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Abstract

Recent studies show that prompt tuning can001
better leverage the power of large language002
models than fine-tuning on downstream nat-003
ural language understanding tasks. However,004
the existing prompt tuning methods have train-005
ing instability issues, as the variance of scores006
under different random seeds is quite large. To007
address this critical problem, we first investi-008
gate and find that the loss landscape of vanilla009
prompt tuning is precipitous when it is visual-010
ized, where a slight change of input data can011
cause a big fluctuation in the loss landscape.012
This is an essential factor that leads to the in-013
stability of prompt tuning. Based on this obser-014
vation, we introduce perturbation-based regu-015
larizers, which can smooth the loss landscape,016
into prompt tuning. We propose a new algo-017
rithm, called Prompt Tuning with Perturbation-018
based regularizer (PTP), which can not only019
alleviate training instability dramatically but020
also boost the performance of prompt tuning.021
We design two kinds of perturbation-based reg-022
ularizers, including random-noise-based and023
adversarial-based. In particular, our proposed024
perturbations are flexible on both text space and025
embedding space. Extensive experiments show026
the effectiveness of our proposed methods in027
stabilizing the training. Our new algorithms im-028
prove the state-of-the-art prompt tuning meth-029
ods by 1.94% and 2.34% on SuperGLUE and030
FewGLUE benchmarks, respectively.031

1 Introduction032

Releasing the burden of training models from033

scratch while keeping the outstanding performance034

on downstream tasks, pretrained Language Mod-035

els (LMs) brought NLP to a new era (Raffel et al.,036

2020; He et al., 2021; Shoeybi et al., 2019). Since037

BERT (Vaswani et al., 2017), fine-tuning all the038

parameters of pretrained LMs becomes a common039

practice. However, it is memory-consuming to040

store a copy of the entire LM for each downstream041

task due to the number of parameters in LM can042
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Figure 1: A simple pipeline of our Propmt Tuning with
Perturbation-based regularizor (PTP) algorithm.

be 10B or even 100B (Shoeybi et al., 2019; Brown 043

et al., 2020). 044

Recently, inspired by the success of GPT- 045

3 (Brown et al., 2020) on few-shot and zero-shot 046

learning with manually created prompts, there has 047

been a surging interest in prompting that freezes 048

pre-trained LM and wraps up the input sequence 049

with natural language templates. However, natu- 050

ral language prompts are handcrafted by experts 051

and the performance is not comparable with fine- 052

tuning methods. To tackle it, Lester et al. (2021); Li 053

and Liang (2021) proposed prompt tuning, which 054

prepends the input sequence with continuous em- 055

beddings and only tunes these embeddings during 056

training. Liu et al. (2021b, 2022) verified the ef- 057

fectiveness of prompt tuning on natural language 058

understanding (NLU) tasks under both few-shot 059

learning and supervised learning settings, which 060

is comparable to the fine-tuning methods but with 061

much fewer (1000× less) task-specific tunable pa- 062

rameters. However, under different random seeds, 063

we observe that the current prompt tuning methods 064

suffer from a high variance of scores, which indi- 065

cates they suffer from training instability issues. 066

To investigate the factor that causes the instabil- 067

ity of prompt tuning, we visualize the loss land- 068
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(a) Original (a) PTP-RN (b) PTP-ADV

Figure 2: The loss landscapes on different continuous prompt tuning procedures. The X-axis and Y-axis denote the
magnitude of perturbations (gradient direction) and another random orthogonal direction. Z-axis represents the
cross-entropy loss of the different training methods.

