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Abstract
We analyze the convergence of gradient descent
(GD) with large, adaptive stepsizes for logistic
regression on linearly separable data. The step-
size adapts to the current risk, scaled by a fixed
base stepsize η. We prove that once the number
of iterates t surpasses a margin-dependent thresh-
old, the averaged GD iterate achieves a risk upper
bound of exp(−Θ(ηt)), where η can be chosen
arbitrarily large. This implies that GD attains
arbitrarily fast convergence rates via large step-
sizes, although the risk evolution might not be
monotonic. In contrast, prior adaptive stepsize
GD analyses require a monotonic risk decrease,
limiting their rates to exp(−Θ(t)). We further
establish a margin-dependent lower bound on the
iteration complexity for any first-order method to
attain a small risk, justifying the necessity of the
burn-in phase in our analysis. Our results general-
ize to a broad class of loss functions and two-layer
networks under additional assumptions.

1. Introduction
Gradient descent (GD) and its variants are a popular class
of optimization methods in modern machine learning and
deep learning. In this paper, we study the convergence of
GD with adaptive stepsizes given by

w0 = 0, wt+1 := wt − ηt∇L(wt), t ≥ 0, (GD)

where L(·) is the loss objective to be minimized, wt ∈ Rd

is the trainable parameters, and ηt > 0 is the stepsize at the
t-th step. In particular, we allow ηt to be a function of the
current risk L(wt). Setting the initialization to zero does
not cause the loss of generality.
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Classical analyses of GD require the stepsizes to be suffi-
ciently small so that the risk decreases monotonically (Nes-
terov, 2018). This is often referred to as the descent lemma.
Specifically, by the definition of GD and the midpoint theo-
rem, there exists v in between wt and wt+1 such that

L(wt+1) = L(wt)− ηt∥∇L(wt)∥2

+
η2t
2
∇L(wt)

⊤∇2L(v)∇L(wt).

Thus a small stepsize ηt < 2/∥∇2L(v)∥ guarantees the
descent lemma. In this regime, a large volume of theory has
been developed to show the convergence of GD in a variety
of settings (see Lan, 2020, for example). We call this the
stable regime.

However, in practice, deep learning models trained by GD
often converge in the long run while suffering from a lo-
cally oscillatory risk (Wu et al., 2018; Xing et al., 2018;
Lewkowycz et al., 2020; Cohen et al., 2021). This oscil-
lation occurs when the stepsizes for GD are too large and
the descent lemma is violated. This unstable convergence
phenomenon is referred to by Cohen et al. (2021) as the
edge of stability (EoS). Moreover, to obtain a reasonable op-
timization and generalization performance in deep learning
practice, GD usually needs to operate in the EoS regime,
instead of remaining in the stable regime (Wu et al., 2018;
Cohen et al., 2021).

Recently, an interesting line of theoretical works showed the
benefits of EoS for accelerating the convergence of GD (see
for examples Altschuler & Parrilo, 2024a; Wu et al., 2024,
other related works will be discussed later in Section 6).
Specifically, Altschuler & Parrilo (2024a) proposed a step-
size scheduler for GD, in which GD occasionally violates
the descent lemma but achieves a faster convergence rate for
convex and smooth problems. The work by Wu et al. (2024)
focused on GD with a constant stepsize for logistic regres-
sion with linearly separable data. They showed that a large
constant stepsize leads to EoS but also a faster convergence.
Note that the stepsizes considered in (Altschuler & Parrilo,
2024a; Wu et al., 2024) are oblivious, which are determined
before the GD run and do not adapt to the evolving risk.
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Figure 1. Simulation Results. We run gradient descent with stepsize scheduler (2) on exponential loss (left), logistic loss (middle), and
polynomial loss (right) with linearly separable data. Here, we set n = 100, γ = 0.25, d = 5. We fix w∗ ∈ Rd, ∥w∗∥2 = 1 and sample
xi ∈ Rd independently and uniformly from the unit sphere and accept it if ⟨xi,w

∗⟩ ≥ γ. Otherwise, we reject the data point. We keep
sampling until we have n = 100 data. The y-axis is in log scale for all figures.

Our results. This work complements the prior theory by
considering the convergence of GD with adaptive stepsizes
in the EoS regime. Specifically, we consider logistic regres-
sion with linearly separable data, that is,

L(w) :=
1

n

n∑
i=1

ℓ(yix
⊤
i w), ℓ ∈ {ℓexp, ℓlog}. (1)

Here, the loss function can be the exponential loss or the
logistic loss,

ℓexp(z) := exp(−z), ℓlog(z) := ln(1 + exp(−z)),

and the dataset (xi, yi)
n
i=1 is linearly separable, formalized

by the following assumption.

Assumption 1.1 (Linear separability). Assume that dataset
(xi, yi)

n
i=1 satisfies the following.

A. Assume, without loss of generality, that ∥xi∥2 ≤ 1 and
yi = 1 for i = 1, . . . , n.

B. Assume there exists γ > 0 and a unit vector w∗ such
that yix⊤

i w
∗ ≥ γ for i = 1, . . . , n.

In this problem, it is known that the curvature becomes
flatter as the risk decays. To compensate for this effect,
we consider an adaptive stepsize scheduler (Ji & Telgarsky,
2021; Nacson et al., 2019; Wang et al., 2023a),

ηt := η · (−ℓ−1)′ ◦ L(wt) ≈ η/L(wt),

where η > 0 is a fixed base stepsize. We make the following
significant contributions.

Benefits of large and adaptive stepsizes. When η is
small, GD stays in the stable regime and achieves a conver-
gence rate of exp(−Θ(t)), where t is the number of steps (Ji
& Telgarsky, 2021) (see also Proposition 2.1 in Section 2).
However, we show GD can achieve an arbitrarily fast con-
vergence rate by entering the EoS regime. Specifically, we
show that for every t ≥ t0, the average of the first t GD
iterates achieves a risk upper bound of exp(−Θ(ηt)) for
every η. Here, t0 is a function of the data margin but is
independent of η. Therefore, one can use an arbitrarily large
η to obtain an arbitrarily small risk when t ≥ t0. By doing
so, however, GD may enter the EoS regime.

Lower bounds. We then establish two lower bounds to
complement our upper bounds. First, we provide an ex-
ample of logistic regression with linearly separable data,
where adaptive stepsize GD suffers from a risk lower bound
of Θ(exp(−t)) if it does not enter the EoS regime. This,
together with our upper bounds, demonstrates the benefits
of EoS for accelerating the convergence of adaptive step-
size GD. Furthermore, we construct a hard example, in
which every first-order gradient-based method must run for
a margin-dependent number of steps to attain a small risk.
This demonstrates the margin-dependent number of burn-in
steps in our upper bound cannot be avoided in general.

General losses and two-layer networks. We also extend
our results to a general class of loss functions, including
polynomial loss (Ji & Telgarsky, 2021) and probit negative
log-likelihood (Neal, 1997; Chib & Greenberg, 1998; Albert
& Chib, 1993; Liu, 2004). Additionally, we show the same
results hold for a two-layer network with leaky ReLU acti-
vation (Brutzkus et al., 2018). Notably, our analysis can be
easily adapted to other common leaky activation functions
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(Cai et al., 2024).

Notation. We use lowercase bold letters to denote vectors
and ∥·∥2 to denote the Euclidean ℓ2 norm for vectors. For
positive integer n, we write [n] := {1, 2, ..., n}. Let 0d

denote the zero vector in Rd. We write f(t) = O(g(t))
to mean that there exists a universal constant c > 0 such
that |f(t)| ≤ c · |g(t)| for sufficiently large t. Likewise,
f(t) = Θ(g(t)) means there exists a universal constant
c1, c2 > 0 and t0 such that c1 · |g(t)| ≤ |f(t)| ≤ c2 · |g(t)|
for t ≥ t0. We also use Õ and Θ̃ to suppress constant and
polylogarithmic factors. We let C or c denote universal
constants, whose exact values may vary from line to line.
span(·) denotes the subspace spaned by a set of vectors. For
a ∈ Rd and B ⊂ Rd, the Minkowski sum is defined as
a+B := {a+ b : b ∈ B}.

2. Logistic Regression
In this section, we present our improved analysis for GD
with large and adaptive stepsizes for logistic regression with
linearly separable data.

Adaptive stepsizes. We first explain the benefits of using
adaptive stepsizes over a constant stepsize. Note that for
logistic regression, the local sharpness ∥∇L(w)∥ is con-
trolled by the risk L(w). Therefore as the risk decreases to
zero (note that the dataset is separable), the local curvature
becomes flatter. As a consequence, GD with a constant
stepsize is less as less effective in the later stage. This obser-
vation has been exploited to show large stepsize GD enters
a stable phase by Wu et al. (2024).

This issue can be mitigated by using the following adaptive
stepsizes,

ηt = η
(
−ℓ−1

)′◦L(wt) =


η

L(wt)
ℓ = ℓexp,

η exp(L(wt))

exp (L(wt))− 1
ℓ = ℓlog.

(2)
When the risk L(w) becomes smaller, the stepsize becomes
large to compensate for the flattened curvature. In this way,
GD with adaptive stepsizes achieves a fast convergence rate
exp(−Θ(t)) compared to that of GD with a constant step-
size, Θ(1/t), when both are in the stable regime (Nacson
et al., 2019; Ji & Telgarsky, 2021; Wu et al., 2024).

Alternatively, (GD) with adaptive stepsizes (2) can be equiv-
alently viewed as

wt+1 = wt − η∇ϕ(wt), ϕ(w) := −ℓ−1 (L(w)) , (3)

that is, a constant-stepsize GD for a modified loss ϕ(w).
This viewpoint is from (Ji & Telgarsky, 2021), where they
utilized this idea to establish a primal-dual analysis of GD,
obtaining an improved margin maximization rate.

