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Abstract

Generation with source attribution is impor-001
tant for enhancing the verifiability of retrieval-002
augmented generation (RAG) systems. How-003
ever, existing approaches in RAG primarily004
link generated content to document-level ref-005
erences, making it challenging for users to006
locate evidence among multiple content-rich007
retrieved documents. To address this chal-008
lenge, we propose Retrieval-Augmented Gener-009
ation with Visual Source Attribution (VISA), a010
novel approach that combines answer genera-011
tion with visual source attribution. Leveraging012
large vision-language models (VLMs), VISA013
identifies the evidence and highlights the ex-014
act regions that support the generated answers015
with bounding boxes in the retrieved document016
screenshots. To evaluate its effectiveness, we017
curated two datasets: Wiki-VISA, based on018
crawled Wikipedia webpage screenshots, and019
Paper-VISA, derived from PubLayNet and tai-020
lored to the medical domain. Experimental re-021
sults demonstrate the effectiveness of VISA for022
visual source attribution on documents’ origi-023
nal look, as well as highlighting the challenges024
for improvement. Code, data, and model check-025
points will be released.026

1 Introduction027

Retrieval-augmented generation (RAG) has be-028

come a key technique for enhancing the reliabil-029

ity in information-seeking processes (Gao et al.,030

2024). Traditional RAG pipeline directly gen-031

erates an answer to a user query from retrieved032

candidate documents (Chen et al., 2017; Lewis033

et al., 2020). Yet, it is hard for users to verify034

the sources and appropriately trust generated an-035

swers, given that models could produce halluci-036

nated content (Min et al., 2023; Malaviya et al.,037

2024). Recent works have introduced the genera-038

tion with citation paradigm (Gao et al., 2023; Ye039

et al., 2024), prompting the model to not only gen-040

erate answers but also directly cite the identifiers041

of the source documents. Such source attribution 042

approaches make it possible for users to check the 043

reliability of the outputs (Asai et al., 2024). 044

However, text-based generation with source attri- 045

bution faces several issues: First, citing the source 046

at the document level could impose a heavy cogni- 047

tive burden on users (Foster, 1979; Sweller, 2011), 048

where users often struggle to locate the core ev- 049

idence at the section or passage level within the 050

dense and multi-page document. Despite such 051

granularity mismatch could be addressed through 052

passage-citation-based generation methods — link- 053

ing answers to specific text chunks, it requires non- 054

trivial extra engineering efforts to match the chunk 055

in the document source. Moreover, visually high- 056

lighting text chunks in the source document is more 057

intuitive for users, but it remains challenging as it 058

requires control over document rendering, which is 059

not always accessible, such as in PDF scenarios. 060

Inspired by the recent document screenshot em- 061

bedding retrieval paradigm — dropping the docu- 062

ment processing module and directly using VLM 063

to preserve the content integrity and encoding doc- 064

ument screenshots for retrieval (Ma et al., 2024), 065

we ask whether source attribution can also be in- 066

tegrated into such a unified visual paradigm to es- 067

tablish a fully visual, end-to-end verifiable RAG 068

pipeline that is both user-friendly and effective? 069

To this end, we propose Retrieval Augmented 070

Generation with Visual Source Attribution (VISA). 071

In our approach, a large vision-language model 072

(VLM) processes single or multiple retrieved docu- 073

ment images and not only generates an answer to 074

the user query but also returns the bounding box of 075

the relevant region within the evidence document. 076

As illustrated in Figure 1, this method enables di- 077

rect attribution by visually pinpointing the exact 078

position within the document, allowing users to 079

quickly check the supporting evidence within the 080

original context for the generated answer. VLMs 081

are not restricted by document format or rendering, 082
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Figure 1: Comparison between (a) Text-based generation with source attribution in a RAG pipeline. and (b)
Visual-based generation with source attribution in a V-RAG pipeline. VISA directly pinpoint the source evidence of
the answer for user query in the original document with a bounding box.

