
Crucible: Quantifying the Potential of Control
Algorithms through LLM Agents

Lianchen Jia1, Chaoyang Li1, Houde Qian1, Tianchi Huang1, Jiangchuan Liu2, Lifeng Sun1,3∗
1Department of Computer Science and Technology, Tsinghua University,

2Simon Fraser University, 3BNRist
jlc21@mails.tsinghua.edu.cn, sunlf@tsinghua.edu.cn

Abstract

Control algorithms in production environments typically require domain experts to
tune their parameters and logic for specific scenarios. However, existing research
predominantly focuses on algorithmic performance under ideal or default config-
urations, overlooking the critical aspect of Tuning Potential. To bridge this gap,
we introduce Crucible, an agent that employs an LLM-driven, multi-level expert
simulation to turn algorithms and defines a formalized metric to quantitatively
evaluate their Tuning Potential. We demonstrate Crucible’s effectiveness across
a wide spectrum of case studies, from classic control tasks to complex computer
systems, and validate its findings in a real-world deployment. Our experimental
results reveal that Crucible systematically quantifies the tunable space across
different algorithms. Furthermore, Crucible provides a new dimension for algo-
rithm analysis and design, which ultimately leads to performance improvements.
Our code is available at https://github.com/thu-media/Crucible.

1 Introduction

Control algorithms are the core mechanisms that dynamically regulate system behavior to achieve
specific objectives, with widespread applications from industrial automation to complex computer
systems [1, 2]. These algorithms play pivotal roles in various contexts, including gait control in
robotic systems [3], motion control for autonomous vehicles [4], adaptive bitrate (ABR) control [5–8]
and congestion control [7, 9] in network applications, and scheduling control within data centers [10].
Such control algorithms are essential for ensuring system stability while simultaneously optimizing
overall performance.

However, current research predominantly evaluates algorithms based on their performance under
ideal conditions or with default parameters [11, 12]. This paradigm overlooks a critical reality
of production environments: algorithms are always tuned by domain experts to adapt to specific
scenarios. The performance of an algorithm in the wild is therefore not just a function of its default
design, but also of its inherent adaptability—a property we define as its Tuning Potential. The lack of
a systematic way to measure Tuning Potential makes it difficult to compare the practical adaptability
of different algorithms and hinders its establishment as an explicit design goal.

Evaluating Tuning Potential presents a significant challenge that extends beyond conventional pa-
rameter sensitivity analysis [13]. The assessment must encompass deeper, logic-level modifica-
tions, including the incorporation of additional control branches or the integration of novel com-
ponents—interventions commonly employed by domain experts. The efficacy of such structural
adjustments is linked to expert subjective understanding of the underlying algorithmic logic [14].

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

This complex interplay between objective performance metrics and subjective understanding factors
impedes the establishment of a Tuning Potential evaluation framework.

To address this gap, we introduce Crucible, the first framework designed to quantitatively evaluate
the Tuning Potential of control algorithms. Crucible operates on two key principles. First, it employs
a Large Language Model (LLM)-driven, multi-level expert simulation agent that is defined with
varying capabilities, such as the ability to utilize optimization tools or perform multi-step reflection,
thereby emulating how developers with different expertise levels approach algorithm tuning. This
approach circumvents the prohibitive costs associated with large-scale subjective studies [15]. Second,
it establishes a formalized metric to normalize potential scores across diverse environments. This
metric characterizes each task environment by analyzing the performance profile that emerges when
a set of probe algorithms is applied to it, thereby enabling consistent comparisons across different
domains.

To validate the effectiveness and generalizability of the Crucible framework, our evaluation en-
compasses a wide spectrum of case studies, from classic control tasks (Cart-Pole [16]) to complex
computer systems (ABR and scheduling control), and we validate our findings in a real-world de-
ployment. Our experiments demonstrate that Crucible consistently identifies a larger optimization
space than traditional Bayesian methods. By analyzing the results, we identify that an algorithm’s
representational capacity and comprehensibility are two primary factors influencing its potential.
Finally, we show that these insights can guide targeted algorithm redesign, leading to significant
performance improvements.

Our key contributions are summarized as follows:

• We identify and formalize Tuning Potential as a critical, yet overlooked, dimension in
algorithm evaluation. We argue that neglecting this dimension limits the practical impact of
algorithms and hinders its adoption as a core design objective (Section 2).

• We propose Crucible, the first system designed to quantify the Tuning Potential of control
algorithms. Through an LLM-based multi-level expert simulation agent and a formalized en-
vironmental metric, it provides a systematic, quantifiable standard for measuring algorithmic
adaptability (Section 3).

• We validate Crucible’s effectiveness and generalizability across a diverse range of scenar-
ios, from classic control tasks to complex computer systems, including real-world validation.
Our results show that Crucible’s quantitative analysis offers clear guidance for algorithm
design, ultimately enhancing both performance limits and practical value (Section 4).

2 Motivation

2.1 LLM-Based Human Behavior Simulation

LLMs, trained on internet-scale corpora, have demonstrated exceptional performance not only in
traditional natural language processing tasks such as translation, summarization, and question answer-
ing [17, 18], but also exhibited emergent general knowledge and analytical reasoning capabilities in
accordance with scaling laws [19, 20]. LLM advancements have prompted researchers to explore the
application of LLMs in human behavior simulation. In social sciences, numerous studies [21–23] have
investigated LLM-based user behavior simulation and subjective perception assessment, successfully
generating credible individual behavioral patterns and their resulting emergent social behaviors within
groups. In the field of recommendation systems, researchers [24–26] have effectively utilized LLMs
to simulate diverse user behaviors, including browsing, searching, and content consumption activities.
In our research, we apply LLMs to simulate developers’ understanding and adjustment processes of
algorithms, circumventing the high costs and time expenditures associated with personnel training in
traditional large-scale subjective studies, thereby providing an efficient and scalable new method for
algorithm evaluation.

