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Abstract

When using large language models (LLMs)001
to generate code from natural language002
(NL2Code), the target programming language003
influences precision. We empirically observe004
that LLMs are more likely to produce cor-005
rect code when the target language is a pop-006
ular language and struggle for low-resource007
target programming languages. Prompt engi-008
neering approaches can address the problem009
to some extent, but can not fully close the010
gap between popular and low-resource target011
languages. We introduce “alternate task tech-012
nique” that uses an LLM to perform a sur-013
rogate task whose results are combined with014
the LLM’s results on the original task to im-015
prove performance on the original NL2Code016
task. Using SQL, Python Pandas, and Power017
Query language M as three targets, we show018
that our approach brings the performance of019
LLMs on the low-resource M language signif-020
icantly closer to its performance on the more021
popular Python Pandas and SQL languages.022

1 Introduction023

The emergence of Large Language Models (LLMs),024

such as Codex (Chen et al., 2021) and GPT (Brown025

et al., 2020; OpenAI, 2023), has fundamentally026

transformed the field of program synthesis from027

natural language (NL), leading to the rapid devel-028

opment of NL interfaces (i.e., PowerAutomate;029

PowerBI Q&A) and code assistants (GitHub Copi-030

lot) that are widely used by practitioners and de-031

velopers. In-context learning (Dong et al., 2023)032

plays a crucial role in this transformation, enabling033

LLMs to generate code for a diverse range of pro-034

gramming languages with minimal input. The input035

to LLM typically consists of a prompt describing036

the task to be performed in natural language and,037

potentially, a few examples, which are used for few-038

shot prompting (Brown et al., 2020; Logan IV et al.,039

2021). Our focus is on developing LLM-based solu-040

tion for NL to code tasks using in-context learning041

as it is cost-effective: it does not require training 042

and deployment of custom models for specific pro- 043

gramming domains (e.g., SQL, Python) and it also 044

avoids data-hungry and compute-heavy fine tuning. 045

The simplicity and strength of in-context learn- 046

ing makes it an excellent choice for synthesizing 047

data manipulation programs, i.e. programs that 048

are designed to extract, query, and transform data 049

using NL descriptions. There are plenty of data 050

manipulation languages. Some, such as SQL and 051

Python Pandas, are popular, while others, such as 052

PowerQuery M (Power Query), are not as well rep- 053

resented in the publicly-available documents and 054

code repositories on which the LLMs are trained. 055

Unsurprisingly, we observed that LLMs perform 056

poorly when generating code in M, compared to 057

when the target language is Python Pandas or SQL. 058

How can we improve the performance of LLMs on 059

generating code in a low-resource language? One 060

potential approach is by adding more information 061

about the target language in the prompt, perhaps in 062

the form of few-shot examples; however, it was not 063

sufficient to close the performance gap. 064

In this paper, we introduce the alternate task 065

technique (ATT), where three agents come together 066

to solve a task. The first agent solves the original 067

task, the second agent solves a different, but closely 068

related, task, and the third agent consolidates the 069

two outputs. The agents may be implemented using 070

LLMs or other tools. ATT is a general principle that 071

can be instantiated in many different ways. Several 072

recent works in the literature can be viewed as in- 073

stances of ATT. Specifically, in recent work (Chen 074

et al., 2023a), the authors solve the NL to code task 075

by also solving the alternate “NL to test case gen- 076

eration” task, and then consolidating the generated 077

code and the generated test cases. In another recent 078

work (Du et al., 2023), the alternate task is picked 079

to be identical to the first task, and the two answers 080

are consolidated using multi-turn debate between 081

the first two agents. Thus, there is no explicit third 082
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agent in (Du et al., 2023) and its job is performed083