making them more versatile for diverse use cases.083

Moreover, this task serves as a meaningful evalu-084

ation of VLMs, assessing their ability to provide085

self-explanations and accurately localize support-086

ing information within their original input in an087

RAG paradigm.088

To train and evaluate VISA, we curated two089

datasets: Wiki-VISA and Paper-VISA. Wiki-090

VISA is derived from the Natural Questions091

dataset (Kwiatkowski et al., 2019). It reconstructs092

the original Wikipedia webpages, using short an-093

swers as generation targets and corresponding long094

answer’s HTML bounding box as source attribution095

targets. This dataset supports the test of model’s096

ability to attribute sources across multi-document,097

multi-page, and multi-modal content. On the other098

hand, Paper-VISA, built from PubLayNet (Zhong099

et al., 2019) with synthetic query generation, fo-100

cuses on the biomedical domain by evaluating per-101

formance on multi-modal scientific paper PDFs.102

Together, they provide diverse and challenging103

benchmarks for assessing the granularity and ac-104

curacy of source attribution in RAG systems. Our105

experiments, spanning both in-domain training and106

zero-shot evaluation, revealed existing state-of-the-107

art models like QWen2-VL-72B (Wang et al., 2024)108

struggle with precise visual source attribution in109

zero-shot prompting. Fine-tuning VISA on our cu-110

rated datasets significantly improved model perfor-111

mance in visual attribution accuracy. Further anal-112

ysis highlights key areas for improvement, such113

as enhancing bounding box precision for long im-114

age documents, multi-documents, and zero-shot115

generalization capabilities. 116

2 Related Work 117

2.1 RAG attribution 118

Open-domain question answering with LLMs often 119

suffer from two key issues: hallucinations and out- 120

dated internal knowledge. Retrieval-Augmented 121

Generation (RAG) has been recognized as an ef- 122

fective solution to these problems (Lewis et al., 123

2020; Gao et al., 2024; Ovadia et al., 2024). In 124

RAG, relevant documents are first retrieved from 125

an external database and then fed into LLMs along- 126

side the question. This allows LLMs to reference 127

the retrieved documents during answer generation. 128

Furthermore, RAG can generate a list of citations 129

attached to the generated answers, linking them 130

to the retrieved documents so users can verify the 131

accuracy of the output. This process is known as 132

source attribution (Rashkin et al., 2023; Bohnet 133

et al., 2023; Khalifa et al., 2024). 134

Typically, RAG with source attribution follows 135

a text-only pipeline where all inputs and outputs, 136

such as questions, retrieved documents, generated 137

answers, and citations, are in textual form. Re- 138

cently, vision-based RAG pipelines have emerged, 139

where the retrieved documents are represented 140

as screenshot images (Ma et al., 2024; Faysse 141

et al., 2024), and VLMs process both textual ques- 142

tions and these document images to generate an- 143

swers (Riedler and Langer, 2024; Xia et al., 2024; 144

Yu et al., 2024). Compared to traditional text-only 145

RAG, vision-based RAG can leverage structured 146
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and visual information from documents, such as147

