets visual source attribution in
vision-based RAG processes, grounding bounding
boxes to locate evidence within document images.

3 Method
3.1 Task Definition

Our VISA is a novel source attribution method pri-
marily designed for vision-based RAG systems. To
formally define the task of RAG with VISA: given
a textual user query ¢ as the RAG system input, the
retrieval component of the system needs to retrieve
a set of candidate documents D = {dj,...,d,}
from corpus C. Then the generation component of
the system needs to return three outputs: an answer
a that answers the query g, the identifier ¢ of the
most relevant document d* in D, and a bounding
box coordinates By = [(x1,y1), (x2, y2)] within
d, that highlight the content supporting the gener-
ated answer a.

In a vision-based RAG setup, user queries are
textual, while all documents in the corpus C are
screenshots of documents (e.g., webpages or PDF
pages) provided as image inputs.

3.2 Generation with Visual Source
Attribution

This paper focuses on VISA within the generation
component of vision-based RAG systems. As dis-
cussed in the previous section, VISA must handle
multimodal input. To achieve this, we leverage
VLMs for implementing VISA. Specifically, for a
given query and a set of retrieved candidate docu-
ments (i.e., screenshots of documents), the system
processes the inputs as follows: query tokens are
directly input into the language model, while docu-
ment screenshots are first processed by the image
encoder to extract image representations, which are
then fed into the language model.

The language model subsequently generates the
answer, the identifier of the relevant document, and
the xy-coordinates of the bounding box’s top-left
and bottom-right corner on the content that sup-
ports the generated answer. Notably, this entire
process can be framed as a next-token prediction
task. Finally, the generated identifier and bounding
box coordinates are used to draw the bounding box
on the target document screenshot, which is pre-
sented to the user along with the generated answer.

Technically, existing instruction-tuned VLM,
such as Qwen2-VL-72B (Wang et al., 2024), can
potentially be prompted to perform VISA in a zero-
shot manner. However, we find that VISA remains
a challenging task. Consequently, further super-
vised fine-tuning on a dedicated VISA task dataset
is necessary. In the next section, we introduce the



datasets we crafted specifically for training and
evaluating VISA.

3.3 Dataset Acquisition

The training and evaluation data suitable for the
VISA task needs to be formatted as follows: the
input consists of a textual query and document
screenshot images as multimodal inputs, while the
target outputs include the textual short answer, the
relevant document identifier, and the coordinates
of the bounding box. To create datasets that meet
these requirements, we craft existing publicly avail-
able datasets to support the training and evaluation
of our proposed VISA method.

Wiki-VISA is derived from the Natural Ques-
tions (NQ) dataset (Kwiatkowski et al., 2019). The
original NQ dataset provides natural questions,
along with short and long answers sourced from
Wikipedia webpages. We use the short answers
as answer targets. However, the original dataset
does not contain the original webpage screenshots.
We use the Selenium Python toolkit! to access and
render the webpage with the original URL with a
history version stamp. And take a screenshot with
980 pixels width and up to 3920 pixels (4 pages)
height. Using the long answer, we identify the cor-
responding element in the HTML from which the
long answer is derived. We then draw a bounding
box around this element to obtain thecoordinates.
Notably, the answers in this dataset can come from
various elements, such as passages, tables, lists,
or images within the webpage. Since the ques-
tions and answers in Wiki-VISA are human-judged,
we consider this dataset a high-quality, supervised
dataset and evaluation for VISA on general knowl-
edge, with Wikipedia webpage.

Paper-VISA is derived from PubLayNet (Zhong
et al., 2019), a dataset originally designed for doc-
ument layout analysis of single page PubMed PDF
documents. PubLayNet provides bounding box
coordinates and class labels (e.g., title, text, table,
figure, etc.) for each element in a paper’s PDF
screenshot. However, the dataset does not include
queries or answers associated with each document.
To address this limitation, we leverage instruction-
tuned VLMs (e.g. Qwen2-VL-72B) to syntheti-
cally generate queries and answers. Specifically,
for each paper screenshot sample in the PubLayNet
training data, we select a bounding box within the
sample and overlay it on the screenshot. The mod-

"https: //pypi.org/project/selenium/

ified screenshot is then input to the VLM with a
prompt designed to instruct the model to generate
a question and a short answer based on the content
within the bounding box. See Appendix A.1 for the
prompt details and generation example. By aug-
menting the original PubLayNet in this way, we
create synthetic queries and answers, enabling it
to support VISA training. We consider the result-
ing Paper-VISA dataset as synthetic training and
evaluation for scientific paper PDFs in the medical
domain.

