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Abstract

In neuroscience, models that learn representations of single-neuron in-vivo activity
are essential for understanding the functional identities of individual neurons. The
primary goal of these models—spanning Transformer-based, contrastive, and varia-
tional autoencoder frameworks, is not to predict neural activity, but to distill it into
a stable, low-dimensional embedding that captures a neuron’s intrinsic features.
These learned identity embeddings should be invariant to changing experimental
conditions while reflecting the neuron’s molecular type and anatomical location,
thus enabling downstream tasks like in-vivo cell type prediction. However, current
models suffer from limited generalizability due to batch effects: non-biological vari-
ations arising from differences in experimental design, animal subjects, or recording
platforms. These batch effects cause overfitting, reducing model robustness and
utility. Crucially, previous work has not rigorously evaluated model performance
on unseen, or "out-of-domain," animals and stimuli, creating a significant gap in
the field. To solve this, we first introduce a comprehensive benchmark protocol
that explicitly evaluates generalization to unseen batches. Second, we propose a
model-agnostic adversarial training strategy where a discriminator network forces
the primary model to learn embeddings that are invariant to batch information. Our
approach is compatible with all major single-neuron representation models and
significantly improves their robustness. This work highlights the critical need for
generalization in such models and offers an effective solution, paving the way for
the creation of unified neural atlases from in-vivo activity.

1 Introduction

In the field of neuroscience, the exploration of the intricate mechanisms underlying neural activity
has been an enduring endeavor. A key challenge is to understand the stable, functional identities of
individual neurons from their dynamic activity patterns. To this end, single-neuron representation
models have emerged as a crucial tool [[1H4]. The central goal of these models is not to predict
moment-to-moment neural activity, but rather to distill the complex activity of a neuron into a stable,
low-dimensional embedding that represents its intrinsic functional identity. This learned identity
should be independent of transient factors like the specific stimuli an animal receives, and is instead
related to fundamental properties such as the neuron’s molecular type, anatomical position, and
connectivity status.

There are three main data-driven paradigms for learning these identity embeddings. The first encom-
passes models featuring implicit representations, typically built on Transformer architectures, which
elegantly define the representation of each neuron as a learnable identity vector, as elaborated in [5}16]].
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The second paradigm centers on contrastive learning, which learns a robust embedding by maximizing
the similarity of representations derived from different modalities of a single neuron’s activity (e.g.,
its waveform and firing patterns) [7]]. The third paradigm relies on variational autoencoders (VAEs),
which learn a compressed latent embedding by training on an activity reconstruction task [8H10].

The primary output of these models is a learned feature vector—the identity embedding—that
encapsulates the neuron’s time-invariant and intrinsic properties. The utility of this embedding is then
validated by its performance on downstream tasks, such as facilitating the prediction of molecular
cell types and anatomical locations for a single neuron. These predictive capabilities are critical
for enabling advanced, long-term closed-loop experiments, for instance, by allowing for targeted
perturbations of specific, functionally-identified neurons [[11].

However, existing single-neuron representation models face significant challenges in terms of gen-
eralizability. Batch effects (non-biological variations arising from different experimental designs
or animal subject) can contaminate the learned embeddings (Figure|[I]a). These batch effects cause
models to overfit to specific experimental conditions, severely compromising their ability to general-
ize. For instance, an embedding model trained on data from one animal may fail on another, even
for the same cell type in the same brain region. Previous studies have often overlooked this issue,
failing to rigorously evaluate model generalization on new animals and stimuli (out-of-domain). This
overlooks the critical aspect of model robustness, which is essential for the practical application of
these models in broader neuroscience research.

To address these issues, this paper introduces a comprehensive benchmark and a robust training
strategy. In the following sections, we will present a series of experiments, such as cell-type prediction
across different stimuli or across different animals. For each experiment, we will first detail the
specific setup and protocol, and then immediately present the results, providing a clear and self-
contained evaluation of model generalization. This structure is designed to rigorously assess model
performance on previously unseen data, filling a key gap in prior research.

Moreover, we propose a model-agnostic strategy (Figure[I]b) to mitigate the influence of batch effects.
Adversarial training has proven effective in various machine learning domains for removing unwanted
variations [12f]. In our context, an adversarial discriminator attempts to predict batch information from
the learned neuron embeddings. In response, the primary model is trained to produce embeddings
that are invariant to the batch identity—meaning the representations are statistically indistinguishable
regardless of which animal or stimulus condition they came from. This forces the model to focus
on intrinsic biological features rather than experimental artifacts. Our framework is designed to be
compatible with all three major representation learning paradigms, enhancing their generalizability.

In summary, this study underscores the significance of generalization in single-neuron representation
models. By leveraging this training, we aim to enhance the robustness of the learned identity
embeddings, mitigating batch effects. This approach not only advances the development of single-
neuron representation models but also paves the way for their broader practical applications in
neuroscience research.