tables, graphs, and images, which are often chal-148

lenging to extract through text-only pipelines.149

Our VISA attribution method proposed in this150

paper is a novel approach for vision-based RAG151

pipelines: directly drawing bounding boxes around152

the content in retrieved document screenshots that153

potentially supports the generated answers. This154

approach differs from existing attribution methods155

in two ways: (1) Granularity: Existing attribution156

methods often operate at the document level, re-157

quiring users to read entire documents to locate158

supportive content. In contrast, our method directly159

attributes the answer to specific content within the160

document, such as a passage, table, or image in161

the screenshot. (2) Presentation: Traditional attri-162

bution methods provide a list of textual citations,163

whereas our method uses bounding boxes, offering164

a visually-oriented form of attribution. This can165

help users quickly locate the relevant information.166

2.2 Bounding Box Drawing with VLM167

Bounding box-based object detection is a well-168

established task in computer vision (CV) (Zhao169

et al., 2019; Zou et al., 2023). Traditional ap-170

proaches rely on convolutional neural networks171

(CNNs) (LeCun et al., 2015) or Vision Transform-172

ers (ViTs) (Dosovitskiy et al., 2021) to extract fea-173

tures and predict bounding boxes alongside object174

classification (Ren et al., 2015; Dai et al., 2016;175

Redmon et al., 2016; Carion et al., 2020).176

Recent vision-language models (VLMs) like177

GPT4o (OpenAI et al., 2024), QWen2-VL (Wang178

et al., 2024), and PaliGemma (Steiner et al., 2024)179

have shown the ability to generate bounding box co-180

ordinates in an image-to-text manner, taking input181

images and generate the top-left and bottom-right182

coordinates of target objects. Unlike traditional183

object detection that focuses on natural images,184

our method applies bounding box drawing to text-185

intensive document screenshots.186

Additionally, grounding elements on screenshots187

has been explored in GUI agent systems (Cheng188

et al., 2024; Lin et al., 2024), where bounding189

boxes are used to localize UI elements like but-190

tons. While these approaches focus on GUI con-191

texts, our work targets visual source attribution in192

vision-based RAG processes, grounding bounding193

boxes to locate evidence within document images.194

3 Method 195

3.1 Task Definition 196

Our VISA is a novel source attribution method pri- 197

marily designed for vision-based RAG systems. To 198

formally define the task of RAG with VISA: given 199

a textual user query q as the RAG system input, the 200

retrieval component of the system needs to retrieve 201

a set of candidate documents D = {d1, ..., dn} 202

from corpus C. Then the generation component of 203

the system needs to return three outputs: an answer 204

a that answers the query q, the identifier i of the 205

most relevant document d∗ in D, and a bounding 206

box coordinates Bd∗ = [(x1, y1), (x2, y2)] within 207

d∗ that highlight the content supporting the gener- 208

ated answer a. 209

In a vision-based RAG setup, user queries are 210

textual, while all documents in the corpus C are 211

screenshots of documents (e.g., webpages or PDF 212

pages) provided as image inputs. 213

3.2 Generation with Visual Source 214

Attribution 215

This paper focuses on VISA within the generation 216

component of vision-based RAG systems. As dis- 217

cussed in the previous section, VISA must handle 218

multimodal input. To achieve this, we leverage 219

VLMs for implementing VISA. Specifically, for a 220

given query and a set of retrieved candidate docu- 221

ments (i.e., screenshots of documents), the system 222

processes the inputs as follows: query tokens are 223

directly input into the language model, while docu- 224

ment screenshots are first processed by the image 225

encoder to extract image representations, which are 226

then fed into the language model. 227

The language model subsequently generates the 228

answer, the identifier of the relevant document, and 229

the xy-coordinates of the bounding box’s top-left 230

and bottom-right corner on the content that sup- 231

ports the generated answer. Notably, this entire 232

process can be framed as a next-token prediction 233

task. Finally, the generated identifier and bounding 234

box coordinates are used to draw the bounding box 235

on the target document screenshot, which is pre- 236

sented to the user along with the generated answer. 237

Technically, existing instruction-tuned VLMs, 238

such as Qwen2-VL-72B (Wang et al., 2024), can 239

potentially be prompted to perform VISA in a zero- 240

shot manner. However, we find that VISA remains 241

a challenging task. Consequently, further super- 242

vised fine-tuning on a dedicated VISA task dataset 243

is necessary. In the next section, we introduce the 244
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datasets we crafted specifically for training and245

