Alternate Task Technique: Improving Natural Language to Code in
Low-Resource Languages

Anonymous ACL submission

Abstract

When using large language models (LLMs)
to generate code from natural language
(NL2Code), the target programming language
influences precision. We empirically observe
that LLMs are more likely to produce cor-
rect code when the target language is a pop-
ular language and struggle for low-resource
target programming languages. Prompt engi-
neering approaches can address the problem
to some extent, but can not fully close the
gap between popular and low-resource target
languages. We introduce “alternate task tech-
nique” that uses an LLM to perform a sur-
rogate task whose results are combined with
the LLM’s results on the original task to im-
prove performance on the original NL2Code
task. Using SQL, Python Pandas, and Power
Query language M as three targets, we show
that our approach brings the performance of
LLMs on the low-resource M language signif-
icantly closer to its performance on the more
popular Python Pandas and SQL languages.

1 Introduction

The emergence of Large Language Models (LLMs),
such as Codex (Chen et al., 2021) and GPT (Brown
et al., 2020; OpenAl, 2023), has fundamentally
transformed the field of program synthesis from
natural language (NL), leading to the rapid devel-
opment of NL interfaces (i.e., PowerAutomate;
PowerBI Q&A) and code assistants (GitHub Copi-
lot) that are widely used by practitioners and de-
velopers. In-context learning (Dong et al., 2023)
plays a crucial role in this transformation, enabling
LLMs to generate code for a diverse range of pro-
gramming languages with minimal input. The input
to LLM typically consists of a prompt describing
the task to be performed in natural language and,
potentially, a few examples, which are used for few-
shot prompting (Brown et al., 2020; Logan IV et al.,
2021). Our focus is on developing LLM-based solu-
tion for NL to code tasks using in-context learning

as it is cost-effective: it does not require training
and deployment of custom models for specific pro-
gramming domains (e.g., SQL, Python) and it also
avoids data-hungry and compute-heavy fine tuning.

The simplicity and strength of in-context learn-
ing makes it an excellent choice for synthesizing
data manipulation programs, i.e. programs that
are designed to extract, query, and transform data
using NL descriptions. There are plenty of data
manipulation languages. Some, such as SQL and
Python Pandas, are popular, while others, such as
PowerQuery M (Power Query), are not as well rep-
resented in the publicly-available documents and
code repositories on which the LLMs are trained.
Unsurprisingly, we observed that LLMs perform
poorly when generating code in M, compared to
when the target language is Python Pandas or SQL.
How can we improve the performance of LLMs on
generating code in a low-resource language? One
potential approach is by adding more information
about the target language in the prompt, perhaps in
the form of few-shot examples; however, it was not
sufficient to close the performance gap.

In this paper, we introduce the alternate task
technique (ATT), where three agents come together
to solve a task. The first agent solves the original
task, the second agent solves a different, but closely
related, task, and the third agent consolidates the
two outputs. The agents may be implemented using
LLMs or other tools. ATT is a general principle that
can be instantiated in many different ways. Several
recent works in the literature can be viewed as in-
stances of ATT. Specifically, in recent work (Chen
et al., 2023a), the authors solve the NL to code task
by also solving the alternate “NL to test case gen-
eration” task, and then consolidating the generated
code and the generated test cases. In another recent
work (Du et al., 2023), the alternate task is picked
to be identical to the first task, and the two answers
are consolidated using multi-turn debate between
the first two agents. Thus, there is no explicit third

agent in (Du et al., 2023) and its job is performed
by a multi-turn consensus between the two agents.
In yet another work on multiagent debate (Liang
et al., 2023), an explicit third agent is deployed to
consolidate the results from the debating agents.
We instantiate the ATT approach on the “NL to
data-manipulation code” task, especially for gen-
erating code in low-resource languages. This task
differs from the more general “NL to code” task in
that there is a fixed data context: in addition to the
NL description of the intended task, we also have
the dataset on which the task needs to be performed.
We use the alternate output prediction task: gener-
ate the output dataset from the NL task description
and input dataset. We then compare the predicted
outputs with the output generated by execution of
the predicted programs, and use the result to pick
the program that is most likely to be the correct pro-
gram. Thus, our third agent is a tool that executes
generated programs and checks if the execution
results are consistent with predicted outputs.
While prior work has also utilized the data con-
text, it is largely limited to using the data context for
creating better prompts for the original task (Poesia
et al., 2022; Pourreza and Rafiei, 2023; Trummer,
2022). In this paper, we use (a sample of) the input
dataset to also predict the output from the NL.

Our Contribution. In this paper, we present the
alternate task technique (ATT) and evaluate it on
data-manipulation code generation for multiple tar-
gets. The alternate task leverages the data context
in previously unexplored ways. We show that ATT
gives small improvements on the task of generating
code in popular targets, such as SQL and Pandas,
where we are able to get close to or beat the state-
of-the-art without any fine-tuning or custom model
learning. Moreover, it produces significant gains
when the target is a low-resource language, namely
PowerQuery M, and helps close the accuracy gap
between the popular and niche targets.

2 Motivating Scenario

In this section, we motivate our solution using an
example NL statement that we need to translate to
a Power Query M (Power Query) expression. M
is a data manipulation language used in business
intelligence applications, such as Microsoft’s Excel
and PowerBI (PowerBI), and is typically used to
filter, transform and combine data from one or more
sources. Since it is a custom language used by

specialized tools, LLMs perform poorly on tasks
that involve generating M expressions.

Consider a scenario where a user is working in
Power Query with a table Source containing a col-
umn named ‘Path’ with some text data. The user
issues an NL query: “Trim the end of all contents
in column "Path" by one character” and wants an
M expression for it (this is a real query which was
scraped from a Help Forum").