2 Related Work

NeuPRINT-Implicit Single Neuron Representations [S]: The pursuit of implicit single neuron
representations has been driven by the recognition that the in vivo physiology of a neuron comprises
two distinct elements: the neuron’s inherent properties and the synaptic and modulatory inputs it
receives. To disentangle these components, recent studies have proposed self-supervised approaches
for inferring identity vectors for neurons. These methods rely on models of neuronal dynamics
with exogenous inputs, leveraging the temporal structure of neural activity to extract neuron-specific
features. For instance, by formulating a model of activity dynamics that depends solely on a neuron’s
past activity and population-level statistics invariant to individual ordering, researchers have been able
to infer neuronal identities from population recordings. This approach capitalizes on the assumption
that the underlying dynamics of each neuron, despite being influenced by external inputs, possess
unique signatures that can be captured through self-supervision. These implicit representations offer
a powerful way to summarize a neuron’s functional characteristics without explicitly defining its
features, but they may still be affected by factors such as batch-specific variations in experimental
conditions.

NEMO-Multimodal Contrastive Learning [7]: Multimodal contrastive learning has emerged
as a promising strategy for single neuron representation learning. By jointly embedding different



modalities of single-neuron data, such as activity autocorrelations and waveforms, these methods
aim to capture the shared information across modalities while discarding modality-specific noise.
The underlying assumption is that neurons with similar functional roles will exhibit similar patterns
across multiple modalities, and by maximizing the similarity of their representations in a shared
latent space, a more robust and discriminative representation can be obtained. For example, recent
studies have utilized advanced contrastive learning frameworks to map these diverse modalities into a
common embedding space, effectively enhancing the representational power of single-neuron models.
This approach not only leverages the complementary information from multiple sources, but also
helps in reducing the impact of noise within individual modalities. However, like other methods,
it remains vulnerable to batch effects, which can introduce confounding variations that distort the
learned representations and limit their generalizability.

VAE-Based Method [10]: VAEs have also been widely employed for unsupervised pre-training
in single-neuron representation learning. VAEs compress high-dimensional input data, such as
neuronal waveforms and activity autocorrelations, into lower-dimensional latent spaces. Through the
optimization of reconstruction loss and KL-divergence, VAEs learn to represent the essential features
of single neuron data while discarding redundant information. These learned latent representations
provide a compact summary of single neuron activity patterns, which can be further utilized for tasks
such as cell type classification and brain region prediction.

End2End Method: End-to-end supervised training methods are the common approaches for pre-
dicting cell types/brain regions directly based on individual neuronal activities. We have adopted
the well-established LOLCAT as the end-to-end basemodel [13]]. The end-to-end method attempts
to directly extract and map molecular type labels or anatomical location information from neuronal
activities. However, it cannot comprehensively represent the functional identity information of
neurons in advance like the self-supervised method. The prediction of labels is merely a verification
and partial application of the learned functional identity representation.

Adversarial strategies for eliminating batch effects have been used in the field of single-cell omics
before [14]. To our knowledge, we are the first to treat in vivo activity as an omics and apply
adversarial strategies, but the goal of this paper is to demonstrate the effectiveness of adversarial
strategies. In-depth comparison and selection of adversarial methods is a promising future work.

3 Method

We introduce a model-agnostic adversarial training framework to mitigate batch effects in single-
neuron representations, thereby improving generalization across experimental conditions and animal
subjects. Our approach is compatible with mainstream single-neuron representation paradigms,
including implicit Transformer-based models, contrastive learning, and VAE).

3.1 Problem Formulation

Let X = {xi}lN:1 be raw neuronal observations, each associated with an intrinsic label y; € Y
(e.g., cell type, region) and a batch label b; € B (e.g., animal ID, stimulus, session). The objective
is to learn an encoder fy : X — R? that maps X; to an embedding z; = fy(x;), such that z;
preserves y;-relevant features while being invariant to batch effects. Standard models often overfit to
batch-specific information, resulting in poor generalization to unseen batches.

3.2 Adversarial Training Framework

Our framework consists of two modules: (1) a representation encoder fy that extracts embeddings z;,
and (2) a batch discriminator D that predicts batch labels from z;. Training is adversarial: D is
optimized to identify batch information, while fy is trained to remove it, encouraging batch-invariant
representations.

3.3 Objective Functions
The total loss combines a task-specific base loss and an adversarial loss:
* Base Loss Lys: Defined by the specific single-neuron representation paradigms, e.g.,

cross-entropy for classification (LOLCAT), reconstruction loss for VAE, or contrastive loss
for self-supervised learning (NEMO).

* Adversarial Loss Ly Cross-entropy loss for batch prediction. Dy minimizes this loss,
while fp maximizes it to confuse the discriminator.
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Figure 1: Schematic overview of the experimental protocol and adversarial training framework for
evaluating and improving single-neuron representation models. (a) Illustration of the experimental
protocol designed to rigorously assess the generalization ability of single-neuron representation
models. The training and validation dataset comprises diverse visual stimuli, including drifting
gratings, static gratings, natural scenes, and natural movies, which are used to train the single-neuron
representation model. The learned representations are subsequently evaluated on a downstream
task. To assess out-of-distribution generalization, a distinct test dataset consisting of locally sparse
noise stimuli is employed, which is not present in the training/validation set. This protocol enables
explicit evaluation of model performance on novel stimulus conditions, providing a stringent test
of generalizability. (b) Schematic of the model-agnostic adversarial training framework. Detail in
Method Section and Figure 2.

The joint objective is:

Irgnmgx Liase(fo) — AMbaen (Do (f5))s

where A controls the adversarial regularization strength. We employ a Gradient Reversal Layer
(GRL) [12] to enable efficient end-to-end optimization.