Prior analyses. All the prior analyses for this adaptive
stepsize GD relies on the descent lemma (Nacson et al.,
2019; Ji & Telgarsky, 2021), hence they require the base
stepsize η > 0 be small so that the risk decreases monotoni-
cally. The following proposition, a consequence of the main
result in (Ji & Telgarsky, 2021), characterizes the best rate
they can obtain in this regime.
Proposition 2.1 (Consequences of (Ji & Telgarsky, 2021)).
Consider (GD) with adaptive stepsizes (2) for logistic re-
gression (1). Suppose that Assumption 1.1 holds. Then ϕ
is β-smooth with respect to ℓ∞-norm, where β = 1 for
exponential loss and β ≤ n for logistic loss. Moreover, for
every η ≤ 1/β, the risk L (wt) decreases monotonically
and satisfies

L (wt) ≤ C exp
(
−γ2ηt

)
where C > 1 is a universal constant.

An improved convergence rate. Our first main result
is an improved analysis of GD with adaptive stepsizes for
logistic regression with linearly separable data, in which we
allow GD to enter the EoS regime using a large stepsize.
This is presented as the following theorem.
Theorem 2.2 (An improved convergence rate). Suppose that
Assumption 1.1 holds. Consider (GD) with adaptive step-
sizes (2) for logistic regression (1). Let wt :=

1
t

∑t−1
k=0 wk

be the averaged iterates. Then for every η > 0, we have

L (wt) ≤


exp

(
− 1

4
γ2ηt+

η

4γ2t

)
ℓ = ℓexp,

exp

(
− 1

4
γ2ηt+

η

γ2t

)
ℓ = ℓlog.

In particular, let the number of burn-in steps be

t0 :=

{√
2/γ2 ℓ = ℓexp,

2
√
2/γ2 ℓ = ℓlog,

then for every t ≥ t0, we have

L(wt) ≤ exp

(
−1

8
γ2ηt

)
,

where the base stepsize η can be arbitrarily large.

Our Theorem 2.2 improves Proposition 2.1 by allowing the
base stepsize η to be arbitrarily large, where GD may not
stay in the stable regime and is allowed to enter the EoS
regime. More surprisingly, Theorem 2.2 implies that as soon
as t ≥ t0 = Θ(1/γ2), we have

lim
η→∞

L(wt) = 0.

This means GD with adaptive and large stepsizes converges
arbitrarily fast for logistic regression with linearly separable
data.
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In sharp contrast to our result, for the same problem,
GD with a constant stepsize can only achieve a O(1/t2)
rate even when operating in the EoS regime (Wu et al.,
2024), and GD with adaptive stepsizes can only achieve
a exp(−Θ(t)) rate when operating in the stable regime
(see Proposition 2.1). Therefore, the improved rate fun-
damentally arises from combining both large and adaptive
stepsizes.

It is also worth pointing out that GD with adaptive stepsizes
can converge with an arbitrarily large based stepsize even
under the exponential loss. In comparison, the work by Wu
et al. (2023) provided an example where GD with a large
constant stepsize cannot converge under the exponential
loss, even when the dataset is linearly separable.

In the remaining part of this section, we provide the proof
of Theorem 2.2.

Proof of Theorem 2.2. The proof of Theorem 5.2 uses the
convexity of ϕ(·) and a split optimization technique de-
veloped by Wu et al. (2024). Consider a comparator
u = u1 + u2 ∈ Rd, then by (3) we have

∥wt+1 − u∥22
= ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u−wt⟩+ η2 ∥∇ϕ(wt)∥22
= ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u1 −wt⟩

+ η
[
2 ⟨∇ϕ(wt),u2⟩+ η ∥∇ϕ(wt)∥22

]
≤ ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u1 −wt⟩ (4)

≤ ∥wt − u∥22 + 2η (ϕ(u1)− ϕ(wt)) , (5)

where (4) is by properly setting u2 according to the follow-
ing Lemma 2.3 and (5) is from the convexity of ϕ(·) (see
Theorem 5.2 in (Ji & Telgarsky, 2021), also Lemma G.1 in
Appendix G).

Lemma 2.3. Let u2 := (η/(2γ))w∗ for exponential loss
and u2 := (η/γ)w∗ for logistic loss. Under Assumption 1.1,
we have

2 ⟨∇ϕ(w),u2⟩+ η ∥∇ϕ(w)∥22 ≤ 0.

The proof Lemma 2.3 is deferred to Appendix A. Going
back to the proof, by rearranging (5) and telescoping the
sum, we obtain

∥wt − u∥22
2ηt

+
1

t

t−1∑
k=0

ϕ(wk) ≤ ϕ(u1) +
∥u∥22
2ηt

. (6)

Set u1 := (γηt/2)w∗, then we have ϕ(u1) ≤ −γ ∥u1∥2
using Assumption 1.1 and the definition of ϕ(·). This im-

plies that

1

t

t−1∑
k=0

ϕ(wk) ≤ −γ ∥u1∥2 +
∥u1 + u2∥22

2ηt

≤


−1

4
γ2ηt+

η

4γ2t
ℓ = ℓexp,

−1

4
γ2ηt+

η

γ2t
ℓ = ℓlog.

We complete the proof by applying the convexity of ϕ(·)
and using that L(·) = ℓ(−ϕ(·)).

3. Lower Bounds
In this section, we establish two lower bounds on the con-
vergence rate of GD for logistic regression with linearly
separable data.

A lower bound for GD in the stable regime. Our next
theorem provides a lower bound on the convergence rate of
adaptive stepsize GD that stays in the stable regime.
Theorem 3.1 (A lower bound for GD in the stable regime).
Consider (GD) with adaptive stepsizes (2) for logistic re-
gression (1) with the following dataset

x1 = (γ,
√

1− γ2), x2 = (γ,−
√
1− γ2), y1 = y2 = 1,

where 0 < γ < 0.1. It is clear that this dataset satisfies
Assumption 1.1. If the base stepsize η is such that (GD)
induces a monotonically decreasing risk, then we have

L(wt),L(wt) ≥ exp (−ct) , t ≥ 1,

where c > 0 is a quantity depending on γ but is independent
of t and η.

Theorem 3.1 suggests that for adaptive stepsize GD that
stays in the stable phase, the exp(−Θ(t)) rate from Propo-
sition 2.1 is tight. Theorem 3.1 also demonstrates that to
get the arbitrarily fast rate in Theorem 2.2, entering the EoS
regime is unavoidable for adaptive stepsize GD.

The proof of Theorem 3.1 is motivated by a lower bound
for constant-stepsize GD that stays in the stable phase in
(Wu et al., 2024). We sketch the proof next. The proof is
deferred to Appendix B.

Proof sketch of Theorem 3.1. One can show that on the con-
structed dataset, if L(w1) ≤ L(w0), then the base stepsize
η must be upper bounded by some constant C1 which de-
pends on ℓ(·). Moreover, the split optimization bound im-
plies an upper bound for both ∥wt∥2 and ∥wt∥2 of order
Θ(ηt). Combining these two parts shows

L(wt) =
1

n

n∑
i=1

ℓ
(
x⊤
i wt

)
≥ ℓ (∥wt∥2) ≥ ℓ(ct)
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for some constant c that does not depend on t or γ. The
lower bound for L(wt) holds analogously.

A lower bound for the number of burn-in steps. We
next provide a lower bound to show a certain number of
burn-in steps are necessary for any first-order method.

Theorem 3.2 (A lower bound for the number of burn-in
steps). Let ℓ(·) ≥ 0 be right-differentiable. Let (wt)t≥0 be
given by a first-order method with w0 := 0, that is,

wt+1 ∈ wt + span {∇L(w0), . . . ,∇L(wt)} , t ≥ 0,

where span is the linear span of a vector set, and + is the
Minkowski sum. Here, if ℓ(·) is non-differentiable at some
point, we use its right derivative at that point. Then there
exists universal constants c1, c2 > 0 such that for every
0 < γ < c1, there exists a dataset (xi, yi)

n
i=1 satisfying

Assumption 1.1, in which the following holds. If

L(wt) ≤ ℓ(0)/2 or L(wt) ≤ ℓ(0)/2,

for some t ≥ 0, then

t ≥ c2γ
−2/3.

Recall that in Theorem 2.2, adaptive stepsize GD needs a
Θ(1/γ2) number of burn-in steps to obtain the arbitrarily
fast convergence rate. As a complement, our Theorem 3.2
suggests that an Ω(γ−2/3) number of burn-in steps are nec-
essary for every first-order method.

Note that our Theorem 3.2 applies to a general loss function
ℓ, which does not have to be convex or differentiable. In
particular, Theorem 3.2 can be applied to the Perceptron
loss ℓ(z) := max{0,−z}, implying a lower bound on the
number of steps for the Perceptron algorithm to converge
(Novikoff, 1962). Although Perceptron is known to con-
verge in at most 1/γ2 steps (Novikoff, 1962), our lower
bound is the first of its kind to the best of our knowledge.

Although our Theorem 3.2 suggests a γ-dependent number
of burn-in steps is unavoidable, we believe our lower bound
is not tight. Specifically, we conjecture our lower bound can
be improved to Ω(γ−1). This is left for future investigation.

The proof of Theorem 3.2 is motivated by the classical lower
bound construction for first-order methods for convex and
smooth optimization (Nesterov, 2018). We sketch its proof
below. A full proof is deferred to Appendix C.

