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Abstract

Recent works extend classification group fairness measures to sequential decision processes
such as reinforcement learning (RL) by measuring fairness as the difference in decision-
maker utility (e.g. accuracy) of each group. This approach suffers when decision-maker
utility is not perfectly aligned with group utility, such as in repeat loan applications where
a false positive (loan default) impacts the groups (applicants) and decision-maker (lender)
by different magnitudes. Some works remedy this by measuring fairness in terms of group
utility, typically referred to as their "qualification", but few works offer solutions that yield
group qualification equality. Those that do are prone to violating the "no-harm" principle
where one or more groups’ qualifications are lowered in order to achieve equality. In this
work, we characterize this problem space as having three implicit objectives: maximizing
decision-maker utility, maximizing group qualification, and minimizing the difference in
qualification between groups. We provide a RL policy learning technique that optimizes
for these objectives directly by constructing a multi-objective reward function that encodes
these objectives as distinct reward signals. Under suitable parameterizations our approach
is guaranteed to respect the "no-harm" principle.

1 Introduction

In this work, we develop an approach for learning policies which satisfy group fairness definitions in rein-
forcement learning (RL), where an algorithm is considered fair if its results are independent of one or more
protected attributes such as gender, ethnicity, or sexual-orientation. There is by now an extensive body of
work on group fairness works in classification settings (Berk et al., 2018; Chouldechova, 2017; Corbett-Davies
et al., 2017; Dwork et al., 2012; Hardt et al., 2016; Kusner et al., 2017; Galhotra et al., 2017). Moving beyond
classification, Liu et al. (2018) initiated the study of measuring the downstream impact of one-shot fairness
constraints on the individuals they aim to protect by evaluating the change in credit score in a two-step loan
application model. Several works build on this by analyzing how the qualification of individuals changes over
time as a function of various decision-based fairness constraints (D’Amour et al., 2020; Mouzannar et al.,
2019; Zhang et al., 2020). Although these works study long-term qualification impact, they do not offer
techniques for learning policies that obtain long-term qualification equality across protected groups. Others
works attempt policy-learning techniques that result in long-term qualification equality, but suffer from one
or both of the following two drawbacks:
Drawback 1. The solution is prone to violating the "no-harm" principle (Martinez et al., 2020) where one
or more group’s qualification is lowered in order to satisfy the equality constraint, without any qualification
improvement to another group.
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Wen et al. (2021) for instance, maximize discounted decision-maker utility subject to a group qualification
equality constraint, and focus on repeat loan applications. Even though they distinguish decision-maker
utility and group qualification as separate objectives, we show that their approach is still prone to violating
the no-harm principle because there is no penalty for lowering a group’s qualification in order to satisfy the
constraint. Our primary goal with respect to avoiding harm is to navigate the balance between improving
the qualifications of one group without unjustly compromising the qualifications of another.
Drawback 2. The solution assumes that decision-maker utility is equal to group qualification, which leads
to solutions that are suboptimal with respect to decision-maker utility or group qualification.

Several works consider fairness as some measure of overall utility (Martinez et al., 2020; Diana et al., 2021; Hu
& Zhang, 2022; Chi et al., 2021; Siddique et al., 2020). For example, Martinez et al. (2020) characterize group
fairness as a multi-objective optimization problem where each sensitive group risk is a separate objective, and
their solution minimizes the maximum error across all groups. This approach, as well as the others, assumes
that the decision-maker and the groups share the exact same objective. In prison sentencing, for instance,
the decision-maker (judge) and the groups (defendants) have conflicting objectives. If we are measuring
group fairness, we should measure it with respect to the group objectives, not the decision-maker objective.
In addition, practical solutions need to balance decision-maker utility with group fairness: solutions that
only consider fairness will have poor decision-maker utility, and vice versa.

We seek a fair policy-learning solution that remedies the aforementioned drawbacks. Therefore, our objective
is to find a policy-learning technique that improves long-term group qualification equality; does not lower
one or more group qualification without improving another group’s qualification; and is robust to situations
when qualification and decision-maker utility are different functions. In order to ensure that qualification is
improved and that qualification equality is maintained, we seek a technique that optimizes for these values
directly as objectives in a multi-objective reward.

1.1 Related Work

Applying one-shot constraints in sequential decision processes. Deng et al. (2022) propose a
method for applying fairness constraints at each decision point in sequential RL settings, diverging from our
approach of integrating multi-objective rewards. Hu & Chen (2020) study fairness when there are multiple
decisions for an individual, but measure the one-shot fairness of each decision instead of long-term fairness.
These methods enforce statistical independence of decisions from sensitive attributes at every timestep, a
strategy that may not align with achieving nuanced fairness due to the non-IID nature of RL, as highlighted
by the analysis of Liu et al. (2018). Therefore, they are all prone to violating the "no-harm" principle.

Characterizing the long-term fairness impact of one-shot constraints. Several works build on Liu
et al. (2018)’s two-step analysis of downstream impact of one-shot fairness constraints by analyzing how
the qualification of individuals change over time as a function of various decision-based fairness constraints.
D’Amour et al. (2020) extend this study beyond two timesteps and measure one-shot impact on long-term
qualification rates through a simulated loan application RL environment. Mouzannar et al. (2019) study
the impact of affirmative action on qualification rates over many timesteps. Zhang et al. (2020) measure
the impact of one-shot constraints on qualification rate disparity of the policy’s equilibrium. Although these
works study long-term qualification impact, they do not offer techniques for learning policies that obtain
long-term qualification equality across protected groups.

Learning policies that achieve long-term fairness in sequential decision settings. In addition
to the group risk minimax approach of Martinez et al. (2020), other works attempt to learn policies that
achieve long-term fairness. Hu & Zhang (2022) propose a structural causal model framework for achieving
long-term fair policies for sequential decision making, formulated as a constrained optimization problem
with the decision-maker utility as the objective and both long-term and short-term fairness as constraints.
Chi et al. (2021) minimize reward disparity by minimizing differences in state visitation frequencies between
group-specific policies. Diana et al. (2021) build on that of Martinez et al. (2020), but offer a solution that can
relax the fairness constraints, thus permitting tradeoffs between decision-maker utility and fairness. Siddique
et al. (2020) consider fair multi-objective MDPs and try to satisfy the generalized Gini social welfare function
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(Weymark, 1981). However, each of these works suffer from Drawback 2, so their definition of "fairness" is
with respect to a utility function that may not align with the groups it aims to protect.

Raab & Liu (2021) study local fairness constraints and their impact on equilibrium qualification rates. Also
focusing on a repeat-loan application environment, they seek an algorithm that eliminates qualification
differences in equilibrium, but assume unfairness is only due to initial population differences and that the
groups are otherwise have equivalent behavior. Thus any unfairness introduced as a result of differing
qualification dynamics will go unresolved.

Satija et al. (2023) study fairness in RL settings where the objective is to maximize decision-maker reward
subject to a difference constraint minimization with respect to the group utility. However, because only the
difference is being optimized, this technique is also prone to violating the no-harm principle.

1.2 Contributions

We propose a technique that optimizes for decision-maker utility, group qualification, and group qualification
equality directly as a distinct objectives in a mult-objective reward. While our technique can in principle
extend to a variety of environments, we focus on the RL setting. We construct a weighted sum of three
distinct reward functions for decision-maker utility, qualification improvement, and qualification equality.
By framing our technique as a reward function, rather than a policy intervention, any RL algorithm may
learn the optimal policy since the reward adheres to the standard RL paradigm.

While on its own our objective does not guarantee the "no-harm" property, we show how to parameterize
our multi-objective approach to guarantee no harm to one or more of the groups. Similar to Liu et al.
(2018), D’Amour et al. (2020), Wen et al. (2021), and Zhang et al. (2020), we demonstrate our approach
on a sequential loan application MDP environment, and benchmark our results against two state-of-the-
art techniques. While we restrict our experimental settings to a loan application environment, we provide a
model and approach that generalizes to a much broader area of applications where a decision-maker evaluates
individuals based on an observed metric, and where the decision itself influences this observed metric in the
future.