FineWeb-VISA is based on the FineWeb-edu
corpus (Penedo et al., 2024), a high-quality text
corpus of crawled webpages. We sampled 60k web-
page URLs and used Selenium to capture screen-
shots of diverse, content-rich webpages. A passage
containing more than 50 words was randomly se-
lected as the target source. A bounding box was
drawn around the selected content, and a VLM
was prompted to generate a query and short answer
supported by the target content, similar as Paper-
VISA. Although Fineweb-VISA provides diverse
layout, it do not guaranteed to high quality data
has human annotated in Wiki-VISA or Paper-VISA
that assessing a specific domain, we only leverage
Fineweb-VISA as training data to analysis zeroshot
and data augmentation effectiveness.

Multi-Candidates By now, each query is paired
with the triplet of a positive document, target short
answer, and target evidence bounding box. To set
up a RAG experimental environment for evaluat-
ing VISA, we in addition need to let the generator
take multiple candidates as input, simulating the
scenario that the generator is taking multiple re-
trieval candidates and attributing the evidence in
most relevant documents. Given the query ¢, we
use a retriever R to retrieve top-k candidates. And
randomly sampled m — 1 candidates that are not
ground truth as hard negative candidates. The hard
negative candidates are mixed with the one ground
truth document together as the input for the multi-
document VISA. The reason we did not directly
take top-m documents as the retrieval candidate
is that we do not want VISA biased on a specific
retriever and position of the candidate docs. Gener-
ally, our VISA does not rely on the type of retriever.
It can be either a traditional text-based retriever that
indexes the document with extracted text or a recent
document screenshot retriever that directly indexes
the original document screenshot. However, inte-
grating with those visual-based retrievers enables
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Dataset # Train | # Test
Wiki-VISA 87k 3,000
Paper-VISA 100k 2,160
Fineweb-VISA 60k -

Table 1: Datasets statistics for train and test splits.

us to build an end-to-end RAG solution without the
necessity of explicit document content processes
such as HTML parsing or OCR. Thus, we leverage
an off-the-shelf Document Screenshot Embedding
(DSE) model (Ma et al., 2024) to serve as the re-
trieval component of the RAG system. When en-
coding queries and documents, the model directly
encodes textual queries and document screenshot
images into single vector embeddings and performs
cosine similarity search during inference. In this
work, we set k = 20 and m = 3.

Additionally, an RAG pipeline may have the
chance of having no ground truth document re-
turned from the retriever. We use a probability of
20% to randomly replace the ground truth docu-
ment in the candidates, to access the model’s capa-
bility to detect no-answer situations. After these
operations, the data statistics are shown in Table 1.

4 Experiment Setup

4.1 Evaluation

Evaluation metrics assessed both the generated an-
swers and bounding box predictions. For answer
generation, relaxed exact match (EM) was used to
measure accuracy. If the golden answer and pre-
dicted answer have a sub-sequence relationship and
the difference in string length is within 20 charac-
ters. The predicted answer is considered as correct.
For bounding boxes, Intersection over Union (IoU)
was calculated to determine localization precision,
with an IoU threshold of 0.5 indicating a correct
prediction.

To analyze performance across varying content
types, test samples were categorized by the modal-
ity and location of the evidence. For Wiki-VISA,
categories included first-page passages, passages
beyond the first page, and non-passage content such
as tables and figures. For Paper-VISA, since it is
a single-page document, categories were divided
into passage and non-passage content. The overall
accuracy for each dataset was computed as a macro
average across these categories.

We evaluate the effectiveness of VISA in two dif-

ferent settings: Single oracle candidate and Multi-
candidate. Single oracle candidate setting solely
evaluates the generation and visual attribution com-
ponent. We conduct controlled experiments by
training and testing the VLMs using only a single
ground truth relevant document screenshot as input.
In this setup, it is guaranteed that the answer can
be found within the input document. The VLMs do
not need to predict the relevant document identifier
and can focus exclusively on answer generation
and bounding box prediction.