3.4 Model-Agnostic Integration

Our framework is architecture-agnostic: fy can be any single-neuron activity encoder (e.g., implicit
transformer, contrastive based MLP, autoencoder), and Dy is a two hidden layer MLP operating on
z;. Hyperparameters are selected via cross-validation.

3.5 Intuitive Explanation

Our adversarial approach is intuitively illustrated by figure 2} Without adversarial training, a
model can be confounded by batch effects (colors), learning a decision boundary that is not based
on true biological features (shapes) and thus fails to generalize to unseen test data (left panel).
Adpversarial training corrects this by forcing the model to create batch-invariant embeddings that are
indistinguishable to a discriminator network. As a result, the model is compelled to learn a more
robust and generalizable decision boundary based only on the intrinsic features of the cell types,
leading to correct classification on novel data (right panel). This process aligns with the principle of
invariant risk minimization, ensuring the model relies on biologically meaningful signals rather than
experimental artifacts.
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Figure 2: Illustration of adversarial training for improving the generalizability of single-neuron
representation models. Each shape represents a neuron from a specific cell type, and colors indicate
different experimental batches. Left: Without adversarial training, the model hyperplane (dashed line)
for cell type classification is confounded by batch effects, leading to poor generalization on unseen
batches. Right: Adversarial training encourages the model to learn batch-invariant representations,
resulting in a more robust and generalizable decision boundary across batches. This approach enables
reliable cell type classification even in novel experimental conditions.

4 Benchmark Experiment Setup

We focus on evaluating the impact of adversarial training on the performance of the original model.
Detail implementation can be found in appendix [B|LOLCAT, [C|NeuPRINT, D] VAE. Key implemen-
tation details (optimizer, schedule, discriminator capacity) sit in Appendix A.5.

4.1 Cell Type Prediction Across Visual Stimulus
For this task, we use the V1-CellType dataset.

V1-CellType [15]: This dataset is from multimodal recordings of the mouse primary visual cortex
(V1). 2-photon calcium imaging with a 4.3Hz temporal sampling frequency was used to obtain
population activity recordings, and the spatial coordinates of recorded neurons were provided.
Functional recordings were obtained from four mice, namely SB025, SB026, SB028, and SB030.
Recordings were perfomed under 4 sets of visual stimuli. In total, these recordings encompass 9728
neurons. Each session endured approximately 20 minutes and documented around 500 neurons.
Subsequently, single cell spatial transcriptomics was conducted on the tissue. The mRNA expression
of 72 selected genes in ex-vivo tissue was profiled to classify neurons as excitatory or inhibitory.
Neurons were further subclassified into Lamp5, Pvalb, Vip, and Sst subtypes.

We conduct experiments on this dataset to evaluate cell type prediction across the four distinct visual
stimulus conditions: spontaneous activity, drifting gratings, and two different natural scene image
sets. Previous studies have typically either pooled data from all stimulus conditions and performed
random splits for training and validation, or focused on a single stimulus type. In contrast, our
experimental protocol is designed to rigorously assess the generalization ability of models to novel
stimulus conditions. Specifically, we train and validate both the representation model and the cell
type classifier using neurons recorded under three of the four stimulus conditions, and then evaluate
the model on neurons recorded under the remaining, held-out stimulus condition. This out-of-domain
evaluation protocol ensures that the model is tested on data distributions not encountered during
training, providing a stringent assessment of its robustness and generalization to unseen stimuli.

We systematically compare model performance under three experimental settings: (i) without adver-
sarial training and without splitting by stimulus condition (i.e., neurons from all stimulus conditions
are mixed and randomly split), (ii) without adversarial training but with splitting by stimulus condition
(cross-stimulus evaluation), and (iii) with adversarial training under the cross-stimulus evaluation
protocol. This comprehensive comparison allows us to quantify the impact of adversarial training on
model robustness and generalization across different stimulus conditions. As with the cross-animal
experiments, we do not evaluate the effect of adversarial training on the NEMO approach for this



dataset due to the complexity of preprocessing the V1-CellType dataset into the multimodal input
format required by the NEMO model.

4.2 Cell Type Prediction Across Animals

We continue to conduct experiments on the V1-CellType dataset to assess cell type prediction across
animals. Previous studies have either performed experiments on individual animals or mixed neurons
from all animals together before randomly splitting them into training and validation sets. As
described above, the V1-CellType dataset contains recordings from four mice. We train and validate
both the representation model and the cell type classifier using neurons from three mice, and then
evaluate the model on neurons from the remaining mouse, which is held out entirely from model
optimization. This out-of-domain testing protocol allows us to rigorously assess the generalization
ability of the learned representations and classifiers to unseen animals.

We systematically compare the model performance under three conditions: (i) without adversarial
training and without splitting by animal ID (i.e., neurons from all animals are mixed and randomly
split), (i) without adversarial training but with splitting by animal ID (cross-animal evaluation), and
(ii1) with adversarial training under the cross-animal evaluation protocol. This enables us to quantify
the effect of adversarial training on model robustness and generalization across animals. Due to the
challenges in preprocessing the V1-CellType dataset into the multimodal input format required by
the NEMO model, we do not evaluate the effect of adversarial training on the NEMO approach for
this dataset.

4.3 Anatomical Brain Region Prediction Across Animals

To further evaluate the adversarial training, we conduct experiments on the IBL Brain-wide Map
dataset, focusing on anatomical brain region prediction across animals.

