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Abstract

Interpretability of point cloud (PC) models be-
comes imperative given their deployment in
safety-critical scenarios such as autonomous vehi-
cles. We focus on attributing PC model outputs to
interpretable critical concepts, defined as mean-
ingful subsets of the input point cloud. To en-
able human-understandable diagnostics of model
failures, an ideal critical subset should be faith-
ful (preserving points that causally influence pre-
dictions) and conceptually coherent (forming se-
mantically meaningful structures that align with
human perception). We propose InfoCons, an
explanation framework that applies information-
theoretic principles to decompose the point cloud
into 3D concepts, enabling the examination of
their causal effect on model predictions with learn-
able priors. We evaluate InfoCons on synthetic
datasets for classification, comparing it qualita-
tively and quantitatively with four baselines. We
further demonstrate its scalability and flexibility
on two real-world datasets and in two applications
that utilize critical scores of PC.

1. Introduction
Point clouds are unordered sets of points representing the
3D world. Point cloud (PC) models directly take the point
cloud as input and perform various downstream tasks such
as classification, segmentation and object detection (Chang
et al., 2015; Armeni et al., 2016). The advancements in
deep learning-based PC models (Qi et al., 2017a;b; Wang
et al., 2019; Guo et al., 2021; Ma et al., 2022; Wu et al.,
2024) have significantly improved their performance on
3D understanding tasks, paving the way for applications in
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Figure 1. Attributing PC model outputs to a group of interpretable
critical concepts using InfoCons. The derived concepts, which
conform to a specific semantically meaningful structure (i.e., con-
ceptual cohesion), can reflect their influence on the model outputs
faithfully. The critical score map can also be integrated into multi-
ple applications. Better viewed in color.

safety-critical scenarios like autonomous vehicles (Geiger
et al., 2012). Interpretability has become a crucial issue
in assessing the reliability of model decisions, and under-
standing complex, high-dimensional deep neural networks
has been a long-standing challenge. However, despite sub-
stantial recent progress in the domains of 2D images and
language (Deng et al., 2024; Rai et al., 2024), research in the
field of 3D data remains lacking. Challenges in developing
explanation methods for point clouds arise from the signifi-
cant domain gap between point clouds and other modalities,
making direct application of 2D methods less effective (Wu
et al., 2015; Tan, 2023). Furthermore, the absence of well-
established architectures and diverse modules complicates
the development of a faithful and broadly effective explana-
tion method for various point cloud models.

Previous study of point cloud explanation methods aim to
extract a point cloud subset critical for model decisions,
collectively referred to as Critical Subset Theory (Qi et al.,
2017a; Zheng et al., 2019; Kim et al., 2021; Levi & Gilboa,
2023). These methods differ in how they define the im-
portance of points. For instance, the maxpool-based Crit-
ical Points (CP) (Qi et al., 2017a) identify points indexed
through a maxpooling layer applied to features as critical,
suggesting that stronger responses indicate greater impor-
tance. Meanwhile, the gradient-based point cloud saliency
map (PCSAM) (Zheng et al., 2019) utilizes the gradients
of the CE loss w.r.t. spherical coordinates to rank salient
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points, indicating that sensitivity to a target label reflects
importance. Critical subsets can naturally explain model
decisions in an interpretable way, mitigating the issue of in-
formation redundancy, which arises from the large number
of points representing the same amount of information.

However, existing methods have limitations in providing
interpretable subsets that satisfy both faithfulness and con-
ceptual cohesion. As theoretically illustrated in Fig. 2-(a),
faithfulness means that the subset has a direct causal effect
on model predictions, thereby providing sufficient informa-
tion about the model’s behavior in cases of misclassification
(e.g., why the model confuses ‘plant’ with ‘flower pot’ as
shown in Fig. 1). Meanwhile, conceptual cohesion encour-
ages the subset to conform to a semantically meaningful
structure that aligns with human perceptual priors (e.g., ob-
ject parts like flower and pot/vase that can be identified as
contributing to the misclassification). From this perspective,
existing methods fail to satisfy both criteria. For example,
the maxpool-based CP, which relies on the output of the
PC encoder, neglects the influence of the subsequent clas-
sifier, resulting in a lack of faithfulness to the entire PC
model. Moreover, PCSAM approximates points removal by
slightly perturbing points towards the PC centroid, introduc-
ing a biased shape prior of centroid singularity1. This prior
leads to biased attribution, producing critical subsets that
are spatially concentrated in corners.

In our work, we propose a novel framework, InfoCons,
that applies information-theoretic principles to decompose
a point cloud into 3D concepts with different levels of in-
fluence on model predictions, where the critical subset is
given by the most discriminative concept. To ensure faith-
fulness, we leverage mutual information (MI) between the
critical subset C and the model decision Y , deriving a crit-
ical score map by maximizing I(C, Y ). Meanwhile, we
introduce a learnable unbiased prior to minimize the MI
between the critical subset and input point cloud X , encour-
aging a meaningful conceptual structure. Further motivated
by variational Information Bottleneck (IB) for Attribution
frameworks, which aim to select informative features as
model interpretation via a learned selective function (Chen
et al., 2018; Schulz et al., 2020; Bang et al., 2021), we
formalize the learnable prior as a selective function for crit-
ical subsets, optimized using an IB-based objective. The
proposed framework for explaining PC models specifically
addresses the problem of selecting the most influential sub-
sets from an unordered set of points. This contrasts with
existing methods for CNNs on 2D images, which focus on
selecting relevant pixels of the labeled objects from irrele-
vant background pixels.

1Due to the inductive bias of PC models, a PC of singularity
(N = 1024 points at the same position) is also shape-informative:
an ‘origin PC’ can be predicted as ‘guitar’ by PointNet (Qi et al.,
2017a) with 99.2% certainty.

We conduct both qualitative and quantitative evaluations of
InfoCons using the synthesis dataset ModelNet40 (Chang
et al., 2015), explaining eight models covering three types of
structures: non-hierarchical MLP-based, hierarchical MLP-
based, and self-attention-based. We apply InfoCons to the
saliency-guided mixup method SageMix (Lee et al., 2022)
and the sensitivity-guided attack SIAdv (Huang et al., 2022)
to further enhance their performance. We also demonstrate
the scalability of InfoCons on more challenging benchmarks,
including the real-world object dataset ScanObjectNN (Uy
et al., 2019) and outdoor scene dataset KITTI (Geiger et al.,
2012).

In summary, our main contributions are as follows:

• We formalize the problem of extracting interpretable criti-
cal subsets for deep PC models and provide an in-depth
analysis on the limitations of existing methods in terms
of faithfulness and conceptual cohesion.