by a multi-turn consensus between the two agents.084

In yet another work on multiagent debate (Liang085

et al., 2023), an explicit third agent is deployed to086

consolidate the results from the debating agents.087

We instantiate the ATT approach on the “NL to088

data-manipulation code” task, especially for gen-089

erating code in low-resource languages. This task090

differs from the more general “NL to code” task in091

that there is a fixed data context: in addition to the092

NL description of the intended task, we also have093

the dataset on which the task needs to be performed.094

We use the alternate output prediction task: gener-095

ate the output dataset from the NL task description096

and input dataset. We then compare the predicted097

outputs with the output generated by execution of098

the predicted programs, and use the result to pick099

the program that is most likely to be the correct pro-100

gram. Thus, our third agent is a tool that executes101

generated programs and checks if the execution102

results are consistent with predicted outputs.103

While prior work has also utilized the data con-104

text, it is largely limited to using the data context for105

creating better prompts for the original task (Poesia106

et al., 2022; Pourreza and Rafiei, 2023; Trummer,107

2022). In this paper, we use (a sample of) the input108

dataset to also predict the output from the NL.109

Our Contribution. In this paper, we present the110

alternate task technique (ATT) and evaluate it on111

data-manipulation code generation for multiple tar-112

gets. The alternate task leverages the data context113

in previously unexplored ways. We show that ATT114

gives small improvements on the task of generating115

code in popular targets, such as SQL and Pandas,116

where we are able to get close to or beat the state-117

of-the-art without any fine-tuning or custom model118

learning. Moreover, it produces significant gains119

when the target is a low-resource language, namely120

PowerQuery M, and helps close the accuracy gap121

between the popular and niche targets.122

2 Motivating Scenario123

In this section, we motivate our solution using an124

example NL statement that we need to translate to125

a Power Query M (Power Query) expression. M126

is a data manipulation language used in business127

intelligence applications, such as Microsoft’s Excel128

and PowerBI (PowerBI), and is typically used to129

filter, transform and combine data from one or more130

sources. Since it is a custom language used by131

specialized tools, LLMs perform poorly on tasks 132

that involve generating M expressions. 133

Consider a scenario where a user is working in 134

Power Query with a table Source containing a col- 135

umn named ‘Path’ with some text data. The user 136

issues an NL query: “Trim the end of all contents 137

in column "Path" by one character” and wants an 138

M expression for it (this is a real query which was 139

scraped from a Help Forum1). 140

We first prepare the best possible prompt 141

to send the LLM. This includes the NL query, 142

the schema of the table Source, some sample 143

rows from Source, and some examples of 144

NL queries alongside the corresponding M 145

expressions (few-shot prompting). From this 146

prompt, the LLM returns the M expression: 147

Table.AddColumn(#"Source","Trimmed",each 148

Text.End([Path]),type text). This expression 149

is syntactically well formed, but it is semantically 150

incorrect as Text.End requires two arguments 151

and not one (the second argument denotes the 152

number of characters to be selected). It is quite 153

common for LLMs to have a poor Top-1 accuracy 154

and better Top-25 accuracy; see Table 3. So, 155

our first agent asks the LLM to generate N=25 156

candidate M expressions. How do we pick the 157

correct expression from this list? 158

Let us use ATT and ask a second agent to solve 159

a related task and then use those results to find 160

the correct M expression. The second agent is 161

tasked to predict directly the output table (not the 162

M code) from the NL statement and the input table. 163

The second agent is also implemented using an 164

LLM, and it generates N=25 predictions. In the 165

case of our running example, the correct output 166

table is present in the list of predictions. Finally, 167

the third agent consolidates the two outputs. It 168

reranks the 25 program candidates based on 169

whether the outputs they produce (when executed) 170

match the predicted outputs, and return the top 171

candidate after reranking. The third agent is not 172

LLM-based, but an external tool. It is able to 173

rerank and get the correct M expression at the 174

top: Table.TransformColumns(#"Source", 175

{{"Path", each Text.Start(_, 176

Text.Length(_)-1), type text}}). 177

Note that the second agent can solve the alter- 178

nate task in other ways. For example, the second 179

agent can ask the LLM to generate Pandas code 180

1https://stackoverflow.com/questions/72548765/trimming-
end-of-column-in-power-query
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and then execute that code to generate the output.181