2

0.02.55.07.510.012.515.0
Time Spent on Stall (%)

1.2

1.4

1.6

1.8

2.0

Vi
de

o
Bi

tra
te

 (m
bp

s) Better

BBA
Pensieve
MPC

HYB
BOLA
Pitree

HYB(B)
HYB(C)

(a) ABR: Bitrate and Stall in Puffer

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

better

BBA: -0.18
Pensieve: -0.23
MPC: 0.85
HYB: -2.38

BOLA: 0.77
Pitree: 0.22
HYB(B): 0.58
HYB(C): 0.91

(b) ABR: CDF of QoE in Puffer

SJF FIFO(C) Round
Robin

Dynamic
Partition

FIFO Multi
Feed

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
or

 U
sa

ge
 R

at
io

72.3%

26.4%

71.6%

28.4%

71.4%

27.3%

70.8%

29.2%

70.5%

28.2%

70.4%

29.6%

Active Executors Moving Executors Inactive Executors

(c) Scheduling Control: Executor utilization Ratio in
2G Input Sizes

0 5 10 15 20 25 30
Cumulative Waiting Time(S)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Better

Dynamic
Partition, avg:6.79
FIFO, avg:6.77
Multi
Feed, avg:6.67

Round
Robin, avg:6.67
SJF, avg:6.59
FIFO(C), avg:6.53

(d) Scheduling Control: Cumulative Waiting Time in
2G Input Sizes

Figure 1: The Importance of Algorithm Potential in the Real World

2.2 Control Algorithms in the Real World

We selected two representative examples from the field of computer systems—ABR control in
network transmission and scheduling control in distributed systems—to demonstrate the effectiveness
of Crucible in real-world control algorithms.

Adaptive Bitrate Control Adaptive bitrate algorithms enhance the quality of experience (QoE) by
dynamically selecting the bitrate for the next playback chunk, aiming to improve playback quality
while preventing stalling events [5]. Common control approaches include buffer-based algorithms
(BBA [27], BOLA [28]), hybrid methods combining bandwidth and buffer information (MPC [29],
HYB [30]), decision tree-based approaches (Pitree [31]), and reinforcement learning (RL)-based
solutions such as Pensieve [32].

Scheduling Control Distributed directed acyclic graph (DAG) task scheduling algorithms are re-
sponsible for efficiently allocating and executing interdependent tasks in distributed computing
environments, where dependencies are represented through DAGs [10]. These scheduling algorithms
optimize task allocation mechanisms while considering resource utilization and task dependencies
to enhance overall computational efficiency and reduce completion time. Common scheduling
strategies include Shortest Job First (SJF), Shortest Remaining Time First (SRTF), Fair Scheduling,
First-In-First-Out (FIFO), Round Robin, Dynamic Partitioning [33], Multi-feed methods [34], and
Tetris [35].

2.3 From Algorithm Design to Production Deployment

During the algorithm design phase, researchers typically focus on theoretical performance [11] and
cross-scenario robustness [12], pursuing universal performance across a wide range of application
scenarios. However, when algorithms are actually deployed in production environments, we can obtain
stable feature information specific to the application scenario, which enables targeted optimization.
For instance, user bandwidth demands in network content provider services [36] and system loads in
task scheduling scenarios [37] often exhibit stable and predictable patterns of change. This stability
and predictability of scenario characteristics allow developers to customize optimization strategies

3

LLM
Domain
Knowledge

Optimization
Tools Alg

Log

Design
Deployment,
Application

Adaptive video
streaming Scheduling

Congestion Control

···
Auto Driving

Control Algorithm

Optimization

Feedback

Output

After LLM
optimization

Real WorldIdeal env

Integrated

Potential

Gait Control

Figure 2: Crucible System

according to specific application environments, thereby achieving performance that surpasses general-
purpose algorithms in practical deployments.

2.4 Experimental Validation of the Importance of Potential

Figure 1 demonstrates our experimental results in the domains of ABR and scheduling (detailed
experimental setup in Appendix A), validating the importance of tunability. Our findings reveal: 1)
Algorithms based on simple logic, after appropriate tuning, can significantly outperform complex
designs. In the ABR task, as shown in Figure 1(a), HYB(B) optimized through Bayesian opti-
mization [38] and HYB(C) adjusted via Crucible reduced video playback stalling time by 92%.
Figure 1(b) further indicates that these optimizations elevated the overall QoE ranking from the
lowest position to fourth and first place, respectively. Similarly, in the scheduling problem, the simple
FIFO algorithm tuned by Crucible achieves sub-optimal executor utilization as Figure 1(c) and the
optimal cumulative waiting time as Figure 1(d). 2) Effective tuning encompasses not only parameter
optimization but also improvements in logical structure. In the ABR task, while parameter-optimized
HYB(B) still could not surpass the QoE performance of BOLA and RobustMPC, HYB(C) with
logical adjustments through Crucible ultimately achieves the best QoE performance, thoroughly
demonstrating the importance of algorithm logic adjustment.

3 Design

The overall design of Crucible can be seen in Figure 2. We introduce the design of Crucible
from three aspects: Section 3.1 describes the workflow of the Crucible agent, Section 3.2 provides
a formalized definition of potential, and Section 3.3 explains the interaction between Crucible and
the control algorithms being evaluated.

3.1 Agent Workflow

Domain Knowledge Acquisition We inject domain knowledge into LLMs through system prompts
across three dimensions: task description, optimization objectives, and environment overview. The
task description defines the basic information of the control task, including the input states and the
scope of optional output behaviors; the optimization objectives specify the improvement direction and
evaluation criteria for the control algorithm; the environment overview provides key characteristics
and constraints of the testing scenarios. These three dimensions construct a comprehensive knowledge
framework, enabling LLMs to thoroughly understand the task context, optimization direction, and
operational environmental characteristics.

Tool Utilization The potential of algorithms is primarily manifested in two key dimensions: first,
the representational capacity of the algorithm, referring to the breadth and granularity of its control
space—algorithms with higher control dimensions and greater precision exhibit richer performance
variability in the hyperparameter space, thus possessing greater optimization potential [39, 40]; sec-
ond, the comprehensibility [41, 42] of the algorithm—algorithms with higher structural transparency

4

enable developers to implement targeted functional enhancements through logical reconstruction.
The former can be systematically improved through mature automatic optimization techniques, while
the latter relies on the abstract understanding capabilities of LLMs. Therefore, we encapsulate opti-
mization tools (such as Bayesian optimization)as standardized function interfaces to quantitatively
evaluate the performance improvement of the current algorithmic logic within its hyperparameter
space.