Proof sketch of Theorem 3.2. We use a dimensionality ar-
gument (Nesterov, 2018).Specifically, we construct a high-
dimensional dataset such that for each gradient query, any
first-order method can only collect information in one di-
rection However, to decrease the loss below a constant,
the algorithm must acquire information from Θ(d) distinct,

orthogonal directions, where d is the dimension of the pa-
rameter. Consequently, starting from zero initialization, any
first-order optimization algorithm requires at least Θ(d) it-
erations to reduce the loss below ℓ(0)/2. Finally, exploiting
both the boundedness and linear separability (with a positive
margin γ) of the dataset, we derive an upper bound on γ
in terms of d. This bound implies a corresponding lower
bound on the burn-in phase before the loss can drop below
a constant fraction of its initial value.

4. Two-Layer Networks
In this section, we extend our results from a linear model to
a two-layer network. Specifically, we consider a two-layer
network with leaky ReLU activation (Brutzkus et al., 2018)
defined as

f(w;x) :=
1

m

m∑
i=1

ajσ
(
x⊤w(j)

)
, w(j) ∈ Rd, j ∈ [m],

(7)
where m is the number of neurons, aj ∈ {±1} are fixed

parameters, w :=
(
w(1),w(2), ...,w(m)

)⊤ ∈ Rm×d is the
trainable parameter, and σ(·) is the leaky ReLU activation
defined as

σ(z) := max {z, αz} , α ∈ (0, 1).

We assume σ′(0) = 1 for convenience. The objective func-
tion is then given by

L(w) :=
1

n

n∑
i=1

ℓ (yif (w;xi)) , (8)

where ℓ(·) is exponential loss or logistic loss. Similarly, we
consider (GD) with adaptive stepsizes (2). Recall that (3)
also applies here.

Similarly to logistic regression, we provide a convergence
rate of adaptive stepsize GD for training two-layer networks
with linearly separable data in the following theorem.

Theorem 4.1 (A convergence rate for networks). Suppose
that Assumption 1.1 holds. Consider (GD) with adaptive
stepsizes (2) for objective (8), where the loss function ℓ(·)
is exponential loss or logistic loss. Then for every base
stepsize η > 0, we have

min
k<t

L(wk) ≤


exp

(
−1

4
α2γ2ηt+

η

4γ2t

)
ℓ = ℓexp,

exp

(
−1

4
α2γ2ηt+

η

γ2t

)
ℓ = ℓlog.

Let the number of burn-in steps be

t0 :=

{√
2/(γ2α) ℓ = ℓexp,

2
√
2/(γ2α) ℓ = ℓlog.
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Then for any t ≥ t0, we have

min
k<t

L(wk) ≤ exp

(
−1

8
α2γ2ηt

)
. (9)

Our result in Theorem 4.1 provides a convergence rate simi-
lar to that of Theorem 2.2. By employing large and adaptive
step sizes, GD can enter the EoS phase, which allows for
faster convergence. In particular, once t ≥ t0 = Θ

(
1/γ2

)
,

we have
lim
η→∞

min
k<t

L(wk) = 0.

Note that for two-layer networks, we do not guarantee a
corresponding loss upper bound for the averaged weights
because ϕ(·) need not to be convex. Instead, our guarantee
holds for the best network along the GD trajectory, whose
loss converges exponentially fast.

The work by Cai et al. (2024) provided a convergence rate
for GD with constant stepsize for training two-layer net-
works with linearly separable data. They only obtained
O(1/t2) rate even if the constant-stepsize GD enters the
EoS regime. By contrast, as shown in Theorem 4.1, adap-
tive stepsize GD can obtain an arbitrarily fast convergence.

Note that Theorem 4.1 can be extended to allow leaky vari-
ants of near-homogeneous activation functions, including
leaky GeLU , leaky Softplus , and leaky SiLU (see Cai et al.,
2024, for more examples). This is done in Appendix D.

The proof of Theorem 4.1 is motivated by (Wu et al., 2024;
Cai et al., 2024) and is provided next.

Proof of Theorem 4.1. Consider a comparator u = u1 +
u2 ∈ Rdm. Denote

u1 =


u
(1)
1

u
(2)
1

...

u
(m)
1

 , u2 =


u
(1)
2

u
(2)
2

...

u
(m)
2

 .

From (3) we have

∥wt+1 − u∥22
= ∥wt − u∥22 + 2ηm ⟨∇ϕ(wt),u1 −wt⟩︸ ︷︷ ︸

I1(wt)

η
(
2 ⟨m · ∇ϕ(wt),u2⟩+ η ∥m · ∇ϕ(wt)∥22

)
︸ ︷︷ ︸

I2(wt)

.

(10)

We use the following two lemmas to complete the proof.

Lemma 4.2. For j ∈ [m], define u
(j)
2 :=

ajη
2γ ·w∗ for the

exponential loss and u
(j)
2 :=

ajη
γ ·w∗ for the logistic loss.

Under Assumption 1.1, we have for every w ∈ Rd that

I2(w) := 2 ⟨m · ∇ϕ(w),u2⟩+ η ∥m · ∇ϕ(w)∥22 ≤ 0.

Lemma 4.3. For j ∈ [m], define u
(j)
1 :=

aj

2 αηγt · w
∗.

Then, under Assumption 1.1, for any w ∈ Rd, we have

I1(w) := ⟨∇ϕ(w),u1 −w⟩ ≤ −αγ
m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
−ϕ (w) .

The proof of two lemmas above is deferred to Appendix D.
Going back to the proof, we invoke the two lemmas above,
rearrange (10), and telescope the sum, we get

∥wt − u∥22
2ηmt

+
1

t

t−1∑
k=0

ϕ(wk)

≤ −αγ
m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
+

∥u∥22
2ηmt

. (11)

This implies

1

t

t−1∑
k=0

ϕ(wk) ≤


−1

4
α2γ2ηt+

η

4γ2t
ℓ = ℓexp,

−1

4
α2γ2ηt+

η

γ2t
ℓ = ℓlog.

We complete the proof by using the definition of t0 in both
cases and applying that L(·) = ℓ (−ϕ(·)) .

5. A General Framework for GD Acceleration
In this section, we extend our results in Section 2 from expo-
nential and logistic losses to a broad class of classification
loss functions.

We begin by formulating general conditions for classifica-
tion loss functions under which an accelerated convergence
result like Theorem 2.2 can be established.
Assumption 5.1 (Loss function conditions). Let ℓ(·) : R →
R be continuously differentiable. Assume that ℓ satisfies the
following.

A. Assume that: The loss ℓ is positive, strictly decreasing,
and convex. Its inverse ℓ−1(z) exists and is differen-
tiable for z > 0. Moreover,

(
ℓ−1(z)

)′
< 0 for z > 0.

B. Assume that ψ(·) defined as following is convex:

ψ (z) := −ℓ−1

(
1

n

n∑
i=1

ℓ(zi)

)
, z := (z1, z2, ...., zn) .

(12)

C. Assume that: For any vector z = (z1, z2, ...., zn) ∈ Rn,

1

n

n∑
i=1

|ℓ′(zi)| ·

∣∣∣∣∣(−ℓ−1(z)
)′( 1

n

n∑
i=1

ℓ(zi)

)∣∣∣∣∣ ≤ Cℓ

(13)
for some constant Cℓ > 0.
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Clearly, exponential and logistic losses satisfy Assump-
tion 5.1A. They also satisfy Assumption 5.1B accord-
ing to Theorem 5.1 in (Ji & Telgarsky, 2021) ( see also
Lemma G.1). Moreover, they satisfy Assumption 5.1C with
Cℓ = 1 for the exponential loss and Cℓ = 2 for the logistic
loss (See Appendix A) Note that for ϕ in (3) we have

ϕ(w) = ψ
(
(w⊤x1,w

⊤x2, ...,w
⊤xn)

⊤) ,
so ϕ(·) is a composition between a linear mapping and
ψ(·). Therefore, the convexity of ψ(·) directly implies the
convexity of ϕ(·). Condition (C) above indicates the self-
boundedness of ℓ(·), in the sense that the magnitude of
|ℓ′(·)| can be properly controlled by a function of ℓ(·) itself,
up to some constant multiplier.

Theorem 5.2 shows the acceleration brought by using large
and adaptive stepsizes can happen for a broad class of clas-
sification losses. More surprisingly, Theorem 5.2 implies
that for general losses, as soon as t ≥ t0 = Θ(1/γ2), we
also have

lim
η→∞

L(wt) = 0.

In particular, if ℓ(·) has an exponential tail, i.e., ℓ(z) ≲
exp(−z) for large enough z > 0, then we can obtain a rate
of O (exp (−Θ(ηt))) for large enough t.

Improved convergence rate for general losses. Now we
present the acceleration for GD on the general classification
losses that satisfy Assumption 5.1.

Theorem 5.2 (An improved rate for general loss func-
tions). Suppose that Assumptions 1.1 and 5.1 hold. Con-
sider (GD) with adaptive stepsizes (2) for objective function
L(w) = 1

n

∑n
i=1 ℓ

(
yix

⊤
i w
)
. Let wt := 1

t

∑t−1
k=0 wk be

the averaged iterates. Then for every η > 0, we have

L (wt) ≤ ℓ

(
− 1

4
γ2ηt+

Cℓη

4γ2t

)
,

where Cℓ is the constant in Assumption 5.1. In particular,
let the number of burn-in steps be

t0 :=
√
2Cℓ/γ

2,

then for every t ≥ t0, we have

L(wt) ≤ ℓ

(
−1

8
γ2ηt

)
,

where the base stepsize η can be arbitrarily large.

Below we list two classification losses that satisfy Assump-
tion 5.1 beyond exponential and logistic loss. The proof for
these loss functions satisfying Assumption 5.1 is deferred
to Appendix F.

