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Abstract

Generative methods have recently seen significant improvements by generating in a lower-
dimensional latent representation of the data. However, many of the generative methods
applied in the latent space remain complex and difficult to train. Further, it is not entirely
clear why transitioning to a lower-dimensional latent space can improve generative quality.
In this work, we introduce a new and simple generative method grounded in topology theory
— Generative Topological Networks (GTNs) — which also provides insights into why lower-
dimensional latent-space representations might be better-suited for data generation. GTNs
are simple to train — they employ a standard supervised learning approach and do not suffer
from common generative pitfalls such as mode collapse, posterior collapse or the need to pose
constraints on the neural network architecture. We demonstrate the use of GTNs on several
datasets, including MNIST, CelebA, CIFAR-10 and the Hands and Palm Images dataset by
training GTNs on a lower-dimensional latent representation of the data. We show that GTNs
can improve upon VAEs and that they are quick to converge, generating realistic samples
in early epochs. Further, we use the topological considerations behind the development of
GTNs to offer insights into why generative models may benefit from operating on a lower-
dimensional latent space, highlighting the important link between the intrinsic dimension
of the data and the dimension in which the data is generated. Particularly, we demonstrate
that generating in high dimensional ambient spaces may be a contributing factor to out-
of-distribution samples generated by diffusion models. We also highlight other topological
properties that are important to consider when using and designing generative models.

1 Introduction

Figure 1: Samples generated by a GTN trained on a latent representation of CelebA 64 x 64 with latent
dimension d = 100.

Deep generative models such as Generative Adversarial Networks (GANs) (Goodfellow et al.l 2020)), Varia-
tional Autoencoders (VAEs) (Kingma & Welling], [2013)), Energy-Based Models (EBMs) (LeCun et all, 2006}
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Ngiam et al., [2011), normalizing flows (NFs) (Rezende & Mohamed} 2015)), and diffusion models (Sohl-
Dickstein et al., 2015a)), have demonstrated remarkable capabilities for generating samples based on training
data distributions (Kang et al., 2023} [Ho et al.| |2020; [Ramesh et al.; 2021; [Ho et al.|2019; |[Kingma & Dhari-
wall [2018; Kingma et al.| 2016; Reed et al., |2017; [Van Den Oord et all 2017; [Ramesh et al.l |2021; |Onken
et al. [2021)).

Many image-generation methods like diffusion are often applied in pixel-space (Ho et al.,|2020; [Sohl-Dickstein
et al., [2015b). More recently, generative methods have seen great improvements in generative quality by
transitioning to a lower-dimensional latent representation of the data (Rombach et al| [2022). Although
training in a lower-dimensional latent space reduces the computational burden, the methods used to generate
in the latent space remain complex and computationally expensive. Further, besides the obvious training
efficiency, it is not entirely clear why transitioning to a lower-dimensional latent representation of the data
leads to improved generative quality compared to pixel-space, or by how much the dimension should be
reduced.

In this work we introduce a new class of generative models — Generative Topological Networks (GTNs) —
that provides a simple approach for generating in the latent space and that sheds light on why transitioning
to a lower-dimensional latent space can improve generative quality.

We begin by introducing GTNs. Given a training set of samples (e.g. images) and a tractable source
distribution (e.g. Gaussian), GTNs learn to approximate a continuous and invertible function h such that,
given a y sampled from the source distribution, h(y) is a sample representing the training data distribution.
GTNs are reminiscent of NFs, which aim to transform one distribution into another using a sequence of
invertible (and differentiable) maps. NFs, however, pose specific constraints on the network architecture. In
contrast, GTNs do not pose any architectural constraints, and are fully operational using a simple vanilla
fully-connected architecture.

From a practical perspective, GTNs are simple to train, requiring only a single, vanilla, feedforward archi-
tecture trained using standard supervised learning. This allows GTNs to: avoid issues like mode collapse or
posterior collapse faced by GANs and VAEs; circumvent the intricacies of training more complex architec-
tures such as those employed by diffusion and GANs; and avoid posing constraints on the structure of the
neural network, as in NFs. These advantages manifest in our experiments — with realistic samples obtained
at early epochs using a single T4 GPU.

