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Many key sequential decision problems, such as climate change mitigation [1]
or epidemic mitigation [6], have multiple conflicting objectives. Multi-objective
reinforcement learning (MORL) algorithms can handle such problems [4].

When the user utility is unknown and can be non-linear, as is often the case
with human decision makers, a Pareto front is often the desired solution concept.
MORL algorithms that compute the Pareto front do exist [5, 9], but are often
tailored towards and/or tested deterministic environments. This is undoubtedly
in part due to the specific difficulties that the combination of multiple objectives
and stochastic environments entail. In contrast to the single-objective case, it
becomes highly non-trivial to execute the a value-matching policy from a value
function. In fact, this can involve solving a combinatorial optimization problem
at every timestep during execution [7]. However, many environments just are
intrinsically stochastic in nature [3, 8].

In this paper, we propose Pareto Value Conditioned Networks (PVCN), a
new method that builds on Pareto Conditioned Networks (PCN) [5] and Pareto-
optimal policy following (POPF) networks [7]. PVCN effectively discovers Pareto-
optimal policies in stochastic environments with accurate value estimates.

1 The Pareto Value Conditioned Networks Algorithm
We propose Pareto Value Conditioned Networks (PVCN). PVCN maintains two
networks: a policy network πθ(s|V, h), that outputs a distribution over actions,
and is conditioned on a remaining time horizon h, and a desired value V that
the agent aims to achieve from state s and horizon h; and a POPF-network
ϕκ(N, s, a, s′) that helps us track the next desired value.

To see why a POPF-network is necessary, we note that we explicitly assume
stochastic environments. This means that once we take an action a from state
s, the subsequent states and their associated achievable values are not always
the same. For example, assume that an agent desires a 2-objective value of (5, 5)
and performs an action a in s, leading to a (0, 0) reward. There are two sub-
sequent states s′ and s′′ where the agent can end up with equal probability.
From neither of these states (5, 5) is an achievable value, but (10, 0) is achiev-
able from s′, and (0, 10) from s′′. By taking the average of these value vectors,
we can still achieve a value of (5, 5) by taking a in s, as long as the agent knows
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to either chase (0, 10) in s′′ and (10, 0) in s′. This is what the POPF network,
ϕκ(N, s, a, s′), does; it is conditioned on the transition, and N, which is the pre-
vious desired value minus the immediate reward associated with the transition.

Fig. 1. The value estimates,
evaluated policy values, and
buffer returns of PVCN in
discrete watershed, with the
value estimates, evaluated pol-
icy values of PCN. And value
estimates of PQL [9].

During training PVCN collects samples by se-
lecting a desired value V̂ for the initial state s (and
appropriate time horizon h), and then repeatedly
selects an action a using the policy network πθ,
observing the transition (s, a, h, r, s′), and then
determines the next desired value V̂′. An expe-
rience replay buffer is kept with (s, a, h, r, s′) in
sequences making it easier to extract Monte-Carlo
estimates of the values during training. When
selecting the initial desired value vector during
training, we randomly pick a vector from the ap-
proximated Pareto coverage set (PCS) for the ini-
tial state and add a small bonus vector.

Targets for training πθ are computed by se-
lecting a (s, a, h)-tuple and sampling batches
(s, a, h, r, s′) with identical (s, a, h), along with
their returns. Then the Monte-Carlo value estimate V̂ is used as the desired
value. The loss function is NLL with an added entropy term. For the POPF net-
works, the N values are computed using V̂, and the subsequent desired values
are the Monte-Carlo estimates of the subsequent values for s′ from the same
batch of (s, a, h, r, s′)-tuples. The POPF network’s loss function is MSE.

2 Preliminary Experiments & Discussion
To test PVCN on stochastic environments, we use a discretised version of the
Watershed problem by [2]. As we can see in Figure 1, PVCN learns to accurately
estimate the values of the policies and learns a broad PCS. PCN [5] on the hand
cannot handle the stochasticity of the environment well, and is overly optimistic
with its value estimates. Pareto Q-learning learns a slightly worse PCS, but its
policies cannot be executed faithfully. In addition, we compared PVCN and PCN
on Deep Sea Treasure (DST), a deterministic environment with a known Pareto
coverage set. For DST, PVCN and PCN both learn the entire PCS, but PVCN
is slightly slower as expected, as it is not tailored to deterministic environments.

Conclusion and Discussion In this paper, we proposed PCVN, a new MORL
algorithm for learning Pareto-optimal policies stochastic environments. We have
shown that we can learn the entire Pareto coverage set in Deep Sea Treasure,
which is deterministic. But more importantly, we have shown that PCVN can
learn Pareto-optimal policies in highly stochastic environments using Random
MOMDPs. In future work, we aim to expand this to high-dimensional state
spaces, and perform more thorough experimentation.
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