1. Polynomial loss. For a fixed k > 0, we define (Ji &
Telgarsky, 2021)

ℓ(z) :=


1

(1 + z)k
for z ≥ 0

− 2kz +
1

(1− z)k
for z ≤ 0

One can show it satisfies Assumption 5.1C in Assump-
tion 5.1 with Cℓ = n1/k. Therefore, for any t ≥√
2n1/k/γ2, it holds that

L(wt) ≤
(
1 +

1

8
γ2ηt

)−k

.

We show the simulation results for polynomial loss with
k = 2 in Figure 1.

2. Probit negative log-likelihood loss. Let F (z) denote the
cumulative density function of one-dimensional standard
Gaussian distribution. Then, we define (Albert & Chib,
1993; Neal, 1997; Chib & Greenberg, 1998; Liu, 2004)

ℓ(z) := − ln (F (z)) .

It satisfies Assumption 5.1C with Cℓ = 1. Therefore,
Theorem 5.2 implies that when t ≥

√
2/γ2, it holds that

L(wt) ≤ − ln

(
F

(
1

8
γ2ηt

))
≤ − ln

(
1− c1

γ2ηt
· exp

(
−c2γ4η2t2

))
≤ O

(
1

γ2ηt
· exp

(
−c2γ4η2t2

))
for universal constants c1 and c2. The last inequality
comes from classical Mill’s ratio (See Lemma G.4).

6. Related Works
In this section, we discuss related papers.

Edge of stability. A growing body of theoretical work
investigates edge of stability (EoS) under various scenarios.
This includes quadratic functions (Zhu et al., 2022), certain
non-convex functions (Wang et al., 2023b), single-neuron
linear networks (Ahn et al., 2023), scalar neural networks
(Kreisler et al., 2023), two-layer neural networks (Chen
et al., 2023), scaled-Invariant networks (Lyu et al., 2022),
diagonal linear networks (Even et al., 2023; Andriushchenko
et al., 2023), and matrix factorization (Wang et al., 2021;
Chen & Bruna, 2023). Several general frameworks have
also been proposed to explain the EoS behavior, though they
often rely on delicate assumptions (Kong & Tao, 2020; Ahn
et al., 2022; Damian et al., 2022; Ma et al., 2022; Wang
et al., 2022; Lu et al., 2023). In comparison, we focus on
studying the benefits of EoS for improving optimization
efficiency in logistic regression.

7



Gradient Descent Converges Arbitrarily Fast for Logistic Regression via Large and Adaptive Stepsizes

Aggresive stepsize scheduler. A recent line of work con-
sidered GD with an aggressive stepsize scheduler (Malitsky
& Mishchenko, 2019; Altschuler & Parrilo, 2024a;b; Grim-
mer, 2024; Zhang et al., 2024). As their stepsize scheduler
violates the descent lemma occasionally, they obtained an
improved rate for GD in convex and smooth optimization
(assuming the minimizer is finite). Instead, we consider GD
with adaptive stepsizes that depend on the current risk, with
a focus on logistic regression with linearly separable data.

Logistic regression. There is a large body of literature on
the convergence and implicit bias of GD for logistic regres-
sion with linearly separable data. The work by Soudry et al.
(2018); Ji & Telgarsky (2018) showed that small stepsize
GD converges to the maximum margin direction. Their re-
sults also imply a risk convergence rate of O(1/t) (Soudry
et al., 2018). Their results are extended to GD with a large
constant stepsize by (Wu et al., 2023). In comparison, we
focus on the effect of adaptive stepsizes.

Regarding this, Nacson et al. (2019) obtained a risk conver-
gence rate of Õ

(
exp(−

√
t)
)

by using adaptive stepsizes,
and this is improved to O(exp(−t)) by the results in (Ji &
Telgarsky, 2021), also using adaptive stepsizes. However,
the adaptive stepsizes considered in (Nacson et al., 2019; Ji
& Telgarsky, 2021) are relatively small, in which GD stays
in the stable regime. In comparison, we consider GD with
large and adaptive stepsizes, where GD is allowed to enter
the EoS regime.

The works by (Wu et al., 2024; Cai et al., 2024) are also
related to ours, where they studied GD with large constant
stepsize in logistic regression and in two-layer networks, re-
spectively. Although their GD can enter the EoS regime, the
best risk convergence rate they obtained is O(1/t2). In com-
parison, we considered GD with large and adaptive stepsizes
for both cases, and we obtained an arbitrarily fast conver-
gence rate. Finally, the work by Tyurin (2024) showed the
equivalence between logistic regression with large fixed
stepsize and batched Perceptron algorithm as the stepsize
grows unboundedly. Their results are related to, but are not
directly comparable with, ours.

7. Conclusion
In this paper, we show that GD with large and adaptive
stepsizes achieves an arbitrarily fast convergence rate for
logistic regression with linearly separable data. This holds
as long as the number of steps is larger than a fixed threshold
depending on the data margin. We also show the above is
impossible if adaptive stepsize GD induces a monotonically
decreasing risk, thereby demonstrating the benefit of unsta-
ble convergence. Moreover, we provide a lower bound, in
which to achieve a small risk, every first-order method has
to pay a number of steps as a function of the data margin.

This demonstrates a burn-in phase is necessary. Finally, we
extend our results from logistic regression to a large class
of loss functions and two-layer networks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Omitted Proofs for Theorem 2.2 in Section 2
Properties of Loss Functions First, let’s consider the properties of the exponential and logistic loss functions:

ℓexp(t) := exp(−t), ℓlog(t) := ln (1 + exp(−t)) .

We have:

• For ℓ = ℓexp or ℓ = ℓlog, we have ℓ > 0, ℓ′ < 0, ℓ′′ > 0. Moreover, we have |ℓ′| = −ℓ′ ≤ ℓ, and the equation holds for
exponential loss.

• For ℓ = ℓlog, |ℓ′(t)| ≤ 1 for any t ∈ R. This does not hold for the exponential loss.

• For ℓ = ℓexp or ℓ = ℓlog, the inverse function ℓ−1(·) exists and is continuously differentiable, and
(
ℓ−1(t)

)′
< 0 for

t > 0.

• For ℓ = ℓexp or ℓ = ℓlog, we define ψ(z) :=
(
−ℓ−1

)′ ( 1
n

∑n
i=1 ℓ(zi)

)
is convex for z = (z1, z2, ..., zn)

⊤, so ϕ(·)
defined in (3) is also convex.

The first three arguments are easy to check, while the last one is a direct corollary of Theorem 5.1 in (Ji & Telgarsky, 2021).

Proof of Lemma 2.3. When ℓ = ℓexp, we have ϕ(w) = lnL(w). Plug in u2, we have

2 ⟨∇ lnL(w),u2⟩+ η ∥∇ lnL(w)∥22 = 2 ·
∑n

i=1 ℓ
′
exp(w

⊤xi) ⟨xi,u2⟩∑n
i=1 ℓexp(w

⊤xi)
+ η

∥∥∥∥∥
∑n

i=1 ℓ
′
exp(w

⊤xi)xi∑n
i=1 ℓexp(w

⊤xi)

∥∥∥∥∥
2

2

≤2γ ∥u2∥2 ·
∑n

i=1 ℓ
′
exp(w

⊤xi)∑n
i=1 ℓexp(w

⊤xi)
+ η

(∑n
i=1

∣∣ℓ′exp(w⊤xi)
∣∣∑n

i=1 ℓexp(w
⊤xi)

)2

(⟨w∗,xi⟩ ≥ γ and ∥xi∥2 ≤ 1 for any 1 ≤ i ≤ n)

=0. (ℓ′exp(·) = −ℓexp(·) and ∥u2∥2 = η
2γ )

When ℓ = ℓlog, we set u2 = η
γw

∗. Then,

2 ⟨∇ϕ(w),u2⟩+ η ∥∇ϕ(w)∥22

=− 2

n
·
(
ℓ−1
)′
(L(w)) ·

n∑
i=1

ℓ′(w⊤xi) ⟨u2,xi⟩+ η

∥∥∥∥∥− (ℓ−1
)′
(L(w)) · 1

n

n∑
i=1

ℓ′(w⊤xi)xi

∥∥∥∥∥
2

2

≤−
2γ ∥u2∥2

n
·
∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ · n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣+ η

(∣∣∣(ℓ−1
)′
(L(w))

∣∣∣ · 1
n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣)2

(∥xi∥2 ≤ 1 and ⟨xi,w
∗⟩ ≥ γ)

=
1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ ·
−2γ ∥u2∥2 + η · 1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣︸ ︷︷ ︸
I

 .
Now we focus on the term I. Consider two cases. If L(w) ≥ ln 2, then

I ≤
∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ = exp(L(w))

exp(L(w))− 1
≤ 2 (|ℓ′(t)| ≤ 1 and exp(t)

exp(t)−1 is monotonically decreasing at [ln 2,∞).)

Otherwise, we have 0 < L(w) < ln 2. Since |ℓ′(t)| ≤ ℓ(t), we have

I ≤ L(w) ·
∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ = h(L(w)), where h(t) :=
t exp(t)

exp(t)− 1
.
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We know

h′(t) =
exp(t) [exp(t)− t− 1]

(exp(t)− 1)
2 ≥ 0, lim

t→0−
h(t) = 1. (14)

So h(·) is monotonically increasing and hence, I ≤ h(L(w)) ≤ h(ln 2) = ln 2. Therefore, we have I ≤ 2 and

2 ⟨∇ϕ(w),u2⟩+ η ∥∇ϕ(w)∥22 ≤ 1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ · [−2γ ∥u2∥2 + 2η] ≤ 0. (15)

B. Omitted Proof for Theorem 3.1 in Section 3
Before proving Theorem 3.1, let’s first delve into two technical lemmas. First, we have the following lemma, which shows
that for some special datasets, the stepsize must be small if the loss is non-monotonical.