• We propose a novel framework, InfoCons, which applies
information-theoretic principles to decompose the point
cloud into 3D concepts by learning a selective function
with unbiased prior.

• We conduct comprehensive experiments across three
datasets, evaluating InfoCons on three types of model
structures and two application scenarios. Results show
that InfoCons effectively extracts interpretable concepts
that satisfy both faithfulness and conceptual coherence.

2. Background
2.1. Point Cloud Models

We focus on a category of point cloud models known as
point-based models, which directly handle 3D points with-
out voxelization or projection. Point-based models can be
formalized as consisting of an encoder and a task-specific
head. Encoder F extracts point features z ∈ RD×N ′

from
input x ∈ R(3+C)×N (3D coordinates with C additional
features), and compresses them into a global embedding
zglobal ∈ RD using symmetric functions that account for the
unordered nature of point clouds, typically via maxpool-
ing or a combination of max- and avgpooling. For shape
classification, the head outputs a shape prediction y. In seg-
mentation tasks, the head typically receives a concatenated
point- and global-level feature zconcat ∈ R2D×N ′

to output
point labels (Qi et al., 2017a).

Information Redundancy in Point Cloud. Voxel- or
projection-based PC models reduce information redundancy
at the input level, but this approach often leads to significant
information loss, limiting model performance (Liu et al.,
2019). Point-based models employ a different strategy. Hi-
erarchical models use sampling operations in each encoder
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block, reducing the number of point from N to N ′ < N
layer-by-layer. Non-hierarchical models address redun-
dancy by applying symmetric functions f : RD×N ′ → RD

after extracting point features, ensuring that shape-relevant
information is preserved.

2.2. Information Bottleneck Theory

The Information Bottleneck (IB) theory (Tishby et al., 2000)
provides a theoretic perspective on defining what we mean
by a ‘good’ representation. The IB models the role of deep
networks as learning a minimal sufficient statistics (maxi-
mally compressed) z = f(x, θ) for predicting the class label
y. The IB principle can be formalized as a tradeoff between
having a precise representation (being informative to x) and
achieving good predictive power (being informative to y):

JIB = max
θ∈Θ

I(z(θ), y)− βI(x, z(θ)), β > 0,

where I(·, ·) denotes the mutual information, capturing all
non-linear relationships between the two random variables;
and β controls the degree of restraining input-relevant infor-
mation. Variational Information Bottleneck (VIB) (Alemi
et al., 2016) provides a variational approximation to In-
formation Bottleneck, allowing us to parameterize the IB
objectives by training a neural network. See Appendix A.1
for details.

2.3. Attribution Methods

Desiderata of Explanations. The desiderata of explana-
tion methods can be traced back to LIME (Ribeiro et al.,
2016), which aims to provide explanations for classifier
predictions in an interpretable and faithful manner by ap-
proximating the behavior of a complex model with a local,
interpretable surrogate. Grad-CAM (Selvaraju et al., 2017)
introduces a principle for what constitutes a good visual
explanation in image classification: explanations should be
class-discriminative (faithfully localizing objects of inter-
est) and high-resolution (capturing fine-grained details that
make explanations interpretable).

While this principle is well-suited for image data, where
clear boundaries often exist between objects of interest and
unimportant background pixels, such boundaries are typi-
cally absent in point cloud data, which consists of thousands
of unordered 3D points. Concept-level explanations offer
a more general formulation of interpretability (Koh et al.,
2020). In the image domain, concepts can be human-labeled
attributes (Koh et al., 2020) or discovered as selective input
patches (Brendel & Bethge, 2019; Zhou et al., 2024).

VIB for Attribution. Some works have explored the way
of utilizing the VIB objectives to solve the problem of at-
tributing the black-box decisions of deep models (Liu et al.,
2024b). Given a pre-trained image classifier, Schulz et al.

(2020) propose to identify the importance of each pixels
by optimizing the pixel-wise intensity scale λ of a random
noise ϵ, which is applied to the latent feature f(x) in an ad-
dictive manner: z = λf(x) + (1− λ)ϵ, ϵ ∼ N(µf , σ

2
f ),

where f denotes intermediate layers, f(x) ∈ RHf×Wf×Df ,
and a sigmoid function constraints λ ∈ [0, 1]Hf×Wf×Df .
λ is then interpolated to the input size and averaged along
the channel dimension to obtain a pixel-level attribution map
Λ ∈ RHI×WI (assuming that all channel dimensions are
i.i.d.). The VIB objectives for attributing (VIB-A) (Schulz
et al., 2020) can be formalized as a combination of the
classification cross-entropy loss and the information loss:

LVIB-A =− E
x∼p(x),z∼p(z|f(x))

[

∫
p(y|z) log q(y|z)dy]

+ β E
x∼p(x)

[DKL(p(z|f(x))||q(z))]︸ ︷︷ ︸
LI

, (1)

where the prior is defined as q(z) = N(µf , σ
2
f ). Intuitively,

the VIB-A objectives is optimized to first find the pixels
that encode the least information about the label and replace
their feature values with random Gaussian noise, resulting
in Λ having a low saliency score for background pixels.

In our work, we formalize the desiderata of a good critical
subset in point cloud attribution: it should be faithful to the
model’s predictions and conceptually coherent with human
priors. To this end, we apply information-theoretic princi-
ples to identify critical concepts that satisfy these properties.

2.4. Attribution for Point Cloud

Pooling-based Methods. Pooling-based methods derive
score maps directly from activation maps. For example,
Critical Points (CP) (Qi et al., 2017a) identifies a subset of
points as critical if they remain active after the final max-
pooling layer of the point encoder, and Critical Points++
(CP++) (Levi & Gilboa, 2023) extends CP to continuous
measures by applying meanpooling. Many point cloud mod-
els also use feature map statistics (averages or maxima) to
heuristically explain their proposed models. However, these
approaches are primarily based on the encoder of point cloud
models and often overlook the influence of the downstream
classifier, rendering them insufficient for fully explaining
model decisions. Besides, FFAM (Liu et al., 2024a) lever-
ages the non-negative matrix factorization (NMF) of feature
maps tailored for attributing 3D object detection results.

Gradient-based Methods. PC Saliency Map (PC-
SAM) (Zheng et al., 2019) identifies critical points based on
the negative gradient of the discriminative loss with respect
to points’ spherical coordinates. Several other works on
adversarial attacks also use gradient-based critical points
(with C&W loss) as guidance for optimizing point perturba-
tions (Xiang et al., 2019; Huang et al., 2022). These methods
tend to produce locally aggregated critical points at spatial
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Figure 2. (a) Theoretical illustration for extracting critical concepts. (b) Overview of our explanation framework to obtain the InfoCons.
PC model for shape classification is denoted as G ◦ F . SymFunc stands for symmetric functions (e.g., maxpooling). Attention Bottleneck
θ is trained with end-to-end objectives. Once trained, θ uses only the intermediate feature to provide explanations.

corners, observed across various point cloud models, even
those with significantly different architectures (as shown
in Fig. 4). This is caused by the biased prior introduced
(we refer to as the shape prior of a PC centroid), leading to
model-independent explanations (Hong et al., 2023; Feng
et al., 2024).