scape of the vanilla prompt tuning and observe069

that there exist many sharp crests, as shown in070

Figure 2(a), which harms the training stability. Mo-071

tivated by the recent study (Chen and Hsieh, 2020)072

which shows that perturbation-based regularizers073

are powerful tools to smooth the loss landscape074

and stabilize the training of machine learning sys-075

tems, we introduce them into prompt tuning to ad-076

dress the lack of stability and generalization issues.077

To be specific, we propose Prompt Tuning with078

Perturbation-based regularizer (PTP) algorithm to079

make the training stable and boost the performance080

of prompt tuning.081

Specifically, we consider two kinds of pertur-082

bations in PTP, Random-Noise-based (PTP-RN)083

perturbation and ADVersarial-based (PTP-ADV)084

perturbation. PTP-RN is motivated by randomized085

smoothing (Cohen et al., 2019), which applies the086

neighborhood averaging and makes the neural net-087

work smoother while PTP-ADV is motivated by088

adversarial training, a method proposed to make089

the predictor capable of resisting the adversarial ex-090

amples (Goodfellow et al., 2015) as well as boost-091

ing the clean accuracy of the predictors (Xie et al.,092

2020; Zhu et al., 2020). Moreover, in order to093

bring more flexibility and make our exploration094

more comprehensive, we apply perturbations to095

both text (discrete) and embedding (continuous)096

space, as depicted in Figure 1.097

In the experiments, we conduct extensive exper-098

iments to evaluate our proposed algorithms, PTP-099

RN and PTP-ADV, on SuperGLUE (Wang et al.,100

2019) and FewGLUE (Schick and Schütze, 2021b)101

benchmark. By applying PTP algorithm on text102

or embedding space to the existing prompt tuning103

methods, we can boost the performance of prompt104

tuning on SuperGLUE and FewGLUE benchmarks105

by 1.94% and 2.34% as well as make prompt tun- 106

ing more stable. We also present a comprehensive 107

ablation study and analysis of our algorithms with 108

different perturbations. 109

Our contributions can be summarized as: 110

• We propose new PTP algorithm to tackle the 111

training instability problem in prompt tuning, 112

which can also boost the performance. To- 113

gether with PTP algorithm, we design two 114

types of perturbations as our implicit regu- 115

larizers, which are Random-Noise-based per- 116

turbation (PTP-RN) and ADVersarial-based 117

perturbation (PTP-ADV). 118

• Moreover, as depicted in Figure 1, our pro- 119

posed PTP-ADV and PTP-RN can be ap- 120

plied to both text space and embedding space, 121

which makes our perturbations more flexible. 122

• We conduct extensive experiments to evaluate 123

the effectiveness of our algorithms on Super- 124

GLUE and FewGLUE benchmarks. The ex- 125

perimental results demonstrate our proposed 126

PTP algorithm can boost the standard perfor- 127

mance of prompt tuning on FewGLUE and Su- 128

perGLUE by 2.34% and 1.94%, respectively. 129

It also shows the great power of our algorithm 130

in improving training stability. 131

2 Preliminaries and Related Work 132

2.1 Prompt Tuning 133

Discrete Prompt. Discrete prompt, also known 134

as hard prompt (Liu et al., 2021a; Davison et al., 135

2019; Jiang et al., 2020; Haviv et al., 2021), is typi- 136

cally a template composed of task descriptions and 137

original input texts. Brown et al. (2020) created 138

templates for GPT-3 based on their introspection 139

and make it suitable for various downstream tasks, 140
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such as machine translation, QA, etc. Utilizing141

discrete prompts, they can achieve stunning results142

on NLU tasks under few-shot learning settings. By143

employing the predefined templates and converting144

the tasks into cloze questions, Schick and Schütze145

(2021a,b) showed that even with ‘greener’ back-146

bone (Lan et al., 2020), which has 100x fewer147

parameters than GPT-3, they can also reach pre-148

vailing results on the few-shot version of Super-149

GLUE benchmark (Wang et al., 2019) (also known150

as FewGLUE). Liu et al. (2021b) utilized the exist-151

ing discrete templates and tuned embeddings of the152

selected tokens, which achieves SOTA results on153

FewGLUE. As the few-shot scenario is common154

and useful, in this paper, we also test the few-shot155

learning ability of our PTP in our experiments.156

Continuous Prompt Tuning. As prompts aim157

to boost LM’s performance, it is not necessary to158

make tokens of prompts interpretable. Without the159

limit of tokens being natural words, Li and Liang160

(2021) proposed to prepend a series of tunable161

embeddings ET to the input embedding sequence162

as prompt and optimize them with training data,163

which provides in-context information for LMs to164

condition on. Lester et al. (2021) prepended a se-165

quence of special tokens T to the input sequence,166

and similarly, they tune the embeddings ET (em-167

beddings of special tokens) on the downstream168

tasks. Moreover, to further leverage the power169

of prompt embeddings, Liu et al. (2022) presented170

PT2, a method that adds the trainable prompt em-171

beddings to every layer of pretrained LMs as prefix172

embeddings. To keep the consistency of the nota-173

tion, we also apply the same prompt embedding174

representation ET to represent trainable prompts175

in every layer of LMs.176

2.2 Adversarial Training177

Continuous Space AT. Over the past few years,178

Adversarial Training (AT) has demonstrated im-179

pressive results in improving model robust-180

ness (Goodfellow et al., 2015; Tramèr et al., 2018;181

Athalye et al., 2018). AT can be formulated as a182

min-max optimization problem:183

min
θ

E(xi,yi)∼D

[
max
∥δ∥p≤ϵ

L (θ, x+ δ, y)

]
, (1)184

where L is the loss function, ∥ · ∥p represents ℓp-185

norm distance and ϵ denotes the perturbation bud-186

get. Madry et al. (2018) proposed PGD algorithm187

to compute an adversarial example (inner maxi- 188

mization problem) iteratively as: 189

δt+1 = Π∥δ∥∞≤ϵ

(
δt + α sign

(
∇δL(θ, δ

t, y)
))