In fact, the correct line of code: df["Path"] =182

df["Path"].str[:-1], where the dataframe df183

is a reference to Source, is more likely to be gen-184

erated by LLMs. The agents are free to pick any185

approach to solve the task assigned to them.186

3 Alternate Task Technique187

The alternate task technique (ATT) involves de-188

signing a task that is similar, but not necessarily189

identical, to the original task and using the infor-190

mation from this alternate task to accomplish the191

original task.192

Suppose we have a task to predict the random193

variable Y given the random variable X; that194

is, we want to sample from Pr(Y | X = x).195

Suppose we can find an alternative random196

variable Z (related to Y ) such that we can197

sample from Pr(Z | X = x) as well as estimate198

Pr(Y = y, Z = z | X = x) extremely well. In199

such a case, we can apply ATT to predict Y given200

X = x using 3 agents as follows:201

(a) Agent 1 generates a baseline sample202

{y1, . . . , yn}, with associated probabilities203

{p1, . . . , pn}, by sampling from Pr(Y | X = x).204

(b) Agent 2 generates an alternate sample205

{z1, . . . , zm}, with associated probabilities206

{q1, . . . , qm}, by sampling from Pr(Z | X = x).207

(c) Agent 3 computes an updated estimate208

of probability Pr(Y = yi | X = x) as209

αpi + (1− α)p′i, where p′i is a new estimate com-210

puted as
∑m

j=1 Pr(Y = yi, Z = zj | X = x) ∗ qj .211

We are free to choose the value of the parameter212

α, which we picked to be 1/2 in our experiments.213

The updated probabilities for each candidate yi214

computed in Step (c) are then used to to pick the215

best candidate.216

Each agent can be implemented using an LLM217

or a tool. In our experiments, we use LLMs to218

implement Agent 1 and Agent 2, and use a tool as219

Agent 3. The reason why ATT works is because220

Agent 2 potentially uses a "different sequence of221

neuron firings" when it is tasked to predict Z (than222

what Agent 1 uses to predict Y ), and thus it pro-223

vides us with new knowledge. ATT is a general224

principle that can be instantiated in many different225

ways depending on how we pick Z and how we use226

Pr(Z | X = x) to update Pr(Y | X = x). We227

focus here on one particular instantiation for NL228

to code that uses output prediction as the alternate229

task, and an execution-based tool as Agent 3.230

As noted earlier, the recent work (Chen et al., 231

2023a) is an instance of ATT and other works (Du 232

et al., 2023; Liang et al., 2023) are multiturn ver- 233

sions of ATT where only one sample is generated in 234

each round and the three agents engage in multiple 235

rounds to update their predictions (probabilities). 236

The ATT principle itself is not explicitly stated in 237

any earlier work. 238

4 NL To Code 239

We begin by first describing the problem setup, 240

followed by our approach that instantiates ATT in 241

a particular way. 242

Problem Setup. The problem we consider can 243

be stated as follows: Given a natural language 244

description nl of some task along with the dataset 245

D over which that task should be performed, our 246

objective is to generate the expression or program s 247

in a given target language that will accomplish the 248

task. As we mentioned before, the so-called data 249

context, which consists of the dataset D, is clearly 250

an important source of information for generating 251

the desired program s. The most common way of 252

exploiting the data context is to include a summary 253

of D in the prompt that is passed to the LLM. This 254

step is now standard (Brown et al., 2020; Chen 255

et al., 2022, 2021; Nijkamp et al., 2022) and we 256

do not consider the problem of prompt generation 257

in this paper. Instead, in all our experiments, we 258

used the best possible prompt we could design for 259

the task by leveraging the prompts proposed in the 260

existing literature; see Appendix 9.2 and 9.3. 261

We are interested in improving Top-1 accuracy, 262

as in multiple other works (Gu et al., 2023; Fu et al., 263

2023), especially for low-resource target languages. 264

Our motivation comes from scenarios where some 265

user is working in a data processing application that 266

employs its own domain-specific language, and the 267

user wants to generate code for a natural language 268

query nl. The user wants one program, and not 269

K > 1 programs because the user has to review the 270

generated program(s) to determine if it is correct 271

and reviewing multiple programs is distracting and 272

increases cognitive load. 273

LLM parameters. We assume access to an LLM 274

that accepts a prompt, a temperature value, and 275

a number N , and returns N completions for the 276

prompt sampled from a distribution that has en- 277

tropy proportional to the set temperature. For each 278

response, the LLM also returns a probability value 279

associated with each token of the response. These 280
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Algorithm 1 Overall approach for generating pro-
gram given NL description nl and dataset D.
Require: An NL description nl of some task and an input

dataset D
Ensure: Return the program that performs task nl on D
1: function NL2CODE(nl, D)
2: prompt← PREPAREPROMPT(nl,D)
3: L, probs← LLM(prompt, tmp=0.6, N=24)

∪ LLM(prompt, tmp=0, N=1)
4: O, Oprobs← OUTPUTPREDICTION(nl,D)
5: scores← GETSCORES(L, probs, O, Oprobs, D)
6: return Top candidate from L by score

probabilities, returned in logarithmic form (log-281

probs (Shi et al., 2022)), measure how likely each282

token is to occur in the context of the previous to-283

kens and the given prompt; see also (OpenAI API).284

Overall Approach. Our overall approach is out-285

lined in pseudocode in Algorithm 1:286

Prompt generation The description nl and a sum-287

mary of the dataset D, consisting of the schema288

and a small sample of D, is put together into a289

prompt that also includes some few-shot exam-290

ples of the task (Line 2); see Appendix 9.2.291

Temperature Mixing The LLM is asked to gen-292

erate 25 candidates L (and their probabilities)293

using high temperature to increase diversity, but294

we also add the top candidate generated with295

temperature 0 into the mix (Line 3). Tempera-296

ture mixing is discussed further in Section 4.3.297

Output prediction We use the LLM to generate298

multiple predictions O (along with probabili-299

ties) for the output of “executing” the nl task300

on the input D (Line 4). Output prediction is301

discussed further in Section 4.1.302

Score calculation Each candidate is assigned a de-303

fault score based on probability returned by the304

model (Shi et al., 2022), which is then further re-305

fined based on the predicted outputs O (Line 5).306

This is discussed further in Section 4.1 and 4.2.307

4.1 Output-Prediction based Score Tuning308

The key new steps in our NL to code pipeline com-309

ing from the use of ATT are shown in Algorithm 2.310

Specifically,311

(1) We create a prompt for output prediction on312

Line 2; see Appendix 9.3.313

(2) We use the LLM to predict 25 possible outputs314

O, along with their probabilities Oprobs, given the315

prompt (with temperature 0.6) on Line 3.316

Algorithm 2 Output-prediction based Score Tun-
ing
Require: An NL description nl, an input sample dataset d,

candidates L, and their logprobs, execution results Oexe

for L, a function sim that measures similarity between
two outputs s.t. it returns 1 when outputs are equal and
value between 0 and 1 otherwise

Ensure: Scores scores for each candidate in L
1: function OUTPUTPREDICTION(nl, d)
2: prmpt← PROMPTFOROUTPUTPREDICTION(nl,D)
3: O, Oprobs← LLM(prmpt, tmp=0.6, N=25)
4: return O, Oprobs