Black-box Query-based Methods. LIME3D (Tan & Kot-
thaus, 2022) extends LIME (for images) to explain point
cloud classification by creating a set of queries by flipping
the original sample and then fitting a surrogate model to
predict point scores. LIME3D uses point-dropping as the
flipping operation, considering the discrete nature of point
clouds. Similarly, OccAM (Schinagl et al., 2022) proposes
a perturbation-based (point-dropping) method to explain
object detection results (e.g., a detected car with bound-
ing box), estimating the influence of each point using a
sampling-and-forward brute-force approach.

3. Methodology
3.1. Overview: IB for Critical Points

For deriving a good critical subset that encodes sufficient
shape-relevant information (faithfulness) and conforms a
semantically meaningful structure (conceptualness), we
rewrite the IB objectives as follows:

JIB-CP = max
C

I(C, y)− βI(x, C), (2)

where C = m⊙x ⊆ x denotes a predictive critical subset of
point cloud x by applying a binary mask m, β controls the
tradeoff between being predictive and being less redundant.

Following the variational approach, we use cross-entropy for
classification as a lower bound of I(C, y) (Xie et al., 2020),
but estimating I(C, x) is non-trivial since we do not have
knowledge about the prior p(C)(Lin et al., 2023). To address
this issue, one straightforward solution is to formalize C as

a discrete selection of points where m is a random variable
sampled from a multinomial distribution and the selection
probability represents the importance of points:

m ∼ Mul(Dr, softmax{s(x)i}Ni=1),

mj ∼ Cat(softmax{s(x)i}Ni=1), j ∈ {1, · · · , Dr}, (3)

where Dr represents the reduced size dimension of C, which
is bounded by dimension bottleneck2; and s(x)i = s(xi) ∈
R is the probability of point i being selected as a critical
point. In order to derive a soft and continuous score map for
x, we use a soft relaxation of m denoted as m̂ ∈ RDr×N .
We leverage a neural network with learnable parameters θ
to calculate the soft mask m̂ and apply it to point features z:

m̂ = f(m̂|z(x); θ), ẑ = m̂⊙ z(x), (4)

where ⊙ represents element-wise multiplication, and z is
the intermediate feature of a given trained PC model by
z(·) = F1:l(·) at l-th layer. Noted that z:,i(x) = z(xi) is
the D-dim feature of xi, thereby m̂ optimized for z is also
applicable for x.

Definition 3.1 (Selective Critical Points). With the formu-
lation above, the objectives in Eq. 2 can be formalized as:

max
θ

E
x∼p(x)

[Ey∼p(y) log q(y|ẑ)︸ ︷︷ ︸
−LCE

−β DKL(m̂||q(m̂))︸ ︷︷ ︸
LI

], (5)

where we replace q(y|m ⊙ x) by q(y|ẑ). Considering
I(z(x), x) is constant for a given encoder F , we approxi-
mate the upper bound of I(x, C) by DKL(m̂||q(m̂)), where
q(m̂) is the prior distribution by setting q:,i(m̂) = U(0, 1)
and we use a sigmoid function to constraint m̂ ∈ R[0,1].

2Dimension bottleneck proposed by Qi et al. (2017a) refers to
the maxpooling layer used to obtain the critical subset where the
channel dimension (denoted as D) implicitly bounds the size of
critical subset NC .
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Figure 3. Feature Analysis for four models in (A), and derived Se-
lective Scores in (B). For PointNet, points with stronger activation
receive higher scores (e.g., Point No. 1,2 in (A), which have larger
means of activation maps |M |). However, in hierarchical models,
nearly all points are highlighted (Point No. 0,1,and 2 in (B)). We
address this problem by proposing InfoCons in Eq. 6.

Once the θ is trained, the underlying probabilities s(x) ∈
[0, 1]N for sampling m can be obtained by calculating the
expectation of m̂ by s(x) = Ej∼Dr m̂j , as shown in Fig. 2-
(b).

Feature Analysis. Selective CP defined in Eq. 5 is effective
for non-hierarchical, localized PC models like PointNet (Qi
et al., 2017a). PointNet enables these objectives to effec-
tively balance the CE loss and information loss through
point-wise masking, largely due to the high sparsity of its
point features. As shown in Fig. 3, the features from Point-
Net in (A) are significantly sparser than those from Point-
Net++. Additionally, the selective scores for PointNet for
three selected points (Point No.0,1,2) align with their abso-
lute mean feature values |M | (i.e., 1 > 2 > 0). In contrast,
in PointNet++, higher |M | (and thus higher selective scores)
do not correspond to the points that should be critical (by
observing 0 > 1 = 2). The feature analysis explains why
CP++ (meanpool-based) fails with PointNet++ (in Fig. 4).

3.2. Deep InfoCons

Recent PC models usually enhance the feature extraction
process by incorporating with feature grouping operations
(e.g., DGCNN), set abstraction (e.g., PointNet++), or deeper
stacked layers with residual connections (e.g., PointMLP),
where the information flow from points to intermediate fea-
tures becomes highly non-linear, resulting in inaccuracy for
approximating I(C, ·). More specifically, the score map m̂
is ineffective as most of points are considered with equal
importance, as shown in Fig. 3. This is mainly due to the
entanglement of point features with their neighbours when
we try to measure the importance of individual points. We
introduce InfoCons as follows to address this problem:

Definition 3.2 (InfoCons). Informative scores with informa-

PC
SA
M

In
fo
C
on
s

C
P+
+

PC: flower_pot

Figure 4. InfoCons-based critical subsets (200 pts) for four PC
models (covering three distinct structure types) are compared with
meanpool-based CP++ and gradient-based PCSAM. PCSAM tends
to extract similar and spatially aggregated subsets for all models,
while InfoCons identifies more interpretable critical subsets that
are faithful to model behavior (color distinction not required).

tive concepts for a given PC model can derived as follows:

max
θ

Ex∼p(x)[Ey∼p(y) log q(y|ẑ)− βDKL(ẑ||q(ẑ))],

ẑ = m̂⊙ z(x) + sg(1− m̂)⊙ ϵ, (6)

where ⊙ denotes element-wise multiplication, sg(·) denotes
stop-gradient operation. ϵi ∼ N(µz, σ

2
z) is sampled for

each point i. Gaussian prior q(ẑ) = N(µz, σ
2
z) is parame-

terized with the D-dimensional mean and variance of point
feature z = F1:l(x). We reused the neural network to
formalize ẑ by ẑ = f(ẑ|z, θ).