Lemma B.1 (Stepsize has to be small if the loss drops monotonically). Let w0 = 0d and x̄ := 1./n ·
∑n

i=1 xi. Assume
there exist constants r > 0 and q ∈ (0, 1) such that∣∣{i ∈ [n] : x⊤

i x̄ < −r
}∣∣

n
≥ q.

Assume we perform the gradient descent in (GD). If L(w1) ≤ L(w0), then we must have

η ≤ qr

ℓ(0)
. (16)

Proof of Lemma B.1. Since w0 = 0d, we know L(w0) = ℓ(0) and ∇L(w0) = ℓ′(0) · x̄ and

∇ϕ(w0) =
(
−ℓ−1

)′
(ℓ(0)) · ℓ′(0) · x̄, w1 = −η

(
−ℓ−1

)′
(ℓ(0)) · ℓ′(0) · x̄.

We know −
(
−ℓ−1

)′
(ℓ(0)) · ℓ′(0) = 1 for both exponential loss and logistic loss. So for both losses, we have w1 = ηx̄.

Therefore, if η > qr
ℓ(0) , this implies

L(w1) =
1

n

n∑
i=1

ℓ(ηx⊤
i x̄) ≥

1

n

n∑
i=1

ℓ(ηx⊤
i x̄)I

(
x⊤
i x̄ < −r

)
≥ ℓ(−ηr) · 1

n

n∑
i=1

I
(
x⊤
i x̄ < −r

)
≥ ℓ(−ηr) · q

(From the assumption)

≥ q · ln (1 + exp(ηr)) (For both exponential loss and logistic loss)
≥ ηqr ≥ ℓ(0) = L(w0). (From our assumption)

This is a contradiction with our assumption of the stable phase, i.e., L(w1) ≤ L(w0). Therefore, we conclude

Then, we have the following lemma, which controls the upper bound of ∥wt∥2 along the optimization path (GD).

Lemma B.2 (Upper Bound of ∥wt∥2). Consider the gradient descent in (GD) for exponential loss or logistic loss starting
from w = 0d, suppose the Assumption 1.1 holds, then for any t ≥ 1 and η > 0, one has

∥wt∥2 ≤
(
γ +

6

γ

)
· ηt. (17)

Proof of Lemma B.2. We start from the split optimization bound (6). For both losses, from the proof of Theorem 2.2, we
know the right-hand side of (6) is upper bounded by − 1

4γ
2ηt + η

γ2t . We also notice that ∥xi∥2 ≤ 1 implies that for any
w ∈ Rd,

−∥w∥2 ≤ ϕ(w) =
(
−ℓ−1

)( 1

n

n∑
i=1

ℓ
(
x⊤
i w
))

≤ ∥w∥2 .

12
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Combining this fact with (6) gives

∥wt − u∥22
2ηt

≤ −1

t

t−1∑
k=0

ϕ(wk)−
1

4
γ2ηt+

η

γ2t
≤ 1

t

t−1∑
k=0

∥wk∥2 +
η

γ2t

Here, u = (1/2γηt+ η/2γ) · w∗ for the exponential loss and u = (1/2γηt+ η/γ) · w∗ for the logistic loss, where
w∗ ∈ Rd is the unit vector defined in Assumption 1.1. This implies for either loss and t ≥ 1,

∥wt∥2 ≤ ∥wt − u∥2 + ∥u∥2 ≤

√√√√2η

t−1∑
k=0

∥wk∥2 +
2η2

γ2
+

1

2
γηt+

η

γ
≤

√√√√2η

t−1∑
k=0

∥wk∥2 +
1

2
γηt+

3η

γ
,

where the last inequality above uses the fact that
√
a+ b ≤

√
a+

√
b for any a, b > 0. Obviously, (17) holds for t = 0. If it

holds for 0, 1, 2, ..., t− 1 with t ≥ 1, then for t, one has

∥wt∥2 ≤

(√(
γ +

6

γ

)
+

1

2

(
γ +

6

γ

))
ηt ≤

(
γ +

6

γ

)
· ηt.

So (17) also holds for t. Invoking a simple induction completes the proof.

Now we prove the Theorem 3.1 by combining Lemma B.1 and Lemma B.2.

Proof of Theorem 3.1. One can easily check that the dataset in Theorem 3.1 satisfies the assumptions in Lemma B.1 with
r = 0.1 and q = 0.5. So Lemma B.1 implies η ≤ c1 where c1 is a constant that depends on the loss function. Combining
this upper bound for the stepsize, triangle inequality and Lemma B.2, we get ∥wt∥2 ≤ c2 · t, where c2 is a constant that
does not depend on t or η (but it can depend on γ). Therefore, invoking the assumption that ∥xi∥2 ≤ 1, 1 ≤ i ≤ n, we have

L(wt) =
1

n

n∑
i=1

ℓ(w⊤
t xi) ≥ ℓ (c2 · t) ≃ exp (−c2 · t) ,

where the last equivalence holds when t is large due to the exponential tails of both losses. The guarantee for L(wt) holds
analogously.

C. Omitted Proofs for Theorem 3.2 in Section 3
Proof of Theorem 3.2. Without loss of generality, we can assume the dimension d = n − 1 and n ≥ 4. We define ei as
the unit basis in Rd where the i-th entry is 1 and others are zero. Then, we construct a hard dataset D. We set yi = 1 for
1 ≤ i ≤ n and

x1 = e1, x2 = −
√
2

2
e1 +

√
2

2
e2, ..... xn−1 = −

√
2

2
en−2 +

√
2

2
en−1, xn = −

√
2

2
en−1.

This dataset satisfies the first condition in the theorem. For each small enough γ > 0, we construct a problem instance as

follows. We set d such that γ ≤
√

3
d(d+1)(2d+1) and w∗ :=

∑d
i=1 i·

√
2γ ·ei. Then, we know ∥w∗∥2 =

√
2γ
√∑d

i=1 i
2 = 1

and ⟨yixi,w
∗⟩ ≥ γ for 1 ≤ i ≤ n. We denote w =

(
w(1),w(2), ...,w(d)

)
∈ Rd. The loss function on the constructed

dataset is

L(w) =
1

n

[
ℓ
(
w(1)

)
+

n−2∑
i=1

ℓ

(√
2

2

(
−w(i) +w(i+1)

))
+ ℓ

(
−
√
2

2
w(n−1)

)]
.

13
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This implies

∂L(w)

∂w(i)
=



1

n
·

[(
ℓ′
(
w(1)

))
−

√
2

2
ℓ′

(√
2

2

(
−w(1) +w(2)

))]
, i = 1

√
2

2n
·

[
ℓ′

(√
2

2

(
−w(i−1) +w(i)

))
− ℓ′

(√
2

2

(
−w(i) +w(i+1)

))]
, 2 ≤ i ≤ n− 2

√
2

2n
·

[
ℓ′

(√
2

2

(
−w(n−2) +w(n−1)

))
− ℓ′

(
−
√
2

2
w(n−1)

)]
, i = n− 1.

Since w0 = 0d, we know at the initial time, only the derivative of L(w) to the first entry is non-zero. We define Rd
k as the

subset in Rd such that the last d− k entries are all zero for 0 ≤ k ≤ d. Specially, we know Rd
0 = {0d} and Rd

d = Rd. A
simple induction argument indicates that for any first-order gradient optimization algorithm, it holds that

wt ∈ Rd
t , ∀ 0 ≤ t ≤ d.

For any 0 ≤ t ≤ n, if w ∈ Rd
t , the the last d− t entries of w are all zero, which implies

L(w) ≥ d− t

n
=
n− 1− t

n
.

From the definition of γ, we know

γ =

√
3

d(d+ 1)(2d+ 1)
=

√
3

(n− 1)n(2n− 1)
≥
√

3

2n3
,

which implies n ≥
(

2γ2

3

)− 1
3

. Therefore, if t ≤ 1
2

(
2γ2

3

)− 1
3 − 1 ≃ γ−

2
3 , then for all 0 ≤ k ≤ t, since wk ∈ Rd

k, it holds
that

L(wk) ≥
d− k

n
=
n− 1− k

n
≥ 1

2
.

Moreover, for the average iterate wt :=
1
t

∑t−1
k=0 wk, since wt ∈ Rd

t−1, we also have the same lower bound guarantee.
Therefore, we conclude.

D. Omitted Proofs for Theorem 4.1 in Section 4
D.1. Assumptions and Examples on the Activation Functions

Assumptions. First, we provide general assumptions on the activation functions.

Assumption D.1 (Activation Function). In (7), let the activation function σ(z) : R → R be differentiable at z ̸= 0 and
right-differentiable at z = 0. With a little abuse of notation, let σ′(z) be its derivative at z ̸= 0 and the right derivative at
z = 0. Moreover, we assume

• σ′(z) is continuous for z ̸= 0 and right-continuous for z = 0. There exists 0 < α < 1 such that σ′(z) ∈ (α, 1].

• For any z ∈ R, it holds that |σ(z)− σ′z| ≤ κ for some κ > 0.

Examples of activation functions. Assumption D.1 holds for a broad class of leaky activations. For instance, let σ∗(·) be
one of the following:

• GeLU: σGeLU(x) := x · F (x). Here, F (x) is the cumulative density function of standard Gaussian distribution.

• Softplus: σSoftplus(x) := log (1 + exp(x)) .

• SiLU: σSiLU(x) := x
1+exp(−x)

14
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• ReLU: σReLU(x) := max {x, 0} .

Then, we fix some constant 0.5 < c < 1 and define

σ(x) = c · x+
1− c

4
· σ∗(x), (18)

where σ∗ can be any activation function above. It is straightforward to check that such a “leaky” variant satisfies Assump-
tion D.1 with a uniform α = 0.25, κ = 1.