evaluating VISA.246

3.3 Dataset Acquisition247

The training and evaluation data suitable for the248

VISA task needs to be formatted as follows: the249

input consists of a textual query and document250

screenshot images as multimodal inputs, while the251

target outputs include the textual short answer, the252

relevant document identifier, and the coordinates253

of the bounding box. To create datasets that meet254

these requirements, we craft existing publicly avail-255

able datasets to support the training and evaluation256

of our proposed VISA method.257

Wiki-VISA is derived from the Natural Ques-258

tions (NQ) dataset (Kwiatkowski et al., 2019). The259

original NQ dataset provides natural questions,260

along with short and long answers sourced from261

Wikipedia webpages. We use the short answers262

as answer targets. However, the original dataset263

does not contain the original webpage screenshots.264

We use the Selenium Python toolkit1 to access and265

render the webpage with the original URL with a266

history version stamp. And take a screenshot with267

980 pixels width and up to 3920 pixels (4 pages)268

height. Using the long answer, we identify the cor-269

responding element in the HTML from which the270

long answer is derived. We then draw a bounding271

box around this element to obtain thecoordinates.272

Notably, the answers in this dataset can come from273

various elements, such as passages, tables, lists,274

or images within the webpage. Since the ques-275

tions and answers in Wiki-VISA are human-judged,276

we consider this dataset a high-quality, supervised277

dataset and evaluation for VISA on general knowl-278

edge, with Wikipedia webpage.279

Paper-VISA is derived from PubLayNet (Zhong280

et al., 2019), a dataset originally designed for doc-281

ument layout analysis of single page PubMed PDF282

documents. PubLayNet provides bounding box283

coordinates and class labels (e.g., title, text, table,284

figure, etc.) for each element in a paper’s PDF285

screenshot. However, the dataset does not include286

queries or answers associated with each document.287

To address this limitation, we leverage instruction-288

tuned VLMs (e.g. Qwen2-VL-72B) to syntheti-289

cally generate queries and answers. Specifically,290

for each paper screenshot sample in the PubLayNet291

training data, we select a bounding box within the292

sample and overlay it on the screenshot. The mod-293

1https://pypi.org/project/selenium/

ified screenshot is then input to the VLM with a 294

prompt designed to instruct the model to generate 295

a question and a short answer based on the content 296

within the bounding box. See Appendix A.1 for the 297

prompt details and generation example. By aug- 298

menting the original PubLayNet in this way, we 299

create synthetic queries and answers, enabling it 300

to support VISA training. We consider the result- 301

ing Paper-VISA dataset as synthetic training and 302

evaluation for scientific paper PDFs in the medical 303

domain. 304

FineWeb-VISA is based on the FineWeb-edu 305

corpus (Penedo et al., 2024), a high-quality text 306

corpus of crawled webpages. We sampled 60k web- 307

page URLs and used Selenium to capture screen- 308

shots of diverse, content-rich webpages. A passage 309

containing more than 50 words was randomly se- 310

lected as the target source. A bounding box was 311

drawn around the selected content, and a VLM 312

was prompted to generate a query and short answer 313

supported by the target content, similar as Paper- 314

VISA. Although Fineweb-VISA provides diverse 315

layout, it do not guaranteed to high quality data 316

has human annotated in Wiki-VISA or Paper-VISA 317

that assessing a specific domain, we only leverage 318

Fineweb-VISA as training data to analysis zeroshot 319

and data augmentation effectiveness. 320

Multi-Candidates By now, each query is paired 321

with the triplet of a positive document, target short 322

answer, and target evidence bounding box. To set 323

up a RAG experimental environment for evaluat- 324

ing VISA, we in addition need to let the generator 325

take multiple candidates as input, simulating the 326

scenario that the generator is taking multiple re- 327

trieval candidates and attributing the evidence in 328

most relevant documents. Given the query q, we 329

use a retriever R to retrieve top-k candidates. And 330

randomly sampled m − 1 candidates that are not 331

ground truth as hard negative candidates. The hard 332

negative candidates are mixed with the one ground 333

truth document together as the input for the multi- 334

document VISA. The reason we did not directly 335

take top-m documents as the retrieval candidate 336

is that we do not want VISA biased on a specific 337

retriever and position of the candidate docs. Gener- 338

ally, our VISA does not rely on the type of retriever. 339

It can be either a traditional text-based retriever that 340

indexes the document with extracted text or a recent 341

document screenshot retriever that directly indexes 342

the original document screenshot. However, inte- 343

grating with those visual-based retrievers enables 344
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Dataset # Train # Test

Wiki-VISA 87k 3,000
Paper-VISA 100k 2,160
Fineweb-VISA 60k -

Table 1: Datasets statistics for train and test splits.