As defined in Def. 3.2, to address the problem of entangle-
ment, we try to decouple the information from neighbour
points and the anchor point, by introducing a Gaussian noise
denoted as ϵ. We aim to recover a coarse feature about neigh-
bors so that only the information about the anchor point is
reduced. More specifically, when we need to rank xi as
unimportant (m̂i → 0) (for the reason that either it is re-
dundant or less shape-informative), and the feature of i-th
point has multiple information sources from k neighbours
together with the point xi itself, then we try to add a random
variable sampled from a specific distribution determined by
z, avoiding significant degradation on model performance.

Comparison with PC Saliency Map (Zheng et al., 2019).
PC Saliency Map is one of the most representative ex-
plaining methods for PC data, which can be formalized
as: si(x) = −∂LCE/∂ri · r1+α

i (ri denotes the distance
of xi to the spherical core and α is a scale factor for var-
ied spatial sizes of PC). This score introduces prior that
the points lying in the surface of objects tend to be more
salient, resulting in redundant critical points clustered in
spatial corners, as shown in Fig. 4-(PCSAM).

Attention Bottleneck. The intermediate features of point
encoders are high-correlated and entangled, particularly in
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Figure 5. The data flow of the bottleneck network f(·|z(x); θ).
The input z is the intermediate feature from F , and the output m̂
holds the same dimension as z.

the hierarchical models and self-attention based models. We
introduce a non-linear attention block to learn the unbiased
priors based on point-level features, denoted as f(m̂|z; θ),
as shown in Fig. 5.

The input of attention bottleneck is the intermediate feature
of point encoder, denoted as z. For hierarchical models (e.g.,
PointNet and DGCNN), z holds the same size dimension
as input x (N ′ = N and we use N = 1024). However,
for the hierarchical models, points are down-sampled or
pre-processed to form 3D patches, the size dimensions may
vary. We apply the channel-wise attention to fit with this
property. Formally, the input feature is first transformed as
qz = WT

q z, vz = σ(WT
v z), where WT

q ∈ RD×Dr ,WT
v ∈

RD×D and σ represents an ELU activation function. Then
we calculate the output:

Att(qz, z, vz) = softmax(qTz z/
√
D) · vz. (7)

The output is finally expanded to the dimension D through
MLPs with a sigmoid activation to constraint m̂ ∈
(0, 1)D×N ′

. In order to visualize the score map in the case
of N ′ < N , we further propagate m̂ to N using spatial
interpolation (Qi et al., 2017b) (weighted by L2 distance
between N ′ anchor points and N original points).

4. Experiments
Evaluation Protocol. The example point clouds are se-
lected from the synthetic dataset ModelNet40 (Wu et al.,
2015) and two real-world datasets: ScanObjectNN for shape
classification (the hardest variant PB T50 RS (Uy et al.,
2019)) and KITTI for objection detection (Geiger et al.,
2012). Our evaluations are mainly conducted on Model-
Net40, which contains 9, 843 training samples and 2, 468
testing samples. We uniformly sample 1, 024 points from
the surface of CAD models and only 3D coordinates are
used (i.e., x ∈ R3×1,024). We compare InfoCons with four
baselines: Critical Points (Qi et al., 2017a), PC Saliency
Map (Zheng et al., 2019), Critical Points++ (Levi & Gilboa,
2023) and black-box query-based LIME3D (Tan & Kot-
thaus, 2022). One of the quantitative metrics used is over-
all accuracy (OA) under point-drop attacks, calculated as:

Acc = 1
NX

∑
i I(ŷi = yi), where NX denotes for the

size of attack dataset (we use NX = 2, 468). We con-
ducted comparison experiments on eight PC models: Point-
Net, CurveNet, GDA, PointMLP, DGCNN, Maskpoint, and
PCT (Muzahid et al., 2020; Xu et al., 2021; Ma et al., 2022;
Qi et al., 2017b; Wang et al., 2019; Liu et al., 2022; Guo
et al., 2021). Model descriptions and training details are
provided in Appendix C. The source code is available at
https://github.com/llffff/infocons-pc.

4.1. Qualitative Comparison

We compare InfoCons with four baselines for PC expla-
nation in Fig. 6 qualitatively. Critical Points++ (A0, A1),
InfoCons (D0, D1), and Critical Points (E) are derived with
a single forward pass. PCSAM (C0, C1) is implemented
by iteratively dropping points over 20 steps (10 points per
step), and LIME3D (B0, B1) performs 1,000 queries using
point-dropped point clouds.

• In (A0-D0), we demonstrate the soft score maps on four
PCs for DGCNN. The PCs shown are selected from Mod-
elNet40 test split, where the model gives incorrect predic-
tions (probabilities of the ground truths and predictions
are shown on the far left).

• In (E, A1-D1), we visualize the derived critical subset
(200 out of 1024 points) from the score maps, except for
CP, where the size of the critical subset is determined
adaptively by the maxpooling layer.

• Compared to the baselines, our InfoCons method suc-
cessfully attributes the incorrect predictions to the cor-
responding concepts with greater informativeness and
reduced redundancy. Specifically, the mislabeled ‘plant’
in (R1) arises from missing the ‘pot’; and the confused
‘flower pot’ in (R2) can be attributed to the model’s atten-
tion on the ‘pot’. For samples (R3) and (R4), InfoCons
(D0 and D1) outperforms baselines by exhibiting less
redundancy of similar points and providing richer shape-
relevant information.

In Fig. 11 of Appendix B, we visualize information redun-
dancy of a given PC by applying K-Means clustering to
the InfoCons-based score map, forming a Critical-Subset
Hierarchy. In Fig. 13, we demonstrate the Dynamic Critical
Subset by iteratively dropping points and re-constructing
score maps, providing a fair qualitative comparison with
PCSAM.