Our work builds on the line of research initiated by Liu et al. (2018) who first articulated how local fairness
constraints do not ensure long-term fairness in sequential decision-making. Subsequent studies by Mouzannar
et al. (2019) and Zhang et al. (2020) investigate when such constraints can actually promote long-term
fairness, offering insights but not developing specific policy methods. Our research builds on these findings,
and propose a policy-learning strategy to address this gap. Therefore, our model of the environment is
intentionally similar to that of Zhang et al. (2020), Mouzannar et al. (2019), among others Wen et al. (2021);
D’Amour et al. (2020).

Other policy-learning strategies like those from Wen et al. (2021), Hu & Zhang (2022), and Chi et al.
(2021) seek long-term fairness, but often lower some groups’ qualifications without broader benefits, which
implies they violate the no-harm principle. Martinez et al. (2020) first proposed a policy-learning strategy
to solve for this problem of harm, by providing a policy-learning solution that maximizes the minimum
group qualification. Our method offers a more efficient alternative, demonstrating that while their approach
prevents harm, ours achieves better solutions. In other words, our primary goal with respect to avoiding harm
is to navigate the balance between improving the qualifications of one group without unjustly compromising
the qualifications of another. Achieving fairness often requires adjusting the qualifications of the more
advantaged group to aid the disadvantaged group significantly. This is the inherent challenge of fairness,
since if it were always possible to improve one or more groups without consequence, achieving fairness would
be trivial.

2 Model

We illustrate our model with a running example (also used later in our experiments) of a sequential lending
scenario with a single lender and a population of loan applicants. At each timestep t, an individual (e.g. loan
applicant) is sampled and the decision-maker (e.g. lender) makes a decision (e.g. to either approve or reject
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the sampled individual’s loan application).1 We consider two groups of individuals who are distinguished by
their sensitive attribute z ∈ Z (e.g. gender). At time t we can sample an individual whose sensitive attribute
z ∼ Zt is governed by its time-invariant distribution P (Z).2 In addition to their protected attribute,
an individual is characterized by their qualification yz ∼ Y z

t (e.g. loan repayment probability or credit
score). As noted by Zhang et al. (2020), this model can be interpreted as either representing randomly
selected individuals repeatedly going through the decision cycles, or the population-wide average when all
individuals are subject to the decision cycles. So Y z could be the probability of an individual in group z
having qualification yz at time t, while also being the average qualification of group z at time t.

As with prior work on long-term fairness, we assume individuals care about optimizing their qualifica-
tion (D’Amour et al., 2020; Mouzannar et al., 2019; Zhang et al., 2020). The lender has access to the
applicant’s protected attribute (e.g., gender) and other non-sensitive attributes (e.g., income, occupation,
marital status). The outcome of the lender’s decision (e.g., whether the applicant repaid the loan, defaulted,
or was rejected) affects the applicant’s credit score in future timesteps. The lender also keeps track of the
total population’s credit scores over time.

While we restrict our Section 5 experiments to the repeat loan application studied by Zhang et al. (2020) 3,
our approach generalizes to many other domains as well, including recidivism prediction and parole deci-
sions (Dressel & Farid, 2018; Imai & Jiang, 2020), predictive policing (Ensign et al., 2018), affirmative action
and the labor market (Mouzannar et al., 2019), and food inspections (Singh et al., 2022; D’Amour et al.,
2020). We formally define our model as a Markov Decision Process.

Definition 2.1 (Markov decision process). A Markov Decision Process (MDP) is a 6-tuple {S, A, T, R, γ, µ}
where S is a set of states; A is a set of actions; T : S × A → ∆S is a mapping of state-action pairs to a
distribution over new states: T (st|st−1, at−1) ; R : S ×A×S → R is the reward function, which maps a state-
action-state triplet to a real number; γ ∈ [0, 1] is the discount factor; and µ is the initial state probability
distribution. A typical goal is to find the optimal policy π∗ ∈ Π that maximizes the expected discounted
reward, where Π is the space of policies.

The decision-maker is represented by the policy π which selects an action a ∼ At ∈ A (e.g. reject/accept)
based on the current state {z, y0, y1, y∆, x}, where z ∼ Zt is the protected attribute of the sampled individual
at time t; y0 ∼ Y 0

t and y1
t ∼ Y 1

t are the qualifications (e.g. credit scores) of the two groups at time t; y∆ ∼ Y ∆
t

is the cumulative qualification difference between groups (used to define our notion of fairness in Section 3)
at time t: Y ∆

k =
∑t=k

t=0 Y 1
t −

∑t=k
t=0 Y 0

t ; and x ∼ Xt is a the environment state components at time t, which
represents all other attributes of the state excluding qualification and sensitive attributes (e.g. the lender’s
available cash).

The action a and the individual’s qualification yz inform the outcome θ ∼ Θt (e.g. repaid/defaulted) by way
of the outcome dynamics T Θ(yz, a) := P (θ | yz, a). The outcome θ impacts the qualification of the individuals
in the subsequent timestep, y0′ ∼ Y 0

t+1 and y1′ ∼ Y 1
t+1, according to the qualification dynamics of each group

T Y 0(y0, y1, θ) := P (y0′ | y0, y1, θ) and T Y 1(y0, y1, θ) := P (y1′ | y0, y1, θ). The outcome also impacts the
environment state (e.g. increase/decrease the cash available to make future loans) in the subsequent timestep
x′ ∼ Xt+1 according to the environment dynamics T X(x, θ) := P (x′ | x, θ). The decision-maker wants to
optimize their utility (e.g. lender wants to optimize profit). We denote the decision-maker utility function
as RD : Θ → R. We assume a finite time-horizon with γ = 1. 4 The full graphical model is depicted in
Figure 1.

1The sequential loan model delineated in our study presupposes that a decision-maker must await the observed outcome of a
prior decision before proceeding with a subsequent one. Nonetheless, our reward framework is not predicated on such temporal
constraints; it is based on the expected sum of future rewards, which remains unaffected by the specific timing of these rewards.

2We use the notation x ∼ X to denote x being a sample from (the law of) the random variable X.
3Our loan application model also shares similarities to those of D’Amour et al. (2020) and Wen et al. (2021).
4Although we use a value of γ < 1 in our experiments to illustrate policies considering longer-time horizons.
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Figure 1: The graphical representation of our MDP model. Without loss of generality, we set z ∼ Z0 = 0
with probability 1. The left-hand side nodes represents the initial state t = 0 and the right-hand side nodes
represents the subsequent timestep t = 1. The same model is repeated for all subsequent timesteps t > 1.
The dashed circle in the middle represents the outcome variable Θ (e.g. repayment, default).

For brevity, we denote a state transition from t to t + 1 after taking action at as σt = (st, at, st+1). We also
use Σ

π
v to denote the expected discounted sum of some observable quantity vt = v(σt) → R under policy π:

Σ
π

v = E
T,π

[ ∞∑
t=0

γtvt

]
.

3 Multi-Objective Rewards

Here we introduce our multi-objective reward framework for learning policies that achieve fairness (i.e. quali-
fication equality between groups) without suffering the Section 1 drawbacks. In order to balance qualification
improvement and qualification equality without significant decision-maker utility degradation, we propose a
technique that optimizes for these values directly. We propose a multi-objective reward function that is a
weighted sum of three distinct reward functions for decision-maker utility, qualification improvement, and
qualification equality. By framing our technique as a reward function, rather than a policy intervention, we
can leverage any planning or RL algorithm to learn the optimal policy. Furthermore, by including terms
for decision-maker utility, qualification, and qualification equality directly, this approach organically seeks
efficient tradeoffs across the three objectives, and without the need for domain-specific adjustments, such as
those by Raab & Liu (2021) and Hu & Chen (2020).