In a Multi-candidate setting, the model is evalu-
ated on its ability to distinguish relevant documents
from irrelevant ones, in addition to generating ac-
curate answers and bounding boxes. This setup
better reflects the RAG scenarios in which multiple
candidate documents are retrieved, and the model
must not only generate a correct response but also
attribute it to the correct source document. For the
Multi-candidate evaluation, we assess two config-
urations: Multi-candidate, Oracle in Candidates
which has ground truth in candidates, this setting
has the same query set as the single setting, hence
directly comparable. Multi-candidate, Full con-
tains the additional 20% cases where ground truth
has no answer.

4.2 Training details

To train vision-language models (VLMs) for an-
swer generation with VISA, we initialized the
models using the open-source Qwen2-VL-2B and
Qwen2-VL-7B (Wang et al., 2024), finetuning on
the training datasets described in Section 3.3.

We first trained the models in a single-candidate
setup, where the input was limited to a single or-
acle document image. In this setup, the model
was trained to generate both the answer and its
corresponding bounding box. We used the prompt
template provided in Appendix A.2 to format the
model’s input and output.

Next, we trained the models in a multi-candidate
setup. Here, the model received three document
candidates and the task was to generate the iden-
tifier of the relevant document (if present), the
answer, and the bounding box for the evidence.
For cases where no relevant document was present
(20% of the training samples), the model was
trained to generate “No answer." We used the
prompt template provided in Appendix A.3 to for-
mat the model’s input and output.

The training objective for both setups was next-
token prediction with cross-entropy loss. We fine-



Method Wiki-VISA Paper-VISA
Average [<1] Passage [>1] Passage Non-Passage Average Passage Non-Passage
bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans
Zeroshot Prompt
QWen2-VL-72B | 1.5 604 34 585 0.1 549 09 679 1.5 43.1 05 402 25 459
Fine-tune, Single Oracle Candidates
VISA-2B-single | 37.5 57.1 70.0 61.1 187 449 238 653 |63.0 383 50.6 344 753 421
VISA-7B-single | 54.2 652 756 66.5 50.1 56.0 36.8 73.1 |682 438 581 41.6 782 459
Fine-tune, Multi Candidates, Oracle in Candidates
VISA-2B-multi | 22.5 379 46,5 46.1 64 272 146 405 |51.3 338 41.1 301 614 374
VISA-7B-multi | 37.7 41.8 58.1 492 328 320 222 441 |599 392 477 359 720 424
Fine-tune, Multi Candidates, Full
VISA-2B-full 32.1 469 510 53.6 189 38.0 26.5 49.1 |59.8 447 51.6 42.6 679 46.7
VISA-7B-full 416 51.1 56.6 57.1 344 432 339 531 |668 503 57.1 475 76.5 53.0

Table 2: Effectiveness of VISA on Wiki-VISA and Paper-VISA datasets for bounding box accuracy (bbx) and
answer accuracy (ans). Fine-tuned models are trained individually on in-domain data. The Multi-Candidate, Oracle
in Candidates setting uses the same query set as the Single Oracle Candidates setting, allowing direct comparison.
The full setting has an additional 20% queries with no ground truth documents in candidates.

tuned the models for two epochs in the single-
candidate setting, using LoRA with a learning rate
of 1e-4, a batch size of 64, and 4 xH100 GPUs. For
the multi-candidate setting, we initialized the mod-
els with weights from the single-candidate setup
and trained for one epoch with the same learning
rate. We froze the image encoder to reduce GPU
memory usage in the multi-candidate setting.

During the training, random cropping was ap-
plied outside of the bounding box. This augmen-
tation exposed the model to varying input sizes,
which enhanced its zero-shot effectiveness on un-
seen document layouts. Bounding box targets were
represented using absolute coordinate values. We
also explored normalizing the scale of bounding
box coordinates to values in the range[0-1]. Details
can be found in Section 6.3.

5 Experimental Results

Table 2 presents the performance of VISA on the
Wiki-VISA and Paper-VISA datasets across dif-
ferent experimental settings. Zero-shot prompting
results reveal the difficulty of directly applying
state-of-the-art VLMs to the visual source attribu-
tion task. QWen2-VL-72B achieves a reasonable
answer generation accuracy of 60.4% on average
on Wiki-VISA but fails to deliver effective bound-
ing box predictions, with only 1.5% accuracy. This
observation is consistent on Paper-VISA. These
highlight the limitations of existing VLMs in pin-
pointing the source evidence in original documents
with proper location and granularity.