,
(2) 190

where t is the iteration step; Π∥δ∥∞≤ϵ projects per- 191

turbation δ into ϵ-ball. 192

Besides enhancing the robustness against ad- 193

versarial examples, adversarial training has been 194

shown great power in boosting the standard perfor- 195

mance of image classifier (Xie et al., 2020), visual 196

language representation learning (Gan et al., 2020), 197

and GNN (Kong et al., 2022). In this paper, we also 198

apply a similar idea to prompt tuning and focus on 199

boosting its performance rather than its adversarial 200

robustness. 201

Discrete Space AT. Different from adversarial 202

attacks on images, in NLP attack, due to the dis- 203

crete nature of text space, it is typically formu- 204

lated as a combinatorial optimization problem to 205

create adversarial input sequence s′, which is clas- 206

sically solved by heuristic search while maintain- 207

ing the semantic similarity of the original input 208

sequence s (Li et al., 2020; Ren et al., 2019; Morris 209

et al., 2020). However, the searching algorithms of 210

adversarial attacks, such as beam search (Ebrahimi 211

et al., 2018), greedy search based on word impor- 212

tance (Ren et al., 2019), and deletion-based search- 213

ing (Jin et al., 2019), are usually slow because of 214

the high computation cost on sentence encoding 215

and large search space (Yoo et al., 2020). Yoo 216

and Qi (2021) proposed A2T algorithm to accel- 217

erate the heuristic search process, which replaces 218

the slow USE encoder (Li et al., 2020) with Dis- 219

tilBERT (Sanh et al., 2019) to calculate the cosine 220

similarity between original input text and perturbed 221

text, and they obtain significant speedup compar- 222

ing to the textfooler (Jin et al., 2019). Thus, in this 223

paper, we adapt the attacking algorithm in (Yoo 224

and Qi, 2021) to generate noises in text space. 225

3 Proposed Framework 226

3.1 Preliminary 227

Before introducing the proposed algorithms, we 228

first briefly describe the word to embedding process 229

of LMs as well as the final embedding input of the 230

continuous prompt tuning. Given the n word input 231

sequence s = [s1, . . . , sn] and word to embedding 232

function fV , where V denotes embedding matrix, 233

the input embedding Es = [e (s1) , . . . , e (sn)] ∈ 234

Rn×d can be obtained by Es = fV (s), where 235
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RTE BoolQ WiC

Acc. 87.7± 1.81 83.9± 0.92 72.0± 1.38
Var. 1.45 0.74 1.16

Table 1: Re-implementation results of PT2 (Liu et al.,
2022) with RoBERTa-large backbone on SuperGLUE
benchmark. Acc.: mean accuracy. Var.: variance score
computed by 5 runs with different random seeds.

Algorithm 1: PGD on prompt tuning

1 Require: Perturbation iteration n and
size α. The bound of perturbation ϵ ;

2 for epoch = 1, . . . , n do
3 Es.requires_grad← True;
4 ŷi ← argmaxy (Pr [y|M (I ′)]);
5 L(ŷ, y).backward();
6 E′

s ← Es + α ∗ Es.grad.sign() ;
7 δ = Π∥δ∥∞≤ϵ(E

′
s − Es) ;

8 E′
s ← Es + δ ;

9 M.zero_grad();

10 return E′
s

d denotes the dimension of the word embedding.236

Let continuous prompts be ET = [e1t , . . . , e
m
t ] ∈237

Rm×d, the update of ET can be either directly,238

or through a reparameterization encoder P like239

MLP/LSTM, P (ET ) = [h0, . . . , hm] ∈ Rm×d.240

For simplicity, we still use ET to represent the241

output of P (ET ), and the final input embedding242

sequence is written as [ET ;Es] ∈ R(m+n)×d.243

The training objective of continuous prompt tun-244

ing can be formulated as:245

min
θ

E(s,y)∼D [L (M (θ, s, y))] , (3)246

where M denotes LM; θ represents the trainable247

parameters of ET and prompt encoder P while D248

is the underlying data distribution.249

3.2 Proposed Formulation250

Although continuous prompt tuning (Liu et al.,251

2022) could achieve comparable performance with252

the fine-tuning method by only using 0.1% to 3%253

trainable parameters, it suffers from unstable train-254

ing issues: as shown in Table 1, even only changing255

the random seed in different runs, the final perfor-256

mance is very unstable. To investigate the issue,257

we plot the loss landscape of the vanilla prompt258

tuning as Figure 2 and observe sharp crests in a259

small local region with a small noise, which means260

Algorithm 2: PTP

1 Require: Prompt embeddings ET ; input
embeddings Es; trainable parameter θ for
prompt encoder P and ET ; Training data
D; Pre-trained LMM; Loss function L ;

2 Initialize parameters θ;
3 for epoch = 1, . . . ,K do
4 /* standard prompt tuning */
5 Sample a minibatch data (s, y) from D;
6 Θ.requires_grad← True;
7 I ← [ET ;Es] ;
8 ŷ ← argmaxy (Pr [y|M (I)]);
9 L(ŷ, y).backward() and update ET ;

10 /* training with perturbed data */
11 Θ.requires_grad← False;
12 Apply PTP-RN or PTP-ADV to s or Es;
13 I ′ ← [ET ;E

′
s] ;

14 Θ.requires_grad← True;
15 ŷi ← argmaxy (Pr [y|M (I ′)]);
16 L(ŷ, y).backward() and update ET ;

a small perturbation on embedding space would 261

cause a significant reduction in the final accuracy. 262

It is also known as the training instability prob- 263

lem (Chen and Hsieh, 2020). To address this chal- 264

lenge in prompt tuning, we propose perturbation- 265

based regularizers to force the loss landscape to be 266

smooth. Specifically, we introduce two versions of 267

perturbation-based regularizers that can be formu- 268

lated as follows: 269

minθ E(s,y)∼D [L (M (θ, s+ δ, y))] , s.t.
PTP-RN: δ ∼ N
PTP-ADV: δ = max∥δ∥≤ϵ L (θ, s+ δ, y) ,