Action and Feedback Loop Drawing inspiration from optimization iteration patterns in industrial
practice, we utilize historical adjustment records as an experiential foundation for subsequent opti-
mization. Each algorithm modification is structurally preserved as a triplet including modification
rationale, specific action, and observed results. Before a new round of optimization, these historical
experiences are comprehensively presented to the LLM, enabling it to learn from previous attempts,
avoid repeating mistakes, and simultaneously identify and replicate successful [43].

Differential Developer Capability Simulation To model developers with varying expertise and
available resources, we simulate different capability levels by adjusting the computational budget
of the agent, rather than by crafting different prompts. We primarily restrict agent capabilities
along two dimensions: first, limiting the number of Bayesian optimization calls available for fine-
grained parameter tuning; second, constraining the number of reflection iterations for breaking
through algorithmic logical boundaries through systematic trial and error. This differential simulation,
grounded in resource consumption, enables us to more realistically evaluate the practical value of
algorithms under various tuning conditions.

3.2 Formalization of Potential

We formalize an algorithm’s potential,P , as its performance gain, weighted by a unified environmental
distance metric that is derived from the performance profiles of a set of probe algorithms.

Performance Characteristic Vector. To quantify an environment’s characteristics, we first define
an evaluation set of environments T . We then select a small set of representative probe algorithms.
For any environment Ek ∈ T , we run the n probe algorithms to obtain a raw performance score
vector [s1(Ek), . . . , sn(Ek)]. To eliminate dimensional effects, we normalize each score component
across all environments in T :

norm(sj(Ek)) =
sj(Ek)− sj,min

sj,max − sj,min
, (1)

where sj,max = maxEk∈T (sj(Ek)) and sj,min = minEk∈T (sj(Ek)). This process yields an n-
dimensional normalized performance characteristic vector V (Ek) for each environment Ek, which
serves as its quantitative fingerprint. The vector is explicitly defined as:

V (Ek) = [norm(s1(Ek)), norm(s2(Ek)), . . . , norm(sn(Ek))] . (2)

Unified Environment Distance and Similarity. Using these characteristic vectors, the distance
between two environments Ei and Et is defined as the root mean square error (RMSE):

dis(Ei, Et) =

√√√√ 1

n

n∑
j=1

(V (Ei)j − V (Et)j)2. (3)

Here, V (Ei)j denotes the j-th component of the vector V (Ei).

The corresponding environment similarity is then defined as:
sim(Ei, Et) = max(0, 1− dis(Ei, Et)). (4)

Tuning Potential Definition. With the environmental similarity metric now formally defined, we
can present the complete definition of an algorithm’s potential, P . It is the similarity-weighted
average performance gain across all test environments. For a given algorithm, let St,o and St,c be its
original and Crucible-tuned performance in a test environment Et, and let Ei be its ideal environment.
The potential is calculated as:

P =
1

|T |
∑
Et∈T

[(St,c − St,o)× sim(Ei, Et)] . (5)

This formulation ensures that performance gains in environments highly dissimilar to the ideal one
are down-weighted, yielding a more robust and fair measure of an algorithm’s intrinsic tunability.

5

3.3 Interaction Between Crucible and Control Algorithms

The Crucible framework supports multiple control tasks, thus designing a standardized interaction
interface. In this interface, control algorithms provide two types of information to the LLM: the
algorithm code itself and execution logs. The execution logs consist of a series of triplets containing
states, actions, and results. Based on this information, the LLM exclusively modifies the control
algorithm and obtains new test results by invoking the original execution file. This unified interface
effectively standardizes the interaction logic, enabling Crucible to flexibly support any type of
control algorithm.

The overall interaction logic of the system is as follows: First, the system traverses all preset test
environments and executes the LLM optimization cycle in each environment. In this cycle, the system
compares the performance of the current algorithm with reference algorithms (which can be overfit
learning-based algorithms or theoretically optimal algorithms) and collects cases with significant
performance differences. Subsequently, the LLM provides algorithm optimization suggestions based
on these difference information. The system implements these suggestions and optionally applies
Bayesian optimization methods to further adjust algorithm parameters. When all environments
have been traversed, the system enters the evaluation phase. For each algorithm under test, it first
determines its ideal environment (e.g., the one yielding the best performance). Then, using the unified
performance-characteristic-based metric defined in Section 3.2, it calculates the similarity between
each test environment and the ideal environment. Finally, it computes the algorithm’s potential by
aggregating the similarity-weighted performance gains across all test environments. Appendix B
provides a detailed pseudocode of the complete Crucible workflow.

4 Evaluation

We begin by outlining our experimental setup in Section 4.1, with complete configuration details
deferred to Appendix A. Our evaluation then unfolds in three progressive stages to systematically
validate the Crucible framework.

First, in Section 4.2, we establish the framework’s effectiveness and generalizability. We demon-
strate its superiority over traditional tuning, validate its performance in a real-world deployment, and
confirm its robustness across different LLMs. Building on this, Section 4.3 shows how Crucible
moves beyond mere performance enhancement to provide quantitative insights into the abstract
concept of algorithmic potential, revealing the key factors that govern it. Finally, in Section 4.4, we
illustrate the practical impact of these insights, showing how they guide targeted algorithm design
and establish potential as a valuable optimization target.

4.1 Experimental Setup

4.1.1 Crucible

This research mainly employs API calls to the Claude 3.7 Sonnet [44], with Bayesian optimization
serving as a hyperparameter tuning tool. For simulating developers with varying optimization
capabilities, we configure the Bayesian iteration count at three distinct levels (0, 10, and 20 iterations)
while setting the reflection iteration steps to 1, 2, and 3, respectively. Our evaluation spans a diverse
range of control tasks to demonstrate Crucible’s generalizability.

4.1.2 Case Studies

We select testbeds from three distinct domains to demonstrate Crucible’s generalizability.

Classic Control. We use the “CartPole-v1” environment from Gym [45], a standard benchmark in
control task. Our evaluation focuses on classic controllers such as Proportional-Integral-Derivative
(PID) [46] and Linear-Quadratic Regulator (LQR) [47], comparing their optimized performance
against RL-based methods DQN [48].

6

Table 1: Performance of classic control algorithms on Cart-Pole, tuned by Crucible.