Fine-tuning on our crafted training data enables

the model to effectively execute the task. In the
single-candidate setup, where the model processes
only the relevant document, fine-tuned models
demonstrate substantial gains compared to zero-
shot prompting a much larger model. On Wiki-
VISA, the 7B variant achieves 54.2% bounding
box accuracy and 65.2% answer accuracy, while
on Paper-VISA, the corresponding scores reach
68.2% and 43.8%. Performance in the multi-
candidate setting, which more closely mirrors real-
world retrieval-augmented generation (RAG) sys-
tems, shows similar trends. The 7B model achieves
41.6% bounding box accuracy and 51.1% answer
accuracy when handling three candidate docu-
ments, including cases where no relevant document
is present. This demonstrates the model’s capa-
bility to identify relevant sources among multiple
documents while enabling fine-grained attribution.
However, when comparing the multi-candidates,
oracle in candidates setting, We can see the model
facing challenges when handling multiple candi-
dates compared to just handling a single relevant
document. E.g. on Wiki-VISA, bounding box ac-
curacy for 7B model is 37.7% on average which
is 17 points lower than the corresponding single
candidate setting. Showing that visual source attri-
bution among multi-candidates is much harder than
just locating the source element in a single one.

It further demonstrates that the effectiveness
of VISA is influenced by document characteris-
tics, such as content location and modality. For
Wiki-VISA, bounding box accuracy is significantly
higher for passages on the first page ([<1] passage)
compared to passages beyond the first page ([>1]



Train Data Wiki-VISA Paper-VISA
Average [<1] Passage [>1]Passage Non-Passage | Average Passage Non-Passage
bbx ans bbx ans bbx ans bbx ans | bbx ans bbx ans bbx ans
Wiki 542 652 756 665 50.1 560 36.8 73.1 |27.8 362 205 32.6 351 39.7
Paper 02 426 O 463 04 335 0.1 481 | 682 438 581 41.6 782 459
FineWeb 37.6 502 489 451 573 523 6.6 531 |220 433 265 41.7 174 449
Wiki+Fineweb 582 653 687 666 61.7 571 441 721 |21.0 43.1 185 422 234 439
Paper+Fineweb 36.1 48.7 51.8 49.6 49.6 442 6.8 524 | 665 44.6 56.1 422 769 470
Wiki+Paper+Fineweb | 58.1 64.8 699 650 587 56.7 458 727 |67.6 443 559 415 793 47.1

Table 3: Effectiveness of VISA trained on different combinations training data for bounding box accuracy (bbx) and
answer accuracy (ans) in the single oracle candidate setting.

passage). For example, the 2B variant achieves
70.0% accuracy for [<1] passages but only 18.7%
for [>1] passages, indicating the challenges posed
by long, multi-page documents. The larger model,
the 7B variant, narrows this gap, reflecting the bet-
ter handling of long-context inputs. Non-passage
content, such as tables and figures, also have obvi-
ously a different level of grounding effectiveness,
indicating the difference of effectiveness in differ-
ent visual elements.

6 Analysis

6.1 Out-of-Domain Zeroshot

Table 3 shows the effectiveness of VISA while
trained with different data combinations in the sin-
gle candidate setting. It enables us to study the ef-
fectiveness of out-of-domain transfer and augmen-
tation. First, we highlight the challenges of zero-
shot generalization in VISA. Training and evaluat-
ing on in-domain achieves an effective bounding
box accuracy, e.g. 54.2% on average for Wiki-
VISA. However, significant performance drops are
observed when models are tested on out-of-domain
datasets. For instance, a model trained on Wiki-
VISA achieves only 27.8% bounding box accuracy
on Paper-VISA, while a model trained on Paper-
VISA achieves near-zero performance (0.2%) on
Wiki-VISA. This gap underscores the difficulty of
transferring visual source attribution capabilities
across datasets with differing document structures,
layouts, and content modalities. Interestingly, Wiki-
VISA appears to transfer better to Paper-VISA com-
pared to the reverse. This may be because of the
multi-page nature of Wiki-VISA, which provides
richer training signals that generalize better to sim-
pler single-page setting in Paper-VISA.
FineWeb-VISA shows as a promising resource
for training models with improved zero-shot capa-
bilities. When trained on FineWeb-VISA alone,
the model achieves 37.6% bounding box accu-

racy on Wiki-VISA and 22.0% on Paper-VISA.
Notably, FineWeb-VISA outperforms Wiki-VISA
training on [>1] passage bbx accuracy for Wiki-
VISA (57.3% vs. 50.1%), suggesting its effective-
ness in handling long and complex document struc-
tures. However, FineWeb-VISA does not perform
as well on non-passage content, likely due to its
training focus on passage-level targets.