This multi-objective reward is defined as a weighted sum:

R(λ, σt) = λDRD(σt) + λQRQ(σt) + λF RF (σt) . (1)

where λ = (λD, λQ, λF ) is a 3-tuple of non-negative preference weights for the decision-maker utility, qual-
ification, and qualification equality, respectively.5 RD(σt) denotes the decision-maker utility function as
defined in Section 2, and therefore represents the reward component for decision-maker utility. RQ(σt) is
the sum of group qualifications at time t + 1:

RQ(σt) = Y 0
t+1 + Y 1

t+1 . (2)

RF (σt) is computed as the cumulative difference in qualification averages between groups, which is equivalent
to computing the difference in Y ∆

t and Y ∆
t+1:

RF (σt) = 1 + |Y ∆
t | − |Y ∆

t+1| . (3)
5While our optimization is unconstrained, these weights also have a natural interpretation as Lagrange multipliers. Also,

while our approach involves changing the rewards, it can also be viewed as an instance of the common RL practice of adding
auxiliary losses.
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We include the 1 term to ensure that the value is greater than or equal to zero. Equation (3) implies that
higher values of RF correspond to smaller historical differences in group qualifications, and are therefore
"more fair".

Thus Equation (1) is a weighted sum of reward contributions characterizing the extent to which the transition
σt contributes towards the decision-maker utility, group qualification, and group qualification equality. We
denote Equation (1) parameterized by λD = i, λQ = j, λF = k as Rijk and its optimal policy as

πijk = argmax
π∈Π

E
[ ∞∑

t=0

γtRijk(st, π(st), st+1)
]

. (4)

We explicitly structure Equation (1) as a sum over the three implicit objectives, which avoids the drawbacks
of Section 1 by combining competing objectives into the same overall objective. Specifically, including
components for overall group qualification RQ and group qualification equality RF naturally avoids harm,
since harm would decrease RQ. We show in Section 4 that certain combinations of weights guarantee versions
of no harm. Additionally, combining the separate fairness objective RF and decision-maker objective RD

into the same objective naturally finds solutions that are both fair and beneficial to the decision-maker while
not conflating decision maker utility and qualification. Furthermore, the weights λD, λQ, and λF allow
practitioners to tune the reward function to better reflect any domain-specific aspects.

4 Analysis

Following convention, e.g. (Feldman et al., 2015; Kamishima et al., 2012), we enable practitioners to specify
their fairness preferences with a tuning parameter, which we refer to as λ. In our approach, the practitioner
specifies λ as part of the reward function definition, which conveniently reduces the multi-objective reward
to a single objective reward. The reduced single objective reward is a linear weighted sum over the specified
λ preference weights, and thus yields a single deterministic stationary policy (Roijers et al., 2013). It is for
this reason that our approach fits nicely with the traditional RL paradigm since we end up with a single
objective reward.

Because preference weights are selected, as opposed to computed, it is important that the practitioner un-
derstand the range of outcomes for each parameter specification. We believe that one particularly important
situation is taking an existing policy that was not fairness-aware and adjusting the optimization to include
fairness. One particular concern when doing so is that, unless care is taken, optimizing for fairness can
harm (i.e. reduce the qualification of) the very groups that are intended to be protected (Martinez et al.,
2020). Therefore, we characterize the space of outcomes for various λ permutations, and do so based on their
harm guarantees for one or more of the disadvantaged and advantaged groups. In particular, we provide
λ configurations that guarantee no harm to the disadvantaged group, the advantaged group, or both groups.
We start with formal definitions for harm and for (dis)advantaged groups.
Definition 4.1 (Harm). A policy π′ does harm to group Z = z if the difference in the group’s expected
discounted qualification value Y z produced by π′ relative to that produced by the decision-maker utility-optimal
policy π100 is less than zero:

Σ
π′

Y z − Σ
π100

Y z < 0 . (5)

Similarly, we say that a policy π′ does no harm to group Z = z if Σ
π′

Y z − Σ
π100

Y z ≥ 0, and benefits group
Z = z if Σ

π′
Y z − Σ

π100
Y z > 0.

Definition 4.2 (Advantaged, Disadvantaged, Natural Fairness). Group Z = z is advantaged if Σ
π100

Y z >

Σ
π100

Y 1−z, and is disadvantaged if Σ
π100

Y z < Σ
π100

Y 1−z. If Σ
π100

Y z = Σ
π100

Y 1−z, then the environment has
natural fairness and neither group is considered advantaged or disadvantaged.

Without loss of generality, we let Z = 0 denote the group that is disadvantaged under the decision-maker
utility-optimal policy.
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4.1 No-harm Properties

Here we provide the harm guarantees for various configurations of the preference weights λ. A practitioner
who wishes to implement fairness can select their choice of λ based on the appropriate level of harm guarantees
for their problem domain as well as their goals in trading off between utility and fairness.
Theorem 4.1. When natural fairness does not exist, no harm is done to the disadvantaged group if λQ = λF .

Proof Sketch. Consider a multi-objective policy πλ that is optimal under Equation (1) for some λ con-
figuration. In order for πλ to do harm, two conditions must hold. First, either Σ

πλ

Y 0 − Σ
π100

Y 0 < 0 or
Σ
πλ

Y 1 − Σ
π100

Y 1 < 0. Second, πλ must deviate from the decision-maker utility-optimal policy π100, which
means that

λQ(Σ
πλ

RQ − Σ
π100

RQ) + λF (Σ
πλ

RF − Σ
π100

RF ) ≥ λD( Σ
π100

RD − Σ
πλ

RD) . (6)

After substituting the RQ and RF values with their Y z values in Equations (2) and (3), and some simple
algebra, we can show that the change in qualification of the disadvantaged group is upper-bounded by:

Σ
π100

Y 0 − Σ
πλ

Y 0 ≤ 1
λQ + λF

[
(λQ − λF )(Σ

πλ

Y 1 − Σ
π100

Y 1) − λD( Σ
π100

RD − Σ
πλ

RD)
]

(7)

Because no policy can have higher ΣRD than π100, we know that Σ
π100

RD − Σ
πλ

RD ≥ 0. Therefore, the entire
right-hand-side of Equation (7) will be non-positive, which implies no harm to the disadvantaged group, if

(λQ − λF )(Σ
πλ

Y 1 − Σ
π100

Y 1) ≤ 0 . (8)

This is guaranteed to occur when λQ = λF .

When λQ = λF , any increase to the advantaged group’s qualification induces a positive change in RQ, but
an equal and opposite change in RF due to the increased qualification inequality between the two groups.
This is a useful property because it fixes a lower bound on group qualification at Σ

π100
Y 0, which is the

disadvantaged group’s qualification under the decision-maker utility-optimal policy. If we do not consider
decision-maker utility at all and set λD = 0, then setting λQ = λF is equivalent to maximizing the minimum
group qualification:
Corollary 4.1. π011 is equivalent to maximizing the minimum group qualification.

This is interesting because maximizing the minimum group qualification is one way of translating the harm-
avoiding fairness technique proposed by Martinez et al. (2020). to our setting 6.
Theorem 4.2. At least one group is not harmed if λQ ≥ λF .

Proof Sketch. Starting with Equation (6) and using the same substitutions as the previous proof, we can
show that the change in qualification of the advantaged group is non-negative if

(λQ > λF ) ∧ (Σ
πλ

Y 0 − Σ
π100

Y 0 ≤ 0) . (9)

Combining Equation (8) and (9), we get Theorem 4.2.

Theorem 4.3. When natural fairness exists, neither group is harmed if λQ ≤ λF .

If we are designing a solution for a system where we know natural fairness exists, then Theorem 4.3 becomes
useful because we can encourage fairness with λQ ≤ λF without fear of harming either group.

We defer the full proofs for Theorems 4.1 and 4.2, and the entire proof for Theorem 4.3, to Appendix A. These
proofs provide a wider range of no-harm conditions, of which we believe the ones presented here are the most

6The other way to translate their approach is to maximize the minimum decision-maker utility generated by each group.
However, this translation does not make sense to use this as a fairness measure when group qualification is known to be different
from decision-maker utility.
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natural. Also, although the aforementioned definitions only consider harm relative to the decision-maker
utility-optimal policy π100, we show in Appendix B that our approach can be extended to arbitrary policies
as well. However, we focus the rest of our approach with respect to π100 because our most prominent concern
is to avoid unnecessarily causing harm to the very groups we aim to protect when introducing fairness. While
our theorems assume that we find the exact optimal policy, we discuss in Appendix C how their guarantees
degrade gracefully with approximate solutions. While our approach focuses on the two-group setting, it can
be extended to the more general case, though the theoretical properties become more challenging to analyze.
We include a discussion in Appendix D.