(4) 270

where N denotes Gaussian distribution. For PTP- 271

RN, we minimize θ under small random perturba- 272

tion, aiming to force the model to focus on per- 273

turbed pair (s+ δ, y) and have a robust prediction 274

within the neighborhood of s. It is related to the 275

idea of randomized smoothing (Cohen et al., 2019), 276

which obtains a smoother predictor via randomly 277

averaging the neighborhood of the given function. 278

For PTP-ADV, the perturbation δ is generated by 279

adversarial attack algorithms such as PGD (Madry 280

et al., 2018), A2T (Yoo and Qi, 2021), and the 281

worst-case training loss is minimized under small 282

perturbation bounded by ϵ. The idea is motivated 283

by adversarial training, which is usually applied as 284

a form of adversarial defense. (Goodfellow et al., 285

2015; Cheng et al., 2021) 286
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Since we are the first to investigate the training287

stability issue of the prompt tuning and it is still288

unknown which space to inject perturbation δ is bet-289

ter, we apply it on both text and embedding space290

to bring more flexibility and make our exploration291

more comprehensive. The perturbed sequence s′292

or the perturbed embedding E′
s can be obtained as293

s′ = s+ δ,
E′

s = Es + δ,
(5)294

where s, Es denote the input sequence and the input295

embedding, respectively. It is worth noticing that296

if the perturbation is on s (text space), through fV ,297

the perturbed s′ will be converted into input em-298

bedding, which is also denoted as E′
s.299

The main idea of our proposed formulation is300

that we force our algorithm to not only learn from301

the clean data pair (s, y) but also perturbed data302

pair (s+ δ, y) to make the training more smooth.303

3.3 PTP-RN304

3.3.1 Embedding Space (RG Perturbation)305

In embedding space, how to create perturbed ex-306

amples is still an unsolved problem. But since307

the ultimate effects of PTP-RN are the only thing308

we care about, not the interpretability, it is feasi-309

ble for us to add random-noise-based perturbation310

on word embeddings. Given the embeddings of311

the input sequence Es = [e(s0), e(s1), . . . , e(sn)],312

where e(si) ∈ Rd, PTP-RN in embedding space313

samples δ from Gaussian distribution and randomly314

selects some embeddings to perturb, which make315

sure. The perturbation δ can be formulated as:316

E′
s = Es + δ, s.t.

δ = {δ1, 0, . . . , δi, 0},
(6)317

where δ ∈ Rn×d has the same length as the in-318

put embeddings; i denotes the number of embed-319

dings being perturbed and δn=1,...,i ∼ N (0, σId),320

with d denoting the dimension of the word embed-321

ding and σ controlling the magnitude of perturba-322

tion. We represent PTP-RN on embedding space323

as PTP+RG.324

3.3.2 Text Space (RM Perturbation)325

In text space, similarly, our goal is to create label-326

preserving and perturbed input data to augment the327

training data and make the training stable. Given328

an input sequence s, PTP-RN randomly selects329

some tokens and converts them into [MASK]. The330

perturbed sequence s′ can be formulated as:331

s′ = {s0, [MASK] , . . . , [MASK] , sn}, (7)332

where we perturb i tokens. It should be noticed 333

that unlike BERT pretraining process (Vaswani 334

et al., 2017), where the model predicts the label 335

of [MASK], our model will not predict anything on 336

the tokens we mask and we just use [MASK] token 337

as a perturbation on discrete space. PTP+RM is 338

used to denote PTP-RN on text embedding space. 339

3.4 PTP-ADV 340

3.4.1 Embedding Space (PGD Perturbation) 341

Different from previous PGD training methods 342

which focus on improving the models’ robust- 343

ness, we aim to smooth the loss landscapes and 344

boost the performance of prompt tuning by adding 345

adversarial-based regularization. Given the em- 346

bedding sequence Es, PTP-ADV adopts multi-step 347

PGD to generate perturbations on embedding space. 348

The perturbation δ is computed iteratively as: 349

E′
s = Es + δt, s.t.