IBL Brain-wide Map [16]: This dataset is a comprehensive set of recordings from 115 mice
performing a decision-making task with sensory, motor, and cognitive components, obtained with
547 Neuropixels probe insertions covering 267 brain areas in the left forebrain and midbrain and
the right hindbrain and cerebellum. Following recordings, probe tracks were reconstructed using
serial-section 2-photon microscopy, and each recording site and neuron was assigned a region in
the Allen Common Coordinate Framework. Annotations divided into 10 broad areas by Cosmos
hierarchical grouping: isocortex, olfactory areas (OLF), cortical subplate(CTXsp), cerebral nuclei
(CNU), thalamus (TH), hypothalamus (HY), midbrain (MB), hindbrain (HB), cerebellum (CB) and
hippocampal formation (HPF).

In previous studies using this data, models have often been trained and validated on data pooled
from multiple animals, with random splits that do not account for inter-animal variability. In
contrast, our experimental protocol is designed to rigorously assess the ability of models to generalize
anatomical region predictions to entirely unseen animals. Specifically, we train and validate both the
representation model and the anatomical region classifier using neurons recorded from a subset (0.8)
of animals, and then evaluate the model on neurons from a held-out animal that is excluded from all
stages of model optimization. This out-of-domain evaluation protocol ensures that the model is tested
on data distributions that reflect biological variability across individual animals, providing a stringent
assessment of its robustness and generalization.

We systematically compare model performance under three experimental settings: (i) without adver-
sarial training and without splitting by animal subjects (i.e., neurons from all animals are mixed and
randomly split), (i) without adversarial training but with splitting by animal subjects (cross-animal
evaluation), and (iii) with adversarial training under the cross-animal evaluation protocol. This com-
prehensive comparison enables us to quantify the impact of adversarial training on model robustness
and generalization across animals in the context of anatomical brain region prediction. We do not
evaluate the effect of adversarial training on the NeuPRINT approach for the IBL Brain-wide Map
dataset due to the complexity of preprocessing required for NeuPRINT input formats.

5 Result

Cell Type Prediction Across Visual Stimulus (V1-CellType)

Cell Type Prediction Across Visual Stimulus (V1-CellType) In Table|l| we evaluate the perfor-
mance of different models on cell type prediction under various visual stimulus conditions. The results
reveal distinct patterns of model behavior across the three experimental settings. The NeuPRINT



Table 1: Cell Type Prediction Across Visual Stimulus (V1-CellType). Each cell shows the top-1
accuracy. The "Out-of-domain" columns show the performance on the generalization task and, in
parentheses, the percentage decrease relative to the "In-domain" result.

Model In-domain Out-of-domain  Out-of-domain
ode (Random Split)  (Cross-Stimulus)  (+Adversarial)
LOLCAT (End2End) 0.746 0.358 (-52.0%) 0.566 (-24.1%)
NeuPRINT (Implicit) 0.787 0.644 (-18.2%) 0.743 (-5.6%)
VAE (Explicit) 0.732 0.569 (-22.3%) 0.669 (-8.6%)

(Implicit) model demonstrates the strongest baseline performance with an in-domain accuracy of
0.787, followed by LOLCAT (End2End) at 0.746 and VAE at 0.732. However, when tested under
cross-stimulus conditions, all models experience significant performance degradation, with LOLCAT
showing the most dramatic drop (-52.0%) to 0.358, while NeuPRINT maintains relatively better
performance with a more modest decrease (-18.2%) to 0.644. The introduction of adversarial training
leads to substantial improvements across all models, with LOLCAT showing the most remarkable
recovery (+58.1%) to 0.566. This suggests that while End2End is more sensitive to stimulus varia-
tions, it benefits the most from adversarial training in terms of relative improvement. NeuPRINT,
despite its initial robustness, still shows meaningful improvement (+15.4%) with adversarial training,
achieving the highest final accuracy of 0.743.

Table[d] Table[5] and Table[6]provide a detailed breakdown of model performance when each visual
stimulus condition is held out as the test set. Across all models, we observe a consistent trend:
prediction accuracy is lowest when spontaneous activity is used as the test condition, moderately
higher for drifting gratings, and highest for both natural scene image sets. This pattern highlights the
particular challenge posed by spontaneous activity, which appears to be the most distinct from the
other stimulus types in terms of neural response patterns.

Interestingly, we believe that the relatively poor performance on spontaneous and drifting grating
conditions is not only due to their distributional differences, but also because these stimulus types are
relatively simple and less diverse. As a result, neuronal activity under these conditions may not fully
show the their computational roles.

Table 2: Cell Type Prediction Across Animals (V1-CellType). Each cell shows the top-1 accuracy.
The "Out-of-domain" columns show the performance on the generalization task and, in parentheses,
the percentage decrease relative to the "In-domain" result.

Model In-domain Out-of-domain  Out-of-domain

ode (Random Split)  (Cross-Animals)  (+Adversarial)
LOLCAT (End2End) 0.746 0.452(—39.4%) 0.694 (—7.0%)
NeuPRINT (Implicit) 0.787 0.582(—26.0%) 0.739(—6.1%)
VAE (Explicit) 0.732 0.557(—23.9%) 0.668 (—8.7%)

Cell Type Prediction Across Animals (V1-CellType) Table 2] presents the performance of models
on cell type prediction across different animals using the V1-CellType dataset. The results reveal
interesting patterns in model generalization capabilities. Similar to the cross-stimulus scenario,
all models show significant degradation under cross-animal conditions. LOLCAT experiences the
most severe performance drop (-39.4%) to 0.452, while VAE shows relatively better preservation
of performance with a -23.9% decrease to 0.557. The application of adversarial training leads
to substantial improvements across all models, with LOLCAT again showing the most dramatic
recovery (+53.5%) to 0.694. Notably, while NeuPRINT maintains the highest absolute accuracy
throughout, LOLCAT demonstrates the most significant relative improvement with adversarial
training, suggesting that adversarial training is particularly effective for models that are initially more
sensitive to animal-specific variations.