4.2 Qualification and Fairness Tradeoffs

Here we analyze how optimal policies under the Equation (1) multi-objective reward will make tradeoffs be-
tween qualification and fairness. We do so by understanding how various parameterizations of λQ and λF will
reward all possible pairs of group qualification outcomes (Y 0

λ , Y 1
λ ) for a given pair of decision-maker utility-

optimal group qualification outcomes (Y 0
100, Y 1

100). Figure 2 shows the "desirability" of each possible (Y 0
λ , Y 1

λ )
outcome for three different pairs of decision-maker utility-optimal group qualification outcomes (Y 0

100, Y 1
100)

and three different λQ/λF ratios. The “desirability" is the net reward improvement for the qualification and
fairness components relative to the decision-maker utility-optimal policy, holding the decision-maker utility
reward component RD constant:

∆RQF = λQ∆RQ + λF ∆RF .

Darker contours indicate more attractive (higher ∆RQF ) values. The colorless areas thus indicate where
∆RQF ≤ 0, which means they are not feasible solutions under πλ since the decision-maker utility-optimal
policy will be preferred over them. The bottom three plots correspond to natural fairness settings.

When λQ = λF (center column) the feasible solutions with a given ∆RQF form a right-angle frontier (i.e. the
set of ∆RQF = 0). For instance, consider the bottom-center plot. This plot represents an environment where
a policy optimizing for decision-maker utility only would result in ΣY 0 = 0.5 and ΣY 1 = 0.5, which is shown
as the blue dot at those same coordinates, and represents a scenario where natural fairness exists. Each
“pixel” of the plot represents a different pair of Y 0, Y 1 outcomes, and the color represents the magnitude
of the reward for those outcomes, where the reward is defined by λQ = 1, λF = 1, and λD = d for some
constant d. In this instance, the only way an outcome would be considered “better” according to the reward
function is if both Y 0 and Y 1 increased, as represented by the darker contours only occurring up and to
the right of the blue dot. This is an illustration of Theorem 4.3, which states that no group is harmed if
λQ ≤ λF and natural fairness exists.

We can also see that the disadvantaged group’s qualification cannot be lowered in any of the center column
plots, illustrating Theorem 4.1 that λF = λQ guarantees no harm to the disadvantaged group. Furthermore,
notice in each of the three center column plots that the contour does not change along any given horizontal
or vertical axis on either side of the diagonal. This is because of the equal and opposite reward change in RQ

and RF induced by increases in the advantaged group’s qualification when λQ = λF . Since decision-maker
utility is not considered in Figure 2, the center three plots are visualizations of Rdxx for any constants d and
x, whose optimal policy is equivalent to maximizing the minimum group qualification.

When λQ > λF (left column), the feasible solutions form a convex set with the decision-maker utility-
optimal policy as a point along the frontier. This illustrates the Theorem 4.2 claim that at least one group’s
qualification is not harmed if λQ ≥ λF . However, it is important to note that harm can be done to the
disadvantaged group by greatly improving the advantaged group, and vice versa.

When λQ < λF (right column), both the advantaged group and disadvantaged group can be harmed, unless
natural fairness exists (bottom right). If natural fairness exists, then neither group will be harmed, as per
Theorem 4.3.
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Figure 2: Plots showing the "desirability" (i.e. ∆RQF ) of each possible (Y 0
λ , Y 1

λ ) outcome for three different
decision-maker utility-optimal Y values and three different λQ/λF ratios. The blue dots indicate the Y
values for the decision-maker utility-optimal policy, which will by definition have ∆RQF = 0. Darker
contours indicate more attractive (higher ∆RQF ) values. The white areas thus indicate where ∆RQF ≤ 0,
which means they are not possible solutions under πλ since the decision-maker utility-optimal policy will
be preferred over them. The lower-left corner of each plot specifies which, if any, of Theorems 4.1-4.3 are
illustrated in that plot. The plots assume ∆RD = 0 so that decision-maker utility is still optimal and any
∆Rλ originates exclusively from ∆RQ and ∆RF .

4.3 Choosing Weights in Practice

Notice that Theorems 4.1, 4.2, and 4.3 all contain the case when λQ = λF . Under this parameterization, we
are guaranteed several beneficial properties. Specifically, we are guaranteed (i) no harm to the disadvantaged
group, (ii) that any decrease in qualification for the advantaged group will result in a qualification increase
for the disadvantaged group, and (iii) no harm to both groups when natural fairness exists. Therefore, we see
choosing π1xx for some x > 0 as a natural parameterization of our framework. And since π100 corresponds
to when fairness is not considered at all, a practitioner can scale x progressively higher from 0 < x < ∞
until their desired balance of fairness and decision-maker utility is met, in the same manner that many
fair classification algorithms have a hyperparameter controlling this same tradeoff (Feldman et al., 2015;
Kamishima et al., 2012). In Section 5 we show through experiments that this parameterization consistently
provides well-balanced solutions.
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While there are many benefits to our single scalar reward formulation, in some scenarios it may be bene-
ficial to decompose the reward. For instance, a practitioner may need to iterate through different weight
values to achieve a satisfactory balance between decision-maker utility and fairness objectives, particularly
in complex MDP scenarios. This iterative process, while manageable for simpler models, could indeed be-
come computationally expensive as complexity rises. To address this, a practitioner could alternatively use
a Multi-Objective Markov Decision Process (MOMDP) framework, which is easy to do with our reward
structure since the single scalar reward can simply be segmented into three distinct rewards. By decom-
posing our single scalar reward into three distinct rewards, one can leverage MOMDP techniques such as
the Conditioned Network algorithm Abels et al. (2019) to efficiently learn multiple policies in parallel. So a
practitioner may easily transition to a MOMDP reward if they deem it necessary, without having to redefine
the reward function altogether.

5 Experiment

Here we provide three experiments, where our goals are to demonstrate (i) Theorems 4.1-4.3 in action, (ii)
how our reward encourages fairness (beyond just avoiding harm), and (iii) how our reward can lead to better
policies than benchmarks. Our experiments, mirroring repeat loan applications with transition probabilities
similar to those in Zhang et al. (2020) and Wen et al. (2021), ensure alignment with relevant literature.

5.1 Setup

We consider instantiations of the MDP defined in Section 2 and model a two-step loan application envi-
ronment. 7 For clarity, we keep the problem domain consistent as a two-step loan application environment.
However, in order to demonstrate a variety of settings, we provide three different sets of qualification dy-
namics which results in three different MDP instantiations.

Building on the two-step loan application MDP outlined in Section 2, the lender is represented by a policy
π which can, at each of the two time steps t, either approve the applicant’s loan (a = 1) or reject it (a = 0),
where a ∼ At. The sampled applicant at time t has a binary protected attribute z ∼ Zt ∈ {0, 1} and a credit
score yz ∼ Y z

t ∈ {0, 1, 2}. An applicant’s credit score defines their repayment probability. An applicant’s
credit score and protected attribute determine the probability of the applicant’s credit score increasing or
decreasing in the event of a repaid, defaulted, or rejected loan. Therefore, an applicant’s protected attribute
does not influence repayment probability, but does influence qualification dynamics.

While only the applicant from one protected group requests a loan per timestep, the decision-maker also
observes the credit score of the applicant from the other group y1−z ∼ Y 1−z

t , and so is always able to observe
the current credit scores of both groups. Our model follows the same structure as that of Zhang et al. (2020),
and can similarly be interpreted as two individuals (one from each group) repeatedly applying for loans, or
as a stylized model of population-level decisions and credit-score evolution. 8 We set γ = 1/2 given the short
length of our episodes. We consider the applicant’s credit score as their qualification attribute, and so we
aim to improve overall applicant credit scores as well as ensure credit score equality across groups.