Proof for the examples of activation functions. Now we prove the leaky activation functions above satisfy Assumption D.1.

• GeLU: One can easily show that σGeLU(x) = xF (x) and σ′
GeLU(x) = F (x) + xf(x), σ′′

GeLU(x) = (2 − x2)f(x),
where F and f are the cumulative density function and probability density function of standard Gaussian distribution,
respectively. Since f ≥ 0, we know the global maximum of σGeLU(·) is taken at either x → −∞ or x = 1/

√
2,

while the global minimum is taken at either x→ ∞ or x = −1/
√
2. One can easily show that limx→∞ σ′

GeLU(x) =
1, limx→−∞ σ′

GeLU(x) = 0, and σ′
GeLU(

√
2/2) < 1.2, σ′

GeLU(−
√
2/2) > −0.2. Therefore, σ = cx + 1−c

4 · σGeLU(x)
satisfies the first condition in Assumption D.1 with α = 0.25. Moreover, since |σGeLU(x)− σ′

GeLU(x) · x| = x2f(x) ≤
0.3, we know that it satisfies the second condition in Assumption D.1 with κ = 1−c

4 · 0.3 ≤ 0.3.

Softplus: One can easily know 0 < σ′
Softplus(x) =

exp(x)
1+exp(x) < 1, so the first condition in Assumption D.1 holds with

α = 0.25.Define h(x) = σSoftplus(x)−x·σ′
Softplus(x) = log(1+exp(x))− x exp(x)

1+exp(x) ,we have h′(x) = −x exp(x)
(1+exp(x))2 , so

we have h(x) ≥ limx→±∞ h(x) = 0 and h(x) ≤ h(0) = ln(2) ≤ 1. So the second condition holds with κ ≤ 1−c
4 ≤ 1.

SiLU : For Swish function with a fixed β > 0, one can easily show that σ′
Swish(x) =

1+exp(−βx)(1−βx)
(1+exp(−βx))2 ∈ [0, 1], since

0 ≤ 1 + exp(−βx)(1− βx) ≤ 1 + exp(−2βx). So the first condition in Assumption D.1 holds with α = 0.25. For
the second condition, one has σSwish(x)− x · σ′

Swish(x) =
βx2 exp(−βx)
(1+exp(−βx))2 ∈ [0, 1/(2β)]. So the second condition holds

with κ = 1−c
4·2β ≤ 1

2β .

ReLU: Since 0 ≤ σ′
ReLU(x) ≤ 1, one has the first condition in Assumption D.1 holds with α = 0.5. The second

condition holds with κ = 1 trivially.

D.2. Omitted Proof of Theorem 4.1

Before proving Theorem 4.1, we first present the general versions of two lemmas in Section 4.

Lemma D.2. We take u
(j)
2 =

ajCℓη
2γ · w∗ for j = 1, 2, ...,m, where Cℓ > 0 is the constant in Condition (C) in the

Assumption 5.1. Cℓ = 1 for the exponential loss and Cℓ = 2 for the logistic loss. Then, for every w ∈ Rd, one has

I2(w) := 2 ⟨m · ∇ϕ(w),u2⟩+ η ∥m · ∇ϕ(w)∥22 ≤ 0.

Proof of Lemma D.2. We define
gi,j := ℓ′ (yif (w,xi)) · σ′

(
x⊤
i w

(j)
)
≤ 0,

then we have

I2(w) =
2

n

(
−ℓ−1

)′
(L(w)) ·

m∑
j=1

n∑
i=1

gi,j ·
∥∥∥u(j)

2

∥∥∥
2
· yix⊤

i w
∗ + η ·

m∑
j=1

∥∥∥∥∥ajn ·
(
−ℓ−1

)′
(L(w)) ·

n∑
i=1

gi,jyixi

∥∥∥∥∥
2

2

.

Since gi,j ≤ 0 for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and yix⊤
i w

∗ ≥ γ > 0, ∥xi∥2 ≤ 1, one has

I2(w) ≤ −2γ

n
·
(
−ℓ−1

)′
(L(w)) ·

m∑
j=1

n∑
i=1

∥∥∥u(j)
2

∥∥∥
2
· |gi,j |+

η

n2
(
−ℓ−1

)′
(L(w))

2
m∑
j=1

(
n∑

i=1

|gi,j |

)2

=
(
−ℓ−1

)′
(L(w)) · 1

n

m∑
j=1

n∑
i=1

|gi,j | ·

(
−2γ

∥∥∥u(j)
2

∥∥∥
2
+ η ·

(
−ℓ−1

)′
(L(w)) · 1

n

n∑
k=1

|gk,j |

)
. (19)
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For any 1 ≤ k ≤ n, from the Assumption 5.1, we have

(
−ℓ−1

)′
(L(w)) · 1

n

n∑
k=1

|gk,j | =
1

n

n∑
k=1

(
−ℓ−1

)′
(L(w)) · |ℓ′ (f (w,xi))| · σ′ (x⊤

i w
∗)

≤ 1

n

n∑
k=1

(
−ℓ−1

)′
(L(w)) · |ℓ′ (f (w,xi))| (σ′ (·) ≤ 1)

≤ Cℓ,

where Cℓ > 0 is the constant in Assumption 5.1. Therefore, combining the above upper bound, equation (19), and the
definition of u2, we conclude.

Lemma D.3. We take u
(j)
1 = aj ·

∥∥∥u(j)
1

∥∥∥
2
·w∗. Then, we have for any w ∈ Rd, it holds that

I1(w) := ⟨∇ϕ(w),u1 −w⟩ ≤ κ− αγ

m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− ϕ (w)

Proof of Lemma D.3. From the definition of ϕ(·), one has

I1(w) := ⟨∇ϕ(w),u1 −w⟩

=
(
−ℓ−1

)′
(L(w)) · 1

n

n∑
i=1

ℓ′ (yif (w;xi)) ·
1

m

m∑
j=1

yiajσ
′
(
x⊤
i w

(j)
)
· x⊤

i

(
u
(j)
1 −w(j)

)
=
(
−ℓ−1

)′
(L(w)) · 1

n

n∑
i=1

ℓ′ (yif (w;xi)) · [Ji − yif (w,xi)] ,

where

Ji :=
1

m

m∑
j=1

aj

[
σ′
(
x⊤
i w

(j)
)
yix

⊤
i u

(j)
1

]
+

1

m

m∑
j=1

yiaj

[
σ
(
x⊤
i w

(j)
)
− σ′

(
x⊤
i w

(j)
)
x⊤
i w

(j)
]

︸ ︷︷ ︸
|·|≤κ

≥ 1

m

m∑
j=1

aj

[
σ′
(
x⊤
i w

(j)
)
yix

⊤
i u

(j)
1

]
− κ =

1

m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2

σ′
(
x⊤
i w

(j)
)

︸ ︷︷ ︸
≥α

· yix⊤
i w

∗︸ ︷︷ ︸
≥γ

− κ

≥ αγ

m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− κ.

Notice ℓ′(·) ≤ 0, we define z := (y1f (w;x1) , y2f (w,x2) , ..., ynf (w,xn))
⊤ and 1n = (1, 1, ..., 1)

⊤ ∈ Rn. Then, from
the definition of ψ(·), one has

I1(w) ≤
(
−ℓ−1

)′
(L(w)) · 1

n

n∑
i=1

ℓ′ (yif (w;xi)) ·

αγ
m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− κ− yif (w,xi)


=

〈
∇ψ (z) ,

αγ
m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− κ

 · 1n − z

〉
≤ ψ

αγ
m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− κ

 · 1n

− ψ (z)

(Since ψ(·) is convex)

= κ− αγ

m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
− ϕ (w) (From the definition of ψ(·) and ϕ(·))

16



Gradient Descent Converges Arbitrarily Fast for Logistic Regression via Large and Adaptive Stepsizes

Now we present the proof for Theorem 4.1.

Proof of Theorem 4.1. We consider a comparator u = u1 + u2, where

u1 =


u
(1)
1

u
(2)
1

...

u
(m)
1

 , u2 =


u
(1)
2

u
(2)
2

...

u
(m)
2

 .

Consider the following decomposition:

∥wt+1 − u∥22 = ∥wt − u∥22 + 2mηt ⟨∇L(wt),u−wt⟩+m2η2t ∥∇L(wt)∥22
= ∥wt − u∥22 + 2ηm ⟨∇ϕ(wt),u1 −wt⟩︸ ︷︷ ︸

I1(wt)

+η
(
2 ⟨m · ∇ϕ(wt),u2⟩+ η ∥m · ∇ϕ(wt)∥22

)
︸ ︷︷ ︸

I2(wt)

.

Following Lemma D.3 and Lemma D.2 and inserting w0 = 0d, we get a split optimization bound:

∥wt − u∥22
2ηmt

+
1

t

t−1∑
k=0

ϕ(wk) ≤ κ− αγ

m

m∑
j=1

∥∥∥u(j)
1

∥∥∥
2
+

∥u1 + u2∥22
2ηmt

. (20)

This implies

1

t

t−1∑
k=0

ϕ(wk) ≤

κ+

m∑
j=1

−αγ
m

∥∥∥u(j)
1

∥∥∥
2
+

∥∥∥u(j)
1

∥∥∥2
2

ηmt


+

∥u2∥22
ηmt

.

Taking

u
(j)
1 =

1

2
αγηt ·w∗, u

(j)
2 =

ajCℓη

2γ
·w∗, 1 ≤ j ≤ m,

we get

1

t

t−1∑
k=0

ϕ(wk) ≤ κ− 1

4
α2γ2ηt+

C2
ℓ η

4γ2t
.

Therefore, we complete the proof of Theorem 4.1 by invoking the convexity of ψ(·).