δt = Π∥δ∥∞≤ϵ

(
δt−1 + α∇δL

) (8) 350

where δt denotes the t-th iterations of PGD pertur- 351

bation and it will be added to the input embedding 352

sequence Es after all the iterations are finished. 353

Algorithm 1 shows the implementation details of 354

our PGD attack on prompt tuning. PTP+PGD is 355

applied to denote our PTP-ADV algorithm with 356

perturbation on embedding space. 357

3.4.2 Text Space (A2T Perturbation) 358

Furthermore, to enhance the flexibility of PTP- 359

ADV and boost model generalization ability, we ap- 360

ply it to the text space: PTP-ADV adopts the attack 361

algorithm in A2T (Yoo and Qi, 2021) to generate 362

its perturbation δ, which is an algorithm composed 363

of NLP attack and adversarial training. Given the 364

input sequence s, the perturbed sequence s′, with 365

A2T perturbation, can be represented as: 366

s′ = {s0, s′1, . . . , s′n−1, sn}, (9) 367

where s′i denotes the perturbed word. For simplic- 368

ity, we also call it PTP+A2T. 369

Algorithm 2 provides the details about the whole 370

training process of PTP algorithm. In the standard 371

prompt tuning, the input of LM is composed of 372

prompt embedding ET and input embedding Es, 373

which is denoted as I = [ET ;Es]. After LM gives 374

a prediction of I , we backpropagate the loss to up- 375

date ET . In training with perturbed data part (Line 376

10-16, Algorithm 2), the discrete or continuous 377

space perturbations of input data are generated by 378
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Method BoolQ CB WiC RTE
BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

FT 77.7 86.9 94.6 98.2 74.9 75.6 70.4 86.6
PT2 75.8 84.8 94.6 100 75.1 73.4 78.3 89.5

PTP+A2T 76.4 85.7 94.5 99.6 75.8 72.9 78.6 89.7
PTP+RG 77.3 86.2 95.8 99.8 76.7↑1.6 75.5 79.9 90.6
PTP+RM 77.4 85.9 95.7 100 76.4 75.2 79.6 91.6
PTP+PGD 78.3↑2.5 86.7↑1.9 96.1↑1.5 100↑0 76.6 75.7↑2.3 80.3↑2.0 92.0↑2.5

Method COPA MultiRC(F1a) ReCoRD WSC
BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

FT 69.0 94.0 70.5 85.7 70.6 89.0 68.3 63.5
PT2 73.0 93.0 70.6 82.5 72.8 89.3 68.3 63.5

PTP+A2T 73.3 93.2 71.4 82.6 73.6 89.7 68.5 63.8
PTP+RG 75.1↑2.1 93.9 72.6 84.9↑2.4 74.9 90.5 69.4 65.0
PTP+RM 74.6 93.8 72.9 84.4 74.8 90.6 69.2 64.8
PTP+PGD 74.7 94.1↑1.1 73.4↑2.8 84.6 75.1↑2.1 91.9↑1.6 69.7↑1.4 65.0↑1.5

Table 2: Results of our proposed PTP algorithm in fully-supervised learning settings. We employ the large-size
version of BERT and RoBERTa models (BERT-Large size: 335M and RoBERTa-large size: 355M, respectively).
We use bold font to mark the best and red subscript to mark the improvement compared to the PT2.

PTP-RN or PTP-ADV firstly. Then the perturbed379

input is employed to conduct training with original380

label y, which also plays a data-augmentation role381

to boost the performance of the prompt tuning.382

4 Experiments383

We conducted empirical studies on two popu-384

lar natural language understanding (NLU) bench-385

marks: SuperGLUE benchmark (Wang et al., 2019)386

and FewGLUE benchmark (Schick and Schütze,387

2021b). We tested the proposed framework in both388

fully-supervised and few-shot settings to verify the389

effectiveness of our proposed PTP-RN and PTP-390

ADV algorithm with perturbations on both text and391

embedding space.392

4.1 Experimental Setup393

NLU Dataset. SuperGLUE benchmark (Wang394

et al., 2019) contains 8 challenging natural lan-395

guage understanding (NLU) tasks. We also include396

the few-shot version of SuperGLUE, FewGLUE397

benchmark (Schick and Schütze, 2021b) to test398

the ability of our algorithm, which consists of 32399

training samples in each dataset on SuperGLUE.400

Following (Schick and Schütze, 2021b; Liu et al.,401

2021b), we report results on 7 of 8 NLU tasks in402

few-shot settings.403

Fully & Few-shot Setting. In fully-supervised404

setting, the full training set of each task in Super-405

GLUE (Wang et al., 2019) is employed during the 406

prompt tuning process. Besides, in the model se- 407

lection part, we adopt the whole validation set. As 408

few-shot learning ability of prompt tuning can re- 409

duce the cost of annotations in real-world applica- 410

tions, following (Schick and Schütze, 2021b; Liu 411

et al., 2021b), we also test our algorithm under few- 412

shot settings. To be specific, we use the training 413

set provided by FewGLUE (Schick and Schütze, 414

2021b), the few-shot version of SuperGLUE, con- 415

taining 32 training pairs in each task. Besides, we 416

use the same version of the development set as (Liu 417

et al., 2021b) to select models, which are created 418

by randomly choosing 32 unused training pairs. 419

Baseline Methods. We include 2 prompt tuning 420

methods P-tuning (Liu et al., 2021b) (PT) and P- 421

tuning-v2 (Liu et al., 2022) (PT2) as baselines. PT 422

is the state-of-the-art method in FewGLUE bench- 423

mark while PT2 also achieves excellent perfor- 424

mance in SuperGLUE benchmark. We defer the 425

hyperparameters such as learning rate and prompt 426

length in Appendix A. We also leave some figures 427

and tables in Appendix. 428

Pretrained LMs. Following the settings in (Liu 429

et al., 2022, 2021b), we include BERT-large (De- 430

vlin et al., 2019) and RoBERTa-large (Liu et al., 431

2019) for fully-supervised settings and ALBERTA- 432

xxlarge-v2 (Lan et al., 2020) for few-shot settings. 433
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(Dev 32) BoolQ CB WiC RTE MultiRC WSC COPA
Method (Acc.) (F1) (Acc.) (Acc.) (EM) (F1a) (Acc.) (Acc.)