5: function GETSCORES(L, probs, O, Oprobs, d)
6: for s ∈ L do . for each candidate s
7: oexe ← Execute s on d . output generated by s
8: score[s]← probs[s] ∗ DQM(oexe) . initialize
9: for o ∈ O do . for each predicted output

10: p← Oprobs[o] ∗ sim(o, oexe)
11: score[s]← score[s] + p

12: return score

(3) On Lines 8-11 we assign a new score to each 317

candidate s in the list L of candidates equal to: 318

probs(s) +
∑

o∈O Oprobs(o) ∗ Pr(s | o, nl,D), 319

where Pr(s | o, nl,D) is an estimate of the prob- 320

ability that s is the desired program given o is the 321

desired output on D, and probs(s) is the original 322

probability estimate of s given nl,D. 323

(4) We estimate Pr(s | o, nl,D) by using any sim- 324

ilarity metric on the output space (on Line 10) to 325

compare o with the output oexe generated by ex- 326

ecuting s on D. The simplest metric is one that 327

returns 1 if o == oexe and 0 otherwise; however, 328

one could use other metrics. 329

To relate back to ATT, note that Steps (1)- 330

(2) correspond to Agent 2 and Steps (3)-(4) de- 331

scribe Agent 3. Furthermore, Oprobs(o) ∗ Pr(s | 332

o, nl,D) is an estimate of Pr(s, o | nl,D), which 333

is just Pr(Z = z, Y = y | X = x). Note that 334

the final score we are assigning to a candidate is 335

a sum of the probability estimates we get using 336

two different ways: directly from Pr(Y | X = x) 337

and indirectly from
∑

z Pr(Y,Z = z | X = x), 338

consistent with the choice of α = 1/2 in ATT. 339

Output prediction using LLMs can be accom- 340

plished in other ways too. One could use the inputs 341

nl andD to generate code in a different target (than 342

what the user wants), such as Python, and then exe- 343

cute that to predict outputs. 344

4.2 Well-formedness based Score Tuning 345

We add one further signal to the score assigned 346

to a program s, namely the well-formedness of 347

the output oexe that would be generated by s. For 348
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Figure 1: Example of temperature mixing: The correct
program is ranked second using logprobs at tempera-
ture 0.6. Adding temperature 0 candidate bumps the
correct program to the first rank.