We first prepare the best possible prompt
to send the LLM. This includes the NL query,
the schema of the table Source, some sample
rows from Source, and some examples of
NL queries alongside the corresponding M
expressions (few-shot prompting). From this
prompt, the LLM returns the M expression:
Table.AddColumn(#"Source”,"Trimmed”, each
Text.End([Pathl), type text). This expression
is syntactically well formed, but it is semantically
incorrect as Text.End requires two arguments
and not one (the second argument denotes the
number of characters to be selected). It is quite
common for LLMs to have a poor Top-1 accuracy
and better Top-25 accuracy; see Table 3. So,
our first agent asks the LLM to generate N=25
candidate M expressions. How do we pick the
correct expression from this list?

Let us use ATT and ask a second agent to solve
a related task and then use those results to find
the correct M expression. The second agent is
tasked to predict directly the output table (not the
M code) from the NL statement and the input table.
The second agent is also implemented using an
LLM, and it generates N=25 predictions. In the
case of our running example, the correct output
table is present in the list of predictions. Finally,
the third agent consolidates the two outputs. It
reranks the 25 program candidates based on
whether the outputs they produce (when executed)
match the predicted outputs, and return the top
candidate after reranking. The third agent is not
LLM-based, but an external tool. It is able to
rerank and get the correct M expression at the
top: Table.TransformColumns(#"Source”,
{{"Path"”, each Text.Start(_,
Text.Length(_)-1), type text}}).

Note that the second agent can solve the alter-
nate task in other ways. For example, the second
agent can ask the LLLM to generate Pandas code

"https://stackoverflow.com/questions/72548765/trimming-
end-of-column-in-power-query

and then execute that code to generate the output.
In fact, the correct line of code: df["Path"] =
df["Path”].str[:-1], where the dataframe df
is a reference to Source, is more likely to be gen-
erated by LLMs. The agents are free to pick any
approach to solve the task assigned to them.

3 Alternate Task Technique

The alternate task technique (ATT) involves de-
signing a task that is similar, but not necessarily
identical, to the original task and using the infor-
mation from this alternate task to accomplish the
original task.

Suppose we have a task to predict the random
variable Y given the random variable X; that
is, we want to sample from Pr(Y | X = z).
Suppose we can find an alternative random
variable Z (related to Y) such that we can
sample from Pr(Z | X = z) as well as estimate
Pr(Y =y, Z = z | X = x) extremely well. In
such a case, we can apply ATT to predict Y given
X = z using 3 agents as follows:

(a) Agent 1 generates a baseline sample
{y1,...,yn}, with associated probabilities
{p1,...,pn}, by sampling from Pr(Y | X = z).

(b) Agent 2 generates an alternate sample
{z1,...,2m}, with associated probabilities
{q1,--.,qm}, by sampling from Pr(Z | X = z).

(c) Agent 3 computes an updated estimate
of probability Pr(Y = y; | X = z) as
ap; + (1 — a)p}, where p, is a new estimate com-
putedas > 7" Pr(Y =y;, Z = z; | X = 1) *q;.
We are free to choose the value of the parameter
a, which we picked to be 1/2 in our experiments.
The updated probabilities for each candidate y;
computed in Step (c) are then used to to pick the
best candidate.

Each agent can be implemented using an LLM
or a tool. In our experiments, we use LLMs to
implement Agent 1 and Agent 2, and use a tool as
Agent 3. The reason why ATT works is because
Agent 2 potentially uses a "different sequence of
neuron firings" when it is tasked to predict Z (than
what Agent 1 uses to predict Y'), and thus it pro-
vides us with new knowledge. ATT is a general
principle that can be instantiated in many different
ways depending on how we pick Z and how we use
Pr(Z | X = z) toupdate Pr(Y | X = z). We
focus here on one particular instantiation for NL
to code that uses output prediction as the alternate
task, and an execution-based tool as Agent 3.

As noted earlier, the recent work (Chen et al.,
2023a) is an instance of ATT and other works (Du
et al., 2023; Liang et al., 2023) are multiturn ver-
sions of ATT where only one sample is generated in
each round and the three agents engage in multiple
rounds to update their predictions (probabilities).
The ATT principle itself is not explicitly stated in
any earlier work.

4 NL To Code

We begin by first describing the problem setup,
followed by our approach that instantiates ATT in
a particular way.

Problem Setup. The problem we consider can
be stated as follows: Given a natural language
description nl of some task along with the dataset
D over which that task should be performed, our
objective is to generate the expression or program s
in a given target language that will accomplish the
task. As we mentioned before, the so-called data
context, which consists of the dataset D, is clearly
an important source of information for generating
the desired program s. The most common way of
exploiting the data context is to include a summary
of D in the prompt that is passed to the LLM. This
step is now standard (Brown et al., 2020; Chen
et al., 2022, 2021; Nijkamp et al., 2022) and we
do not consider the problem of prompt generation
in this paper. Instead, in all our experiments, we
used the best possible prompt we could design for
the task by leveraging the prompts proposed in the
existing literature; see Appendix 9.2 and 9.3.

We are interested in improving Top-1 accuracy,
as in multiple other works (Gu et al., 2023; Fu et al.,
2023), especially for low-resource target languages.
Our motivation comes from scenarios where some
user is working in a data processing application that
employs its own domain-specific language, and the
user wants to generate code for a natural language
query nl. The user wants one program, and not
K > 1 programs because the user has to review the
generated program(s) to determine if it is correct
and reviewing multiple programs is distracting and
increases cognitive load.