PET Best 75.1 83.5 52.6 65.7 35.2 75.0 80.4 83.3
PT 77.8 92.3 56.3 76.5 36.1 75.0 84.6 87.0

PTP+RM 79.9 93.2 58.1 78.6↑2.1 36.2 78.3 85.9 88.6
PTP+RG 79.5 93.7↑1.4 58.0 77.7 36.6 78.1 85.4 88.3
PTP+A2T 78.6 92.6 56.6 77.4 36.5 76.0 84.7 87.7
PTP+PGD 80.2 ↑2.4 93.5 58.5 ↑2.2 78.5 37.4↑1.3 78.9↑3.9 86.0↑1.4 88.9↑1.9

PET(Full Dev) 79.4 59.4 52.4 69.8 37.9 77.3 80.1 95.0
iPET(Full Dev) 80.6 92.4 52.2 74.0 33.0 74.0 - -

Table 3: Results of our PTP algorithm in Few-shot learning(32 training examples) settings. PT: P-tuning (Liu et al.,
2021b) and the backbone LM is alberta-xxl-v2. We use bold font to mark the best. The red subscript denotes
the increase of our method compared with the baseline method PT. Dev 32: development set contains 32 unused
examples from the training set, same as (Liu et al., 2021b). Full Dev: original development set.

To have a fair comparison with the baseline meth-434

ods, for fully-supervised settings, all backbone435

LMs are frozen, except in fine-tuning, same as (Liu436

et al., 2022). For few-shot learning settings, back-437

bone LMs are tuned with trainable prompt embed-438

dings, same as (Liu et al., 2021b).439

4.2 Results on Fully-supervised Setting440

In fully-supervised settings, Table 2 demon-441

strates the results of our proposed PTP algo-442

rithm with 4 different perturbations on all 8443

tasks of SuperGLUE benchmark. It is worth444

noticing that PTP+PGD achieves the best perfor-445

mance in almost all datasets except WiC (BERT),446

COPA(BERT), and MultiRC (RoBERTa). Over-447

all, the best method PTP+PGD outperforms the448

baseline method PT2 by 1.94% (with BERT-large449

backbone) and 1.63% (with RoBERTa-large back-450

bone) on average.451

Text vs. Embedding Perturbation. PTP with452

PGD and RG perturbation on continuous space (em-453

bedding space) are perform better than PTP with454

RM and A2T, which indicates perturbing on con-455

tinuous space is more effective than perturbing on456

discrete space in fully-supervised settings. As for457

pretrained LMs (BERT-large and RoBERTa-large),458

results show the superb learning ability of our PTP459

algorithm regardless of which backbone.460

4.3 Results on Few-shot Setting461

In few-shot learning settings, we employ462

FewGLUE, also known as few-shot version of463

SuperGLUE. PET (Schick and Schütze, 2021b)464

and iPET (Schick and Schütze, 2021a) are the465

methods using discrete prompts. We test the466

previous SOTA method on FewGLUE, PT (Liu 467

et al., 2021b) , as our baseline method and 468

validate on the same development set (Dev 32). 469

As illustrated in (Liu et al., 2021b), for a fair 470

comparison, the results of PET Besst (Dev 32) 471

are reported as removing all the additional tricks 472

like ensemble, distillation, etc. PET (Full Dev) 473

and iPET (Full Dev) denote the methods with the 474

original validation set. 475

Our main results are shown in Table 3. PTP 476

achieves better results than the previous state-of- 477

the-art method PT in all 7 tasks, which verifies the 478

effectiveness of our algorithms in few-shot NLU 479

tasks. Especially, PTP+PGD outperforms the pre- 480

vious PT by 2.34% on average. Comparing the 481

PTP+PGD (Dev 32) to the methods with the orig- 482

inal dev set, it still has an advantage on most of 483

the tasks (5 of 7) while the results are similar in 484

BoolQ (better than PET with full dev set but worse 485

than iPET). The PTP with RM and RG perturba- 486

tion method also achieve remarkable improvement 487

when compared to the baseline method PT. More- 488

over, PTP with A2T perturbation can also boost the 489

performance of the baseline by a small margin. 490

4.4 Results on Improving Training Stability 491

In addition to improved generalization perfor- 492

mance, the proposed method could stable the train- 493

ing process. Figure 2 provides strong evidence 494

that our proposed PTP-RN and PTP-ADV train- 495

ing methods have a much smoother loss landscape 496

compared to the vanilla prompt tuning. For the 497

few-shot learning setting, we demonstrate the re- 498

sults in Table 6. It could be seen that all our PTP 499

methods have smaller variances than the baseline 500

7



Figure 3: The variance of the scores on the dev sets from
SuperGLUE Benchmark. We compute it on 5 runs with
different random seeds to report. The reported experi-
ments are all using BERT-large models as backbones.