Anatomical Brain Region Prediction Across Animals (IBL Brain-wide Map) In Table ??, we
assess the performance of different models on anatomical brain region prediction across animals
using the IBL Brain-wide Map dataset. The results reveal a more balanced performance landscape
compared to the V1-CellType experiments. All models show similar baseline performance, with



Table 3: Anatomical Brain Region Prediction Across Animals (IBL Brain-wide Map). Each cell
shows the top-1 accuracy. The "Out-of-domain" columns show the performance on the generalization
task and, in parentheses, the percentage decrease relative to the "In-domain" result.

Model In-domain Out-of-domain  Out-of-domain

ode (Random Split) (Cross-Animals)  (+Adversarial)
LOLCAT (End2End) 0.507 0.389(—23.1%) 0.482(—4.9%)
NEMO (Contrastive) 0.511 0.400 (—21.7%) 0.496 (—2.9%)
VAE 0.488 0.396 (—18.9%) 0.457 (—6.4%)

NEMO (Contrastive) slightly leading at 0.511, followed by LOLCAT at 0.507 and VAE at 0.488.
Under cross-animal conditions, the performance degradation is more moderate compared to the V1-
CellType experiments, with decreases ranging from -18.9% to -23.1%. The application of adversarial
training leads to consistent improvements across all models, with NEMO showing the most significant
relative improvement (+24.0%) to 0.496. Interestingly, while the absolute improvements are smaller
than in the V1-CellType experiments, the relative improvements are more consistent across models,
suggesting that adversarial training may be particularly effective for anatomical region prediction
tasks. The final performance levels are also more closely clustered, with all models achieving
accuracies between 0.457 and 0.496, indicating that this task may be inherently more challenging or
that the models have reached a common performance ceiling.
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Figure 3: UMAP visualizations of single-neuron embeddings learned by the NeuPRINT model,
colored by cell type (left) and batch/stimulus condition (right). Batchl and Batch2 correspond to
the two natural scene stimulus conditions (natural 01 and natural 02), while Batch3 and Batch4
correspond to spontaneous activity and drifting gratings, respectively. (a) Without adversarial training.
(b) With adversarial training.

Visualization To qualitatively assess the impact of adversarial training on the batch invariance of
single-neuron representations, we visualized the learned embeddings of the NeuPRINT model using
UMAP, colored by both cell type and batch (stimulus condition), as shown in Figure[3] In the baseline
setting without adversarial training (Figure [3p), the UMAP projection colored by cell type reveals
partial separation between neuronal subtypes, indicating that the model captures some intrinsic
cell type information. However, when colored by batch, the embeddings exhibit clear clustering
according to the four stimulus conditions, demonstrating a pronounced batch effect. This suggests
that the learned representations are confounded by stimulus-specific information, which may hinder
generalization to novel conditions. In contrast, after applying our adversarial training framework
(Figure[3p), the UMAP visualization shows that the separation between cell types is preserved or even
enhanced, while the clustering by batch is substantially diminished. The embeddings corresponding to



different stimulus conditions are now well mixed, indicating that batch-related information has been
effectively removed from the representations. This qualitative result demonstrates that adversarial
training successfully disentangles intrinsic neuronal properties from batch effects, enabling the model
to learn more robust and generalizable single-neuron representations. These findings are consistent
with our quantitative results, highlighting the effectiveness of adversarial training in improving
cross-condition generalization.

6 Disscusion

Conclusion: This work emphasizes the importance of generalization in single-neuron representation
models for reliable real-world neuroscience applications. We established a rigorous evaluation proto-
col assessing performance on unseen animals and stimuli, offering a stringent robustness check. Our
proposed model-agnostic adversarial training framework, which eliminates batch-related information
from representations, consistently enhances cross-condition and cross-animal generalization across
state-of-the-art models. This advancement promotes more robust practical use of such models in
neuroscience research.

Limitation: Our adversarial training framework has notable limitations. First, experiments are
restricted to mouse data, leaving cross-species generalization (e.g., rodents to primates/humans)
untested—critical for translational research. Second, evaluations are limited to specific recording
platforms and labs; batch effects from varying acquisition devices or protocols across labs pose
unaddressed challenges for universal models. Third, some neuronal subtypes show poor cross-animal
generalization post-training, potentially due to genuine biological variability or low evolutionary con-
servation. Additionally, comparisons with other batch-invariance methods (including non-adversarial
and single-cell omics approaches) remain underexplored. Fourth, in this work, we did not treat
different trials as distinct batches, which would require more complex experimental design. This is
indeed a highly promising area for exploration, as some neurons exhibit reduced response strength
upon repeated exposure to the same stimulus [[17]].