To make the model more realistic, the lender is limited by the number of loans it can give, which we do
by limiting the lender’s available cash, which corresponds to the environment state x ∼ Xt ∈ {0, 1, 2}. The
decision-maker utility RD is to maximize profit, which is the change in cash. If the applicant is approved for a
loan and repays it, the lender receives a positive profit, and their available cash increases x′ = min{x + 1, 2}
with probability 1. Similarly, if the applicant is approved for a loan and defaults, the lender receives a
negative profit, and their available cash decreases x′ = x − 1 with probability 1. When x = 0, the lender is
out of cash, and they may not give out loans. The lender having finite cash is significant since it constrains
their decisions so that loans cannot simply be granted without consequences. So the lender may need to
strategically maintain a sufficient amount of cash in order to enable later loan approvals. In addition to
optimizing for their own financial gain, the lender cares about fairness, and so they also want to minimize
the difference in group credit scores over time.

7The supporting code for these experiments is available at https://github.com/jackblandin/research/.
8We assume the former interpretation in our discussions.
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Next we describe the initial state, outcome dynamics, and the qualification dynamics.

Initial State There is equal probability of sampling an applicant from either group. The lender’s available
cash is x = 1 with probability 1. Each group’s initial credit score has an equal probability of being any one
of the three possible credit scores. These values are specified in Table 1 for clarity.

Outcome Dynamics If the lender approves a loan then the applicant will either repay the loan (θ = Repay)
or default (θ = Default). These probabilities are the same for all three experiments, and are included in
Table 1. We only include the Repay probabilities since the Default are just the complements. The lender
can also reject a loan or have insufficient cash to approve a loan, which result in the θ = Rejected or
θ = NoCash outcomes, respectively. The Rejected and NoCash outcomes occur with probability 1 given the
relevant action or state.

Qualification Dynamics The base qualification dynamics are defined as follows. When an applicant
from group z repays a loan (θ = Repay), the credit score of group z increases by one in the subsequent
timestep, unless they are already at the maximum credit score (yz = 2), in which case they remain at 2.
When an applicant from group z defaults on a loan (θ = Default), their credit score decreases by one in
the subsequent timestep, unless they are already at the minimum credit score (Y z = 0), in which case they
remain at 0. In Section 5.1.1 we describe and motivate three specific scenarios which differ from these base
dynamics in specific cases.

5.1.1 Qualification Dynamic Scenarios

In order to demonstrate the robustness of our approach, we evaluate three different scenarios of our ex-
periment, where each scenario refers to a different qualification dynamic configuration, and do so in ways
similar to Zhang et al. (2020) and Mouzannar et al. (2019). We show how just by changing the qualification
dynamics, existing fairness policy-learning benchmarks fall short.

Scenario 1: Conflict of interest. The first scenario represents a conflict of interest between the decision-
maker (lender) and the disadvantaged applicant group (z = 0). It is an instantiation of the demographic-
variant transition scenario studied by Zhang et al. (2020) where the disadvantaged group needs to exhaust
its financial resources more so than the advantaged group in order to repay its loans, which can harm its
credit score even if the loan is repaid. Therefore, a good solution will need to balance decision-maker utility
with qualification equality, but not simply by lowering the advantaged group’s qualification.

Scenario 2: Natural fairness. This scenario represents a paradigm as in business loan borrowing where
advantaged applicants depend on consistent access to loans, and will suffer financially if they are repeatedly
rejected. Here, the advantaged group has a higher probability of increasing its credit score upon successful
repayment, but also has a higher probability of its credit score decreasing when rejected. By construction,
in this scenario the decision-maker utility optimal policy π100 induces equal qualification for both groups,
and therefore represents a naturally fair setting.

Scenario 3: Credit decay. Scenario 3 reflects a common consumer borrowing paradigm where credit
scores can change even if there is no borrowing activity. The advantaged group benefits more from this
relative to the disadvantaged group. Also, the advantaged group has greater average benefits after loan
repayment than their disadvantaged counterparts.

Table 1 shows the deviations from the baseline qualification dynamics in each experiment scenario.

5.2 Benchmark Techniques

In addition to comparing our multi-objective approach with the decision-maker utility-optimal policy (π100),
we also compare it against two baseline algorithms from recent fairness literature.

The first baseline policy-learning technique, EqOp, optimizes the decision-maker utility-only reward subject
to a constraint that qualified applicants from each group have a difference in average credit scores less than
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Parameter(s) Scen 1 Scen 2 Scen 3

Init. State

P (z = i) ∀i ∈ {0, 1} .50 .50 .50

P (x = 1) 1.0 1.0 1.0

P (yz = i | z) ∀i ∈ {0, 1, 2} .333 .333 .333

Outc. Dyn.

P (θ = Repay | z = 0, y0 = 0, a = 1) .25 .25 .25

P (θ = Repay | z = 1, y1 = 0, a = 1) .25 .25 .25

P (θ = Repay | z = 0, y0 = 1, a = 1) .67 .67 .67

P (θ = Repay | z = 1, y1 = 1, a = 1) .67 .67 .67

P (θ = Repay | z = 0, y0 = 2, a = 1) .75 .75 .75

P (θ = Repay | z = 1, y1 = 2, a = 1) .75 .75 .75

Qual. Dyn.

P (y0′ = y0 + 1 | z = 0, θ = i) ∀i ∈ {Rejected,NoCash} — — .05

P (y1′ = y1 + 1 | z = 1, θ = i) ∀i ∈ {Rejected,NoCash} — — .25

P (y0′ = y0 − 1 | z = 0, θ = i) ∀i ∈ {Rejected,NoCash} — — .30

P (y0′ = y0 + 1 | z = 0, θ = Repay) .00 .60 .60

P (y1′ = y1 + 1 | z = 1, θ = Repay) — — .90

P (y0′ = y0 − 1 | z = 0, θ = Repay) 1.0 — .20

P (y1′ = y1 − 1 | z = 1, θ = Repay) — — .05

Table 1: Probability specifications for the initial state, transition dynamics, and qualification dynamics for
experiment Scenarios 1-3. For the qualification dynamics, we only specify deviations from the base behavior
(Section 5.1) A "—" indicates that scenario does not modify the base behavior in that case. Lines with no
deviations in any scenario are omitted.

some allowable margin ϵ:

πEqOp = argmax
π∈Π

RD s.t.
∣∣∣∣ ∞∑

t

γt[Y 1
t | Y 1

t=0 ≥ α] −
∞∑
t

γt[Y 0
t | Y 0

t=0 ≥ α]
∣∣∣∣ < ϵ (10)

where ϵ = .05, and an individual is considered qualified if they are more likely to repay a loan than to default,
which corresponds to α = 1 in our experiments. EqOp tries to balance fairness with decision-maker utility
by only trying to be fair to a subset of applicants. This approach is an adaptation of an Equal Opportunity
constraint (Hardt et al., 2016) proposed by Wen et al. (2021). Our choices of ϵ and α follow the logic used
by Wen et al. (2021).

The second baseline algorithm is MMQ which reflects the minimax risk technique proposed by Martinez et al.
(2020). Also, we modify the approach to maximize the minimum value since we aim to maximize qualification,
rather than minimize risk:

πMMQ = argmax
π∈Π

[min(ΣY 0, ΣY 1)] . (11)

This technique tries to avoid harm by maximizing the disadvantaged (minimum) group’s qualification. This
is the same approach that we referenced in Section 4 that is equivalent to using our multi-objective approach
with λD = 0 and λQ = λF > 0.

The MDP is simple enough that we can compute optimal policies for the multi-objective policies and EqOp
with linear programming. Leveraging Corollary 4.1, MMQ is computed by solving for π011.
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5.3 Results

Next we provide the results for the aforementioned scenarios.