method. Specifically, PTP+PGD has the smallest501

variance in 5 runs, which indicates its training and502

generalization stability. Compared with the PTP-503

RN methods (RG, RM), PTP-ADV methods (A2T,504

PGD) achieve smaller variance. We also conduct505

the experiments under fully-supervised learning set-506

tings in Figure 3. It shows that in all 8 tasks from507

SuperGLUE benchmark, our proposed method can508

still reduce the training variance of different runs509

with the same hyperparameter except the seeds.510

5 Ablation Study511

In this section, we conduct comprehensive ablation512

studies of our perturbation methods under both513

fully-supervised and few-shot learning settings.514

RG Perturbation. We investigate the strength515

of gaussian noise δ and number of perturbed em-516

beddings i affects the performance (see Eq. (6)).517

Specifically, we run experiments with σ , which518

is the variance of the added Gaussian noise, from519

{10−4, 10−3, 10−2} and the number of word em-520

beddings perturbed, which is denoted as i in Eq. (6),521

from {1, 5, 10, 20}. Under the fully-supervised522

learning setting, we report the results on COPA,523

RTE, WiC tasks in Figure 4. The results show the524

appropriate σ is supposed to be 10−2 and the num-525

ber of perturbed embeddings to be 5. With large σ526

and large i, PTP+RG is more likely to fail in com-527

parison to the baseline method. Under few-shot528

learning settings, we select results in MultiRC task529

to report, as shown in Table 7. The encouraging re-530

sult also demonstrates that the best choice of σ and531

number of embeddings perturbed is 10−3 and 5,532

respectively.533

PGD Perturbation. We investigate how differ- 534

ent α (See Eq. (8)) and PGD iterations affect the 535

performance. We run experiments with α from 536

{10−4, 10−3, 10−2} and PGD iterations from 1 to 537

5. Under fully-supervised learning settings, we 538

present the the results of COPA dataset in Table 8. 539

It shows that large α in PGD will be detrimental to 540

the performance. Under few-shot learning settings, 541

Figure 5 demonstrates the results of different α and 542

different iterations of PTP+PGD on few-shot set- 543

tings. In all 3 datasets, when α is 10−3, not too 544

small nor too large, and PGD iters is 4, PTP+PGD 545

can achieve outstanding performance. 546

RM Perturbation. We investigate how different 547

numbers of random [MASK] inserted affects the 548

PTP. Formally, the number of [MASK] inserted is 549

defined as i in Eq. (7). We conduct experiments 550

with i from 1 to 10. Under few-shot learning set- 551

tings, Figure 6 presents the results of PTP with 552

RM perturbation on FewGLUE (MultiRC and RTE 553

dataset). We observe that RM perturbation can 554

boost the performance substantially in few-shot 555

settings and the best choice of i is 8. Under fully- 556

supervised settings, Table 9 presents the ablation 557

of RM perturbation. It also shows that a large num- 558

ber of [MASK] inserted harms the performance, 559

especially when the backbone is RoBERTa. 560

A2T Perturbation. We investigate how the mini- 561

mum cosine similarity between normal input s and 562

perturbed input s′ of A2T perturbation affects the 563

results. We run experiments with minimum cosine 564

similarity from {0.2, 0.4, 0.6, 0.8} and show results 565

in Table 10. It indicates small similarity may cause 566

damage to the standard performance because the 567

perturbation can be too large in this case. 568

6 Conclusion 569

In this paper, we first investigated the training insta- 570

bility issues on prompt tuning, which has a precipi- 571

tous loss landscape in its visualization. To tackle 572

the problem, we proposed PTP-RN and PTP-ADV 573

algorithms, which include four different perturba- 574

tions (RG, RM, ADV, A2T) on both discrete and 575

continuous spaces, to smooth the loss landscape 576

and make the training stable. Furthermore, our 577

algorithms are also capable of boosting the per- 578

formance of prompt tuning. The extensive experi- 579

ments validate the effectiveness of our proposed al- 580

gorithms on NLU tasks under both fully-supervised 581

and few-shot settings. 582
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APPENDIX 862

A Details of learning rate and prompt 863

length 864

Tasks LR1 LR2 PL1 PL2
BoolQ 1e-3 5e-3 40 16
COPA 5e-3 7e-3 16 16
RTE 1e-2 5e-3 20 128
WSC 3e-3 7e-3 16 8
CB 7e-3 9e-3 16 16

MultiRC 1e-4 3e-3 40 20
ReCoRD 3e-4 5e-3 16 40

WiC 1e-4 5e-3 20 16

Table 4: Prompt Length and Learning Rate details for
8 tasks on SuperGLUE. LR1, PL1: learning rate and
prompt length for continuous prompts with BERT-large
backbone. LR2 and PL2: learning rate and prompt
length for prompts with RoBERTa-large backbone.

Tasks Learning Rate
BoolQ 5e-5
RTE 5e-5
WiC 1e-5
WSC 5e-5
COPA 1e-5

MultiRC 1e-4
CB 1e-5

Table 5: Prompts’ Learning Rate details for 7 tasks in
FewGLUE.