LLM parameters. We assume access to an LLM
that accepts a prompt, a temperature value, and
a number NV, and returns /N completions for the
prompt sampled from a distribution that has en-
tropy proportional to the set temperature. For each
response, the LLM also returns a probability value
associated with each token of the response. These

Algorithm 1 Overall approach for generating pro-
gram given NL description nl and dataset D.

Algorithm 2 Output-prediction based Score Tun-
ing

Require: An NL description nl of some task and an input
dataset D
Ensure: Return the program that performs task nl on D
1: function NL2CODE(nl, D)
2: prompt <— PREPAREPROMPT(nl, D)
3: L,probs < LLM(prompt, tmp=0.6, N=24)
U LLM(prompt, tmp=0, N=1)
4: O, Oprobs <— OUTPUTPREDICTION(nl, D)
5: scores < GETSCORES(L, probs, O, Oprobs, D)
6: return Top candidate from L by score

probabilities, returned in logarithmic form (log-
probs (Shi et al., 2022)), measure how likely each
token is to occur in the context of the previous to-
kens and the given prompt; see also (OpenAl API).

Overall Approach. Our overall approach is out-
lined in pseudocode in Algorithm 1:

Prompt generation The description n/ and a sum-
mary of the dataset D, consisting of the schema
and a small sample of D, is put together into a
prompt that also includes some few-shot exam-
ples of the task (Line 2); see Appendix 9.2.

Temperature Mixing The LLM is asked to gen-
erate 25 candidates L (and their probabilities)
using high temperature to increase diversity, but
we also add the top candidate generated with
temperature O into the mix (Line 3). Tempera-
ture mixing is discussed further in Section 4.3.

Output prediction We use the LLM to generate
multiple predictions O (along with probabili-
ties) for the output of “executing” the nl task
on the input D (Line 4). Output prediction is
discussed further in Section 4.1.

Score calculation Each candidate is assigned a de-
fault score based on probability returned by the
model (Shi et al., 2022), which is then further re-
fined based on the predicted outputs O (Line 5).
This is discussed further in Section 4.1 and 4.2.

4.1 Output-Prediction based Score Tuning

The key new steps in our NL to code pipeline com-
ing from the use of ATT are shown in Algorithm 2.
Specifically,

(1) We create a prompt for output prediction on
Line 2; see Appendix 9.3.

(2) We use the LLM to predict 25 possible outputs
O, along with their probabilities Oprobs, given the
prompt (with temperature 0.6) on Line 3.

Require: An NL description nl, an input sample dataset d,
candidates L, and their logprobs, execution results Oexe
for L, a function sim that measures similarity between
two outputs s.t. it returns 1 when outputs are equal and
value between 0 and 1 otherwise

Ensure: Scores scores for each candidate in L

1: function OUTPUTPREDICTION(n!, d)

2: prmpt < PROMPTFOROUTPUTPREDICTION(nl, D)
3: O, Oprobs + LLM(prmpt, tmp=0.6, N=25)

4: return O, Oprobs

5: function GETSCORES(L, probs, O, Oprobs, d)

6: for s € L do > for each candidate s
7 0Oexe < Execute sond > output generated by s
8: score[s] < probs[s] * DQM(0exe) > initialize
9: for o € O do > for each predicted output
10: p < Oprobs|o] * sim(0, Oexe)

11: score[s] < score[s] + p

12: return score

(3) On Lines 8-11 we assign a new score to each
candidate s in the list L of candidates equal to:

probs(s) + > .o Oprobs(o) * Pr(s | o,nl, D),

where Pr(s | o,nl, D) is an estimate of the prob-
ability that s is the desired program given o is the
desired output on D, and probs(s) is the original
probability estimate of s given nl, D.

(4) We estimate Pr(s | o,nl, D) by using any sim-
ilarity metric on the output space (on Line 10) to
compare o with the output o.xe generated by ex-
ecuting s on D. The simplest metric is one that
returns 1 if 0 == 0exe and 0 otherwise; however,
one could use other metrics.

To relate back to ATT, note that Steps (1)-
(2) correspond to Agent 2 and Steps (3)-(4) de-
scribe Agent 3. Furthermore, Oprobs(o) * Pr(s |
o,nl, D) is an estimate of Pr(s,o | nl, D), which
is just Pr(Z = 2,Y =y | X = x). Note that
the final score we are assigning to a candidate is
a sum of the probability estimates we get using
two different ways: directly from Pr(Y | X = x)
and indirectly from), Pr(Y,Z = z | X = x),
consistent with the choice of & = 1/2 in ATT.

Output prediction using LL.Ms can be accom-
plished in other ways too. One could use the inputs
nl and D to generate code in a different target (than
what the user wants), such as Python, and then exe-
cute that to predict outputs.

4.2 Well-formedness based Score Tuning

We add one further signal to the score assigned
to a program s, namely the well-formedness of
the output oexe that would be generated by s. For

NL Query-

“Select all rows where the entry in column 'gamma' 1is
Lless than 40 and select all rows where the entry in
column 'gamma' is more than 53 ”

Alpha Beta Gamma
-1 -1 156
3 -2 22
2 2 33

3 3 41 Temperature 0
Top-1

v Table.SelectRows(Tablel,each ([gamma]<4@ or [gamma]>53))

x Table.SelectRows(#"Tablel",each [gamma]<40)

x Table.SelectRows(#"Tablel",each [gamma]<4@ or [gamma]>53)
X Table.SelectRows(#"Tablel",each ([gamma]<4@))

x Table.SelectRows(#"Tablel",each ([gamma]<40 or [gamma]>53))

Temperature 0.6

Figure 1: Example of temperature mixing: The correct
program is ranked second using logprobs at tempera-
ture 0.6. Adding temperature O candidate bumps the
correct program to the first rank.

example, if the output table contains a new column
of null values, then we can mark this output as
being less likely. Specifically, we scale the logprob-
based probability value assigned to a candidate s
by a factor DQM(0exe) that computes a data quality
metric for oexe (Line 8). In our experiments we
used a simple data quality metric that penalizes s if
Oexe has null columns or if 0exe 1S an empty table.