4.2. Quantitative Comparison

Effectiveness of InfoCons. Following Zheng et al., we
conduct a point-drop attack to evaluate the effectiveness of
InfoCons by measuring the accuracy changes of (i) drop-
ping out the most critical points (MCD) and (ii) dropping
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(R1)

(R2)

(R3)

(R4)

PC 𝑥Incorrect
Prediction

Ground
Truth

(D0) InfoCons (Ours)
VIB-based Score Map

(A0) Critical Points++
Meanpooling-based Score Map

(C0) PC Saliency Map
Gradient-based Score Map

(E) Critical Points
Maxpooling-based subset

(A1) Critical Points++
200 pts critical subset

(C1) PC Saliency Map
200 pts critical subset

(D1) Info𝑪ons (Ours)
200 pts critical subset

(B0) LIME3D
Black-box & Dropping-based

(B1) LIME3D
200 pts critical subset

Figure 6. Qualitative comparisons of InfoCons with four baselines (CP, CP++, PCSAM, LIME3D) include both score maps (best viewed
in color) and critical subsets. The PCs are selected from ModelNet40, where DGCNN gives incorrect predictions.

out the least critical points (LCD). We report the instance
accuracy for 1pass score maps and multi-iteration (from 5
to 20) dynamic score maps in Fig. 7. We iteratively drop
10 LC/MC points each iteration, thus InfoCons (20it)-MCD
denotes score maps for 824 points (200 most critical points
dropped). The accuracy gap between MCD and LCD in-
dicates InfoCons captures the shape-informative points by
assigning them higher scores.

Comparison with baselines. Based on point-drop attacks,
we further compare the proposed method with three base-
lines with soft score map (CP++, PCSAM and LIME3D) in
Fig. 7-(B,C). Since PCSM is a gradient-based method that
utilize the ground truth label to calculate the loss, our Info-
Cons may not outperform PCSAM when dropping only a
small critical subset. However, our method InfoCons (1pass)
achieves better performance when remove a larger subset, in-
dicating the information redundancy of critical concepts can
be appropriately handled by InfoCons. Besides, LIME3D
achieves the most substantial drop-attack by significantly de-
grading the accuracy to 45.22% and InfoCons (20iter) ranks
second with 63.70% (at 500-pts-dropping point). However,
LIME3D incurs a heavy computational cost (about 4.5s/PC
shown in Tab. 3) limiting its applications. The interpretabil-
ity of LIME3D also lacks, as it is challenging to interpret
the semantics of the derived critical subsets compared to
white-box methods. Full evaluations on eight models are in
Fig. 18 and Fig. 19 of Appendix D.2.

4.3. Extensive Evaluations

We integrate InfoCons into two applications by enhanc-
ing their salient-region search algorithm, and successfully
achieving improved performance (Fig. 8). We also extend In-
foCons on two challenging real-world benchmarks ScanOb-
jectNN and KITTI (Fig. 10).

InfoCons for Data Augmentation. We replace the gradient-

(A) (B) (C)

Figure 7. Accuracy under point-drop attacks against DGCNN. We
compare InfoCons with CP++, PCSAM, and LIME3D. In (A), the
effectiveness of InfoCons is demonstrated by the accuracy gap
between LCD and MCD. In (B) and (C), we present comparisons
in the most-powerful setting and fair-running-time setting, with
efficiency details provided in Table 3.

Figure 8. InfoCons-based mixup (left) and adversarial attack
(right). InfoCons-based score map can also explain the effec-
tiveness of adversarial examples. Better viewed in color.

based saliency score map of SageMix (Lee et al., 2022) with
InfoCons, then following SageMix’s dynamic data augmen-
tation to generate continuous mixed PC. We re-implement
SageMix and report the results in Tab. 1. We use a larger
batch size and fewer training epochs (96, 300) compared to
the original paper (32, 500). Under the same training hyper-
parameters, we achieve improved classification performance
by integrating InfoCons into the mixup pipeline, primarily
because InfoCons mitigates the gradient saturation effect
through KL divergence regularization.

InfoCons for Adversarial Attack. We integrate the pro-
posed method into SI-Adv (Huang et al., 2022) to gener-
ate effective and imperceptible adversarial perturbations.
SI-Adv is a sensitivity-guided attack, and we enhance its
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Table 1. Quantitative evaluations of InfoCons for mixup. Our re-
implemented results are shown in black, with SageMix’s original
results displayed in (grey).

Model Aug Type Test OA↑ (%)
DGCNN Base 92.30 (92.9)
DGCNN SageMix 92.79 (93.6)

+InfoCons 93.19 (+0.4)

Table 2. Quantitative evaluations of InfoCons for adversarial at-
tacks. Enhanced with InfoCons, we can achieve higher ASR and
lower average CD/HD.

DGCNN (on ModelNet40 testset)
SI-Adv +InfoCons ∆

ASR↑ (%) 99.76 99.80 (+0.04)
CD↓ (10−1) 5.58 5.47 (−0.11)
HD↓ (10−1) 6.70 6.55 (−0.15)

sensitive-region search by rescaling the gradient from C&W
loss using InfoCons’ score map. For fair comparison, we
use the same step size and normalize the resulting score
maps for both SI-Adv (+Sensitive scores, original) and SI-
Adv (+InfoCons). We use a step size of 0.007 and 80 steps
in total. As in Fig. 8 (right) and in Tab. 2, InfoCons provides
more effective salient regions that help optimize adversarial
perturbations. The score maps derived from InfoCons can
also explain the effectiveness of adversarial examples (e.g.,
changes in the scores around the leg of a perturbed ‘chair’
contribute to the success attack that causes the model to
misclassify it as a ‘bed’).

Table 3. Efficiency comparisons of InfoCons with four baselines.

Method OA(%)↓ ETt ETe (s)↓ #Param
CP++ 75.08 1F 0.01 0

PCSM(1pass) 89.87 1(F+B) 0.05 0
PCSM(20it) 79.86 20(F+B) 0.85 0

LIME3D(102) 67.99 100F 0.54 1K
LIME3D(103) 45.22 1000F 4.54 1K

InfoCons(1pass) 73.50 1F 0.01 2.4M
InfoCons(10it) 69.08 10F 0.17 2.4M
InfoCons(20it) 63.70 20F 0.29 2.4M

1. F: one forward-pass time, B: one backward-pass time.
2. Empirical explaining time (ETe) is measured using the
%timeit magic command in Jupyter Notebook.

4.4. Efficiency and Parameter Study

Efficiency Study. In Tab. 3, we report (1) test overall accu-
racy (OA) after dropping the 500 most critical points, where
a lower OA indicates a more effective explanation follow-
ing Zheng et al. 2019; Tan & Kotthaus 2022; (2) theoretical
explanation time for each point cloud (ETt) and empirical
explanation time (ETe); and (3) the size of the explain-
ers. InfoCons and CP++ require only a single forward pass,
making them the most time-efficient methods, which is an
important advantage for applications like dynamic data aug-
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Figure 9. Impacts of β, Dr and intermediate layer l for DGCNN@l
on ModelNet40.

𝛽 = 10! 𝛽∗ = 10# 𝛽 = 10$𝛽 = 0

* 𝛽 = 0	means ℒ!" only

Original Detections of PointPillars

A Missing Car! Why?

60 steps

(Eq.6)

Explanation for Missing Objects
	∗Example: KITTI Test Data (id=007517)

Target Detection

A LiDAR beam of
the ground !