Broad Impact: At present, our study is limited to mouse datasets, and the broader societal impact

is correspondingly constrained. However, the proposed adversarial training framework represents a
significant step toward the development of more robust and generalizable single-neuron representation
models. By mitigating batch effects and improving model generalization, our approach has the
potential to facilitate the deployment of computational models in in vivo experiments, enabling more
precise and reliable identification of neuronal cell types and anatomical locations. In the long term,
this could accelerate the translation of computational neuroscience advances into experimental and
clinical applications, ultimately contributing to a deeper understanding of brain function and disease.

7 Reproducibility

The process of reproducing these models was very difficult for us, and we made
certain changes to the original code to ensure that it runs and converges. The
original code can be accessed via the following links: NeuPRINT at |https://
github.com/lumimim/NeuPRINT/, LOLCAT at https://github.com/nerdslab/lolcat,
and NEMO at https://github.com/Haansololfp/NEMO_ICLR. The data can be
found at the links: IBL at https://www.internationalbrainlab.com/brainwide-map
and V1-CellType at https://figshare.com/articles/dataset/A_transcriptomic_axis_
predicts_state_modulation_of_cortical_interneurons/19448531. All work can be com-
pleted on a single A100.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contribution of using
adversarial training to boost the generalization ability of single-neuron activity representation
models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a "Discussion” section (Section 7) that explicitly addresses
limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not present any theoretical results, assumptions, or proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides links to the models and datasets used in the experiments.
It also outlines the experimental protocols, including the datasets used, the training and
validation splits, and the evaluation metrics.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides links to the models and datasets used in the study in section
8.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides a detailed description of the experimental setup in the
"Experiment Setup" and "Method" sections.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The paper presents balanced accuracy results for various models.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides the type of compute equipment.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper does not describe any unethical practices.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive impacts of the research in the
"Broad Impact" section, highlighting how improved model generalization could facilitate
more reliable identification of neuronal cell types and anatomical locations, potentially
accelerating the translation of computational neuroscience advances into experimental and
clinical applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that would require safeguards
against misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper provides links to the models and datasets used, and it cites the
relevant sources for these assets.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

17


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper just use llm to check grammer.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Detail Methods

In this section, we present our model-agnostic adversarial training framework designed to mitigate
batch effects in single-neuron representations, thereby enhancing generalization across experimental
conditions and animal subjects. Our approach integrates seamlessly with existing single-neuron
representation paradigms, including Transformer-based models, contrastive learning frameworks, and
variational autoencoders (VAEs).

A.1 Problem Formulation

Let X = {x;}, denote a collection of raw neuronal observations, where each x; corresponds to a
single neuron. Each neuron is associated with: - An intrinsic property label y; € ) (e.g., cell type,
anatomical region), - A batch label b; € B encoding experimental metadata (e.g., animal ID, stimulus
condition, recording session).

The goal of single-neuron representation learning is to learn an encoder fy : X — R? that maps
x; to a low-dimensional embedding z; = fy(x;), such that z; captures y;-relevant intrinsic features
while being invariant to b;-related batch effects. Downstream tasks (e.g., classification of y;) are then
performed using z;.

Key challenge: Standard models overfit to b;, leading to poor generalization when tested on neurons
from unseen b ¢ support(training batches).

A.2 Adversarial Training Framework

Our framework consists of two components: 1.Representation Encoder fy: Maps raw data x; to
embeddings z;, optimized to preserve intrinsic features relevant to y;. 2.Batch Discriminator D:
A classifier that takes z; as input and predicts the batch label b;, optimized to detect batch-specific
patterns in z;.

Training proceeds adversarially: fg aims to produce embeddings that "fool" Dy (i.e., z; contains no
information about b;), while Dy aims to accurately predict b; from z;. This min-max game enforces
z; to be invariant to batch effects.

A.3 Objective Functions

The total training objective combines a downstream task-specific base loss and an adversarial loss:
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Base Task Loss Ly, This loss depends on the specific representation learning paradigm and down-
stream task:

- Supervised/self-supervised learning: For classification tasks (e.g., cell type prediction), Lpae iS
cross-entropy between predicted y; and ground truth.

- Reconstruction-based models (e.g., VAESs): Ly, includes reconstruction loss (e.g., mean squared
error) and latent distribution regularization.

- Contrastive learning: Ly, 18 @ contrastive loss maximizing similarity of augmentations from the
same neuron and minimizing similarity across different neurons.

Adversarial Loss L,q, The discriminator Dy is trained to minimize the batch classification loss
Luaen(zi, b;), typically cross-entropy:
Loach = —E(x, b,)~p [log Dg(zi, b;)],

where D is the data distribution. The encoder fy is trained to maximize Lyqyen (i-€., confuse Dy),
leading to the adversarial objective:

Eadv = E(xi,bi)ND [log(l - D¢(Zia bl))} .

3.3.3 Joint Optimization The combined objective balances preserving task-relevant features and
removing batch information:

mein mgx £base(f9) - £balch(D¢ o f9)7

where A > 0 controls the strength of adversarial regularization. To simplify training, we use a
Gradient Reversal Layer (GRL) [12]], which applies a gradient sign reversal during backpropagation
from Dy to fg, enabling end-to-end optimization without explicit min-max alternation.

A4 Model-Agnostic Architecture Design

Our framework is compatible with diverse single-neuron representation models by treating fy as a
pluggable component:

- Transformer-based models (e.g., [S]): fy is a Transformer encoder that processes time-series spike
data, with Ly, defined by downstream classification or self-supervised objectives.