4.3 Temperature Mixing

Our approach relies on the correct program being
present in the list of candidate programs generated
by the LLM. However, in cases where the LLM
does not have sufficient prior knowledge of the
data manipulation language, it is possible that the
correct program is not included in the candidate
set produced by the LLM. Therefore, we augment
the candidate set with additional programs. This
augmentation is done by leveraging the LLM it-
self and the fact that it performs temperature sam-
pling (Brown et al., 2020).

In the context of code generation, we noticed that
the quality of programs synthesized from the LLM
varies significantly with changing temperatures. In
fact, there is a tradeoff. At higher temperatures, we
get diverse N samples, but the top-1 accuracy drops
because the N samples can exclude the one that
has the highest average logprobs (e.g., the program
that would be surfaced when temperature is set to
0). On the other hand, at lower temperatures, we
get the highest average logprobs candidate, but we
lose diversity and the N samples tend to contain
the same candidate multiple times, which makes
reranking unproductive.

To mitigate these issues and avoid missing cor-

rect programs, we introduce temperature mixing
into our approach. In particular, we generate pro-
grams at both a low and a high temperature (i.e., 0
and 0.6, respectively), concatenate the results, as
shown on Line 3 of Algorithm 1, and then apply
the our reranking approach based on ATT. Tem-
perature mixing is particularly effective when the
model is more uncertain about the output, which
can happen either because the query is ambiguous
or very complex, or if the target language is unfa-
miliar to the model. In these cases, sampling at low
temperature is important because the probability
distribution computed by the model already has
high entropy (more uncertainty) and lowering the
temperature helps bring down the uncertainty.

5 Experimental Evaluation

We perform our evaluation on three different target
languages: SQL, Power Query M, and Pandas.

The Benchmarks. For Pandas, we used the “Jig-
saw”’ dataset (Jain et al., 2022). Since the M ex-
pression language is limited and there are not any
available public benchmarks, we leveraged the Jig-
saw dataset to create a benchmark for M. In partic-
ular, we filtered the Jigsaw dataset and extracted
only the transformations that M supports to create
the “JigsawM” benchmark set for M. Addition-
ally, we also created another dataset by scraping
PowerQuery help forums and collecting M expres-
sions’ NL descriptions and M expressions from
there, which we call “Forum” in the tables. It also
includes some benchmarks we obtained from the
PowerQuery team. For SQL, we used the “Spider”
dev (Yu et al., 2018) and “KaggleDBQA” (Lee
et al., 2021) datasets.

Table 1 presents some statistics about the bench-
marks. Each benchmark consists of a number (Col-
umn #n) of pairs of NL statements and the asso-
ciated code. The average number of characters in
the NL description and code are given in the two
columns named "Avg" in Table 1.

Metrics. We use execution match accuracy as
the metric for evaluation. A candidate execution
matches the ground truth if both programs return
identical outputs when run on the input dataset. We
report the percent of benchmarks where we get
an execution match, also called semantic match
(SM). We also report exact match accuracy (EM) —
where we test if the candidate syntactically matches
the ground truth. Since a task can be performed

Benchmark Statistics Baseline ATT
Target Name #n Avg(nl) Avg(code) | SM EM | SM EM
M Forum 59 59.35 80.81 | 542 24.1 | 67.8 278
M JigsawM 442 65.66 75.83 | 19.7 6.8 | 64.7 20.2
Pandas JigsawM 442 65.66 50.61 | 67.2 21.7 | 69.2 23.6
Pandas Jigsaw 793 70.49 5647 | 71.2 20.8 | 74.1 239
SQL Spider 1034 68.04 108.32 | 73.2 269 | 76.0 28.8
SQL KaggleDBQA | 272 55.79 96.00 | 62.7 389 | 63.2 389

Table 1: Consolidated results. For each target language (Target) and benchmark name (Name), the column #n is
the number of (nl query, code) pairs in that benchmark set, Avg(nl) is the average length of the nl, Avg(code) is
the average length of the code, SM is the semantic match (execution match) accuracy and EM is the exact match
accuracy, reported both for the baseline (without alternate task) and for our approach using alternate task technique.

in many different ways, we do not use it to draw
conclusions and report it just for completeness.

Relatively poor accuracy on M. From the base-
line results in Table 1, we see that LLMs get exe-
cution match (SM) accuracy of 60%-75% for SQL
and Pandas, but only 19%-55% for M. On the
same JigsawM benchmark, accuracy for baseline
was 19.7% for M, while it was 67.2% for Pandas.
Clearly, accuracy is consistently poorer for M. Note
that the baseline approach uses the same prompt
as our approach. The prompt includes few-shot
examples, column names, input table name, and
sample rows; see Appendix 9.2. In other words,
the baseline uses the best possible prompt we could
design for the task. We also used the best choices
for temperature and the number of candidates to
generate and rank by average logprobs. We did
not consider as baseline any approaches that uti-
lize custom ML models or require fine-tuning large
language models (see Section 7) as we don’t want
to make any assumption about availability of train-
ing data. It is also worth noting that our baseline
already surpasses the SOTA using prompt engineer-
ing (Pourreza and Rafiei, 2023) on SQL as depicted
in the Spider leaderboard (Spider).