E. Omitted Proof of Theorem 5.2 in Section 5
The entire proof follows the proof of Theorem 2.2. First, we have the following key lemma which is an analogue
of Lemma 2.3

Lemma E.1 (Key Lemma). We define u2 = Cℓη
2γ ·w∗ for a loss function ℓ satisfying Assumption 5.1 with loss specific

constant Cℓ > 0. Under the definition of ϕ(·), for any w ∈ Rd and any η > 0, it holds that

2 ⟨∇ϕ(w),u2⟩+ η ∥∇ϕ(w)∥22 ≤ 0. (21)
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Proof of Lemma E.1. Note that

2 ⟨∇ϕ(w),u2⟩+ η ∥∇ϕ(w)∥22

=− 2

n
·
(
ℓ−1
)′
(L(w)) ·

n∑
i=1

ℓ′(w⊤xi) ⟨u2,xi⟩+ η

∥∥∥∥∥− (ℓ−1
)′
(L(w)) · 1

n

n∑
i=1

ℓ′(w⊤xi)xi

∥∥∥∥∥
2

2

≤−
2γ ∥u2∥2

n
·
∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ · n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣+ η

(∣∣∣(ℓ−1
)′
(L(w))

∣∣∣ · 1
n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣)2

(∥xi∥2 ≤ 1 and ⟨xi,w
∗⟩ ≥ γ)

=
1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ ·
−2γ ∥u2∥2 + η · 1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣︸ ︷︷ ︸
I


≤ 1

n

n∑
i=1

∣∣ℓ′(w⊤xi)
∣∣ · ∣∣∣(ℓ−1

)′
(L(w))

∣∣∣ · [−2γ ∥u2∥2 + ηCℓ] . (From Assumption D.1)

Invoking the definition of u2 completes the proof.

Now we prove the Theorem 5.2.

Proof of Theorem 5.2. Denote u = u1 + u2, where u2 = Cℓη
2γ · w∗ ∈ Rd. Then, we have Recall the gradient descent

iterate (GD), the learning rate scheduler (2), and the definition for ϕ(·). Then, following the proof of Theorem 2.2, we have

∥wt+1 − u∥22
= ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u−wt⟩+ η2 ∥∇ϕ(wt)∥22
= ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u1 −wt⟩+ η

[
2 ⟨∇ϕ(wt),u2⟩+ η ∥∇ϕ(wt)∥22

]
(a)

≤ ∥wt − u∥22 + 2η ⟨∇ϕ(wt),u1 −wt⟩
(b)

≤ ∥wt − u∥22 + 2η (ϕ(u1)− ϕ(wt)) . (22)

Here, (a) is from Lemma E.1, and (b) is from the convexity of ϕ(·) from Condition (B) in Assumption 5.1. Telescoping (22)
from k = 0 to k = t− 1 yields

∥wt − u∥22
2ηt

+
1

t

t−1∑
k=0

ϕ(wk) ≤ ϕ(u1) +
∥w0 − u∥22

2ηt
. (23)

We take
u1 =

1

2
γηt ·w∗, w0 = 0d.

Recall ⟨w∗,xi⟩ ≥ γ and the definition of ϕ(·), we have ϕ(u1) ≤ −γ ∥u1∥2 . This implies

1

t

t−1∑
k=0

ϕ(wk) ≤ −γ ∥u1∥2 +
∥u1 + u2∥22

2ηt
≤ −γ ∥u1∥2 +

∥u1∥22 + ∥u2∥22
ηt

= −1

4
γ2ηt+

Cℓη

4γ2t
.

Therefore, when t ≥ t0 :=
√
2Cℓ/γ

2,

1

t

t−1∑
k=0

ϕ(wk) ≤ −1

8
γ2ηt

Invoking the convexity of ϕ(·) completes the proof.

18



Gradient Descent Converges Arbitrarily Fast for Logistic Regression via Large and Adaptive Stepsizes

F. Examples of Loss Functions
Example: polynomial loss. We consider the polynomial loss (Ji & Telgarsky, 2021). For a fixed k > 0, we define

ℓ(z) :=


1

(1 + z)k
for z ≥ 0

− 2kz +
1

(1− z)k
for z ≤ 0

(24)

Then, we have

ℓ′(z) :=


−k

(1 + z)k+1
for z ≥ 0

− 2k +
k

(1− z)k+1
for z ≤ 0

, ℓ′′(z) :=


k(k + 1)

(1 + z)k+2
for z ≥ 0

k(k + 1)

(1− z)k+2
for z ≤ 0

and
ℓ−1(z) = z−1/k − 1, ∀z > 0.

From Theorem 5.1 in (Ji & Telgarsky, 2021), we know ϕ(w) := −ℓ−1 (L(w)) is convex. Therefore, Condition (A)
and (B) in Assumption 5.1 hold. Now we verify Condition (C) in the Assumption 5.1. For z ≥ 0, it is obvious that
|ℓ′(z)| = k

(1+z)k
= k · ℓ(z) k+1

k . For z ≤ 0, we define

h(z) :=
|ℓ′(z)|

k · ℓ(z) k+1
k

=
2k − k

(1−z)k+1

k ·
[
−2kz + 1

(1−z)k

] k+1
k

.

We know limz→0− h(z) = 1, and limz→−∞ h(z) = 0, and h(z) is continuously differentiable in (−∞, 0]. Moreover,
simple computation shows that h(z) is increasing for z ≤ 0. So h(z) ≤ 1 for z ≤ 0, which implies |ℓ′(z)| ≤ k · ℓ(z) k+1

k for
z ≤ 0. Therefore, for any sequence zi, 1 ≤ i ≤ n, it holds that

1

n

n∑
i=1

|ℓ′(zi)| ·

∣∣∣∣∣(ℓ−1
)′( 1

n

n∑
i=1

ℓ(zi)

)∣∣∣∣∣ = 1
n

∑n
i=1 |ℓ′(zi)|

k ·
(
1
n

∑n
i=1 ℓ(zi)

) k+1
k

≤
k · 1

n

∑n
i=1 ℓ(zi)

k+1
k

k ·
(
1
n

∑n
i=1 ℓ(zi)

) k+1
k

≤
(
1
n

∑n
i=1 ℓ(zi)

)
·max1≤i≤n ℓ(zi)

1/k(
1
n

∑n
i=1 ℓ(zi)

) k+1
k

≤
(
max1≤i≤n ℓ(zi)
1
n

∑n
i=1 ℓ(zi)

) 1
k

≤ n1/k.

Therefore, the Condition (C) in Assumption 5.1 is satisfied with Cℓ = n1/k. Then, Theorem 5.2 indicates that when
t ≥ t0 :=

√
2n1/k/γ2, it holds that

L(wt) = ℓ (−ϕ(wt)) ≃
(
1 + Θ

(
γ2ηt

))−k
. (25)

Example: Probit Negative Log-Likelihood Loss. We consider the Probit Negative Log-Likelihood Loss, defined as

ℓ(z) := − ln (F (z)) , (26)

where

F (z) :=
1√
2π

∫ z

−∞
exp

(
−s

2

2

)
ds

is the cumulative density function of standard Gaussian distribution. We also define f(z) = F ′(z) as the probability density
function of standard Gaussian distribution. Then, we have

f ′(z) = −z · f(z), ℓ′(z) = − f(z)

F (z)
, ℓ′′(z) :=

f(z) (zF (z) + f(z))

F (z)2
.
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Therefore, we can easily verify the condition A in assumption 5.1 and compute

g(z) := ln

(
ℓ′(z)2

ℓ(z)ℓ′′(z)

)
= ln (f(z))− ln (− ln (F (z)))− ln (zF (z) + f(z)) ,

which implies

g′(z) = −z − f(z)

F (z) ln (F (z))
− F (z)

zF (z) + f(z)

Lemma G.5 shows that this function is always negative. Therefore, from Lemma G.1, we know ψ(·) is convex and hence,
ϕ(w) is convex. Next, we verify condition C in Assumption 5.1. From the definition, we know

ℓ−1(t) = F−1 (exp(−t)) ,
(
ℓ−1
)′
(t) = − exp(−t)

f (F−1 (exp(−t)))
.

We denote L = 1
n

∑n
i=1 ℓ(zi) and ℓi = ℓ(zi) = − ln(F (zi)), then

1

n

n∑
i=1

|ℓ′(zi)| ·
∣∣∣(ℓ−1

)′
(L)
∣∣∣ = 1

n

n∑
i=1

f
(
F−1 (exp(−ℓi))

)
exp(−ℓi)

· exp(−L)
f (F−1 (exp(−L)))

We define

h(z) :=
f
(
F−1 (exp(−z))

)
exp(−z)

.

Then, we can compute

h′′(z) =
f(x)

F (x)
+ x− F (x)

f(x)
, where x = F−1(exp(−z)).

This quantity is strictly negative for all z > 0. So h is concave. Therefore, we know

1

n

n∑
i=1

|ℓ′(zi)| ·
∣∣∣(ℓ−1

)′
(L)
∣∣∣ ≤ 1.

Therefore, as in the analysis above, we show that when t ≥ t0 :=
√
2/γ2, it holds

L(wt) = ℓ (−ϕ(wt)) ≤ ℓ

(
1

8
γ2ηt

)
= − ln

(
F

(
1

8
γ2ηt

))
≤ O

(
1

γ2ηt
· exp

(
−c2γ4η2t2

))
(27)

where the last inequality comes from Lemma G.4.

G. Technical Lemmas
G.1. Convexity of ψ(·)

We have the following lemma, which is similar to Lemma 5.2 in (Ji & Telgarsky, 2021). We present the proof here for
completeness.

Lemma G.1. If ℓ′(t)2

ℓ(t)·ℓ′′(t) is decreasing on R, then ψ(z) := −ℓ−1
(
1
n

∑n
i=1 ℓ(zi)

)
is convex.