- Contrastive learning frameworks (e.g., [7]]): fy encodes multimodal inputs (waveform, 3D ACG),
and Lyase includes contrastive losses across modalities, with D operating on the unified embedding
space.

- Variational autoencoders (e.g., [8]]): fy is the VAE encoder, Ly,s combines reconstruction loss and
KL divergence, and D regularizes the latent space to be batch-invariant.

The discriminator Dy is a multi-layer perceptron (MLP) with architecture
[embedding dimension d — h; — hy — |B|], where hq, ho are hidden layers.

A.5 Implementation Details

For all experiments, models were trained using the Adam optimizer with an initial learning rate of
le-4. The learning rate was reduced by a factor of 0.1 if the validation loss plateaued for 5 consecutive
epochs. We used a batch size of 512 and trained with an early stopping criterion based on validation
accuracy to prevent overfitting. The discriminator was implemented as a two-hidden-layer MLP
with 256 units per layer and ReLU activations. The adversarial weight, which balances the loss of
primary tasks with the loss of adversarial, was selected among 8 values between 0.00001 and 100 on
a logarithmic scale based on reverse cross-validation.

B LOLCAT Framework

LOLCAT is a supervised framework for predicting cell types from individual neuronal activities
using a multi-head attention network, consisting of three main components.
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Local segment feature extractor: First process segments before aggregating the information
globally: For each segment, the inter-event interval (IEI) distribution is computed using D log-spaced
bins. Each segment is 256 timepoints. Segments are sampled randomly from raw calcium traces.

XtERD, tGT

The resulting D-dimensional input vector is fed to the local feature extractor, which is a multi-layer
perceptron (MLP) equipped with batch normalization layers and rectified linear units.

yt € h]OCal(Xt)a Piocar R - RF

The same local feature extractor is shared across segments, as it is tasked to extract features that
locally characterize the signature of a neuron’s activity.

Multi-head attention module: We aggregate the extracted local features to produce a cell-level
representation that describes its global distribution. To allow the network to seek out or attend to
specific segments, an attention network generates an attention score for each segment, and then uses
it to weight the segment’s contribution to the final global feature vector.

agi) = softmaz (hgate,i(Yt)), hgate : RF SR

n

A= T i), AR R

tetrials

This is simply a weighted sum of the segment-level local features. The use of the softmax operator
ensures that the attention scores sum up to 1. All the pooled feature vectors are concatenated to
produce a final global feature vector, which can simultaneously include features describing the
average statistics of the neuron’s activity and other features encoding the presence of segments that
are characteristic of a particular cell type (or group).

z = concat [z(l), e z(")]

After concatenating all of the features from the different attention heads, we then pass this global
representation to a final classification network, which uses the information aggregated at multiple
scales, with different degrees of selectivity, to predict the cell type. We use an MLP with two hidden
layers.

C NeuPRINT Framework

Sampling: For each neuron we randomly sample 2 segments of 512 timesteps from its continuous
calcium flourescence traces. Each resulting sample for the i** neuron is denoted X ().

Multihead attention: We use the transformer encoder architecture and the masking strategy. Random
timesteps in X (V) are masked (zero-out) with probability 0.25 and concatenated with the permutation-
invariant population summary P and time-invariant representation ¢(*) along the feature dimension

to form input Y(Z). Note that the same learnable ¢(*) is repeated at every timestep, enforcing time-

invariance. We embed input Y(i) and employ sinusoidal positional embedding to encode the temporal

order in the input sequence, resulting in

X = Emb(X®) + E.

For each input Xf”, a set of weights W& ¢ RTxda WK ¢ RT>xdx WV ¢ RT¥4 are learned to
transform input X ) to a set of query, key, and value (Q,K,V), where

Q=XOw? K=XOwEK v=xOw",
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Attention between temporal tokens for one attention head is computed as:

Attention(Q, K, V') = softmax <QKT) Vv (8)
s Vi,

Each head will find a different pattern in the data and produce an output of size d,,. The final attention
output will be a concatenation of these single-head outputs. We use 2 heads in our model.

Feedforward layers and residual connections are subsequently applied to attention output:
ZW = X 4 MSA(X®) + FF(X® + MSA(X®)) )

where MSA represents the multihead attention operation, FF represents the feedforward layer
with ReLU activation, and Z(%) represents the reconstructed calcium trace with masked timesteps
recovered.

D VAE Framework

We adapt a variational autoencoder paradigm from the LOLCAT framework, enabling self-supervised
learning of cell-level representations from neuronal activity segments, followed by downstream
classification. The process is as follows:

1. Local Segment Feature Extractor: As in the original LOLCAT, each segment is first processed
to obtain the inter-event interval (IEI) distribution, resulting in a D-dimensional input vector:

XteRD, tET

This vector is fed into a local feature extractor (a multi-layer perceptron with batch normalization and
ReLU activations):
Yt = hlocal(xt)a hlocal : RD — ]RF

2. Multi-head Attention Module: The extracted local features are aggregated using a multi-head
attention mechanism to produce a global cell-level representation. For each attention head i:

agi) = softmax(hgue,i(¥¢)), Pgate,i ‘RF 5 R

2D = 3" ')y, WY RF - RF
tEtrials

The global representation is obtained by concatenating the outputs of all attention heads:

z = concat [z(l), e ,z(")]

3. Variational Autoencoder (VAE) Module: Instead of directly using z for classification, we treat it
as the input to a VAE. The VAE encodes z into a latent distribution:

g5 (ulz) = N (u; p(z), diag(o*(2)))
where u is the latent variable, and u(-), o(+) are neural networks parameterized by ¢.
The decoder reconstructs the original segment-level IEI features from the latent variable:
po({x:}[u)
The VAE is trained by maximizing the evidence lower bound (ELBO):
Lyvae = Eq, (ujz) [log pe({x¢}[u)] — Dxr(gg(ulz)|Ip(0))
where p(u) is a standard normal prior.