Alternate task technique closes the gap. The re-
sults for alternate task technique (ATT) in Table 1
show that we improve the execution match (SM)
accuracy to 64%-68% for M — an improvement of
13.6% on Forum benchmarks and 45% on JigsawM.
In comparison, the improvement for SQL and Pan-
das was limited to 0-3%. For all targets and all
benchmarks, our ATT approach yields consistent
execution match accuracy in the range 63%-76%.
Thus, our approach disproportionately benefits M
code generation. This is not surprising since the
alternate task technique was designed for target lan-

Table 2: Gains in execution match accuracy from tem-
perature mixing.

Target Benchmark SM gain
M Forum +1.3
M JigsawM +3.4

guages that are not well-represented in the LLM’s
training data. This partially provides evidence for
the intuition that output prediction potentially ex-
ploits alternate new pathways of the LLLM, which
helps us extract new additional information from
the LLM to use to solve the original task — espe-
cially in the case when the direct use of LLM for
the task yields poor results.

Improvement from Temperature Mixing. We
next evaluate the gains from temperature mixing.
This is also a technique that helps for languages
such as M that are not well-represented in LLM’s
training data. Temperature mixing only adds one
candidate from the temperature-0 run. Table 2 re-
ports gains for M in the range 1.3% to 3.4% for
execution match accuracy coming from tempera-
ture mixing. This shows that the alternate task
technique is the main contributor of the gains for
M, but temperature mixing aids it by adding new
candidates to the pool.

6 Discussion and Future Work

A key assumption underlying our output-prediction
based scoring technique is that candidates gener-
ated by the LLM can be executed inside a try-catch
block. This assumption is easy to satisfy for lan-
guages that have few or no side-effects. This is
the case for the PowerQuery M target language.
For such languages, we can use execution-based

score tuning in production. However, when the
language is richer and general purpose, such as
Python, models like Codex can generate programs
that have negative side-effects (e.g., deleting files,
etc). Fortunately, as our results show here, base-
line techniques that just use prompt engineering
and logprobs-based ranking already provide good
accuracy for languages like Python Pandas.

We note that some of gains from using ATT
come from demotion of candidates that do not suc-
cessfully execute — either because they are syntac-
tically ill-formed or throw runtime exception. This
demotion of candidates that do not generate outputs
happens automatically in our technique.

Comparison with Fine-tuning and Custom
Models. Our evaluation does not consider base-
lines that require custom model training or fine-
tuning because both those steps are data hungry and
not cost effective. We observed that text-davinci-
002 fine tuned with order of several thousand (NL,
code) pairs performed poorly and gave 0% exe-
cution match on the benchmarks reported in our
evaluation — indicating insufficient data.

Chain-of-thought and alternate task technique.
Chain-of-thought (CoT) prompting (Wei et al.,
2022) refers to the technique of prompting the LLM
that encourages the model to verbalize the inter-
mediate reasoning steps used for solving the task.
Mathematically, CoT estimates P(Y = y|X = z)
by PY =ylZ =2,X =x)x P(Z =z2|X =z);
that is, by going through Z. In CoT, estimates for
both P(Y|X, Z) and P(Z|X) are performed by
the LLM. In the terminology of ATT, CoT employs
Agent 2 to generate Z, but does not use Agent 1
to directly generate Y, and instead uses Agent 3 to
generate Y from Z and X. We can say that CoT uses
a = 0, eliminates Agent 1, and merges Agent 2
and Agent 3 into one agent that does both steps.

Cost Overhead for ATT. Our approach involves
making 2 calls (3 if using temperature mixing), but
the two calls ask for N=25 completions. This incurs
only a small additional computational cost because
we are requesting more tokens in the output, but
we do not incur any additional cost for input to-
kens because they are sent just once. For example,
the cost (estimate based on the count of input and
output tokens used) for the NL2SQL evaluation is
USD 1.35 for Kaggle and USD 8.60 for Spider for
N=25 generations. If we instead perform only N=1
generation, the cost would be USD 1.06 for Kaggle

Table 3: NL2M top-K accuracy at temp=0.6 for k=1, 5,
25: The first number in each cell is Exact Match accu-
racy and second number is execution match accuracy.

k=1 k=5 k=25
Forum | 24.1,54.2 | 45.9,72.6 | 51.0,74.3
JigsawM | 06.8,19.7 | 27.9,57.3 | 41.7,73.4

and USD 6.47 for Spider. So, going from N=1 to
N=25 incurs only a small overhead. Table 3 shows
that generating 25 candidates improves the chances
of getting the correct candidate in the pool, and
ATT helps Top-1 accuracy get close to Top-25.

7 Related Work

Few-shot Prompting. Our contributions are not
related to few-shot prompting, but we use few-shots
in our prompts. Few-shot prompting refers to inclu-
sion of some concrete examples of the task in the
prompt. It has been shown to help the LLM gener-
ate good program recommendations (Brown et al.,
2020; Chen et al., 2022, 2021; Nijkamp et al., 2022;
Liu et al., 2021), including recommendations in
less popular languages (Hendy et al., 2023). A wide
collection of work exists on few-shot prompting
ranging from crafting prompt templates (Shin et al.,
2020; Zhong et al., 2021; Gao et al., 2020; Shi et al.,
2022), considering the permutations of examples
(Zhao et al., 2021; Lu et al., 2021), to increasing
the number of few-shot examples (Wei et al., 2022).
Given LLM’s sensitivity to prompts, many works
exist in prompt aggregation(Arora et al., 2022),
or training models that perform aggregations it-
self (Jiang et al., 2020; Schick and Schiitze, 2020),
as well as chain-of-thought prompting (Liu et al.,
2023a), and, more recently, repair (Chen et al.,
2023b; Shinn et al., 2023), but we leave these as
potential directions for future work.