5.3.1 Scenario 1

The results of Scenario 1 are shown in Figure 3. As illustrated in Figure 3a, EqOp harms both the disadvan-
taged group and advantaged group in its attempt to be fair. EqOp does this because it ends up making poor
decisions for the advantaged group in order to drop their credit scores down to the level of the disadvantaged
group. In other words, it violates the no-harm principle in order to obtain equality. On the other hand, each
of the multi-objective approaches with λQ ≥ λF improves the qualification of at least one group, demon-
strating Theorem 4.2, with several of them improving both groups. Interestingly, as shown in Figure 3b,
EqOp actually does not improve overall qualification equality, relative to the decision-maker utility-optimal
policy. This occurs because EqOp explicitly requires equal qualification for "qualified" individuals (Y z > 1),
and ignores any qualification discrepancy for "unqualified" individuals. This is consistent with the results of
Zhang et al. (2020) who also observe that Equal Opportunity exacerbates qualification inequality under the
demographic-variant transition scenario. Furthermore, while MMQ does well to improve the disadvantaged
group’s qualification, it makes a significant reduction in decision-maker utility in order to do so. In contrast,
the multi-objective approaches with λD greater than zero (π511, π111, π151, π115) all improve the advantaged
and disadvantaged groups’ qualification values with a smaller reduction in decision-maker utility than MMQ.
Of the policies that have better qualification for both groups and better qualification equality than the
decision-maker utility optimal policy, the π111 parameterization, has the smallest drop in decision-maker
utility. Note that π111 follows the π1xx form discussed in Section 4.3.

Figure 3: Results of Scenario 1 experiment. Each shape represents the metrics for a particular policy,
averaged over 100,000 episodes. Policies labeled with three numbers refer to our approach with the numbers
corresponding to (λD, λQ, λF ); e.g. 100 corresponds to the decision-maker utility-optimal policy π100. (a):
Average Y 1 (advantaged qualification) vs average Y 0 (disadvantaged qualification) values. (b): Average RD

(decision-maker utility) vs average 1 − |Y 1 − Y 0| (fairness). Axes are aligned so that “up-and-to-the-right”
indicates more desirable outcomes.

5.3.2 Scenario 2

Figures 4 show the results of Scenario 2. As shown in Figure 4b, EqOp disrupts the natural fairness that
would have been achieved under the decision-maker utility-optimal policy. This is because it requires equality
specifically for qualified applicants, which results in inequality when considering all applicants. While a priori
this may seem reasonable (adopting EqOp implicitly assumes the effects on the credit scores of unqualified
applicants are not necessarily the concern of the bank), as in Experiment 1 we observe that EqOp lowers both
group qualification averages in order to obtain equality for those considered qualified. Several of the multi-
objective approaches (π111, π115, π001), on the other hand, improve both the advantaged and disadvantaged
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group’s qualification. This is a manifestation of Theorem 4.3, which shows that when natural fairness exists,
λQ ≤ λF guarantees qualification improvement to both groups. Interestingly, Figure 4a shows that MMQ
produces identical qualification values as π100, 9 but ends up with worse decision-maker utility due to no
restriction or decision-maker utility optimization. Again we observe that π111 provides a strong balance
across each objective, and in this scenario we see that it is robust to when the system is naturally fair.

Figure 4: Results of Scenario 2 experiment.

5.3.3 Scenario 3

The results of Scenario 3 are shown in Figure 5. Figure 5b shows that MMQ has much worse decision-maker
utility than the multi-objective approaches with λD > 0. These results support the notion that optimizing
for multi-objective rewards produces more balanced policies than maximin approaches which do not make
informed trade-offs between the two groups. We also see that EqOp violates the no-harm principle by lowering
both groups’ qualification scores in order to obtain equality.

Figure 5: Results of Scenario 3 experiment.

And once again we see that π111 improves both groups’ qualification scores, improves qualification equality,
and does so with a minimal drop in decision-maker utility.

9We added a small amount of noise so that both the MMQ and π100 scatter points were visible on the plot in Figure 4(a).
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5.4 Default Parameterization

Notice that in Experiments 1-3 that the π111 policy is not dominated by any other policy on the decision-
maker utility vs fairness plots, and is only dominated by the π010 policy in the qualification plots. This is
true only for π111, which supports our claim that R1xx is a good default parameterization of our approach.

6 Conclusion

In this work, we provided a policy-learning solution that achieves group fairness in reinforcement learning.
We do so by constructing a multi-objective reward function that balances decision-maker utility, group
qualification, and group qualification equality. We demonstrated through mathematical proofs and empirical
simulations that our approach is robust to causing harm to one or more groups in order to obtain qualification
equality, as well as robust to situations where decision-maker utility and group qualification are distinct
entities. Although we restricted our experimental settings to a loan application environment, our model
extends to a much broader area of applications where a decision-maker evaluates individuals based on an
observed metric, and where the decision itself influences this observed metric in the future. In addition to
repeat loan application settings, our model can be extended to criminal recidivism prediction, university
admissions decisions, job promotions, predictive policing, and food inspections.

Next we discuss three limitations of our approach. First, our approach assumes that only two groups exist,
and that each individual only belongs to a single group. Second, as stated in Section 2, the fairness reward
component requires the historical group qualification bias to be present as part of the state, which can cause
the MDP to be computationally intractable when learning the optimal policy. Third, our approach requires
the existence of a qualification attribute, which may be difficult to observe or define in practice.

Finally, we consider both the positive and negative potential societal impact of our work. On the positive
side, our framework gives practitioners confidence that their policies will not harm one or more protected
groups. We hope that this confidence will make practitioners more likely to optimize for fairness in practice.
As with any fairness framework, however, there is the potential for misuse due to poorly chosen instantiations.
A poorly chosen λ configuration, for instance, could result in harm to one or more groups.
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A Full Proofs for Theorems 4.1-4.3

Here we provide full proofs for the theorems in Section 4.1. They show a wider range of conditions suffice
than presented in the main text where we focused on the simplest, most natural cases.

Proof of Theorems 4.1-4.3. Consider a multi-objective policy πλ that is optimal under Equation (1) for some
λ configuration. In order for πλ to do harm, two conditions must hold. First, either Σ

πλ

Y 0 − Σ
π100

Y 0 < 0
or Σ

πλ

Y 1 − Σ
π100

Y 1 < 0. Second, πλ must deviate from the decision-maker utility-optimal policy π100, which
means that

λQ(Σ
πλ

RQ − Σ
π100

RQ) + λF (Σ
πλ

RF − Σ
π100

RF ) ≥ λD( Σ
π100

RD − Σ
πλ

RD) . (12)

Next we substitute RQ and RF values with their Y z values in Equations (2) and (3):

RQ(σt) = Y 0
t+1 + Y 1

t+1RF (σt) = 1 +
∣∣Y ∆

t

∣∣ −
∣∣Y ∆

t+1
∣∣ = 1 +

∣∣ t∑
i=0

Y 1
i −

t∑
i=0

Y 0
i

∣∣ −
∣∣ t+1∑

i=0

Y 1
i −

t+1∑
i=0

Y 0
i

∣∣ (13)

to get their summations over an entire episode:

ΣRQ(σt) = ΣY 0
t+1 + ΣY 1

t+1

ΣRF (σt) = t + |ΣY 1
t − ΣY 0

t | − |ΣY 1
t+1 − ΣY 0

t+1| .

When summing over the episode and substituting into Equation 12, the t terms end up canceling since they
are present in both the Σ

πλ

RF and Σ
π100

RF terms. Also, the Y z
t terms in Equation (13) telescope when summed

over the episode. We are left with:

λQ
[
(Σ

πλ

Y 0 + Σ
πλ

Y 1)−( Σ
π100

Y 0 + Σ
π100

Y 1)
]

+λF
[
(−|Σ

πλ

Y 1 − Σ
πλ

Y 0|)−(−| Σ
π100

Y 1 − Σ
π100

Y 0|)
]

≥ λD( Σ
π100

RD − Σ
πλ

RD) . (14)
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There are two sets of absolute values. By Definition 4.2 and without loss of generality, we know that
Σ

π100
Y 1 − Σ

π100
Y 0 ≥ 0, so we can drop the second set of absolute values. To drop the first set of absolute

values, we split the rest of the proofs into two parts, where we prove each of the theorems for the case when
the absolute value expression is positive and when it is negative.