From a theoretical perspective, GTNs provide guarantees and properties that are desirable in the context
of generative models. These include: learnability (via the universal approximation theorem), continuity
(for continuous interpolations — Figure 7 bijectivity (for diversity and coverage of the data distribution —
Figure|3) and properties that serve as guiding topological principles that can inform the design of generative
methods (see the Method section and the swiss-roll example). As an example, we use some of the topological
principles behind GTN to demonstrate that generating with diffusion without transitioning to a lower-
dimensional latent space can lead to many out-of-distribution samples. We also discuss why this and other
topological considerations are important for other methods too.

The remainder of the paper is structured as follows: In the Method section we first develop the theory behind
GTNs for the 1-dimensional (1D) case and use it to accurately generate samples from an intrinsically 1D
swiss-roll represented in a 2D ambient space. Here, we emphasize the significance of the intrinsic dimension of
the data for generative models and demonstrate that diffusion struggles to accurately generate the 1D swiss-
roll in the original 2D ambient space. We then extend the theory behind GTNs from the 1D case to higher
dimensions and use it to accurately generate samples from the multivariate uniform distribution. Finally, we
apply GTNs to real datasets represented in a lower-dimensional latent space obtained by autoencoders. We
show that GTNs generate samples resembling reconstructed data and that they improve upon VAEs both
quantitatively and qualitatively. We conclude with Related Work and Discussion sections where we elaborate
on how GTNs compare to other methods from a practical perspective, demonstrate extensions of GTNs to
more complicated data and discuss how the topological considerations behind GTNs can be significant for
existing and future generative methods, like diffusion and NFs.
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Figure 2: Illustration of the mapping produced by h and of the labeling process for training its approximation
h (formally described in Algorithm [1)). In the 1D illustration (left), ¥ is normally distributed and X is
uniformly distributed. A point y from the normal sample is labeled with the unique point z, from the
uniform sample that has the same empirical CDF value as y. In the 2D illustration (right), this occurs on
the line passing through the origin (imagine the round points being normal samples and the stars being
uniform samples). The numbers reflect the order in which the algorithm matches y (circles) with x, (stars).

2 Method

We first develop the method in the simple case of a 1D space, and proceed to generalize to higher dimensions.

2.1 1-Dimension

Consider a continuous random variable X with values in R. We wish to generate samples from X without
knowing its distribution. One solution would be to sample from a known and tractable distribution, such as
the standard normal distribution, and then to apply a function that maps this sample to a corresponding
sample from X. Diffusion models attempt to approximate such a mapping through gradual stochastic
manipulations of the standard normal sample back to a sample from X. We will show that, under certain
general conditions, such a mapping can be explicitly defined, providing a simple deterministic function which
we will denote as h (and which we illustrate in Figure. We will show that & is in fact a homeomorphism — it
is continuous, invertible and has a continuous inverse (see Definition . This has significant implications,
as we will soon explain.

2.1.1 Defining h.

In this section we will define the aforementioned function h that transforms one distribution into another.
We will also prove that h, under fairly general conditions, possesses certain properties that are desirable in
the context of generative models by proving that it is a homeomorphism (Theorem . For example, we
will see that h is bijective, so that each sample y is mapped precisely to one sample z, = h(y), generating
different samples for different y, and guaranteeing that each sample x has a sample y that generates it. We
will also discuss other useful consequences of h being a homeomorphism. We begin by defining the term
homeomorphism in our context and proceed to defining h in Theorem [2.1.1

Definition 2.1 (Homeomorphism for R™). Let S,T be two subsets of R™. A function h : S — T is a
homeomorphism if: (1) h is continuous; (2) h is bijective; (3) h~! is continuous. When such an h exists,
then S and T are called homeomorphic.

Theorem 2.1 Let X and Y be random variables that have continuous probability density functions (pdfs)
fx, fy and supports Sx, Sy that are open intervals in R. Denote the corresponding cumulative distribution
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functions (CDFs) as Fx and Fy. Define:
h: Sy — SX
h(y) = Fx|sy (Fysy (y))

Then: (1) h is well-defined; (2) h is a homeomorphism.

(1)

Note that the requirement that Sx, Sy are open intervals can be adapted to a union of open intervals — see
Appendix [C] The proof of Theorem 2.1.1]is in Appendix [A]

The simple special case of fx, fy > 0 in R illustrates the key ideas of Theorem In this case we have
that:

(2)

For simplicity of exposition, we continue with this special case but note that adapting the results to the
general case is a matter of technicality. Namely — fx, fy > 0 on Sx, Sy respectively. This, combined with
Sx and Sy being open intervals, means that the restricted CDFs Fx|s,, Fy|s, are continuous and strictly
monotonically increasing on S, Sy, which is the main observation needed in order to generalize.