Algorithm Initial After 1 Bayes After 1 LLM After 2 Bayes After 2 LLM
Bang_bang 34 56 500 - -
PID 34 77 110 271 500
LQR 161 500 - - -

DQN (Reference) 500 - - - -

0 10 20 30 40 50
Improvement over Bayes (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Oboe (avg: 0.92%)
3G (avg: 5.34%)
FCC (avg: 15.98%)
Puffer (avg: 44.10%)

(a) CDF When Bayes=0

0 5 10 15 20 25
Improvement over Bayes (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Oboe (avg: 1.03%)
Puffer (avg: 2.54%)
3G (avg: 4.03%)
FCC (avg: 23.84%)

(b) CDF When Bayes=10

0 5 10 15 20 25
Improvement over Bayes (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Oboe (avg: 1.61%)
FCC (avg: 1.88%)
3G (avg: 5.09%)
Puffer (avg: 20.18%)

(c) CDF When Bayes=20

Figure 3: Optimization Space between Crucible and Bayes

Computer Systems (ABR). We utilize a widely adopted adaptive bitrate (ABR) simulator [32, 29]
with four public network datasets: Oboe [30], FCC [49], 3G [50], and Puffer [51]. The experiments
evaluate prominent algorithms, including BBA, MPC, HYB, BOLA, and Pitree, using the Envivio
video trace [32] as standardized content. In addition to simulated environments, we conduct validation
in a real-world setting using Dash.js [52].

Computer Systems (Scheduling). We employ a Spark simulator [53] with TPC-H query tasks [54]
to evaluate classical and modern scheduling algorithms, including Shortest Job First (SJF), First-In-
First-Out (FIFO), Multi-level feedback (MF), and Tetris [35].

4.2 Crucible’s Effectiveness and Generalizability

4.2.1 Effectiveness: Expanding the Optimization Space

Unlike traditional optimization tools confined to hyperparameter tuning, Crucible implements
modifications at the algorithmic logic level, expanding the optimization space. An illustration of this
is found in the classic Cart-Pole control problem. As shown in Table 1, simple heuristic algorithms
like Bang-bang [16] and PID, which initially perform limited, can achieve the optimal score of
500, matching the performance of a complex black-box algorithm like DQN. This improvement,
particularly the jump from a score of 56 to 500 for the Bang-bang controller after a single LLM-
driven logic modification, is a direct result of altering the core control logic—a performance leap
unattainable through mere parameter tuning.

This principle of logic-level enhancement is not an isolated phenomenon but a general advantage that
holds true in more complex domains. Across our computer system benchmarks, Figure 3 illustrates
the relative improvement ratio achieved by Crucible’s enhanced results Sc compared to Bayesian
optimization results Sb, expressed as (Sc − Sb)/Sb. The results demonstrate that Crucible’s logic-
level improvements consistently yield performance enhancements, achieving gains of up to 44.1% on
the Puffer dataset.

However, these logic-level modifications also introduce variability. Our experiments indicate that
without the fine-tuning provided by Bayesian optimization, pure LLM-driven adjustments can be
unreliable; approximately 60% of test scenarios show no significant performance gains, primarily at-
tributable to the LLM’s limitations in fine-grained numerical operations (Figure 3(a)). This highlights
the critical synergy within our framework. As Bayesian optimization is incorporated, it not only
improves the baseline but also effectively explores the new solution space opened up by the LLM’s
logic changes. Consequently, the proportion of ineffective test scenarios decreases from 60% to 20%
(Figure 3(c)), confirming the powerful combination of logic-level exploration and parameter-level
exploitation.

7

4.2.2 Real World Evaluation

We validate Crucible in a real-world ABR scenario using Dash.js over a public WiFi network. We
test five heuristic algorithms and the RL-based Pensieve as a reference. The results, presented in
Table 2, demonstrate that Crucible successfully enhances the performance of heuristic algorithms
in this noisy, unpredictable environment. For example, the tuned HYB and BBA algorithms achieve a
QoE score of 1.72, outperforming their original versions and even surpassing the RL-based Pensieve
(1.66). Conversely, the complex and less interpretable Pitree algorithm exhibits no improvement,
reinforcing that Crucible’s effectiveness correlates with an algorithm’s comprehensibility. These
findings provide evidence that the benefits of Crucible-guided tuning transfer directly to practical,
real-world deployments.

Table 2: QoE of ABR in a real-world Dash.js deployment before and after Crucible tuning.

QoE State HYB BBA BOLA Pitree MPC Pensieve (RL)
Original 1.40 1.56 1.20 1.73 1.72 1.66
Crucible-Tuned 1.72 1.72 1.54 1.73 1.79 -

4.2.3 Robustness Across Different LLMs

We evaluate the framework using three different models: Claude 3.7 Sonnet (our primary model), the
previous generation Claude 3.5 Sonnet, and GPT-4o-mini. As detailed in Table 3, while the absolute
final performance varies slightly across models, the overall conclusions remain consistent. All LLMs
effectively tune the ABR algorithms, and the relative performance ranking among them remains
largely stable. Claude 3.7 Sonnet achieves a higher final score on the HYB algorithm, suggesting that
more powerful models can unlock greater potential in certain cases, but other models also deliver
significant improvements.

Table 3: Final ABR performance after tuning with different LLMs. All runs were configured with 3
iterations and 20 Bayesian iterations.

Algorithm Initial Claude 3.5 Sonnet GPT-4o-mini Claude 3.7 Sonnet
BBA 0.75 1.13 1.10 1.11
BOLA 1.02 1.07 1.08 1.06
HYB 0.92 1.03 1.04 1.12
Pitree 0.31 0.35 0.37 0.36
MPC 1.07 1.09 1.10 1.09

4.3 Potential Analysis

In Figure 4, we compare the percentage performance improvements of ABR and scheduling al-
gorithms under different Crucible capability settings against their original scores. Regarding
optimization tool usage constraints, Figures 4(a) through 4(c) demonstrate a positive correlation
between increased Bayesian optimization iterations and significant algorithm performance enhance-
ments. Specifically, when the number of iterations increased from one to two, a notable performance
leap occurred—in ABR, the improvement rate with zero Bayesian iterations rose from 9.54% to
29.91%, while in scheduling algorithms, the proportion of scenarios failing to achieve performance
improvements decreased from 80% to 60%. Between the two dimensions examined, the ability
of optimization tools to unlock algorithmic logic potential has a more pronounced impact on per-
formance enhancement. Furthermore, comparing ABR and scheduling algorithms reveals that due
to differences in input state complexity (ABR only involves buffer size and bandwidth, whereas
scheduling encompasses complex DAG graph information and node states), LLMs face varying
degrees of comprehension challenges, resulting in significantly lower improvement magnitudes for
scheduling algorithms compared to ABR algorithms.