Figure 10. Impacts of β for DGCNN@5 on ScanObjectNN (left)
and the explanation for missing objects of object detector PointPil-
lars@1 (right, better viewed in color). The implementation details
can be found in Appendix C.2.

mentation and adversarial attacks. The results are derived
for DGCNN on ModelNet40 testset. LIME3D achieves the
best drop attack performance by querying 103 times and
InfoCons (20iter) ranks the second. However, there is a
limitation in using the drop rate of OA as an effectiveness
metric, as a larger drop may result from removing points in
certain spatial locations that push the point cloud off the data
manifold, rather than reflecting true faithfulness in terms of
contributions to the predicted labels.

Parameter Study. The proposed framework is occupied
with several hyper-parameters to choose, we demonstrate
three key hyperparameters of our InfoCons in Fig. 9:

• The weighting coefficient β applied to the information
loss, which controls the level of retaining point-wise po-
sitional information. We utlize the variance of scores as
a metrics to measure the quality of the score map, and
consider the optimal choice of β together with the test
set accuracy. We empirically observe that there exists an
optimal point for the choice of β that reaches relatively
high accuracy with high score variance.

• The reduction dimension Dr of attention bottleneck,
which impacts the prior distribution. A smaller Dr will
be more parameter-efficient. We observe that different Dr

have varying optimal β values but do not significantly alter
the optimal score map distribution, and we set Dr = 64
as the default value.
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• The intermediate layer l impacts the target feature map
z = F1:l that InfoCons uses to identify informative con-
cepts. A basic principle for choosing l is that the layer
should be as deeper as possible to be shape-informative,
while ensuring the size dimension of z is not too small
(N ′ > 256) to reduce the entanglement of neighbour fea-
tures. This is crucial for the visualization quality of the
score maps (measured by the variance). Following this,
we manually determine the intermediate layer for eight
models, listed in Appendix C.4.

5. Conclusion
In our work, we propose a PC explanation framework called
InfoCons, which attributes model predictions to critical con-
cepts. We provide an in-depth analysis of the limitations of
existing attribution methods and design an IB-based objec-
tive to derive a faithful and interpretable critical score map.
This enables humans to identify the concepts that the model
correctly or unexpectedly focuses on. We demonstrate the
effectiveness of the proposed methods both qualitatively
and quantitatively. InfoCons is also scalable across multi-
ple structures of point cloud models (eight models in total)
and real-world datasets. Furthermore, the application of
InfoCons in saliency-based mixup and adversarial attacks
further demonstrates its effectiveness.

The main limitation of our method is the computational load
required for optimizing the attention bottleneck module:
Some PC models may have low computational efficiency,
and the selection of some hyperparameters such as β and the
intermediate layer l is critical. We demonstrate some failure
cases in Appendix D.1. Future direction could include eval-
uating and mitigating the bias in PC pre-trained models and
improving their generalization ability under domain shifts.
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A. Theoretical Details
A.1. Deep Variational Information Bottleneck

The Information Bottleneck (IB) provides the principle of
what is a good representation in terms of a fundamental
tradeoff between being predictive to labels and keeping
maximal redundant information of input data (Alemi et al.,
2016). Let x denotes inputs and y denotes the corresponding
target labels, we can regard the output of intermediate layers
of a network as a stochastic encoding z w.r.t the input x.
For correctly classify the input x as y, our primary goal is
to learn a encoding function that maximize the information
about y in z:

max
z

I(z, y),

which upper bound given by the dataset I(x, y) is indepen-
dent to the network and the encoding z. To prevent the
trivial solution (z = x), the IB principle apply a constraint
Ic to I(z, x), and we can use the Lagrange multiplier β to
get the objective functions:

max
z

I(z, y) s.t.I(x, z) <= Ic

max
z

I(z, y)− βI(x, z),

where the hyper-parameter β > 0 controls the degree of
restraining information about the input. The first item can
be expressed as follows:

I(z, y) =

∫
p(x, y) log

p(y, z)

p(y)p(z)
dydz

=

∫
p(y, z) log

p(y|z)
p(y)

dydz

For the intractable term of likelihood p(y|x), we can intro-
duce q(y|z) to approximate p(y|z) by a classifier g : Z −→
Y . With the nonnegativity of the Kullbach-Leibler diver-
gence:

DKL[p(y|z)||q(y|z)] ≥ 0 ⇒
∫

p(y, z) log p(y|z)dy

≥
∫

p(y, z) log q(y|z)dy,

then we can replace p(y|z) with q(y|z) and derive the lower

bound of I(z, y):

I(z, y)

=

∫
p(y, z) log

p(y|z)
p(y)

dydz

=

∫
p(y, z) log p(y|z)dydz −

∫
p(y, z) log p(y)dydz

=

∫
p(y, z) log p(y|z)dydz −

∫
p(y) log p(y)dy

=

∫
p(y, z) log p(y|z)dydz +H(y)

≥
∫

p(y, z) log q(y|z)dydz (8)

The second term I(z, x) can also be expanded by definition:

I(z, x) =

∫
p(z, x) log

p(z, x)

p(x)p(z)
dzdx

=

∫
p(z, x) log

p(z|x)
p(z)

dzdx

Introducing a prior q(z) with learnable parameters to approx-
imate the unknown true distribution of latent representations
p(z), we can derive the variational upper bound of I(z, x):

DKL[p(z)||q(z)] ≥ 0 ⇒∫
p(z) log p(z)dz ≥

∫
p(z) log q(z)dz

I(z, x) ≤
∫

p(z, x) log
p(z|x)
q(z)

dzdx

=

∫
p(z|x)p(x) log p(z|x)

q(z)
dzdx (9)

= E
x∼p(x)

[DKL(p(z|x)||q(z))]

Combining the lower bound of I(z, y) (Eq. 8) and the up-
per bound of I(z, x) (Eq. 9), the objective of Information
Bottleneck can be reformulated as :∫

p(y, z) log q(y|z)dydz − β E
x∼p(x)

[DKL(p(z|x)||q(z))]︸ ︷︷ ︸
LI

.