us to build an end-to-end RAG solution without the345

necessity of explicit document content processes346

such as HTML parsing or OCR. Thus, we leverage347

an off-the-shelf Document Screenshot Embedding348

(DSE) model (Ma et al., 2024) to serve as the re-349

trieval component of the RAG system. When en-350

coding queries and documents, the model directly351

encodes textual queries and document screenshot352

images into single vector embeddings and performs353

cosine similarity search during inference. In this354

work, we set k = 20 and m = 3.355

Additionally, an RAG pipeline may have the356

chance of having no ground truth document re-357

turned from the retriever. We use a probability of358

20% to randomly replace the ground truth docu-359

ment in the candidates, to access the model’s capa-360

bility to detect no-answer situations. After these361

operations, the data statistics are shown in Table 1.362

4 Experiment Setup363

4.1 Evaluation364

Evaluation metrics assessed both the generated an-365

swers and bounding box predictions. For answer366

generation, relaxed exact match (EM) was used to367

measure accuracy. If the golden answer and pre-368

dicted answer have a sub-sequence relationship and369

the difference in string length is within 20 charac-370

ters. The predicted answer is considered as correct.371

For bounding boxes, Intersection over Union (IoU)372

was calculated to determine localization precision,373

with an IoU threshold of 0.5 indicating a correct374

prediction.375

To analyze performance across varying content376

types, test samples were categorized by the modal-377

ity and location of the evidence. For Wiki-VISA,378

categories included first-page passages, passages379

beyond the first page, and non-passage content such380

as tables and figures. For Paper-VISA, since it is381

a single-page document, categories were divided382

into passage and non-passage content. The overall383

accuracy for each dataset was computed as a macro384

average across these categories.385

We evaluate the effectiveness of VISA in two dif-386

ferent settings: Single oracle candidate and Multi- 387

candidate. Single oracle candidate setting solely 388

evaluates the generation and visual attribution com- 389

ponent. We conduct controlled experiments by 390

training and testing the VLMs using only a single 391

ground truth relevant document screenshot as input. 392

In this setup, it is guaranteed that the answer can 393

be found within the input document. The VLMs do 394

not need to predict the relevant document identifier 395

and can focus exclusively on answer generation 396

and bounding box prediction. 397

In a Multi-candidate setting, the model is evalu- 398

ated on its ability to distinguish relevant documents 399

from irrelevant ones, in addition to generating ac- 400

curate answers and bounding boxes. This setup 401

better reflects the RAG scenarios in which multiple 402

candidate documents are retrieved, and the model 403

must not only generate a correct response but also 404

attribute it to the correct source document. For the 405

Multi-candidate evaluation, we assess two config- 406

urations: Multi-candidate, Oracle in Candidates 407

which has ground truth in candidates, this setting 408

has the same query set as the single setting, hence 409

directly comparable. Multi-candidate, Full con- 410

tains the additional 20% cases where ground truth 411

has no answer. 412

4.2 Training details 413

To train vision-language models (VLMs) for an- 414

swer generation with VISA, we initialized the 415

models using the open-source Qwen2-VL-2B and 416

Qwen2-VL-7B (Wang et al., 2024), finetuning on 417

the training datasets described in Section 3.3. 418

We first trained the models in a single-candidate 419

setup, where the input was limited to a single or- 420

acle document image. In this setup, the model 421

was trained to generate both the answer and its 422

corresponding bounding box. We used the prompt 423

template provided in Appendix A.2 to format the 424

model’s input and output. 425

Next, we trained the models in a multi-candidate 426

setup. Here, the model received three document 427

candidates and the task was to generate the iden- 428

tifier of the relevant document (if present), the 429

answer, and the bounding box for the evidence. 430

For cases where no relevant document was present 431

(20% of the training samples), the model was 432

trained to generate “No answer." We used the 433

prompt template provided in Appendix A.3 to for- 434

mat the model’s input and output. 435

The training objective for both setups was next- 436

token prediction with cross-entropy loss. We fine- 437
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Method Wiki-VISA Paper-VISA
Average [<1] Passage [>1] Passage Non-Passage Average Passage Non-Passage

bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans

Zeroshot Prompt
QWen2-VL-72B 1.5 60.4 3.4 58.5 0.1 54.9 0.9 67.9 1.5 43.1 0.5 40.2 2.5 45.9

Fine-tune, Single Oracle Candidates
VISA-2B-single 37.5 57.1 70.0 61.1 18.7 44.9 23.8 65.3 63.0 38.3 50.6 34.4 75.3 42.1
VISA-7B-single 54.2 65.2 75.6 66.5 50.1 56.0 36.8 73.1 68.2 43.8 58.1 41.6 78.2 45.9

Fine-tune, Multi Candidates, Oracle in Candidates
VISA-2B-multi 22.5 37.9 46.5 46.1 6.4 27.2 14.6 40.5 51.3 33.8 41.1 30.1 61.4 37.4
VISA-7B-multi 37.7 41.8 58.1 49.2 32.8 32.0 22.2 44.1 59.9 39.2 47.7 35.9 72.0 42.4

Fine-tune, Multi Candidates, Full
VISA-2B-full 32.1 46.9 51.0 53.6 18.9 38.0 26.5 49.1 59.8 44.7 51.6 42.6 67.9 46.7
VISA-7B-full 41.6 51.1 56.6 57.1 34.4 43.2 33.9 53.1 66.8 50.3 57.1 47.5 76.5 53.0

Table 2: Effectiveness of VISA on Wiki-VISA and Paper-VISA datasets for bounding box accuracy (bbx) and
answer accuracy (ans). Fine-tuned models are trained individually on in-domain data. The Multi-Candidate, Oracle
in Candidates setting uses the same query set as the Single Oracle Candidates setting, allowing direct comparison.
The full setting has an additional 20% queries with no ground truth documents in candidates.