We illustrate the detailed potential analysis results with ABR algorithms as an example in Table 4.
Through our analysis, we derive two key findings: First, even among algorithms representing simple
logic, the HYB algorithm utilizing a broader state space demonstrates significantly greater potential

8

0 20 40 60
Improvement over init (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Bayes(0), avg: 9.54%
Bayes(10), avg: 45.48%
Bayes(20), avg: 59.78%

(a) ABR, Iterate 1 Times

0 20 40 60
Improvement over init (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Bayes(0), avg: 29.91%
Bayes(10), avg: 52.61%
Bayes(20), avg: 60.37%

(b) ABR, Iterate 2 Times

0 20 40 60 80
Improvement over init (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Bayes(0), avg: 16.59%
Bayes(10), avg: 59.21%
Bayes(20), avg: 67.85%

(c) ABR, Iterate 3 Times

0 5 10 15 20 25
Improvement over Init (%)

0.00

0.25

0.50

0.75

1.00

CD
F

Mean=1.18

(d) Scheduling, Iterate 1 Times

0 5 10 15
Improvement over Init (%)

0.00

0.25

0.50

0.75

1.00

CD
F

Mean=1.37

(e) Scheduling, Iterate 2 Times

0.0 2.5 5.0 7.5 10.0 12.5
Improvement over Init (%)

0.00

0.25

0.50

0.75

1.00

CD
F

Mean=1.70

(f) Scheduling, Iterate 3 Times

Figure 4: Improvement in Different Ability

than the BBA algorithm using only a single state space, indicating that algorithmic representational
capacity substantially influences potential enhancement; Second, as a decision tree algorithm distilled
from deep reinforcement learning, Pitree exhibits lower optimization potential despite its initial
limited performance, suggesting that the complex logical structure of decision trees may negatively
impact potential enhancement. Therefore, researchers aspire to design ABR algorithms that improve
comprehensibility, such as ComTree [14].

Table 4: Potential of ABR Algorithms

Alg init 1 Iter 2 Iter 3 Iter Impro Potential Ideal
HYB 0.92 ± 0.64 0.99 ± 0.61 1.03 ± 0.57 1.02 ± 0.60 0.10 ± 0.18 0.068 ± 0.117 FCC
Pitree 0.31 ± 0.10 0.33 ± 0.10 0.44 ± 0.27 0.38 ± 0.09 0.07 ± 0.12 0.033 ± 0.022 Puffer
BOLA 1.01 ± 0.45 1.05 ± 0.46 1.04 ± 0.45 1.05 ± 0.45 0.03 ± 0.06 0.025 ± 0.032 3G
BBA 0.75 ± 0.75 1.04 ± 0.59 0.98 ± 0.56 1.01 ± 0.57 0.26 ± 0.38 0.018 ± 0.008 Oboe
MPC 1.07 ± 0.52 1.10 ± 0.59 1.08 ± 0.53 1.09 ± 0.54 0.02 ± 0.04 0.017 ± 0.014 3G

4.4 From Potential Assessment to Algorithm Optimization

This section explores how to transform Crucible’s potential assessments into effective algorithm
optimization strategies to enhance ultimate performance.

4.4.1 Enhancing Algorithmic Representational Capacity

In the case of ABR algorithms, the results show that the BBA algorithm exhibits both lower opti-
mization potential and inferior final performance compared to the HYB algorithm. This indicates
inherent representational limitations in BBA’s buffer-only control approach. Based on this insight,
we improve BBA to create the BBA_C algorithm (detailed implementation in Appendix C). Specific
enhancements include: incorporating current bandwidth as an additional control input and introducing
a bandwidth-based control branch to select the highest bitrate that would not cause video stalling.

As shown in Figure 5(a), the enhanced BBA_C’s initial performance closely resembles the original
BBA algorithm, differing by only 0.5%. From a traditional evaluation perspective, these algorithms
appear nearly equivalent. However, after optimization adjustments via Crucible, BBA_C’s enhanced
representational capacity advantage becomes evident. During each optimization iteration, BBA_C
consistently outperforms BBA, ultimately achieving a 4% performance improvement. This case
demonstrates how enhancing algorithmic representational capacity can increase optimization potential
and ultimately improve performance.

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Better

BBA: 1.84
BBA(L1): 1.87
BBA(L2): 1.87
BBA(L3): 1.89

BBA_C: 1.85
BBA_C(L1): 1.93
BBA_C(L2): 1.95
BBA_C(L3): 1.97

(a) CDF of ABR QoE, Oboe, L1 means 1 iters

80 100 120 140 160 180 200 220
Final completion time(S)

0.2

0.4

0.6

0.8

1.0

CD
F

Better

MF(1), avg:145.6
SJF(1), avg:148.0
MF(2), avg:148.2
SJF(2), avg:145.4
MF(3), avg:149.3
SJF(3), avg:142.1

(b) CDF of Scheduling FCT, 10*2G input Sizes

Figure 5: CDF After Optimization

4.4.2 Simplifying Algorithm Logic

Another important dimension involves improving developers’ comprehension capabilities and opti-
mization space by simplifying algorithmic logic. Figure 5(b) presents a typical case in task scheduling:
initially, the Multilevel Feedback algorithm outperforms the SJF algorithm; however, after optimiza-
tion adjustments through Crucible, the SJF algorithm achieves shorter task completion times than
the supposedly more advanced Multilevel Feedback algorithm.

The fundamental cause of this phenomenon lies in the high-dimensional complexity of input states
in DAG scheduling problems. This complexity makes it difficult for LLMs to comprehensively
understand the internal logic of complex algorithms, thereby limiting their ability to add appropriate
optimization logic to complex algorithms. In contrast, LLMs can more effectively understand and
optimize foundational algorithms with simple, clear logic. This finding emphasizes the important
value of "simplicity" in algorithm design, particularly in scenarios leveraging AI-assisted optimization.