4. Downstream Classification: After self-supervised training, the learned latent representation u is
used for downstream cell type classification. A two-layer MLP is trained on u to predict the cell type:

g = MLPCls(u)

where MLP,s consists of two hidden layers with non-linear activations.
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Table 4: LOLCAT (End2End) performance when different stimulus conditions are used as test set.

Spontaneous  Drifting Natural0Ol  Natural02

Setting as test as test as test as test Variance
Out-of-domain (Cross-Stimulus) 0.251 0.312 0.432 0.437 0.0082
Out-of-domain (+Adversarial) 0.462 0.523 0.631 0.648 0.0074

Table 5: NeuPRINT (Implicit) performance when different stimulus conditions are used as test set.

Spontaneous  Drifting Natural0Ol  Natural02

Setting as test as test as test as test Variance
Out-of-domain (Cross-Stimulus) 0.542 0.612 0.713 0.709 0.0069
Out-of-domain (+Adversarial) 0.648 0.708 0.812 0.804 0.0063

E Introduction of Different Stimuli

Drifting gratings were centred on the mean receptive field of the microscope’s field of view. The
coatings had a duration of 0.5 s, a temporal frequency of 2 Hz, and a spatial frequency of 0.15 cycles
per degree. The gratings drifted in 12 different directions (from 0 to 330°, separated by 30°) and were
of 3 different sizes (5°, 15° and 60° diameter).

Spontaneous activity was recorded in front of a uniform grey screen, set to a steady cyan level equal
to the background of all the stimuli presented for visual responses protocols. The duration of these
grey screen presentations was typically between 15 and 20 min.

Natural scenes from the ImageNet database were contrast-normalized. Each image was presented
for 0.5 s with an interstimulus interval uniformly distributed from 0.3 to 1.1 s. Five per cent of the
total presentations was grey stimuli. During each session we presented a given set of 1,000 different
natural images twice.

F Detailed Cross-Stimulus Evaluation Results

Table[d] Table[5] and Table[6]provide a detailed breakdown of model performance when each visual
stimulus condition is held out as the test set.

For the LOLCAT (End2End) model, performance under the cross-stimulus protocol drops most
sharply when generalizing to spontaneous activity, and is also relatively low for drifting gratings. In
contrast, the model achieves higher accuracy when evaluated on natural scene stimuli, indicating
that complex scenes are more informative for cell type prediction. Adversarial training leads to a
substantial recovery in performance, particularly for the more challenging spontaneous and drifting
conditions, while the accuracy for natural scenes remains robust.

The NeuPRINT (Implicit) model demonstrates overall higher robustness, with less dramatic drops
in accuracy across all stimulus types. However, it still shows lower performance on spontaneous
and drifting conditions compared to natural scenes. Adversarial training further boosts its perfor-
mance, especially for the more difficult spontaneous and drifting conditions, thereby narrowing the
performance gap between stimulus types.

The VAE model exhibits a similar trend: its baseline cross-stimulus accuracy is lower than that of
NeuPRINT, with the lowest performance on spontaneous activity and drifting gratings. Adversarial
training leads to substantial improvements across all conditions.

Overall, these results underscore the importance of evaluating models under diverse and challenging
stimulus conditions. The relatively poor performance on spontaneous and drifting conditions may
be attributed to the limited diversity of activity elicited by these stimuli, which may not fully reveal
the computational roles of different cell types. Adversarial training not only improves average
performance but also helps models generalize more evenly across different types of visual input, with
the most pronounced benefits observed for the most challenging test conditions.
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Table 6: VAE performance when different stimulus conditions are used as test set.

Spontaneous  Drifting Natural0Ol  Natural02

Setting as test as test as test as test Variance
Out-of-domain (Cross-Stimulus) 0.468 0.532 0.637 0.639 0.0075
Out-of-domain (+Adversarial) 0.573 0.634 0.732 0.737 0.0068

Table 7: LOLCAT (End2End) performance, comparing training on two stimulus conditions versus
the baseline of training on all three other conditions. The results illustrate the performance decrease
when using a less diverse training set.

Test Set Training Set Combination
Train: All 3 Others 0.462
Spontaneous Drifting, NaturalO1 0.410
p Drifting, Natural02 0.425
NaturalO1, Natural02 0.445
Train: All 3 Others 0.523
o Spontaneous, NaturalO1 0.485

Drifting

Spontaneous, Natural(02 0.499
NaturalO1, Natural02 0.512

Train: All 3 Others 0.631
Spontaneous, Drifting 0.530

Natural01 Spontaneous, Natural02 0.595
Drifting, Natural02 0.615

Train: All 3 Others 0.648

Natural02 Spontaneous, Drifting 0.542

Spontaneous, NaturalO1 0.605
Drifting, NaturalO1 0.628
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