tuned the models for two epochs in the single-438

candidate setting, using LoRA with a learning rate439

of 1e-4, a batch size of 64, and 4×H100 GPUs. For440

the multi-candidate setting, we initialized the mod-441

els with weights from the single-candidate setup442

and trained for one epoch with the same learning443

rate. We froze the image encoder to reduce GPU444

memory usage in the multi-candidate setting.445

During the training, random cropping was ap-446

plied outside of the bounding box. This augmen-447

tation exposed the model to varying input sizes,448

which enhanced its zero-shot effectiveness on un-449

seen document layouts. Bounding box targets were450

represented using absolute coordinate values. We451

also explored normalizing the scale of bounding452

box coordinates to values in the range[0-1]. Details453

can be found in Section 6.3.454

5 Experimental Results455

Table 2 presents the performance of VISA on the456

Wiki-VISA and Paper-VISA datasets across dif-457

ferent experimental settings. Zero-shot prompting458

results reveal the difficulty of directly applying459

state-of-the-art VLMs to the visual source attribu-460

tion task. QWen2-VL-72B achieves a reasonable461

answer generation accuracy of 60.4% on average462

on Wiki-VISA but fails to deliver effective bound-463

ing box predictions, with only 1.5% accuracy. This464

observation is consistent on Paper-VISA. These465

highlight the limitations of existing VLMs in pin-466

pointing the source evidence in original documents467

with proper location and granularity.468

Fine-tuning on our crafted training data enables469

the model to effectively execute the task. In the 470

single-candidate setup, where the model processes 471

only the relevant document, fine-tuned models 472

demonstrate substantial gains compared to zero- 473

shot prompting a much larger model. On Wiki- 474

VISA, the 7B variant achieves 54.2% bounding 475

box accuracy and 65.2% answer accuracy, while 476

on Paper-VISA, the corresponding scores reach 477

68.2% and 43.8%. Performance in the multi- 478

candidate setting, which more closely mirrors real- 479

world retrieval-augmented generation (RAG) sys- 480

tems, shows similar trends. The 7B model achieves 481

41.6% bounding box accuracy and 51.1% answer 482

accuracy when handling three candidate docu- 483

ments, including cases where no relevant document 484

is present. This demonstrates the model’s capa- 485

bility to identify relevant sources among multiple 486

documents while enabling fine-grained attribution. 487

However, when comparing the multi-candidates, 488

oracle in candidates setting, We can see the model 489

facing challenges when handling multiple candi- 490

dates compared to just handling a single relevant 491

document. E.g. on Wiki-VISA, bounding box ac- 492

curacy for 7B model is 37.7% on average which 493

is 17 points lower than the corresponding single 494

candidate setting. Showing that visual source attri- 495

bution among multi-candidates is much harder than 496

just locating the source element in a single one. 497

It further demonstrates that the effectiveness 498

of VISA is influenced by document characteris- 499

tics, such as content location and modality. For 500

Wiki-VISA, bounding box accuracy is significantly 501

higher for passages on the first page ([<1] passage) 502

compared to passages beyond the first page ([>1] 503
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Train Data Wiki-VISA Paper-VISA
Average [<1] Passage [>1] Passage Non-Passage Average Passage Non-Passage

bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans bbx ans

Wiki 54.2 65.2 75.6 66.5 50.1 56.0 36.8 73.1 27.8 36.2 20.5 32.6 35.1 39.7
Paper 0.2 42.6 0 46.3 0.4 33.5 0.1 48.1 68.2 43.8 58.1 41.6 78.2 45.9
FineWeb 37.6 50.2 48.9 45.1 57.3 52.3 6.6 53.1 22.0 43.3 26.5 41.7 17.4 44.9
Wiki+Fineweb 58.2 65.3 68.7 66.6 61.7 57.1 44.1 72.1 21.0 43.1 18.5 42.2 23.4 43.9
Paper+Fineweb 36.1 48.7 51.8 49.6 49.6 44.2 6.8 52.4 66.5 44.6 56.1 42.2 76.9 47.0
Wiki+Paper+Fineweb 58.1 64.8 69.9 65.0 58.7 56.7 45.8 72.7 67.6 44.3 55.9 41.5 79.3 47.1

Table 3: Effectiveness of VISA trained on different combinations training data for bounding box accuracy (bbx) and
answer accuracy (ans) in the single oracle candidate setting.