Data Context. Since we are operating in the do-
main in which data is available, we tested various
ways to summarize the associated input data in the
prompt as it is well-known that small changes in
the prompt can have significant effects on the gener-
ated programs (Min et al., 2022). Examples include
using encoding the input data within CREATE SQL
statements, introducing new tokens like <T> for
demarking table names as well as, simple dictio-
naries that list each table and its associated column
attributes and types (Scholak et al., 2021; Shaw
et al., 2021). The most performant representation
for tables was as a Python list-of-list, which we

used; see Appendix 9.2. Similar to existing work
(Gemmell and Dalton, 2023), we include a sample
of 3-8 rows per table in the prompt.

Natural Language to Code. The Spider leader-
board (Spider) contains a list of works that leverage
machine learning for text-to-SQL generation and
are evaluated on the Spider dataset. The approaches
fit into three categories: custom ML models (Li
et al., 2023; Fu et al., 2023; Cao et al., 2021; Xu
et al., 2021), prompt engineering with pre-trained
language models such as Codex and GPT-4 (Pour-
reza and Rafiei, 2023; Poesia et al., 2022), and
fine-tuned large language models (Scholak et al.,
2021; Shaw et al., 2021). Our work falls into the
second category as we operate under the assump-
tion that we do not have enough data to train a cus-
tom model or to fine-tune a large language model.
The top performance results in this category are ob-
tained by the work in (Pourreza and Rafiei, 2023).
This work achieves 74.2% and 69.9% top-1 execu-
tion accuracy on the Spider dev test (the dataset we
are also using for our evaluations) using the GPT-
4 and Codex models respectively. Our approach
provides 76% top-1 execution accuracy using the
Codex model demonstrating that we are able to
surpass the SOTA methods using ATT.

In the context of Pandas, the most relevant work
to ours is the one published in (Jain et al., 2022).
The main difference is that their method requires
input/output test cases from the user. These tests
are used to validate and refine the programs gener-
ated by the LLM, or to modify the LLM-produced
code so that it can satisfy the test cases. In contrast,
our method solely relies on the natural language
utterance and does not require any additional tests.

Reranking. Generating code from natural lan-
guage is challenging (Yu et al., 2018; Chen et al.,
2021; Austin et al., 2021; Li et al., 2022). Since the
desired code is more likely to be generated when
multiple programs are sampled, there is extensive
work around designing reranking techniques, in-
cluding execution-based reranking techniques, to
select the best candidate among multiple samples
(Shi et al., 2022; Zhang et al., 2022; Ni et al., 2023;
Li et al., 2022). A lot of work has focused on
improving Top-1 accuracy (Shi et al., 2022; Ni
et al., 2023; Zhang et al., 2022). Unlike our work,
some works consider a different signal for rerank-
ing: namely, translating the code back the NL and
checking consistency, which is related to maximiz-
ing mutual information objective to pick the top

candidate (Liu et al., 2023b; Li et al., 2016; Zhang
et al., 2022), which we can integrate in our score-
based reranking framework. We introduce the new
alternate task technique, and its instantiation to
output-prediction based score tuning, which trans-
lates the NL to output and checks for consistency
to rerank.

Tool Plugins in LLMs. Recently, there is work
on coupling tools with LLMs (Chen et al., 2022;
Schick et al., 2023; Yao et al., 2023) and output-
prediction based score tuning can be seen as a way
to improve performance of an LLM using an exter-
nal tool, namely an interpreter. ATT is a specific
way of coupling tools that uses LLMs ability to
solve the original and a slightly different task, and
then a tools ability to consolidate all the informa-
tion extracted from LLMs.

8 Conclusion

In this paper, we presented a novel technique,
called the alternate task technique (ATT), for syn-
thesizing data manipulation programs from natural
language (NL) and an input dataset. Our approach
leverages the input dataset by asking the LLM to
“execute” the NL on the input dataset to generate
candidate output datasets. The predicted outputs
are used to rerank the programs predicted directly
by the LLM. We evaluate our framework over SQL,
Pandas, and PowerQuery M, using a variety of new
and existing benchmarks. We observe that ATT pro-
vides small gains for popular target languages SQL
and Pandas as much, but adds significant accuracy
gains for M, and makes accuracy on M comparable
to that for Pandas and SQL. ATT can serve as a
general methodology for improving LLM accuracy
on tasks that involve knowledge of some niche and
low-resource domain.

Limitations

First, the alternate task technique is observed to
add significant value only when generating code in
low-resource languages. The gains for popular tar-
get programming languages was limited. Second,
we have used LLMs to perform the surrogate task
of output prediction. This task can become con-
siderable hard if the NL descriptions become more
complicated and the input dataset starts to have
large number of rows and columns. Our bench-
marks did not contain such hard instances. For
such hard cases, to restore feasibility of our overall
approach, it might become necessary to generate

outputs by other means — such as, using the LLM to
generate Pandas code, and executing it on the input,
rather than asking the LLM to directly produce the
output. We believe that we will get same results
for that modification, but that hypothesis has to be
rigorously evaluated. Third, our approach makes
one additional call to the LL.M to perform the sur-
rogate task. LLM calls require compute and incur
cost. Fourth, our proposed approach is based on
executing code generated by an LLM. In general,
this is untrusted code and not safe for execution
outside of a sandbox environment.