example, if the output table contains a new column349

of null values, then we can mark this output as350

being less likely. Specifically, we scale the logprob-351

based probability value assigned to a candidate s352

by a factor DQM(oexe) that computes a data quality353

metric for oexe (Line 8). In our experiments we354

used a simple data quality metric that penalizes s if355

oexe has null columns or if oexe is an empty table.356

4.3 Temperature Mixing357

Our approach relies on the correct program being358

present in the list of candidate programs generated359

by the LLM. However, in cases where the LLM360

does not have sufficient prior knowledge of the361

data manipulation language, it is possible that the362

correct program is not included in the candidate363

set produced by the LLM. Therefore, we augment364

the candidate set with additional programs. This365

augmentation is done by leveraging the LLM it-366

self and the fact that it performs temperature sam-367

pling (Brown et al., 2020).368

In the context of code generation, we noticed that369

the quality of programs synthesized from the LLM370

varies significantly with changing temperatures. In371

fact, there is a tradeoff. At higher temperatures, we372

get diverseN samples, but the top-1 accuracy drops373

because the N samples can exclude the one that374

has the highest average logprobs (e.g., the program375

that would be surfaced when temperature is set to376

0). On the other hand, at lower temperatures, we377

get the highest average logprobs candidate, but we378

lose diversity and the N samples tend to contain379

the same candidate multiple times, which makes380

reranking unproductive.381

To mitigate these issues and avoid missing cor-382

rect programs, we introduce temperature mixing 383

into our approach. In particular, we generate pro- 384

grams at both a low and a high temperature (i.e., 0 385

and 0.6, respectively), concatenate the results, as 386

shown on Line 3 of Algorithm 1, and then apply 387

the our reranking approach based on ATT. Tem- 388

perature mixing is particularly effective when the 389

model is more uncertain about the output, which 390

can happen either because the query is ambiguous 391

or very complex, or if the target language is unfa- 392

miliar to the model. In these cases, sampling at low 393

temperature is important because the probability 394

distribution computed by the model already has 395

high entropy (more uncertainty) and lowering the 396

temperature helps bring down the uncertainty. 397

5 Experimental Evaluation 398

We perform our evaluation on three different target 399

languages: SQL, Power Query M, and Pandas. 400

The Benchmarks. For Pandas, we used the “Jig- 401

saw” dataset (Jain et al., 2022). Since the M ex- 402

pression language is limited and there are not any 403

available public benchmarks, we leveraged the Jig- 404

saw dataset to create a benchmark for M. In partic- 405

ular, we filtered the Jigsaw dataset and extracted 406

only the transformations that M supports to create 407

the “JigsawM” benchmark set for M. Addition- 408

ally, we also created another dataset by scraping 409

PowerQuery help forums and collecting M expres- 410

sions’ NL descriptions and M expressions from 411

there, which we call “Forum” in the tables. It also 412

includes some benchmarks we obtained from the 413

PowerQuery team. For SQL, we used the “Spider” 414

dev (Yu et al., 2018) and “KaggleDBQA” (Lee 415

et al., 2021) datasets. 416

Table 1 presents some statistics about the bench- 417

marks. Each benchmark consists of a number (Col- 418

umn #n) of pairs of NL statements and the asso- 419

ciated code. The average number of characters in 420

the NL description and code are given in the two 421

columns named "Avg" in Table 1. 422

Metrics. We use execution match accuracy as 423

the metric for evaluation. A candidate execution 424

matches the ground truth if both programs return 425

identical outputs when run on the input dataset. We 426

report the percent of benchmarks where we get 427

an execution match, also called semantic match 428

(SM). We also report exact match accuracy (EM) – 429

where we test if the candidate syntactically matches 430

the ground truth. Since a task can be performed 431
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Benchmark Statistics Baseline ATT
Target Name # n Avg(nl) Avg(code) SM EM SM EM
M Forum 59 59.35 80.81 54.2 24.1 67.8 27.8
M JigsawM 442 65.66 75.83 19.7 6.8 64.7 20.2
Pandas JigsawM 442 65.66 50.61 67.2 21.7 69.2 23.6
Pandas Jigsaw 793 70.49 56.47 71.2 20.8 74.1 23.9
SQL Spider 1034 68.04 108.32 73.2 26.9 76.0 28.8
SQL KaggleDBQA 272 55.79 96.00 62.7 38.9 63.2 38.9

Table 1: Consolidated results. For each target language (Target) and benchmark name (Name), the column #n is
the number of (nl query, code) pairs in that benchmark set, Avg(nl) is the average length of the nl, Avg(code) is
the average length of the code, SM is the semantic match (execution match) accuracy and EM is the exact match
accuracy, reported both for the baseline (without alternate task) and for our approach using alternate task technique.

in many different ways, we do not use it to draw432

conclusions and report it just for completeness.433

Relatively poor accuracy on M. From the base-434

line results in Table 1, we see that LLMs get exe-435

cution match (SM) accuracy of 60%-75% for SQL436

and Pandas, but only 19%-55% for M. On the437

same JigsawM benchmark, accuracy for baseline438

was 19.7% for M, while it was 67.2% for Pandas.439

Clearly, accuracy is consistently poorer for M. Note440

that the baseline approach uses the same prompt441

as our approach. The prompt includes few-shot442

examples, column names, input table name, and443

sample rows; see Appendix 9.2. In other words,444

the baseline uses the best possible prompt we could445

design for the task. We also used the best choices446

for temperature and the number of candidates to447

generate and rank by average logprobs. We did448

not consider as baseline any approaches that uti-449

lize custom ML models or require fine-tuning large450

language models (see Section 7) as we don’t want451

to make any assumption about availability of train-452

ing data. It is also worth noting that our baseline453

already surpasses the SOTA using prompt engineer-454

ing (Pourreza and Rafiei, 2023) on SQL as depicted455

in the Spider leaderboard (Spider).456

Alternate task technique closes the gap. The re-457

sults for alternate task technique (ATT) in Table 1458

show that we improve the execution match (SM)459

accuracy to 64%-68% for M – an improvement of460

13.6% on Forum benchmarks and 45% on JigsawM.461

In comparison, the improvement for SQL and Pan-462

das was limited to 0-3%. For all targets and all463

benchmarks, our ATT approach yields consistent464

execution match accuracy in the range 63%-76%.465

Thus, our approach disproportionately benefits M466

code generation. This is not surprising since the467

alternate task technique was designed for target lan-468

Table 2: Gains in execution match accuracy from tem-
perature mixing.

Target Benchmark SM gain

M Forum +1.3
M JigsawM +3.4

guages that are not well-represented in the LLM’s 469

training data. This partially provides evidence for 470

the intuition that output prediction potentially ex- 471

ploits alternate new pathways of the LLM, which 472

helps us extract new additional information from 473

the LLM to use to solve the original task – espe- 474

cially in the case when the direct use of LLM for 475

the task yields poor results. 476

Improvement from Temperature Mixing. We 477

next evaluate the gains from temperature mixing. 478

This is also a technique that helps for languages 479

such as M that are not well-represented in LLM’s 480

training data. Temperature mixing only adds one 481

candidate from the temperature-0 run. Table 2 re- 482

ports gains for M in the range 1.3% to 3.4% for 483

execution match accuracy coming from tempera- 484

ture mixing. This shows that the alternate task 485

technique is the main contributor of the gains for 486

M, but temperature mixing aids it by adding new 487

candidates to the pool. 488

6 Discussion and Future Work 489

A key assumption underlying our output-prediction 490

based scoring technique is that candidates gener- 491

ated by the LLM can be executed inside a try-catch 492

block. This assumption is easy to satisfy for lan- 493

guages that have few or no side-effects. This is 494

the case for the PowerQuery M target language. 495

For such languages, we can use execution-based 496
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score tuning in production. However, when the497