passage). For example, the 2B variant achieves504

70.0% accuracy for [<1] passages but only 18.7%505

for [>1] passages, indicating the challenges posed506

by long, multi-page documents. The larger model,507

the 7B variant, narrows this gap, reflecting the bet-508

ter handling of long-context inputs. Non-passage509

content, such as tables and figures, also have obvi-510

ously a different level of grounding effectiveness,511

indicating the difference of effectiveness in differ-512

ent visual elements.513

6 Analysis514

6.1 Out-of-Domain Zeroshot515

Table 3 shows the effectiveness of VISA while516

trained with different data combinations in the sin-517

gle candidate setting. It enables us to study the ef-518

fectiveness of out-of-domain transfer and augmen-519

tation. First, we highlight the challenges of zero-520

shot generalization in VISA. Training and evaluat-521

ing on in-domain achieves an effective bounding522

box accuracy, e.g. 54.2% on average for Wiki-523

VISA. However, significant performance drops are524

observed when models are tested on out-of-domain525

datasets. For instance, a model trained on Wiki-526

VISA achieves only 27.8% bounding box accuracy527

on Paper-VISA, while a model trained on Paper-528

VISA achieves near-zero performance (0.2%) on529

Wiki-VISA. This gap underscores the difficulty of530

transferring visual source attribution capabilities531

across datasets with differing document structures,532

layouts, and content modalities. Interestingly, Wiki-533

VISA appears to transfer better to Paper-VISA com-534

pared to the reverse. This may be because of the535

multi-page nature of Wiki-VISA, which provides536

richer training signals that generalize better to sim-537

pler single-page setting in Paper-VISA.538

FineWeb-VISA shows as a promising resource539

for training models with improved zero-shot capa-540

bilities. When trained on FineWeb-VISA alone,541

the model achieves 37.6% bounding box accu-542

racy on Wiki-VISA and 22.0% on Paper-VISA. 543

Notably, FineWeb-VISA outperforms Wiki-VISA 544

training on [>1] passage bbx accuracy for Wiki- 545

VISA (57.3% vs. 50.1%), suggesting its effective- 546

ness in handling long and complex document struc- 547

tures. However, FineWeb-VISA does not perform 548

as well on non-passage content, likely due to its 549

training focus on passage-level targets. 550

6.2 Data Augmentation 551

The results also demonstrate the benefits of aug- 552

menting training data with FineWeb-VISA. On 553

Wiki-VISA, combining Wiki and FineWeb train- 554

ing data improves bounding box accuracy from 555

54.2% to 58.2% and improves performance on 556

[>1] passages from 50.1% to 61.7%, indicating 557

that FineWeb complements Wiki by enhancing the 558

model’s ability to attribute evidence in multi-page 559

contexts. For Paper-VISA, however, augmenting 560

with FineWeb does not significantly improve in- 561

domain performance. Training on Paper+FineWeb 562

achieves a comparable bounding box accuracy to 563

Paper alone, but it enhances zero-shot performance 564

on Wiki-VISA (from 0.2% to 36.1%). 565

Training on the full combination of datasets 566

(Wiki+Paper+FineWeb) yields strong results across 567

both domains, with 58.1% bbx accuracy on Wiki- 568

VISA and 67.6% on Paper-VISA. This shows the 569

importance of diverse training data for building 570

generalizable models capable of handling differ- 571

ent document types, layouts, and evidence modal- 572

ities. Future work should focus on expanding the 573

dataset diversity to further improve generalization 574

and enable robust visual source attribution for a 575

wide range of document structures. 576

6.3 Bounding Box Target 577

Table 4 shows the impact of different bounding 578

box target representations and cropping strategies 579

during training. Training with random cropping 580
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Question

Error Type

Where is the energy released from 
when food is metabolized?

Type-I: Wrong source attribution Type-II: Position misalignment Type-III: Granularity mismatch

Who is the movie phantom thread 
based on?

Who played skeletor in the 
movie masters of the universe?

Document

Ground Truth VISA Output

Figure 2: Type of errors in the evaluation of Wiki-VISA.

Train Data Wiki-VISA Paper-VISA
bbx ans bbx ans

Crop, Absolute 54.2 65.2 27.8 36.2
No Random Crop 58.8 65.6 1.7 36.9
Normalized Value 56.4 64.4 0.1 37.2
No Bounding Box 0 67.6 0 35.2

Table 4: Impact of bounding box target representation
and cropping strategies during training on Wiki-VISA
in the single oracle candidate setting.