Proof. For z = (z1, z2, ..., zn)
⊤ ∈ Rn, we have

∇ψ(z)i =
−ℓ′(zi)

nℓ′ (−ψ(z))
, ∇2ψ(z) := −diag

(
ℓ′′(z1)

nℓ′(−ψ(z))
,

ℓ′′(z2)

nℓ′(−ψ(z))
, ...,

ℓ′′(zn)

nℓ′(−ψ(z))

)
+
ℓ′′(−ψ(z))
ℓ′(−ψ(z))

∇ψ(z)ψ(z)⊤.

It suffices to show that for any v ∈ Rn,

−
n∑

i=1

ℓ′′(zi)

nℓ′(−ψ(z))
v2i ≥ −ℓ

′′(−ψ(z))
ℓ′(−ψ(z))

(
n∑

i=1

−ℓ′(zi)
nℓ′ (−ψ(z))

vi

)2

.
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Recall that ℓ′(z) < 0 for any z ∈ R. Combined with Cauchy-Schwarz inequality, this gives(
n∑

i=1

−ℓ′(zi)
nℓ′ (−ψ(z))

vi

)2

≤

(
n∑

i=1

−ℓ′′(zi)
nℓ′(−ψ(z))

v2i

)(
n∑

i=1

− (−ℓ′(zi))2

nℓ′ (−ψ(z)) ℓ′′(zi)

)
.

So it suffices to prove
n∑

i=1

(−ℓ′(zi))2

nℓ′′(zi)
≤ (−ℓ′(−ψ(z)))2

ℓ′′(−ψ(z))
,

which is equivalent to
n∑

i=1

(−ℓ′(zi))2

nℓ′′(zi)
≤
(
−ℓ′

(
ℓ−1

(
1
n

∑n
i=1 ℓ(zi)

)))2
ℓ′′
(
ℓ−1

(
1
n

∑n
i=1 ℓ(zi)

))
We define h(z) = 1

nℓ(z). This is equivalent to

n∑
i=1

(
−h′

(
h−1 (h (zi))

))2
h′′(h−1 (h (zi)))

≤
(
−h′

(
h−1 (

∑n
i=1 h(zi))

))2
h′′ (h−1 (

∑n
i=1 h(zi)))

We consider the function g : (0,∞) → R :

g(s) :=

(
−h′

(
h−1(s)

))2
h′′ (h−1 (s))

.

Then,
g(s)

s
=

(h′(t))
2

h(t)h′′(t)
where t = h−1(s).

Since h−1(s) is decreasing and (h′(t))
2

h(t)h′′(t) =
(ℓ′(t))

2

ℓ(t)ℓ′′(t) is decreasing in t, we know g(s)/s is increasing on s ∈ (0,∞). This

indicates for any a, b > 0, we have g(a+b)
a+b ≥ g(a)

a and g(a+b)
a+b ≥ g(b)

b , which implies

a · g(a+ b) ≥ (a+ b) · g(a), b · g(a+ b) ≥ (a+ b) · g(b).

Adding these two equations and normalizing it, we have g(a+ b) ≥ g(a) + g(b), which shows g(·) is super-additive on
(s,∞). This gives

n∑
i=1

g(h(zi)) ≤ g

(
n∑

i=1

h(zi)

)
,

which concludes the proof.

G.2. Lemmas Regarding Gaussian Distribution and Mill’s Ratio

Lemma G.2 (Proposition 1.1 in (Mukherjee, 2016)). Let X be a random variable with distribution function F . Set
mk(x) = E

[
XkI(X > x)

]
. Assume E |X|N <∞. Then, for all 0 ≤ n ≤ N, we have

n∑
k=0

Ck
nmk(x) (−x)n−k ≥ 0.

Proof. Note that the left hand side is just E(X − x)n+, where (a)+ := max {a, 0} .

Lemma G.3 (Proposition 1.2 in (Mukherjee, 2016)). Suppose E |X|k+1
<∞. Define mk(x) = E

[
XkI(X > x)

]
. Then,

mk+1(x) = xmk(x) +

∫ ∞

x

mk(u)du.
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Proof. Note that∫ ∞

x

mk(u)du =

∫ ∞

x

E
(
XkI(X > u)

)
du = E

[
Xk

∫ ∞

x

I(X > u)du

]
= mk+1(x)− xmk(x).

Lemma G.4. We define F (z) and f(z) as the cumulative density function and probability density function for one-
dimensional standard Gaussian distribution. Then,

• For any z > 0, one has
zf(z)

z2 + 1
≤ 1− F (z) ≤ f(z)

z
. (28)

• For any z ∈ R, one has
z · F (z) + f(z) ≥ 0. (29)

• For any z > 0, one has

f(z)

(
1

z
− 1

z3

)
≤ 1− F (z) ≤ f(z)

(
1

z
− 1

z3
+

3

z5

)
. (30)

• For any z > 0, one has
z3 + 5z

z4 + 6z2 + 3
≤ 1− F (z)

f(z)
≤ z2 + 2

z(z2 + 3)
. (31)

Proof. The first inequality comes from the standard Mill’s ratio for Gaussian distribution. To see the second claim, the first
inequality gives zF (z) + f(z) ≥ z > 0 for any z > 0. For z = 0, this is obvious. For z < 0, we apply the first claim on
−z to get

F (z) = 1− F (−z) ≤ f(−z)
−z

=
f(z)

−z
,

which implies the second claim directly. The third inequality comes from Exercise 2.2 in (Wainwright, 2019). The last
inequality is a refinement of the classical Mill’s ratio and it comes from a notes (Mukherjee, 2016). However, the results
from that notes are incorrect. So we give the correct version here for completeness. Lemma G.3 gives

m0(z) = 1− F (z), m1(z) = f(z), m2(z) = zf(z) + (1− F (z)),

m3(z) = z2f(z) + 2f(z), m4(z) = x3f(z) + 3zf(z) + 3(1− F (z)).

Taking n = 3 in Lemma G.2 gives the right side of (31), while n = 4 gives the left side.

The following result shows a standard result for standard Gaussian distribution.

Lemma G.5. We define F (z) and f(z) as the cumulative density function and probability density function for one-
dimensional standard Gaussian distribution. Then, for any z ∈ R, one has

z +
f(z)

F (z) ln (F (z))
+

F (z)

zF (z) + f(z)
≥ 0. (32)

Proof. The claim holds trivially for z = 0. Let’s then consider z > 0. We write F and f for F (z) and f(z), respectively.
The claim is equivalent with (

z2 + 1
)
F 2 lnF + zFf lnF + zFf + f2 ≤ 0. (33)
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Figure 2. The Objective function in Lemma G.5 when −5 ≤ z ≤ 2.

Since lnF ≤ F − 1 for any F = F (z), when z ≥ 2, we have

(
z2 + 1

)
F 2 lnF + zFf lnF + zFf + f2 ≤

(
z2 + 1

)
F 2(F − 1) + zFf(F − 1) + zFf + f2

= f ·
((
z2 + 1

)
F 2F − 1

f
+ zF 2 + f

)
≤ f ·

(
f − 2F 2

z3 + 6z + 3/z

)
(From (31))

≤ f ·
(
f − 2 · 0.972

z3 + 6z + 3/z

)
(F ≥ 0.97 when z ≥ 2)

≤ f ·
(

1√
2π

· 1

1 + 1
2z

2 + 1
8z

4
− 2 · 0.972

z3 + 6z + 3/z

)
(exp(− 1

2z
2) ≤ 1

1+ 1
2 z

2+ 1
8 z

4 )

< 0 (From numerical computation)

Therefore, the claim holds for z ≥ 2. Next, we will deal with the case when z < −5. We denote x = −z. Since
F (−z) = 1− F (z) and f(−z) = f(z), (33) is equivalent with

(x2 + 1) (1− F (x))
2
ln (1− F (x))− x (1− F (x)) f(x) ln (1− F (x))− x (1− F (x)) f(x) + f(x)2 ≤ 0. (34)

Now we write F and f for short of F (x) and f(x), respectively. We denote m(x) := 1−F (x)
f(x) . This is equivalent with

(x2 + 1)m(x)2 ln(1− F (x))− x ·m(x) ln(1− F (x))− x ·m(x) + 1 ≤ 0.

When z ≤ −5, and x ≥ 5, from (31), one has

ln(1− F (x)) ≤ ln

(
f(x)

x

)
= −1

2
ln(2π)− 1

2
x2 − ln(x),
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which implies

(x2 + 1)m(x)2 ln(1− F (x))− x ·m(x) ln(1− F (x))− x ·m(x) + 1

≤m(x) · (x
2 + 1)(x3 + 5x)

x4 + 6x2 + 3
ln(1− F (x))− x ·m(x) ln(1− F (x))− x ·m(x) + 1

=
2x

x4 + 6x2 + 3
·m(x) · ln(1− F (x))− x ·m(x) + 1

≤
(
−x2 − 2 ln(x)− ln(2π)

x4 + 6x2 + 3
− 1

)
x ·m(x) + 1 (35)

≤
(
−x2 − 2 ln(x)− ln(2π)

x4 + 6x2 + 3
− 1

)
· x4 + 5x2

x4 + 6x2 + 3
+ 1 (From (31) in Lemma G.4)

=
(4− ln(2π)− 2 ln(x))x4 + (21− 5 ln(2π)− 10 ln(x))x2 + 9

(x4 + 6x2 + 3)
2

≤ 0 (When x ≥ 5 from numerical computation)

Therefore, we have proven the claim for z ≤ −5 and z ≥ 2. For −5 ≤ z ≤ 2, we numerically show the claim holds in
Figure 2.
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