6.2 Data Augmentation

The results also demonstrate the benefits of aug-
menting training data with FineWeb-VISA. On
Wiki-VISA, combining Wiki and FineWeb train-
ing data improves bounding box accuracy from
54.2% to 58.2% and improves performance on
[>1] passages from 50.1% to 61.7%, indicating
that FineWeb complements Wiki by enhancing the
model’s ability to attribute evidence in multi-page
contexts. For Paper-VISA, however, augmenting
with FineWeb does not significantly improve in-
domain performance. Training on Paper+FineWeb
achieves a comparable bounding box accuracy to
Paper alone, but it enhances zero-shot performance
on Wiki-VISA (from 0.2% to 36.1%).

Training on the full combination of datasets
(Wiki+Paper+FineWeb) yields strong results across
both domains, with 58.1% bbx accuracy on Wiki-
VISA and 67.6% on Paper-VISA. This shows the
importance of diverse training data for building
generalizable models capable of handling differ-
ent document types, layouts, and evidence modal-
ities. Future work should focus on expanding the
dataset diversity to further improve generalization
and enable robust visual source attribution for a
wide range of document structures.

6.3 Bounding Box Target

Table 4 shows the impact of different bounding
box target representations and cropping strategies
during training. Training with random cropping



Error Type Type-I: Wrong source attribution Type-II: Position misalignment Type-lll: Granularity mismatch
Question Where is the energy released from Who is the movie phantom thread Who played skeletor in the
when food is metabolized? based on? movie masters of the universe?
;—3;:,,
Document
1 Ground Truth [—1 VISA Output
Figure 2: Type of errors in the evaluation of Wiki-VISA.
Train Data Wiki-VISA | Paper-VISA occurred in 43 cases where the model attributed
bbx ans | bbx ans the source to an incorrect section of the document,
Crop, Absolute 542 652 | 278 362 failing to identify the precise region containing the
No Random Crop | 58.8 65.6 | 1.7 369 evidence. The second type, position misalignment,
Normalized Value | 56.4 644 | 0.1 372 was observed in 4 cases where the model appeared
No BoundingBox | 0  67.6 | 0 352 to have the correct intent but drew the bounding box

Table 4: Impact of bounding box target representation
and cropping strategies during training on Wiki-VISA
in the single oracle candidate setting.

and absolute coordinate values achieves a balance
between in-domain performance on Wiki-VISA
(54.2%) and zero-shot generalization to Paper-
VISA (27.8%) in bounding box accuracy. Remov-
ing random cropping slightly improves Wiki per-
formance but drastically reduces zero-shot general-
ization, indicating that random cropping enhances
the model’s robustness to varied input sizes. Nor-
malizing coordinate values achieves moderate per-
formance on Wiki-VISA but fails on Paper-VISA,
suggesting that absolute bounding box values are
better suited to our experiments.

The “No Bounding Box” row represents a vanilla
visual retrieval-augmented generation setup with-
out visual source attribution, where models gen-
erate answers without bounding box predictions.
VISA enables visual source attribution capability
while the effectiveness of answer generation is pre-
served at about the same level of effectiveness.

6.4 Error Analysis

We conducted an error analysis on 50 randomly
sampled cases from Wiki-VISA to better under-
stand the limitations of VISA. Errors were cate-
gorized into three main types as demonstrated in
Figure 2. The first type, wrong source attribution,

inaccurately, either slightly off position or incor-
rectly sized. The third type, granularity mismatch,
appeared in 3 cases where the model’s attributed
source, such as a specific cell in a table or an item
in a list, did not match the ground truth granularity.
While these cases could potentially be considered
false negatives, we leave it in error analysis to em-
phasize the challenge in real-world use cases where
user preferences for granularity may differ from the
model’s output.

7 Conclusion

In this paper, we introduced VISA, a visual source
attribution approach for retrieval-augmented gen-
eration pipeline. By leveraging vision-language
models, VISA not only generates answers to user
queries but also provides bounding boxes that visu-
ally attribute the supporting evidence within docu-
ment screenshots. This capability enhances trans-
parency and supports users in verifying the gen-
erated information effectively. Through the de-
velopment of curated datasets, we demonstrated
the effectiveness of VISA across diverse document
types and layouts, including complex multi-page
documents and multimodal content. Our experi-
mental results highlight the potential of VISA to
bridge the gap between information retrieval and
answer generation by offering finer-grained, visu-
ally grounded evidence attribution. Moving for-
ward, we hope VISA represents a pioneering step
for more verifiable and user-friendly RAG systems.