5 Limitations and Broader Impacts

Limitations As the first work exploring the potential of control algorithms, this research has two main
limitations. First, the stability issue: since we use an LLM as our foundation, different capabilities
and versions of LLMs may influence the results. However, we believe this does not diminish the value
of assessing algorithmic potential, as different LLMs essentially simulate developers with varying
skill levels, making the evaluation, selection, and design of algorithms still practically meaningful.
Second, we currently cannot directly modify the internal logic of black-box algorithms; therefore, in
this paper, we discuss and analyze decision trees distilled from black-box algorithms. Effectively
understanding and adjusting the internal logic of black-box algorithms remains an open challenge,
providing direction for future research.

Broader Impacts We hope our work can inspire a rethinking of algorithm design, positioning
potential as a new optimization direction or even as an optimization metric.

6 Conclusion

We introduced Crucible, a framework that addresses the gap between algorithm design and practical
deployment by quantitatively evaluating Tuning Potential. Crucible leverages an LLM agent to
simulate developer behavior and introduces a formalized potential metric to quantify this untapped
optimization space. Our extensive evaluations—spanning classic control tasks, complex computer
systems, and a real-world deployment—demonstrate that Crucible not only enhances algorithm per-
formance beyond traditional methods but also establishes tuning potential as a valuable, quantifiable
metric. This work advocates for a shift in algorithm design, treating Tuning Potential as a property to
be evaluated from the outset, rather than as a post-deployment afterthought. This empowers designers
to build adaptable algorithms that maintain long-term value in evolving real-world environments.

10

Acknowledgments We thank the anonymous NeurIPS reviewers for their constructive feedback,
which has significantly improved this work exploring new optimization directions. This research
was supported by the Beijing National Research Center for Information Science and Technology
under Grant BNR2023TD03005-2, the NSERC Discovery Grant, and the Beijing Key Laboratory of
Networked Multimedia.

References
[1] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control theory. Courier Corpora-

tion, 2013.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving:
Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[3] S. G. Tzafestas, “Mobile robot control and navigation: A global overview,” Journal of Intelligent
& Robotic Systems, vol. 91, no. 1, pp. 35–58, 2018.

[4] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and
control techniques for self-driving urban vehicles,” IEEE Transactions on intelligent vehicles,
vol. 1, no. 1, pp. 33–55, 2016.

[5] Y. Sani, A. Mauthe, and C. Edwards, “Adaptive bitrate selection: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 4, pp. 2985–3014, 2017.

[6] L. Jia, C. Zhou, T. Huang, C. Li, and L. Sun, “Rdladder: Resolution-duration ladder for
vbr-encoded videos via imitation learning,” in IEEE INFOCOM 2023-IEEE Conference on
Computer Communications. IEEE, 2023, pp. 1–10.

[7] L. Jia, T. Huang, and L. Sun, “Zixia: A reinforcement learning approach via adjusted rank-
ing reward for internet congestion control,” in ICC 2022-IEEE International Conference on
Communications. IEEE, 2022, pp. 365–370.

[8] L. Jia, C. Zhou, C. Li, J. Liu, and L. Sun, “Towards user-level qoe: Large-scale practice in
personalized optimization of adaptive video streaming,” in Proceedings of the ACM SIGCOMM
2025 Conference, 2025, pp. 1154–1166.

[9] L. Jia, C. Zhou, T. Huang, C. Li, and L. Sun, “Meet challenges of rtt jitter, a hybrid internet
congestion control algorithm,” in Proceedings of the ACM Web Conference 2024, 2024, pp.
2768–2776.

[10] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive survey for scheduling
techniques in cloud computing,” Journal of Network and Computer Applications, vol. 143, pp.
1–33, 2019.

[11] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2004.

[12] U. Mackenroth, Robust control systems: theory and case studies. Springer Science & Business
Media, 2013.

[13] D. M. Hamby, “A review of techniques for parameter sensitivity analysis of environmental
models,” Environmental monitoring and assessment, vol. 32, pp. 135–154, 1994.

[14] L. Jia, C. Li, Z. Yuan, J. Chen, T. Huang, J. Liu, and L. Sun, “Beyond interpretability: Exploring
the comprehensibility of adaptive video streaming through large language models,” arXiv
preprint arXiv:2508.16448, 2025.

[15] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman, “A large-scale evaluation of acoustic
and subjective music-similarity measures,” Computer Music Journal, pp. 63–76, 2004.

[16] R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduction. MIT press Cambridge,
1998, vol. 1, no. 1.

11

[17] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
W. Saunders et al., “Webgpt: Browser-assisted question-answering with human feedback,” arXiv
preprint arXiv:2112.09332, 2021.

[18] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[19] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv preprint
arXiv:2001.08361, 2020.

[20] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong
et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223, 2023.

[21] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, “Generative agents:
Interactive simulacra of human behavior,” in Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology, 2023, pp. 1–22.

[22] G. V. Aher, R. I. Arriaga, and A. T. Kalai, “Using large language models to simulate multiple
humans and replicate human subject studies,” in International Conference on Machine Learning.
PMLR, 2023, pp. 337–371.

[23] Z. Hussain, M. Binz, R. Mata, and D. U. Wulff, “A tutorial on open-source large language
models for behavioral science,” Behavior Research Methods, vol. 56, no. 8, pp. 8214–8237,
2024.

[24] R. Ren, P. Qiu, Y. Qu, J. Liu, W. X. Zhao, H. Wu, J.-R. Wen, and H. Wang, “Bases: Large-
scale web search user simulation with large language model based agents,” arXiv preprint
arXiv:2402.17505, 2024.

[25] Z. Zhao, W. Fan, J. Li, Y. Liu, X. Mei, Y. Wang, Z. Wen, F. Wang, X. Zhao, J. Tang et al., “Rec-
ommender systems in the era of large language models (llms),” arXiv preprint arXiv:2307.02046,
2023.

[26] X. Huang, J. Lian, Y. Lei, J. Yao, D. Lian, and X. Xie, “Recommender ai agent: Integrating
large language models for interactive recommendations,” arXiv preprint arXiv:2308.16505,
2023.

[27] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based approach
to rate adaptation: Evidence from a large video streaming service,” in Proceedings of the 2014
ACM conference on SIGCOMM, 2014, pp. 187–198.