(10)

Note that p(y, z) = Ex∼p(x)p(y, z|x) =
Ex∼p(x)p(y|z)p(z|x)p(x), then the first item can be
written as (Schulz et al., 2020):∫

p(y|z)p(z|x)p(x) log q(y|z)dydzdx (11)

= E
x∼p(x),z∼p(z|x)

[

∫
p(y|z) log q(y|z)dy] (12)

= E
x∼p(x),z∼p(z|x)

[−LCE ] (13)
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A.2. VIB for Critical Points

Following Eq. 8 for deriving a lower bound of I(z, y) and
Eq. 9 for an upper bound for I(z, x), we can formalize the
objectives I(C, y)−βI(x, C) defined in Eq. 2 to a variational
form: ∫

p(y, C) log q(y|C)dydx−

β

∫
p(C|x)p(x) log p(C|x)

q(C) dCdx, (14)

where we parameterize C as m ⊙ x and further approxi-
mate it as m̂ ⊙ z(x). m̂ is derived from a neural network
f(m̂|z(x); θ) with learnable parameter θ, as proposed in
Eq. 5. We omit the intermediate steps z(x) = F1:l(x), m̂ =
f(m̂|z(x); θ) and denote m̂⊙z(x) as ẑ = f(ẑ|x; θ) for sim-
plicity. Therefore, objectives in Eq. 14 can be rewritten as:∫

p(y, ẑ) log q(y|ẑ)dydx−

β

∫
p(ẑ|x)p(x) log p(ẑ|x)

q(ẑ)
dẑdx,

(15)

where the first term can be represented by −LCE . The
second term can be reformulated as a KL divergence and
further simplified as:

Ex[DKL(p(ẑ|x)||q(ẑ))] = Ex[DKL(ẑ||q(ẑ))] (16)

considering ẑ = f(ẑ|x; θ). Moreover, since z(x) is deter-
mined by the trained encoder F , we consider the upper
bound based on m̂ in Eq. 5 as follows:

I(C, x) ≤ Ex[DKL(m̂||q(m̂))]. (17)

For the calculation of KL divergence, we use the Monte
Carlo algorithm to approximate the value at the point level
(i.e. we assume that each point feature is i.i.d., so the large
number of points in a single point cloud, together with a
relatively small batch size, provides a good approximation
performance).

B. Quantitative Comparisons
Critical Subset Hierarchy. Due to information redun-
dancy, a point cloud can be split into different levels of
subsets, with each level holding a certain geometric struc-
ture. In Fig. 11 and 12, we compare the Critical Subset
Hierarchy of InfoCons with Critical Points(CP). In CP, the
four-level hierarchical subsets are constructed by iteratively
dropping critical points over four iterations. For InfoCons,
we construct the hierarchical subsets by applying K-Means

Figure 11. Decompose point cloud redundancy by visualizing the
Critical Points Hierarchy.

Figure 12. Additional samples for Critical Points Hierarchy.

clustering (K = 4). We observe that the hierarchy of In-
foCons suggests the most critical concept is the contour of
a ‘sofa’ (as the model incorrectly predicts), and the least
critical concept is the seat (a common attribute between
‘sofa’ and ‘bench’).

Dynamic Critical Subset. The dynamic process of itera-
tively dropping points and constructing gradients to derive
score maps is vital for PC Saliency Map (PCSAM) (Zheng
et al., 2019). The number of iterations should be large
enough to fit the size of the required critical subsets (e.g., 20
iterations for a 200-point critical subset), as demonstrated
in Fig. 13. Different from PCSM, InfoCons can produce
an effective score map with one-pass score map, and addi-
tional iterations (20-iteration) do not significantly change
the distribution of the most critical concepts. Therefore
InfoCons is more faithful as the PC is not modified during
explanation. (Examples for eight models can be found in
Fig. 15 and more examples are shown in Fig. 16).

Info𝐶ons for DGCNN@5
One pass 20 iterations

PC Saliency Map for DGCNN@5
One pass 10 iterations 20 iterations

Figure 13. Dynamic critical subset (200 points) with one-pass and
multi-iteration score maps, compared with PCSAM.
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C. Experimental Details
C.1. Training Details

For point cloud models involved in our experiments, we
follow their official training pipeline34567 or open-source re-
implementation in Pytorch8910. Our experiments of training
InfoCons were conducted using an NVIDIA GeForce RTX
2080Ti (11G) GPU, using Python 3.11 and PyTorch 2.1,
with CUDA 12.2. For each model, we use a batch size of
k = 8, and training DGCNN for 50 epochs takes about one
hour.

C.2. InfoCons for Object Detection

We extend the InfoCons framework to explain challenging
3D object detection tasks. The results demonstrate that
InfoCons is also effective for object detection. We conduct
the study on PointPillars (Lang et al., 2019), and we use
the pretrained weights from OpenPCDet11 and the detection
code from the official codebase from OccAM12.

Given a 3D object detector with point cloud encoder (e.g.,
PointPillars which contains a Pillar Feature Net) and a PC
from KITTI test split, we can derive a score map for explain-
ing missing objects as follows:

• Firstly, we focus on how to explain the missing cases that
may cause serious consequences. For example, a missing
front-near car (as shown in Fig. 10). Since the KITTI test
samples lack ground truth labels, we randomly select data,
obtain detection results from the detector, and manually
identify the target missing objects.

• For the objectives in Eq.6, we replace LCE with the de-
tection score of target objects as the surrogate objective
for I(C; y). The information loss remains the same as in
classification (KL divergence). Specifically, we use the
negative of the similarity loss defined in OccAM(Schinagl
et al., 2022), as we are explaining the missing object rather
than the detected one.

• Unlike InfoCons for classification, where the explana-

3https://github.com/mutianxu/GDANet
4https://github.com/Yochengliu/

Relation-Shape-CNN
5https://github.com/ma-xu/

pointMLP-pytorch
6https://github.com/tiangexiang/CurveNet
7https://github.com/WisconsinAIVision/

MaskPoint
8https://github.com/yanx27/Pointnet_

Pointnet2_pytorch
9https://github.com/antao97/dgcnn.pytorch

10https://github.com/Strawberry-Eat-Mango/
PCT_Pytorch

11https://github.com/open-mmlab/OpenPCDet
12https://github.com/dschinagl/occam

tion module, AttentionBottleneck, is trained on the entire
training dataset, we find it costly to train our explainer on
KITTI. Therefore, we directly optimize the explainer on
a single-sample (test scene PC) for 60 steps.

As shown in Fig. 10, the score map particularly highlights a
short segment of the LiDAR beam located directly beneath
the car. Our method reveals that this segment of the ground
causes the model to fail in detecting the car.

C.3. Implementation Details

Spatial Interpolation. Spatial interpolation is widely
used in hierarchical point models for tasks such as point
cloud segmentation. We implement our score map interpo-
lation from a scored subset (x′,m′) with points set size N ′

(a sub-sampled result) to the input score map (x,m) with
points set size N (the size of input) following KNN-based
feature propagation (Qi et al., 2017b). Here, we remove the
non-linear learnable transformations for direct attribution,
which can be formalized as follows:

mi =

∑k
j=1 w

(i)
j m′(i)

j∑k
j=1 w

(i)
j

,where k = 3,

(w(i),m′(i)) = index[(d(xi, x
′)−1,m′), sort[d(xi, x

′)]].