A.1 Part I

Here we prove Theorems 4.1-4.3 under the assumption that the first absolute value expression in Equation
(14) is positive. That is, we assume:

Σ
πλ

Y 1 ≥ Σ
πλ

Y 0 (15)

which allows us to simply drop the absolute values:

λQ
[
(Σ

πλ

Y 0 + Σ
πλ

Y 1)−( Σ
π100

Y 0 + Σ
π100

Y 1)
]
+λF

[
(−(Σ

πλ

Y 1 − Σ
πλ

Y 0))−(−( Σ
π100

Y 1 − Σ
π100

Y 0))
]

≥ λD( Σ
π100

RD − Σ
πλ

RD) . (16)

After some simple algebra, we get

Σ
π100

Y 0 − Σ
πλ

Y 0 ≤
(λQ − λF )(Σ

πλ

Y 1 − Σ
π100

Y 1) − λD( Σ
π100

RD − Σ
πλ

RD)

λQ + λF
(17)

which serves as an upper bound on the harm to the disadvantaged group. Because no policy can have higher
ΣRD than π100, we know that Σ

π100
RD − Σ

πλ

RD ≥ 0. Therefore, the entire right-hand-side of Equation (17)
will be non-positive, which implies no harm to the disadvantaged group, if any of the following conditions
are true:

λQ = λF ; (18a)
or Σ

πλ

Y 1 = Σ
π100

Y 1 ; (18b)

or (λQ < λF ) ∧ (Σ
πλ

Y 1 > Σ
π100

Y 1) ; (18c)

or (λQ < λF ) ∧ (Σ
πλ

Y 1 < Σ
π100

Y 1) (18d)

∧
[

Σ
π100

Y 1 − Σ
πλ

Y 1 ≤ λD

λQ − λF
( Σ

π100
RD − Σ

πλ

RD)
]

; (18e)

or (λQ > λF ) ∧ (Σ
πλ

Y 1 ≤ Σ
π100

Y 1) ; (18f)

or (λQ > λF ) ∧ (Σ
πλ

Y 1 > Σ
π100

Y 1) (18g)

∧
[

Σ
πλ

Y 1 − Σ
π100

Y 1 ≤ λD

λQ − λF
( Σ

π100
RD − Σ

πλ

RD)
]

. (18h)

From Equation (18a) we get Theorem 4.1.

If we assume that λQ > λF , we can rearrange the terms in Equation (17) to isolate the harm on the
advantaged group to get:

Σ
π100

Y 1 − Σ
πλ

Y 1 ≤
(λQ + λF )( Σ

π100
Y 0 − Σ

πλ

Y 0) + λD( Σ
π100

RD − Σ
πλ

RD)

λF − λQ

Because no policy can have higher ΣRD than π100, we know that Σ
π100

RD − Σ
πλ

RD ≥ 0. Therefore, the entire
right-hand-side of Equation (A.1) will be non-positive, which implies no harm to the advantaged group, if:

(λQ > λF ) ∧ ( Σ
π100

Y 0 ≥ Σ
πλ

Y 0) . (19)

Combining Equations (19), (18f), and (18a), we see that if λQ ≥ λF then either the advantaged group or
the disadvantaged group is not harmed. This gives us Theorem 4.2.
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Under natural fairness, Σ
π100

Y 0 = Σ
π100

Y 1, so we can replace both values with the same variable Σ
π100

Y 0,1 =
Σ

π100
Y 0 = Σ

π100
Y 1. Applying this to Equation (16) yields

λQ
[
(Σ
πλ

Y 0 + Σ
πλ

Y 1) − 2( Σ
π100

Y 0,1)
]

+ λF
[
(−(Σ

πλ

Y 1 − Σ
πλ

Y 0))
]

≥ λD( Σ
π100

RD − Σ
πλ

RD) ,

or,
λQ

[
(Σ
πλ

Y 0 + Σ
πλ

Y 1) − 2 Σ
π100

Y 0,1]
≥ λD( Σ

π100
RD − Σ

πλ

RD) + λF
[
(Σ
πλ

Y 1 − Σ
πλ

Y 0)
]

.

By our Equation (15) assumption, the right had side is positive and so Σ
πλ

Y 1 − Σ
π100

Y 0,1 is positive as well.
Similarly, we can simplify Equation (17):

Σ
π100

Y 0,1 − Σ
πλ

Y 0 ≤
(λQ − λF )(Σ

πλ

Y 1 − Σ
π100

Y 0,1) − λD( Σ
π100

RD − Σ
πλ

RD)

λQ + λF
.

As before the RD term is negative so we can drop it and rearrange terms to get:

Σ
π100

Y 0,1 − Σ
πλ

Y 0

Σ
πλ

Y 1 − Σ
π100

Y 0,1 ≤ λQ − λF

λQ + λF
,

or:
Σ
πλ

Y 0 − Σ
π100

Y 0,1

Σ
πλ

Y 1 − Σ
π100

Y 0,1 ≥ λF − λQ

λQ + λF
.

If λF ≥ λQ, then the left-hand side must be non-negative. This implies that Σ
πλ

Y 0 − Σ
π100

Y 0,1 is also non-
negative, which gives us Theorem 4.3.

A.2 Part II

Here we prove Theorems 4.1-4.3 under the assumption that the first absolute value expression in Equation
(14) is negative. That is, we assume:

Σ
πλ

Y 0 ≥ Σ
πλ

Y 1 (20)

which gives us:

λQ
[
(Σ

πλ

Y 0 + Σ
πλ

Y 1) − ( Σ
π100

Y 0 + Σ
π100

Y 1)
]

+ λF
[
(Σ

πλ

Y 1 − Σ
πλ

Y 0) − (−( Σ
π100

Y 1 − Σ
π100

Y 0))
]

≥ λD( Σ
π100

RD − Σ
πλ

RD) . (21)

After some simple algebra we get:

(λQ + λF )( Σ
π100

Y 0 − Σ
πλ

Y 1) ≤ (λF − λQ)( Σ
π100

Y 1 − Σ
πλ

Y 0) − λD( Σ
π100

RD − Σ
πλ

RD) . (22)

As before, we know that Σ
π100

RD − Σ
πλ

RD ≥ 0, so

(λQ + λF )( Σ
π100

Y 0 − Σ
πλ

Y 1) ≤ (λF − λQ)( Σ
π100

Y 1 − Σ
πλ

Y 0) . (23)

If λQ = λF , then
(λQ + λF )( Σ

π100
Y 0 − Σ

πλ

Y 1) ≤ 0 (24)

so Σ
πλ

Y 1 ≥ Σ
π100

Y 0. Combining this with the Equation (20) gives us

Σ
πλ

Y 0 ≥ Σ
πλ

Y 1 ≥ Σ
π100

Y 0 .

This is Theorem 4.1.
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If λQ > λF then the right-hand-side of Equation (23) is negative if Σ
π100

Y 1 > Σ
πλ

Y 0. When the right-hand-side
is negative, then the left-hand-side must also be negative, which implies that Σ

πλ

Y 1 > Σ
π100

Y 0. From this and
the Equation 20 assumption, we get

Σ
πλ

Y 0 ≥ Σ
πλ

Y 1 > Σ
π100

Y 0 . (25)

Alternatively, if the right-hand-side of Equation (23) is positive, then Σ
πλ

Y 0 > Σ
π100

Y 1. Combining this with
Definition 4.2, we have

Σ
πλ

Y 0 > Σ
π100

Y 1 ,

Σ
π100

Y 1 > Σ
π100

Y 0 (26)

which gives us Σ
πλ

Y 0 > Σ
π100

Y 0. Combining this with Equation (25) gives us Theorem 4.2.