language is richer and general purpose, such as498

Python, models like Codex can generate programs499

that have negative side-effects (e.g., deleting files,500

etc). Fortunately, as our results show here, base-501

line techniques that just use prompt engineering502

and logprobs-based ranking already provide good503

accuracy for languages like Python Pandas.504

We note that some of gains from using ATT505

come from demotion of candidates that do not suc-506

cessfully execute – either because they are syntac-507

tically ill-formed or throw runtime exception. This508

demotion of candidates that do not generate outputs509

happens automatically in our technique.510

Comparison with Fine-tuning and Custom511

Models. Our evaluation does not consider base-512

lines that require custom model training or fine-513

tuning because both those steps are data hungry and514

not cost effective. We observed that text-davinci-515

002 fine tuned with order of several thousand (NL,516

code) pairs performed poorly and gave 0% exe-517

cution match on the benchmarks reported in our518

evaluation – indicating insufficient data.519

Chain-of-thought and alternate task technique.520

Chain-of-thought (CoT) prompting (Wei et al.,521

2022) refers to the technique of prompting the LLM522

that encourages the model to verbalize the inter-523

mediate reasoning steps used for solving the task.524

Mathematically, CoT estimates P (Y = y|X = x)525

by P (Y = y|Z = z,X = x) ∗ P (Z = z|X = x);526

that is, by going through Z. In CoT, estimates for527

both P (Y |X,Z) and P (Z|X) are performed by528

the LLM. In the terminology of ATT, CoT employs529

Agent 2 to generate Z, but does not use Agent 1530

to directly generate Y , and instead uses Agent 3 to531

generate Y from Z and X. We can say that CoT uses532

α = 0, eliminates Agent 1, and merges Agent 2533

and Agent 3 into one agent that does both steps.534

Cost Overhead for ATT. Our approach involves535

making 2 calls (3 if using temperature mixing), but536

the two calls ask for N=25 completions. This incurs537

only a small additional computational cost because538

we are requesting more tokens in the output, but539

we do not incur any additional cost for input to-540

kens because they are sent just once. For example,541

the cost (estimate based on the count of input and542

output tokens used) for the NL2SQL evaluation is543

USD 1.35 for Kaggle and USD 8.60 for Spider for544

N=25 generations. If we instead perform only N=1545

generation, the cost would be USD 1.06 for Kaggle546

Table 3: NL2M top-K accuracy at temp=0.6 for k=1, 5,
25: The first number in each cell is Exact Match accu-
racy and second number is execution match accuracy.

k = 1 k = 5 k = 25
Forum 24.1, 54.2 45.9, 72.6 51.0, 74.3

JigsawM 06.8, 19.7 27.9, 57.3 41.7, 73.4

and USD 6.47 for Spider. So, going from N=1 to 547

N=25 incurs only a small overhead. Table 3 shows 548

that generating 25 candidates improves the chances 549

of getting the correct candidate in the pool, and 550

ATT helps Top-1 accuracy get close to Top-25. 551

7 Related Work 552

Few-shot Prompting. Our contributions are not 553

related to few-shot prompting, but we use few-shots 554

in our prompts. Few-shot prompting refers to inclu- 555

sion of some concrete examples of the task in the 556

prompt. It has been shown to help the LLM gener- 557

ate good program recommendations (Brown et al., 558

2020; Chen et al., 2022, 2021; Nijkamp et al., 2022; 559

Liu et al., 2021), including recommendations in 560

less popular languages (Hendy et al., 2023). A wide 561

collection of work exists on few-shot prompting 562

ranging from crafting prompt templates (Shin et al., 563

2020; Zhong et al., 2021; Gao et al., 2020; Shi et al., 564

2022), considering the permutations of examples 565

(Zhao et al., 2021; Lu et al., 2021), to increasing 566

the number of few-shot examples (Wei et al., 2022). 567

Given LLM’s sensitivity to prompts, many works 568

exist in prompt aggregation(Arora et al., 2022), 569

or training models that perform aggregations it- 570

self (Jiang et al., 2020; Schick and Schütze, 2020), 571

as well as chain-of-thought prompting (Liu et al., 572

2023a), and, more recently, repair (Chen et al., 573

2023b; Shinn et al., 2023), but we leave these as 574

potential directions for future work. 575

Data Context. Since we are operating in the do- 576

main in which data is available, we tested various 577

ways to summarize the associated input data in the 578

prompt as it is well-known that small changes in 579

the prompt can have significant effects on the gener- 580

ated programs (Min et al., 2022). Examples include 581

using encoding the input data within CREATE SQL 582

statements, introducing new tokens like <T> for 583

demarking table names as well as, simple dictio- 584

naries that list each table and its associated column 585

attributes and types (Scholak et al., 2021; Shaw 586

et al., 2021). The most performant representation 587

for tables was as a Python list-of-list, which we 588
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used; see Appendix 9.2. Similar to existing work589