Reparameterization Tricks. The sampling result m from
a multinomial distribution is a set of discrete one-hot vectors
in our reformulation in Eq. 2 and the process of sampling
is undifferentiable. For differentiable optimization, we use
Gumbel reparameterization tricks as follows:

m̂ = f̂(m|z; θ) = gumbel-softmax{f(zi; θ)}Ni=1

= E
k

softmax{gk + log f(Zi, θ)

τ
}Ni=1, (18)

where gk = − log(− log ek), ek ∼ U(0, 1) is the Gumbel
noise and τ is the temperature. We set τ = 0.7 (larger for
a smoother distribution) and sample the noise for k = 32
times to calculate the expectation.

C.4. Point Cloud Models Details

Model Architectures. We provide detailed information
about the architectures of the point cloud models, as well
as the intermediate layers where we apply the Attention
Bottleneck in Tab. 4.

List of available layers in PC models encoder We pro-
vide detailed information about the official architectures of
the point cloud models involved in our work in Tab. 5, 6, 7.
Additionally, we specify the intermediate layers of these
models that we targeted.
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Table 4. Model descriptions with point feature information.

PC Model Size Dim. Structure Sparsity/% Channel Dim.
@layer l N ′ of Model

∑
I(z = 0)/(D′ ×N ′) D′

PointNet@3 (Qi et al., 2017a) 1024 N-H 62.30 1024
CurveNet@2 (Muzahid et al., 2020) 1024 H 60.19 128

GDA@4 (Xu et al., 2021) 1024 N-H 53.94 512
PointMLP@4 (Ma et al., 2022) 64 H 24.24 1024

PointNet++@1 (Qi et al., 2017b) 512 H 2.31 128
DGCNN@5 (Wang et al., 2019) 1024 N-H 0.00 1024
MaskPoint@10 (Liu et al., 2022) 64 SA 0.00 384

PCT@4 (Guo et al., 2021) 256 SA, H 0.00 1024

Table 5. Non-hierarchical Structure

@layer #points #channels
PointNet (Qi et al., 2017a) encoder.2 1024 128

encoder.3 1024 1024 ✓
maxpooling / 1024

DGCNN (Wang et al., 2019) encoder.3 1024 128
encoder.4 1024 256
encoder.5 1024 1024 ✓

maxpooling / 1024
avgpooling / 1024

GDA (Xu et al., 2021) encoder.2 1024 64
encoder.3 1024 128
encoder.4 1024 512 ✓

maxpooling / 512
avgpooling / 512

Table 6. Hierarchical Structure

@layer #points #channels
PointNet++ (Qi et al., 2017b) encoder.1 512 128 ✓

encoder.2 128 256
encoder.3 1 1024

PointMLP (Ma et al., 2022) encoder.2 256 256
encoder.3 128 512
encoder.4 64 1024 ✓

maxpooling / 1024
CurveNet (Muzahid et al., 2020) encoder.2 1024 128 ✓

encoder.3 256 256
encoder.4 64 512
encoder.5 64 1024

maxpooling / 1024
avgpooling / 1024
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Table 7. Multi-head Self-attention-based

@layer #points #channels
MaskPoint (Liu et al., 2022) sa.6 64 384

sa.8 64 384
sa.10 64 384 ✓

maxpooling / 384
<cls> / 384

PCT (Guo et al., 2021) encoder.2 256 256
encoder.3 256 1024
encoder.4 256 1024 ✓

maxpooling / 1024

D. Additional Results
D.1. Failure Cases

We demonstrate the failure cases for PCT in Fig. 14, where
appropriate layer l is critical and the changes of Dr (rescale
by α) and β is unable to derive a critical concept which
conforming a meaningful structure.

𝛼
=
16

𝛼
=
4

Successful Cases for PCT@3

Failure	Cases	for	PCT@4

𝛼
=
4

𝛼
=
16

Figure 14. Failure cases for PCT@4 with varying βk ∈
{101/k, 102/k, 103/k, 104/k}, where k = N × D and α with
Dr = D/α.

D.2. Additional Qualitative Results

• In Fig. 15, we visualize the score map of a ‘monitor’
across eight PC models, together with the critical subsets
derived from iteratively dynamic score maps (namely one-
pass score maps, 10-iteration score maps/critical subsets,
20-iteration score maps/critical subsets).

• In Fig. 16, we compare InfoCons with dynamic PC-
SAM (Zheng et al., 2019) and CP++ (Levi & Gilboa,
2023) on more samples.

• In this link, we provide additional qualitative comparisons
following the same settings as Fig. 6 on all test samples

in the ‘flower pot’ class of the ModelNet40 dataset across
five approaches.

D.3. Additional Quantitative Results

• In Fig. 17, we additionally demonstrate InfoCons on eight
models.

• In Fig. 18, we provide the accuracy degradation of point-
drop attack, additionally comparing InfoCons on eight
models with PC Saliency Map.

• In Fig. 19, we compare InfoCons on eight models with
CP++.

16

https://ibb.co/Jwj5CG9h


Identifying Interpretable Critical Concepts in Point Clouds

Figure 15. InfoCons on the PC labeled as ‘monitor’ for 8 PC models (from left to right: (i)the 1024 points score map, (ii)the dynamic
critical points with 10 iterations and 10 points dropped each iteration, 100 points in total, (iii) dynamic critical points with 20 iteration,
200 points in total, and (iv)-(v) is the least critical points for 10 iterations and 20 iterations).

Figure 16. InfoCons compared with two baselines on DGCNN (Wang et al., 2019), and we demonstrate 200 points critical subset. From
left to right, (i) InfoCons, (ii) Critical Points++ (Levi & Gilboa, 2023), (iii)-(v) PC Saliency Map (Zheng et al., 2019) with a dynamic
process of point-dropping-and-then-recalculating-gradient, and we highlight the dropped points in earlier iterations as high scores.
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Figure 17. Effectiveness evaluation of InfoCons on eight PC models by point-drop attack, where 10 to 500 points are dropped. We report
the changes of accuracy under two settings: (i) dropping out the most critical points (MCD) and (ii) dropping out the least critical points
(LCD). The accuracy gap between MCD and LCD indicates InfoCons captures the shape-relevant points by assigning them higher scores.

Figure 18. Additional comparisons of InfoCons and PC Saliency Map for Fig. 7.

Figure 19. Quantitative comparisons between our proposed objectives (Eq. 5 and Eq. 6) and Critical Points++ (Levi & Gilboa, 2023) for
eight PC models. We observe an abnormal trend for PointNet++, where CP++ assigns critical points as unimportant, resulting in a rapidly
dropping curve for LCD.

18