[28] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bitrate adaptation for online
videos,” IEEE/ACM transactions on networking, vol. 28, no. 4, pp. 1698–1711, 2020.

[29] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dynamic adaptive
video streaming over http,” in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, 2015, pp. 325–338.

[30] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro, J. Zhan, and
H. Zhang, “Oboe: Auto-tuning video abr algorithms to network conditions,” in Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication, 2018, pp.
44–58.

[31] Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, and M. Xu, “Pitree: Practical implementation of abr
algorithms using decision trees,” in Proceedings of the 27th ACM International Conference on
Multimedia, 2019, pp. 2431–2439.

[32] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pensieve,” in
Proceedings of the Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 197–210.

12

[33] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling,” in
Proceedings of the 5th European conference on Computer systems, 2010, pp. 265–278.

[34] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, “Quincy: fair
scheduling for distributed computing clusters,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 2009, pp. 261–276.

[35] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource packing
for cluster schedulers,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp.
455–466, 2014.

[36] R. Zhang, C. Yang, X. Wang, T. Huang, C. Wu, J. Liu, and L. Sun, “Practical cloud-edge
scheduling for large-scale crowdsourced live streaming,” IEEE Transactions on Parallel and
Distributed Systems, vol. 34, no. 7, pp. 2055–2071, 2023.

[37] S. Shen, V. Van Beek, and A. Iosup, “Statistical characterization of business-critical workloads
hosted in cloud datacenters,” in 2015 15th IEEE/ACM international symposium on cluster, cloud
and grid computing. IEEE, 2015, pp. 465–474.

[38] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning
algorithms,” Advances in neural information processing systems, vol. 25, 2012.

[39] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algorithms and applications,”
arXiv preprint arXiv:2003.05689, 2020.

[40] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in evolutionary algo-
rithms: A survey,” ACM computing surveys (CSUR), vol. 45, no. 3, pp. 1–33, 2013.

[41] A. A. Freitas, “Comprehensible classification models: a position paper,” ACM SIGKDD explo-
rations newsletter, vol. 15, no. 1, pp. 1–10, 2014.

[42] D. Martens, J. Vanthienen, W. Verbeke, and B. Baesens, “Performance of classification models
from a user perspective,” Decision Support Systems, vol. 51, no. 4, pp. 782–793, 2011.

[43] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-
thought prompting elicits reasoning in large language models,” Advances in neural information
processing systems, vol. 35, pp. 24 824–24 837, 2022.

[44] Anthropic, “Claude 3.7 sonnet,” https://www.anthropic.com/claude/sonnet, 2025, accessed May
1, 2025.

[45] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[46] M. J. Willis, “Proportional-integral-derivative control,” Dept. of Chemical and Process Engi-
neering University of Newcastle, vol. 6, 1999.

[47] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic
regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[48] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[49] M. F. B. Report, “Raw data measuring broadband america 2016,” https://www.fcc.gov/reports-
research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-
2016, 2016, [Online; accessed 19-July-2016].

[50] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path bandwidth traces from
3g networks: Analysis and applications,” in Proceedings of the 4th ACM Multimedia Systems
Conference, 2013, pp. 114–118.

13

https://www.anthropic.com/claude/sonnet

[51] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. A. Levis, and K. Winstein,
“Learning in situ: a randomized experiment in video streaming.” in NSDI, vol. 20, 2020, pp.
495–511.

[52] DASH Industry Forum, “dash.js,” https://dashjs.org/, 2024, [Online; accessed 15-February-
2025]. [Online]. Available: https://dashjs.org/

[53] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh, “Learning
scheduling algorithms for data processing clusters,” in Proceedings of the ACM special interest
group on data communication, 2019, pp. 270–288.

[54] Transaction Processing Performance Council, “Tpc-h: A decision support benchmark,” https:
//www.tpc.org/tpch/, 2025, accessed May 1, 2025.

14

https://dashjs.org/
https://dashjs.org/
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As shown in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations as Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code is available in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]

Justification: Our code is available in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce our experimental setup at Section 4.1 and Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As shown in Table 4, we report standard error, and the main results are
displayed using CDFs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As described in Section 4.1, we introduce the token API.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts as Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets used in this paper comply with Licenses and Terms of Use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is available in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not perform crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We introduce the usage of LLMs as Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Dataset Traces Avg. BW (Mbit/s) BW Range (Mbit/s)
3G 142 1.52± 0.72 [0.60, 4.59]
Oboe 428 2.77± 1.32 [0.34, 5.70]
FCC 264 1.33± 0.55 [0.19, 3.43]
Puffer 500 1.60± 0.88 [0.30, 3.60]

Table 5: Details of Network Trace Datasets

Appendix

A Details Experimental Setup

A.1 ABR Experimental Setup

A.1.1 Network Traces

We summarize the characteristics of the four public network traces utilized in this study in Table 5,
including the number of traces, average bandwidth per trace, and bandwidth range.

A.1.2 Video Samples

We use the "EnvivoDash3" video from the "MPEG-DASH reference videos," consistent with previous
works [32, 29]. The video is 193 seconds in length and segmented into 4-second chunks with bitrates
of {300, 750, 1200, 1850, 2850, 4300} kbps.

A.1.3 Player Configuration

We employ a classical VoD scenario player simulator as used in [32, 29], with an initial default video
quality of 750 kbps.

A.1.4 Quality of Experience (QoE) Metrics

For the video-on-demand scenario, we adopt the classical QoElin as our QoE metric [32, 29]. This
model is defined as follows:

QoElin =

N∑
n=1

q(Rn)− µ

N∑
n=1

Tn −
N−1∑
n=1

|q(Rn+1)− q(Rn)| (6)

where N represents the total number of video segments, Rn denotes the bitrate of the n-th segment,
and q(Rn) is a function mapping bitrate to perceived user quality. Tn represents the buffering time
incurred while downloading the n-th segment, and µ is the weight coefficient for buffering time. The
final term penalizes variations in video quality to ensure playback smoothness. Specifically, in our
implementation, we set µ to 4.3.