(Gemmell and Dalton, 2023), we include a sample590

of 3-8 rows per table in the prompt.591

Natural Language to Code. The Spider leader-592

board (Spider) contains a list of works that leverage593

machine learning for text-to-SQL generation and594

are evaluated on the Spider dataset. The approaches595

fit into three categories: custom ML models (Li596

et al., 2023; Fu et al., 2023; Cao et al., 2021; Xu597

et al., 2021), prompt engineering with pre-trained598

language models such as Codex and GPT-4 (Pour-599

reza and Rafiei, 2023; Poesia et al., 2022), and600

fine-tuned large language models (Scholak et al.,601

2021; Shaw et al., 2021). Our work falls into the602

second category as we operate under the assump-603

tion that we do not have enough data to train a cus-604

tom model or to fine-tune a large language model.605

The top performance results in this category are ob-606

tained by the work in (Pourreza and Rafiei, 2023).607

This work achieves 74.2% and 69.9% top-1 execu-608

tion accuracy on the Spider dev test (the dataset we609

are also using for our evaluations) using the GPT-610

4 and Codex models respectively. Our approach611

provides 76% top-1 execution accuracy using the612

Codex model demonstrating that we are able to613

surpass the SOTA methods using ATT.614

In the context of Pandas, the most relevant work615

to ours is the one published in (Jain et al., 2022).616

The main difference is that their method requires617

input/output test cases from the user. These tests618

are used to validate and refine the programs gener-619

ated by the LLM, or to modify the LLM-produced620

code so that it can satisfy the test cases. In contrast,621

our method solely relies on the natural language622

utterance and does not require any additional tests.623

Reranking. Generating code from natural lan-624

guage is challenging (Yu et al., 2018; Chen et al.,625

2021; Austin et al., 2021; Li et al., 2022). Since the626

desired code is more likely to be generated when627

multiple programs are sampled, there is extensive628

work around designing reranking techniques, in-629

cluding execution-based reranking techniques, to630

select the best candidate among multiple samples631

(Shi et al., 2022; Zhang et al., 2022; Ni et al., 2023;632

Li et al., 2022). A lot of work has focused on633

improving Top-1 accuracy (Shi et al., 2022; Ni634

et al., 2023; Zhang et al., 2022). Unlike our work,635

some works consider a different signal for rerank-636

ing: namely, translating the code back the NL and637

checking consistency, which is related to maximiz-638

ing mutual information objective to pick the top639

candidate (Liu et al., 2023b; Li et al., 2016; Zhang 640

et al., 2022), which we can integrate in our score- 641

based reranking framework. We introduce the new 642

alternate task technique, and its instantiation to 643

output-prediction based score tuning, which trans- 644

lates the NL to output and checks for consistency 645

to rerank. 646

Tool Plugins in LLMs. Recently, there is work 647

on coupling tools with LLMs (Chen et al., 2022; 648

Schick et al., 2023; Yao et al., 2023) and output- 649

prediction based score tuning can be seen as a way 650

to improve performance of an LLM using an exter- 651

nal tool, namely an interpreter. ATT is a specific 652

way of coupling tools that uses LLMs ability to 653

solve the original and a slightly different task, and 654

then a tools ability to consolidate all the informa- 655

tion extracted from LLMs. 656

8 Conclusion 657

In this paper, we presented a novel technique, 658

called the alternate task technique (ATT), for syn- 659

thesizing data manipulation programs from natural 660

language (NL) and an input dataset. Our approach 661

leverages the input dataset by asking the LLM to 662

“execute” the NL on the input dataset to generate 663

candidate output datasets. The predicted outputs 664

are used to rerank the programs predicted directly 665

by the LLM. We evaluate our framework over SQL, 666

Pandas, and PowerQuery M, using a variety of new 667

and existing benchmarks. We observe that ATT pro- 668

vides small gains for popular target languages SQL 669

and Pandas as much, but adds significant accuracy 670

gains for M, and makes accuracy on M comparable 671

to that for Pandas and SQL. ATT can serve as a 672

general methodology for improving LLM accuracy 673

on tasks that involve knowledge of some niche and 674

low-resource domain. 675

Limitations 676

First, the alternate task technique is observed to 677

add significant value only when generating code in 678

low-resource languages. The gains for popular tar- 679

get programming languages was limited. Second, 680

we have used LLMs to perform the surrogate task 681

of output prediction. This task can become con- 682

siderable hard if the NL descriptions become more 683

complicated and the input dataset starts to have 684

large number of rows and columns. Our bench- 685

marks did not contain such hard instances. For 686

such hard cases, to restore feasibility of our overall 687

approach, it might become necessary to generate 688

8



outputs by other means – such as, using the LLM to689

generate Pandas code, and executing it on the input,690

rather than asking the LLM to directly produce the691

output. We believe that we will get same results692

for that modification, but that hypothesis has to be693

rigorously evaluated. Third, our approach makes694

one additional call to the LLM to perform the sur-695

rogate task. LLM calls require compute and incur696

cost. Fourth, our proposed approach is based on697

executing code generated by an LLM. In general,698

this is untrusted code and not safe for execution699

outside of a sandbox environment.700
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9 Appendix 968