Under fully-supervised settings, the prompt 865

length and learning rate details are presented as 866

Table 4. Under few-shot learning settings, we re- 867

port it as Table 5. The prompt length is exactly the 868

same as the PT (Liu et al., 2021b), thus we ignore 869

it here. 870

B Supplement for Experiment 871

This section includes the tables and figures as a 872

supplement to our experiment and ablations. Ta- 873

ble 6 demonstrates the comparison of the variance 874

of different training methods on FewGLUE bench- 875

mark. Table 7 presents the ablation of our algo- 876

rithm with RG perturbation on MultiRC (Khashabi 877

et al., 2018) task. We show the ablation of PGD 878

perturbation in Table 8. The ablation of RM per- 879

turbation is presented as Table 9. Table 10 shows 880
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Figure 4: Performance of PTP+RG on SuperGLUE (WiC, RTE, COPA datasets) with σ from {10−4, 10−3, 10−2}
and perturbed embeddings from {1, 5, 10, 20}. The dashed red line represents the performance of baseline method
PT2 with BERT-large as backbone LM.

Figure 5: Performance of PTP+PGD on FewGLUE (WiC, BoolQ, WSC datasets) with different α and PGD
iterations. The dashed red line represents the performance of the baseline method PT (Liu et al., 2021b). It shows
the best α and PGD iterations are 10−3 and 4, respectively.

Tasks RTE WSC WiC BoolQ
PT 1.89 1.68 1.77 1.45

+RG 0.81 0.78 0.91 0.56
+A2T 0.45 0.43 0.39↓1.38 0.59
+RM 0.68 0.95 0.87 0.65
+PGD 0.35↓1.54 0.31↓1.37 0.47 0.43↓1.02

Table 6: The variance of the scores on the dev sets of RTE, COPA and BoolQ from the FewGLUE benchmark. We
compute it on 5 runs with different random seeds (other hyper-parameter are the same). We employ bold font to
denote the smallest deviation in each task and blue font to denote the decrease when compared to PT.

the ablation of our proposed PTP+A2T training881

algorithm.882

Figure 4 shows the ablation of RG perturbations883

on WiC (Pilehvar and Camacho-Collados, 2018),884

RTE (Dagan et al., 2005), and COPA (Gordon885

et al., 2012) datasets under fully-supervised learn-886

ing setting while Figure 5 presents the ablation of887

our PTP+PGD training method on WiC (Pilehvar888

and Camacho-Collados, 2018), BoolQ (Clark et al.,889

2019) and WSC (Levesque et al., 2012) datasets890

under few-shot learning settings. We show the891

ablation of our proposed PTP+RM algorithm as892

Figure 6 on FewGLUE benchmark.893

All experiments are conducted on servers with894

RTX A6000 GPUs, each having 48GB of memory.895
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MultiRC E=1 E=5 E=10 E=20
σ=1e-2 75.2 74.3↓0.7 75.8 74.7
σ=1e-3 77.3 78.1↑3.1 77.1 76.6
σ=1e-4 76.9 77.2 76.8 75.5

Table 7: Results of different σ in RG perturbation (MultiRC task). The baseline method is PT2 and its performance
is 75.0. E denotes number of embeddings that are perturbed. We mark the best and the worst.

COPA t=1 2 3 4 5
α=1e-2 70.3 72.1 72.0 71.0 69.0↓4.0

1e-3 73.4 70.8 72.9 73.5 73.2
1e-4 73.1 73.4 74.7↑1.7 73.8 72.5

Table 8: Results of PTP+PGD on fully-supervised COPA dataset. The baseline method is PT2 (Liu et al., 2022),
whose accuracy is 73.0 . The backbone LM employed is BERT-large. α is the perturbation size while t is PGD
iterations (see Eq. (8)).

Dataset LM 1 2 3 4 5 6 7 8 9 10
BoolQ BERT -0.12 +0.50 +1.57 +0.65 +1.35 +1.14 +1.12 +0.24 +0.25 -0.38
(Full) RoBERTa +0.31 +0.76 +1.10 +0.88 +0.69 -0.36 +0.19 -0.43 -0.67 -0.36

Table 9: The results of different i in Eq. (7) (number of [MASK] randomly inserted into input sequence as
perturbation) . We select BoolQ with fully-supervised settings to report. The reported increase or decrease is
compared to the baseline method PT2.

Figure 6: The results of different i in Eq. (7) (number of [MASK] randomly inserted into input sequence as
perturbation). We select MultiRC and RTE tasks with Few-shot setting to report.

Cosine Sim 0.2 0.4 0.6 0.8
BoolQ(Full) -0.83 -0.46 +0.61 +0.52
BoolQ(Few) -0.96 -0.13 +0.78 +0.84

MultiRC(Full) -0.77 -0.35 +0.25 +0.71
MultiRC(Few) -0.59 -0.54 +1.03 +0.68

Table 10: The results of different minimum cosine similarity in A2T perturbation. Full: fully-supervised learning
setting. Few: few-shot learning setting.
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