Under natural fairness, Σ
π100

Y 0 = Σ
π100

Y 1 ≡ Σ
π100

Y 0,1. Applying this to Equation (21) yields

λQ
[
(Σ
πλ

Y 0+Σ
πλ

Y 1)−( Σ
π100

Y 0,1+ Σ
π100

Y 0,1)
]
+λF

[
(Σ
πλ

Y 1−Σ
πλ

Y 0)−(−( Σ
π100

Y 0,1− Σ
π100

Y 0,1))
]

≥ λD( Σ
π100

RD−Σ
πλ

RD) .

Simplifying yields

λQ
[
(Σ
πλ

Y 0 + Σ
πλ

Y 1) − ( Σ
π100

Y 0,1 + Σ
π100

Y 0,1)
]

≥ λF
[
Σ
πλ

Y 0 − Σ
πλ

Y 1]
.

Suppose for contradiction group 1 is harmed. Then

λQ
[
Σ
πλ

Y 0 − Σ
π100

Y 0,1]
> λF

[
Σ
πλ

Y 0 − Σ
πλ

Y 1]
≥ λF

[
Σ
πλ

Y 0 − Σ
π100

Y 0,1]
.

If λF ≥ λQ this is a contradiction, which gives us Theorem 4.3.

B Relative Harm Properties

In Section 4 we provided definitions and theorems based on harm, where harm is defined with the decision-
maker utility-optimal policy π100 as the baseline policy. We can, however, generalize our definition of harm
as well as our theorems by defining relative harm. Instead of using π100 as the baseline, relative harm uses
some multi-objective policy πλ′ as the baseline policy.
Definition B.1 (Relative Harm). With respect to some baseline policy π′, a policy π does relative harm
to group Z = z if the group’s expected cumulative qualification value is lower under π than under π′:

Σ
π′

Y z > Σ
π

Y z . (27)

Similarly, we say that a policy π does no relative harm to group Z = z if Σ
π′

Y z ≤ Σ
π

Y z and relatively
benefits group Z = z if Σ

π′
Y z < Σ

π
Y z.

We can reconstruct our Section 4.1 properties with respect to relative harm by adding the condition that
there is no improvement to decision-maker utility and by defining the advantaged/disadvantaged groups
with respect to the baseline multi-objective policy πλ′ Without loss of generality, we set the group that
is disadvantaged under the baseline policy πλ′ as Z = 0. We can guarantee the following properties for
multi-objective policies πλ that have the specified changes in λ relative to their λ′ values. The proofs are
identical to their Section 4.1 counterparts after replacing π100 with πλ′ and adding the constraint that there
is no improvement to decision-maker utility.
Theorem B.1. Relative to some policy πλ′ where λ′ = (λQ′

, λF ′
, λD′), and when natural fairness does not

exist, no relative harm is done to the disadvantaged group if λQ − λQ′ = λF − λF ′ and Σ
πλ′

RD ≥ Σ
πλ

RD.

This is the relative form of Theorem 4.1. Intuitively, it says that no relative harm is done to the disadvantaged
group if the change in λQ is equal to the change in λF and there is no improvement to decision-maker utility.
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Theorem B.2. Relative to some policy πλ′ , at least one group is not relatively harmed if λQ−λQ′ ≥ λF −λF ′

and Σ
πλ′

RD ≥ Σ
πλ

RD.

This is the relative form of Theorem 4.2.
Theorem B.3. Relative to some policy πλ′ , when Σ

πλ′
Y z = Σ

πλ′
Y 1−z, neither group is relatively harmed if

λQ − λQ′ ≤ λF − λF ′ and Σ
πλ′

RD ≥ Σ
πλ

RD.

This is the relative form of Theorem 4.3. The Σ
πλ′

Y z = Σ
πλ′

Y 1−z constraint is similar to natural fairness
except that it is for some baseline πλ′ rather than π100.

C Harm Properties with Approximate Solutions

In this appendix we explain how our results guaranteeing no harm apply in settings where we find only
approximately optimal policies. In particular, we show how an additive approximation error can be carried
through our analysis, providing a bound on harm that is linear in the approximation error.

Our analysis for the case of exact optimization came from the observation that
λQ(Σ

πλ

RQ − Σ
π100

RQ) + λF (Σ
πλ

RF − Σ
π100

RF ) ≥ λD( Σ
π100

RD − Σ
πλ

RD) . (28)

This came from πλ being optimal, meaning in particular it must (weakly) improve on π100. If instead it is
optimized to within an additive error of ϵ we would have

λQ(Σ
πλ

RQ − Σ
π100

RQ) + λF (Σ
πλ

RF − Σ
π100

RF ) + ϵ ≥ λD( Σ
π100

RD − Σ
πλ

RD) . (29)

After some simple algebra, instead of (17) we get

Σ
π100

Y 0 − Σ
πλ

Y 0 ≤
(λQ − λF )(Σ

πλ

Y 1 − Σ
π100

Y 1) − λD( Σ
π100

RD − Σ
πλ

RD) + ϵ

λQ + λF
(30)

Furthermore, since π100 may also be optimal only up to an additive factor of ϵ, the term ( Σ
π100

RD − Σ
πλ

RD)
may be negative by up to ϵ. Thus, rather than concluding that the harm is non-positive we can only conclude
it is at most (1+λD)ϵ

λQ+λF . Thus, the possible harm grows linearly in the approximation error. Furthermore, we
can see that increasing the weight on fairness (i.e., taking λQ = λF as discussed in Section 4.3 and increasing
this hyperparameter) decreases the possible harm.

Note that this bound goes to infinity as we take the weight on fairness to 0. This is intuitive. If we were
not interested in fairness and simply optimized π100 twice, while the objective (decision-maker utility) can
only be harmed by ϵ due to approximation error, this could cause arbitrary changes to the qualification of
different groups. Putting weight on fairness is what allows us to translate bounds on approximation error
into bounds on harm.

D Extension to More than Two Groups

Our main focus is on the two-group setting, |Z| = 2, which reflects the most common scenario in group
fairness. We can, however, generalize our approach to more than two groups as follows.

We keep the overall reward structure consistent with Equation (1), which we repeat here for convenience:

R(λ, σt) = λDRD(σt) + λQRQ(σt) + λF RF (σt) ,

but we define RQ and RF as functions of |Z|:

RQ(σt) = 1
|Z|

|Z|∑
i=0

Y i
t+1, (31)
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RF (σt) = 1
|Z|

(
1 +

|Z|∑
i=0

∣∣Y i
t − Y

avg
t

∣∣ −
|Z|∑
i=0

∣∣Y i
t+1 − Y

avg
t+1

∣∣) (32)

where

Y avg
t = 1

|Z|

|Z|∑
i=0

Y i
t . (33)

Under this scenario, our theoretical properties need to be adjusted in order to consider that there is no longer
a clear "disadvantaged" and "advantaged" group. A full theoretical analysis of this new case likely needs new
ideas, as the two cases we consider in our proof become twelve cases, even with only three protected groups.
However, we provide numerical illustrations in Figure 6 to show how our approach is still relevant in this more
general setting. As we can see, similar to the two-group setting, λQ < λF narrows the band of qualification
values to only consider qualification combinations more optimal if they are all close together. Similarly,
λQ = λF creates a reward where higher Y values are considered better, but only if it is not at the expense
of lowering another group’s qualification, as characterized by the box-like contours upward and rightward
from the baseline. Finally, λQ > λF still encourages higher qualification values, even if it is at the expense
of lowering another group’s qualification.
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Figure 6: Plots showing the "desirability" (i.e. ∆RQF ) of each possible (Y 0
λ , Y 1

λ ) outcome for three different
decision-maker utility-optimal Y values and three different λQ/λF ratios. The blue cubes indicate the
Y values for the decision-maker utility-optimal policy, which will by definition have ∆RQF = 0. Darker
contours indicate more attractive (higher ∆RQF ) values. The colorless areas thus indicate where ∆RQF ≤ 0,
which means they are not possible solutions under πλ since the decision-maker utility-optimal policy will
be preferred over them. The dotted area indicates the scenarios with natural fairness. The plots assume
∆RD = 0 so that decision-maker utility is still optimal and any ∆Rλ originates exclusively from ∆RQ and
∆RF .
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