and absolute coordinate values achieves a balance581

between in-domain performance on Wiki-VISA582

(54.2%) and zero-shot generalization to Paper-583

VISA (27.8%) in bounding box accuracy. Remov-584

ing random cropping slightly improves Wiki per-585

formance but drastically reduces zero-shot general-586

ization, indicating that random cropping enhances587

the model’s robustness to varied input sizes. Nor-588

malizing coordinate values achieves moderate per-589

formance on Wiki-VISA but fails on Paper-VISA,590

suggesting that absolute bounding box values are591

better suited to our experiments.592

The “No Bounding Box” row represents a vanilla593

visual retrieval-augmented generation setup with-594

out visual source attribution, where models gen-595

erate answers without bounding box predictions.596

VISA enables visual source attribution capability597

while the effectiveness of answer generation is pre-598

served at about the same level of effectiveness.599

6.4 Error Analysis600

We conducted an error analysis on 50 randomly601

sampled cases from Wiki-VISA to better under-602

stand the limitations of VISA. Errors were cate-603

gorized into three main types as demonstrated in604

Figure 2. The first type, wrong source attribution,605

occurred in 43 cases where the model attributed 606

the source to an incorrect section of the document, 607

failing to identify the precise region containing the 608

evidence. The second type, position misalignment, 609

was observed in 4 cases where the model appeared 610

to have the correct intent but drew the bounding box 611

inaccurately, either slightly off position or incor- 612

rectly sized. The third type, granularity mismatch, 613

appeared in 3 cases where the model’s attributed 614

source, such as a specific cell in a table or an item 615

in a list, did not match the ground truth granularity. 616

While these cases could potentially be considered 617

false negatives, we leave it in error analysis to em- 618

phasize the challenge in real-world use cases where 619

user preferences for granularity may differ from the 620

model’s output. 621

7 Conclusion 622

In this paper, we introduced VISA, a visual source 623

attribution approach for retrieval-augmented gen- 624

eration pipeline. By leveraging vision-language 625

models, VISA not only generates answers to user 626

queries but also provides bounding boxes that visu- 627

ally attribute the supporting evidence within docu- 628

ment screenshots. This capability enhances trans- 629

parency and supports users in verifying the gen- 630

erated information effectively. Through the de- 631

velopment of curated datasets, we demonstrated 632

the effectiveness of VISA across diverse document 633

types and layouts, including complex multi-page 634

documents and multimodal content. Our experi- 635

mental results highlight the potential of VISA to 636

bridge the gap between information retrieval and 637

answer generation by offering finer-grained, visu- 638

ally grounded evidence attribution. Moving for- 639

ward, we hope VISA represents a pioneering step 640

for more verifiable and user-friendly RAG systems. 641
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8 Limitations642

While VISA demonstrates promising results for643

answer generation and content grounding in vision-644

based RAG systems, it has several limitations. First,645

it focuses on generating short answers, which may646

not suffice for scenarios requiring detailed or ex-647

planatory responses, highlighting the need for en-648

hancements in generating richer context. Second,649

it assumes answers are derived from a single, lo-650

calized region within a document, which limits its651

effectiveness for cases where evidence spans mul-652

tiple sections or modalities (e.g., combining text653

and tables). Third, while our evaluation spans web654

and medical scientific papers with various content655

modalities (e.g., passages, tables, figures), it does656

not fully capture the diversity of real-world doc-657

uments such as scanned or handwritten content.658

Additionally, as VISA aims to make it intuitive for659

users to verify answers, conducting user studies660

could further confirm its practical utility.661
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Figure 3: An example of synthetic data from Paper-VISA.

A Appendix988

A.1 Prompt for synthetic data generation989

The following prompt was used for prompting QWen2-VL-72B to generate synthetic questions and990

answers for Paper-VISA and Fineweb-VISA datasets.991

System:
Ask a question that can be specifically answered by the content in the red bounding box area and
give a short answer. The question can be a wh- question, a yes/no question, or a how question, that
can be answered in a few words.
Output format:

Question: <question>
Short Answer: <short answer>

Or simply return ’Empty’ if the bounding box area is not visible or informative.

User: {image}
992

Figure 3 shows an example of synthetic data from Paper-VISA.993
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A.2 Prompt for Single Oracle candidate VISA 994

The following prompt template was used to format the model’s inputs and outputs for training the Single 995

Oracle Candidate VISA. 996

Model Input:
System:
Given a document image, your task is to answer the question and locate the source of the answer
via a bounding box.

User:
{image} Image Size: {image.size}
Question: {question}

Model Output:
Assistant:
Answer: {answer}
Bounding Box: {bounding_box}

997

A.3 Prompt for Multi-candidate VISA 998

The following prompt template was used to format the model’s inputs and outputs for training the 999

Multi-candidate VISA. 1000

Model Input:
System:
Given document images, your task is to answer the question and locate the source of the answer
via a bounding box.

User:
{image1} Image Size: {image1.size}
{image2} Image Size: {image2.size}
{image3} Image Size: {image3.size}
Question: {question}

Model Output:
Assistant:
Answer: {answer}
Evidence Document: {index}
Bounding Box: {bounding_box}

1001

A.4 Dataset Licenses 1002

• NQ: Apache License 2.0 1003

• Wikipedia: Creative Commons Attribution Share Alike, GNU Free Documentation License family. 1004

• Fineweb-edu: Open Data Commons License Attribution family. 1005

• PubLayNet: Community Data License Agreement – Permissive, Version 1.0. 1006

• VISA Datasets: Our crafted datasets follow the same license as the source of the documents. 1007
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A.5 Model Backbone Licenses1008

• QWen2-VL-72B: Qwen LICENSE AGREEMENT.1009

• QWen2-VL-2B: Apache License.1010

• QWen2-VL-7B: Apache License.1011

• VISA Models: Our fine-tuned models follow the same licenses as the original model backbone.1012

A.6 AI Assistant Usage1013

GPT4o is used during the writing to correct grammar errors and format tables.1014
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