9.1 Comparision with CoT and 969

Machine-Translation 970

One can wonder about performing NL2M task by 971

first doing NL2Pandas and then translating Pandas 972

to M. We note that writing semantic preserving 973

translators from one language to another is always 974

a tricky and time-consuming task. Moreover, such 975

translators need to be maintained and kept up to 976

date. Our approach avoids the need for writing 977

translators. 978

9.2 Prompt For Code Generation 979

The assistant answers questions from a 980

table by converting them to PowerQuery M 981

queries. 982

983

Columns:Country/Region,Lat,Long 984

Sample Data:[ 985

["USA","50","100"], 986

["India","23","160"], 987

["Australia","-40","180"] 988

] 989

Table Name:Regions 990

Question:Put first row as headers 991

M:Table.PromoteHeaders( 992

Regions, 993

[PromoteAllScalars=true] 994

) 995

996

Columns:Country/Region,Lat,Long 997

Sample Data:[ 998

["USA","50","100"], 999

["India","23","160"], 1000

["Australia","-40","180"]] 1001

Table Name:World Table 1002

Question:Group column "Country/Regions" by Count1003

M:Table.Group(#"World Table", 1004

{"Country/Region"}, { 1005

{ 1006

"Count", each 1007

Table.RowCount(_), 1008

Int64.Type} 1009
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}1010

)1011

1012

Columns:First,Last,Id1013

Sample Data:[["Adam","Baker","123"],1014

["Brian","Doe","234"],1015

["Barbara","Davis","567"]]1016

Table Name:Personal Details1017

Question:Only include first names that start1018

with B in column First1019

M:Table.SelectRows(#"Personal Details",1020

each Text.StartsWith([First], "B"))1021

1022

Columns:First,Last,Id1023

Sample Data:[["Adam","Baker","123"],1024

["John","Doe","234"],1025

["Clark","Davis","567"]]1026

Table Name:Source1027

Question:Rotate the table1028

M:Table.Transpose(Source)1029

1030

Columns:name,surname,id,pos1031

Sample Data:[["aAdamb","Baker","123","Engineer"],1032

["aJohnb","Doe","234","Researcher"],1033

["aClarkb","Davis","567","Manager"]]1034

Table Name:Details Table1035

Question:Extract the contents between "a" and "b"1036

in column "name"1037

M:Table.AddColumn(#"Details Table",1038

"Text between delimiters",1039

each Text.BetweenDelimiters(1040

[name], "a", "b", 0, 0),1041

type text)1042

1043

Columns:{Columns}1044

Sample Data:{Snippet of the data}1045

Table Name:{Table Name}1046

Question:{NL Query}1047

M:1048

9.3 Prompt For Alternate Task1049

The assistant answers questions from a table1050

by showing how the data is transformed in1051

Power Query when given the description of1052

the transformation task.1053

1054

Columns:First,Last,Id1055

Sample Data:[["Adam","Baker","123"],1056

["Brian","Doe","234"],1057

["Barbara","Davis","567"]]1058

Table Name:Personal Details1059

Question:Only include first names that 1060

start with B in column First 1061

Output Table:[["Brian","Doe","234"], 1062

["Barbara","Davis","567"]] 1063

Column Outputs:First,Last,Id 1064

1065

Columns:Country/Region,Lat,Long 1066

Sample Data:[["USA","50","100"], 1067

["India","23","160"], 1068

["Australia","-40","180"]] 1069

Table Name:World Table 1070

Question:Add 10 to all the values 1071

in column "Lat" 1072

Output Table:[["USA","60","100"], 1073

["India","33","160"], 1074

["Australia","-30","180"]] 1075

Column Outputs:Country/Region,Lat,Long 1076

1077

Columns:name,surname,id,pos 1078

Sample Data:[ 1079

["aAdamb","Baker","123","Engineer"], 1080

["aJohnb","Doe","234","Researcher"], 1081

["aClarkb","Davis","567","Manager"] 1082

] 1083

Table Name:Details Table 1084

Question:Extract the contents between "a" and 1085

"b" in column "name" 1086

Output Table:[ 1087

["Adam","Baker","123","Engineer"], 1088

["John","Doe","234","Researcher"], 1089

["Clark","Davis","567","Manager"] 1090

] 1091

Column Outputs:name,surname,id,pos 1092

1093

Columns:name,surname,id,pos 1094

Sample Data:[ 1095

["aAdamb","Baker","123","Engineer"], 1096

["aJohnb","Doe","234","Researcher"], 1097

["aClarkb","Davis","567","Manager"] 1098

] 1099

Table Name:Details Table 1100

Question:Remove the first letter from the 1101

"surname" column 1102

Output Table:[["aAdamb","aker","123","Engineer"],1103

["aJohnb","oe","234","Researcher"], 1104

["aClarkb","avis","567","Manager"]] 1105

Column Outputs:name,surname,id,pos 1106

1107

Columns:Country/Region,Lat,Long 1108

Sample Data:[["USA","50","100"], 1109

["India","23","160"], 1110

12



["Australia","-40","180"]]1111

Table Name:World Table1112

Question:Add new column "Lat+10" by1113

adding 10 to all1114

the values in column "Lat"1115

Output Table:[["USA","50","100","60"],1116

["India","23","160","33"],1117

["Australia","-40","180","-30"]]1118

Column Outputs:Country/Region,Lat,Long,1119

Lat+101120

1121

Columns:{columns}1122

Sample Data:{Sample Data}1123

Table Name:{Table Name}1124

Question:{ NL Query}1125

Output Table:1126
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