A.2 Scheduling Experimental Setup

A.2.1 Spark Simulator

We utilize a high-fidelity simulator [53] to evaluate the performance of our scheduling policies. This
simulator is designed to faithfully emulate the behavior of a real Spark cluster by capturing several
key real-world phenomena:

1. Initial Task Wave Effects: The first wave of tasks in a particular stage often exhibits slower
execution compared to subsequent tasks. This slowdown arises from factors such as Spark’s
pipelined task execution, just-in-time (JIT) compilation of task code, and initial overheads
like establishing TCP connections between executors. The simulator accounts for this by

22

drawing the runtime of first-wave tasks from a separate distribution distinct from that of
later waves.

2. Executor Startup Delays: Adding an executor to a Spark job involves starting a new
JVM process, which typically incurs a delay of 2–3 seconds. To accurately reflect this
behavior, the simulator imposes a startup delay whenever an executor is reallocated across
jobs, mirroring the real-world costs associated with executor initialization.

3. Impact of High Parallelism: High degrees of parallelism can negatively impact the per-
formance of individual tasks. Wider shuffle operations require more TCP connections and
introduce additional computational overhead when merging data from a large number of
shards. The simulator captures these effects by sampling task durations from distributions
corresponding to different levels of parallelism, provided such data is available.

Through these mechanisms, the simulator effectively replicates the dynamic behavior of a real-world
Spark cluster. This enables rigorous testing and validation of scheduling policies under realistic
conditions, ensuring that the results are representative of practical deployment scenarios.

A.2.2 Workload Setup

For the input workload, we use 2GB of data consisting of 10 TPC-H standard query tasks [54].
TPC-H is a benchmark suite widely used to evaluate decision support systems. It consists of complex
analytical queries that reflect real-world workloads in distributed data processing environments. Each
query involves a combination of computations, such as joins, aggregations, and data filtering, which
are represented as Directed Acyclic Graphs (DAGs) of tasks in the Spark environment. The DAG
structure introduces dependencies between tasks, making it ideal for testing the efficacy of advanced
scheduling strategies.

B Crucible Pseudocode

The detailed interaction logic between Crucible and the control algorithm is illustrated in Algo-
rithm 1.

C Optimization for BBA

We modify BBA to incorporate two control logics based on bandwidth and buffer occupancy. The
bandwidth-based control selects the maximum bitrate that does not cause stalling, while the original
buffer-based logic selects its own bitrate. The algorithm then chooses the smaller of these two bitrates.
The detailed pseudocode can be found in 2.

23

Algorithm 1: Crucible Algorithm
Input: Algorithm Algcur, Reference algorithm Algref , Number of LLM adjustments Nllm,

Number of Bayesian optimizations NBO, Test environments Envs
Output: Potentials

1 Function ApplyBayesianOptimization(Alg, NBO, E):
2 if NBO > 0 then
3 params, ranges = LLMIdentifyParameters(Alg)
4 Alg, score = BO(Alg, params, ranges,NBO, E)

5 else
6 score = E(Alg)

7 return Alg, score

8 for Ei ∈ Envs do
9 Algicur = Algtest, score

i
init = Ei(Algicur), score

i
cur = scoreiinit

10 Algicur, score
i
cur = ApplyBayesianOptimization(Algicur, NBO, E

i)

11 BadCasesi = {}
12 for j = 1 to Nllm do
13 /* Compare with reference algorithm and collect bad cases */
14 newBadCasesi = CompareAlgs(Algicur, Algref , E

i)

15 BadCasesi = BadCasesi ∪ newBadCasesi

16 /* Get optimization suggestions from LLM */
17 suggestionsi, reasonsi = LLMOptimizationSuggestions(Algicur, BadCasesi)
18 /* Apply optimization suggestions */
19 Alginew = ApplySuggestions(Algicur, suggestions

i)

20 Alginew, score
i
new = ApplyBayesianOptimization(Alginew, NBO, E

i)

21 if scoreinew > scoreicur then
22 /* Score comparison and update */
23 Algicur = Alginew
24 scoreicur = scoreinew

25 /* Find ideal environment and calculate potentials */
26 Potentials = {}
27 Ebest = null
28 Potentialmax = 0

29 for Ei ∈ Envs do
30 Ei = GetIdealEnv(Algcur, Envs)

31 Di = GetDistance(Ei, Ei)

32 Potentiali =
scoreicur−scoreiinit

Di

33 Potentials = Potentials ∪ {Potentiali}
34 return Potentials

24

Algorithm 2: BBA_C Algorithm
Input: Current buffer size buffer, chunk length chunk_len, download speed speed, video

bitrate array bitrates, dimension dim
Output: Selected bitrate index rate

1 cushion← 10 reservoir ← predefined value beta← 0.95
2 /* Calculate bandwidth-based bitrate */
3 bw_rate← 0 for i = dim− 1, dim− 2, . . . , 0 do
4 if bitrates[i]× chunk_len < beta× speed× buffer then
5 bw_rate← i break

6 /* Calculate buffer-based bitrate */
7 buf_rate← 0 if buffer < reservoir then
8 buf_rate← 0
9 else

10 if buffer ≥ reservoir + cushion then
11 buf_rate← dim− 1
12 else
13 buf_rate← ⌊(dim− 1)× buffer−reservoir

cushion ⌋

14 /* Choose the minimum of both bitrates */
15 rate← min(bw_rate, buf_rate)
16 rate← max(0,min(rate, dim− 1))
17 return rate

25

	Introduction
	Motivation
	LLM-Based Human Behavior Simulation
	Control Algorithms in the Real World
	From Algorithm Design to Production Deployment
	Experimental Validation of the Importance of Potential

	Design
	Agent Workflow
	Formalization of Potential
	Interaction Between Crucible and Control Algorithms

	Evaluation
	Experimental Setup
	Crucible
	Case Studies

	Crucible's Effectiveness and Generalizability
	Effectiveness: Expanding the Optimization Space
	Real World Evaluation
	Robustness Across Different LLMs

	Potential Analysis
	From Potential Assessment to Algorithm Optimization
	Enhancing Algorithmic Representational Capacity
	Simplifying Algorithm Logic

	Limitations and Broader Impacts
	Conclusion
	Details Experimental Setup
	ABR Experimental Setup
	Network Traces
	Video Samples
	Player Configuration
	Quality of Experience (QoE) Metrics

	Scheduling Experimental Setup
	Spark Simulator
	Workload Setup

	Crucible Pseudocode
	Optimization for BBA