References

Simran Arora, Avanika Narayan, Mayee F Chen, Lau-
rel J Orr, Neel Guha, Kush Bhatia, Ines Chami, Fred-
eric Sala, and Christopher Ré. 2022. Ask me any-
thing: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language mod-
els. arXiv preprint arXiv:2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph en-
hanced text-to-SQL model with mixed local and non-
local relations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2541-2555, Online. Association for
Computational Linguistics.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating large language models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. arXiv preprint arXiv:2304.05128.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. 2023. A survey on in-context
learning.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate.

Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and
Jianling Sun. 2023. CatSQL: Towards real world
natural language to sql applications. Proc. VLDB
Endow., 16(6):1534-1547.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Carlos Gemmell and Jeffrey Dalton. 2023. Generate,
transform, answer: Question specific tool synthesis
for tabular data. arXiv preprint arXiv:2303.10138.

GitHub Copilot. 2021. GitHub Copilot.
github.com/features/copilot.

https://

Zihui Gu, Ju Fan, Nan Tang, Lei Ju Cao, Bowen lia,
Sam Madden, and Xiaoyong Du. 2023. Few-shot
text-to-sql translation using structure and content
prompt learning. SIGMOD.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas
Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Has-
san Awadalla. 2023. How good are gpt models at
machine translation? a comprehensive evaluation.
arXiv preprint arXiv:2302.09210.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan
Natarajan, Suresh Parthasarathy, Sriram Rajamani,
and Rahul Sharma. 2022. Jigsaw: Large language
models meet program synthesis. In Proceedings of
the 44th International Conference on Software Engi-
neering, pages 1219-1231.

https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://openreview.net/pdf?id=ktrw68Cmu9c
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2301.00234
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
http://arxiv.org/abs/2305.14325
https://doi.org/10.14778/3583140.3583165
https://doi.org/10.14778/3583140.3583165
https://doi.org/10.14778/3583140.3583165
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbga: Realistic eval-
uation of text-to-sql parsers. arXiv preprint
arXiv:2106.11455.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119. Association for Computational Lin-
guistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. 2023. Encouraging divergent
thinking in large language models through multi-
agent debate.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023a. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu,
Benjamin G. Zorn, Jack Williams, Neil Toronto, and
Andrew D. Gordon. 2023b. "what it wants me to
say": Bridging the abstraction gap between end-user
programmers and code-generating large language
models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, pages
598:1-598:31. ACM.

Robert L. Logan IV, Ivana Balazevic, Eric Wallace,
Fabio Petroni, Sameer Singh, and Sebastian Riedel.
2021. Cutting down on prompts and parameters:
Simple few-shot learning with language models.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2021. Fantastically
ordered prompts and where to find them: Overcom-
ing few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

10

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoy-
anov, Wen-tau Yih, Sida I Wang, and Xi Victoria
Lin. 2023. LEVER: Learning to verify language-
to-code generation with execution. arXiv preprint
arXiv:2302.08468.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. Codegen: An open large lan-
guage model for code with multi-turn program syn-
thesis. arXiv preprint arXiv:2203.13474.

OpenAl. 2023. Gpt-4 technical report.

OpenAl APL OpenAl APL https:
//platform.openai.com/docs/api-reference/
completions/create.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari,
Gustavo Soares, Christopher Meek, and Sumit Gul-
wani. 2022. Synchromesh: Reliable code genera-
tion from pre-trained language models. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction.

Power Query. Power Query M. https:
//learn.microsoft.com/en-us/powerquery-m/.
Accessed: June 21, 2023.

PowerAutomate. 2023. Al in PowerAutomate. https:
//powerautomate.microsoft.com/en-us/.

PowerBI. 2023. PowerBI. https://powerbi.
microsoft.com.
PowerBI Q&A. 2023. Q&A in PowerBI.

https://learn.microsoft.com/en-us/
power-bi/natural-language/q-and-a-intro

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi,
Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. 2023. Tool-
former: Language models can teach themselves to
use tools.

Timo Schick and Hinrich Schiitze. 2020. It’s
not just size that matters: Small language mod-
els are also few-shot learners. arXiv preprint
arXiv:2009.07118.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: parsing incrementally for
constrained auto-regressive decoding from language
models. CoRR, abs/2109.05093.

http://arxiv.org/abs/2302.05965
http://arxiv.org/abs/2302.05965
http://arxiv.org/abs/2302.05965
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
http://arxiv.org/abs/2305.19118
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
http://arxiv.org/abs/2106.13353
http://arxiv.org/abs/2106.13353
http://arxiv.org/abs/2106.13353
http://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
https://learn.microsoft.com/en-us/powerquery-m/
https://learn.microsoft.com/en-us/powerquery-m/
https://learn.microsoft.com/en-us/powerquery-m/
https://powerautomate.microsoft.com/en-us/
https://powerautomate.microsoft.com/en-us/
https://powerautomate.microsoft.com/en-us/
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro
https://learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro
https://learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093
http://arxiv.org/abs/2109.05093

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? In Proc. 59th
Annual Meeting of the Assoc. for Comput. Linguis-
tics and the 11th Intl. Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 922-938, Online. Association for Computa-
tional Linguistics.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I Wang. 2022. Natural lan-
guage to code translation with execution. arXiv
preprint arXiv:2204.11454.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Spider. The Spider leaderboard. https://yale-1lily.
github.io/spider.