8 Limitations

While VISA demonstrates promising results for
answer generation and content grounding in vision-
based RAG systems, it has several limitations. First,
it focuses on generating short answers, which may
not suffice for scenarios requiring detailed or ex-
planatory responses, highlighting the need for en-
hancements in generating richer context. Second,
it assumes answers are derived from a single, lo-
calized region within a document, which limits its
effectiveness for cases where evidence spans mul-
tiple sections or modalities (e.g., combining text
and tables). Third, while our evaluation spans web
and medical scientific papers with various content
modalities (e.g., passages, tables, figures), it does
not fully capture the diversity of real-world doc-
uments such as scanned or handwritten content.
Additionally, as VISA aims to make it intuitive for
users to verify answers, conducting user studies
could further confirm its practical utility.
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ikandrioti et al., 2011)
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1) Need for

cach sub-scale was as following

and guidance Cronbach’s a: 0.922

R) Need for information from the medical-aursing staff Cronbach’s a: 0.918

3) Need for being in contact with other patient groups, and ensuring communication with relatives
Cronbach’s a 0.865
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Cronbach’s 2 0.86]
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Finally, multiple regression analysis was performed in order to evaluate the association between patients
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variable). In the model, all factoes that were found to ed with the
independent variables. The results are prescnted as f oo nfidence interval
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and compared 10 a sigaificant level of 5% All
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3. Resalts

3.1 Baseline Demographics and Clinical Characteristics

The bascline demoy

majority of pat ere men, married, and older than 60 years as well ax their disease duration was longer than
participants lived in Attica, had low educational st
h informed regarding their disease and had prior experience of

Tuble 1. Baseline demographic and clinical characteristics of patients with heart failure in Greece (N=190)

Socio-demographics %)
Ciender
Male 124 (65.3%)
Age (ycars)

50 6.5%)
160 2011

1.70 6604

0 89 (46,

Figure 3: An example of synthetic data from Paper-VISA.

A Appendix

A.1 Prompt for synthetic data generation

The following prompt was used for prompting QWen2-VL-72B to generate synthetic questions and
answers for Paper-VISA and Fineweb-VISA datasets.

System:

Ask a question that can be specifically answered by the content in the red bounding box area and
give a short answer. The question can be a wh- question, a yes/no question, or a how question, that
can be answered in a few words.

Output format:

Question: <question>

Short Answer: <short answer>

Or simply return ’Empty’ if the bounding box area is not visible or informative.

User: {image}

Figure 3 shows an example of synthetic data from Paper-VISA.
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A.2 Prompt for Single Oracle candidate VISA

The following prompt template was used to format the model’s inputs and outputs for training the Single
Oracle Candidate VISA.

7~

\.

Model Input:

System:

Given a document image, your task is to answer the question and locate the source of the answer
via a bounding box.

User:
{image} Image Size: {image.size}
Question: {question}

Model Output:

Assistant:

Answer: {answer}

Bounding Box: {bounding_box}

A.3 Prompt for Multi-candidate VISA

The following prompt template was used to format the model’s inputs and outputs for training the
Multi-candidate VISA.

Model Input:

System:

Given document images, your task is to answer the question and locate the source of the answer
via a bounding box.

User:

{imagel} Image Size: {imagel.size}
{image2} Image Size: {image2.size}
{image3} Image Size: {image3.size}
Question: {question}

Model Output:

Assistant:

Answer: {answer}

Evidence Document: {index}
Bounding Box: {bounding_box}

A.4 Dataset Licenses

* NQ: Apache License 2.0

* Wikipedia: Creative Commons Attribution Share Alike, GNU Free Documentation License family.
* Fineweb-edu: Open Data Commons License Attribution family.

* PubLayNet: Community Data License Agreement — Permissive, Version 1.0.

¢ VISA Datasets: Our crafted datasets follow the same license as the source of the documents.
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A.5 Model Backbone Licenses
¢ QWen2-VL-72B: Qwen LICENSE AGREEMENT.

* QWen2-VL-2B: Apache License.
* QWen2-VL-7B: Apache License.
* VISA Models: Our fine-tuned models follow the same licenses as the original model backbone.

A.6 Al Assistant Usage

GPT4o is used during the writing to correct grammar errors and format tables.
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