Immanuel Trummer. 2022. Codexdb: Synthesizing
code for query processing from natural language in-
structions using gpt-3 codex. Proceedings of the
VLDB Endowment, 15(11):2921-2928.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Optimiz-
ing deeper transformers on small datasets. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089—
2102, Online. Association for Computational Lin-
guistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Tianyi Zhang, Tao Yu, Tatsunori B Hashimoto, Mike
Lewis, Wen-tau Yih, Daniel Fried, and Sida I Wang.
2022. Coder reviewer reranking for code generation.
arXiv preprint arXiv:2211.16490.

11

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages

12697-12706. PMLR.

Zexuan Zhong, Dan Friedman, and Dangi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. arXiv preprint arXiv:2104.05240.

9 Appendix

9.1 Comparision with CoT and
Machine-Translation

One can wonder about performing NL2M task by
first doing NL2Pandas and then translating Pandas
to M. We note that writing semantic preserving
translators from one language to another is always
a tricky and time-consuming task. Moreover, such
translators need to be maintained and kept up to
date. Our approach avoids the need for writing
translators.

9.2 Prompt For Code Generation

The assistant answers questions from a
table by converting them to PowerQuery M
queries.

Columns:Country/Region,Lat,Long
Sample Data:[
["USA","50","100"],
["India","23","160"],
["Australia”, "-40","180"]
]
Table Name:Regions
Question:Put first row as headers
M:Table.PromoteHeaders(
Regions,
[PromoteAllScalars=true]

)

Columns:Country/Region,Lat,Long
Sample Data:[
["USA","50","100"],
["India","23","160"],
["Australia”,”-40","180"]]
Table Name:World Table

Question:Group column "Country/Regions” by Count

M:Table.Group(#"World Table”,
{"Country/Region"}, {
{
"Count”, each
Table.RowCount(_),
Int64.Type}

https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://yale-lily.github.io/spider
https://yale-lily.github.io/spider
https://yale-lily.github.io/spider
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629

Columns:First,Last,Id

Sample Data:[["Adam”,"Baker",6"123"],
[HBrianH , ”Doell , ll234ll] ,
["Barbara","Davis", "567"]]

Table Name:Personal Details

Question:Only include first names that start

with B in column First
M:Table.SelectRows(#"Personal Details”,

Question:0Only include first names that
start with B in column First
Output Table:[["Brian”,"Doe","234"],
["Barbara","Davis", "567"]]
Column Outputs:First,Last,Id

Columns:Country/Region,Lat,Long
Sample Data:[["USA","50","100"],
["India","23","160"],
["Australia”,"”-40","180"]]
Table Name:World Table

each Text.StartsWith([First], "B"Question:Add 10 to all the values

Columns:First,Last,Id

Sample Data:[["Adam”,"Baker","”123"],
["John","Doe","234"],
["Clark”,"Davis","567"1]

Table Name:Source

Question:Rotate the table

M:Table.Transpose(Source)

Columns:name, surname, id, pos

in column "Lat"

Output Table:[["USA","60","100"],
["India"”,"33","160"],
["Australia”,"-30","180"]]

Column Outputs:Country/Region,Lat,Long

Columns:name, surname, id, pos

Sample Data:[
["aAdamb"”, "Baker”,"123","Engineer"],
["aJohnb","Doe","234","Researcher"],

Sample Data:[["aAdamb”, "Baker"”,"123","Engineer”],["aClarkb”, "Davis","567","Manager"]
["aJohnb","Doe","234","Researcher"],]
["aClarkb"”,"Davis","567","Manager”]Table Name:Details Table

Table Name:Details Table
Question:Extract the contents between "a"
in column "name"
M:Table.AddColumn(#"Details Table”,
"Text between delimiters”,
each Text.BetweenDelimiters(
[name], "a", "b", 0, 0),
type text)

Columns:{Columns}

Sample Data:{Snippet of the data}
Table Name:{Table Name}
Question:{NL Query}

M:

9.3 Prompt For Alternate Task

Question:Extract the contents between "a" and
and "b" "b" in column "name”

Output Table:[
["Adam", "Baker"”,"123" ,"Engineer"],
["John","Doe","234","Researcher”],
["Clark”,"Davis",6"567","Manager"]
]

Column Outputs:name, surname,id,pos

Columns:name, surname, id, pos

Sample Data:[
["aAdamb"”, "Baker","123" ,"Engineer"],
["aJohnb","Doe","234","Researcher”],
["aClarkb", "Davis"”,"567","Manager"]

]
Table Name:Details Table
Question:Remove the first letter from the

The assistant answers questions from a table
by showing how the data is transformed in
Power Query when given the description of
the transformation task.

"surname” column

Output Table:[["aAdamb", "aker"”,"123","Engineer"]
["aJohnb","oe","234" ,"Researcher"],
["aClarkb","avis",6"567","Manager"]]

Column Outputs:name, surname,id,pos
Columns:First,Last,Id

Sample Data:[["Adam”,"Baker","”123"],
[llBr.ian” , IlDoelI , ”234“] ,
["Barbara"”,"Davis”, "567"]]

Table Name:Personal Details

Columns:Country/Region,Lat,Long
Sample Data:[["USA","50","100"],
[IlIndiaH , l123ll , II-I6®H] ,

12

["Australia”,"-40","180"1]
Table Name:World Table
Question:Add new column "Lat+10" by
adding 10 to all
the values in column "Lat”
Output Table:[["USA","50","100","60"],
["India”,"23","160","33"],
["Australia”,"-40","180","-30"1]
Column Outputs:Country/Region,Lat,Long,
Lat+10

Columns:{columns}

Sample Data:{Sample Data}
Table Name:{Table Name}
Question:{ NL Query}
Output Table:

13