On the many advantages of h being a homeomorphism in the context of generative models see Appendix [H]

A A ? ‘e, B .
-~

\

5 )

A Y .

© omen w0 cnem s o * , } !

: ’ s -o‘/

A A
Normal Swiss-Roll Normal Uniform

Figure 3: (A) Test results for a GTN A trained to map from Y ~ A(0,1) to the swiss-roll parameter. The
color indicates which point in the normal sample was mapped to which point in the swiss-roll. (B) Test
results for a GTN h trained to map from ¥ ~ N (0,I) to X ~ U((0,1) x (0,1)). The color is based on the

normal sample (left): for each y in the normal sample, fL(y) has the same color as y so that the figure on the
right shows how the normal sample was stretched to a uniform distribution.

2.1.2 Learning h Using a Neural Network /» and Generating Samples with /.

As explained in the previous subsection, one consequence of h being a homeomorphism is that it can be
approximated by a feedforward neural network A. If we had known both F )}1 and Fy then we would be able
to easily generate labels for each y € Y: denoting the label of a given y € Y as x,,, we would set =, = h(y),
meaning:

zy = h(y) = Fx' (Fy (y)) (3)

Although we do not know Fyx, Fy, we do have access to samples from X and Y which we can use to
approximate z,. From Eq. We see that z, satisfies Fx(x,) = Fy (y), meaning z, is the unique z € X that
matches the percentile of y. We can use this observation to approximate z, by replacing Fx and Fy with
the empirical CDFs as follows.

Let Dx := {x1,...,2,} and Dy := {y1,...yn} be n observed values of X and Y, respectively. Labels are
obtained easily by sorting Dy and Dy to obtain D52'**d and D5r**d and labeling each y € D5r**d with the
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corresponding x € D;‘?rted (i.e. assuming Dx, Dy are sorted, y; is assigned z;). This is illustrated in Figure

2

The loss function is the MSE:
2

1=, »
f§ h(y;) — 2,
niﬂ” (yi) — @y,

Generating samples from X is now straightforward — we sample y € Y and compute iL(y)

2.1.3 Example: Swiss-Roll.

In this example, we show that samples from the swiss-roll can be easily generated from a 1D normal distri-
bution with visibly near-perfect accuracy (Figure [3| (A)) using a GTN. We first explain why this would not
be as easy using a 2D normal distribution and demonstrate this by an attempt to do so with diffusion in
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Figure 4: Samples generated by a diffusion model when trained using a 2D Gaussian and a 2D representation
of the 1D swiss-roll. Many of the generated samples fall out-of-distribution. We use the diffusion model
provided by [Jiménez| (2024), adapting only the input. The plot format is also by |Jiménez| (2024)).

The swiss-roll is a 1D manifold in a 2D space R? (generated using a single, 1D, continuous random variable
6). Being a 1D manifold, it cannot be homermorphic to the support of a 2D normal distribution (R?) since
homeomorphic manifolds must have the same dimension. Therefore, there would be no hope of learning
a homeomorphism that maps a 2D Gaussian random variable to the swiss-roll. However, the swiss roll is
homeomorphic to R — the support of a 1D standard normal distribution. In fact, since 6 is a random variable
that satisfies the conditions in Theorem it is homeomorphic to R via h, which we can learn using h.
The fact that there is no hope of learning a homeomorphism in a higher-dimensional space than the intrinsic
dimension is also important for other generative methods like NFs, which use a diffeomorphism (a type of
homeomorphism), and it may also help explain why latent diffusion models have shown improvements over
pixel-space diffusion models (Rombach et al., 2022). Specifically, the example in Figure [4| demonstrates that
learning to generate in the ’pixel-space’ (here, the 2D ambient space) when the intrinsic dimension is lower
(ID) can lead to many out-of-distribution samples. Compare this to the typical 2D swiss-roll, where the
intrinsic dimension and the ambient dimension are both 2D. In this case, it is well-known that diffusion can
accurately generate samples using a 2D Gaussian.

After justifying the use of a 1D Gaussian, we return to our example. To train iL, we created a dataset of
n = 50,000 samples from 6 (Appendix , denoted Dx. We sampled n samples from a 1D standard normal
distribution to obtain Dy. We labeled each y; € Dy with its z,, € Dx as defined in the previous section.
We used a standard feedforward neural network as h (4 layers of width 6; details in Appendix Table .
Figure 3 (A) shows the result of testing the trained model h on a set of new samples Y1, ---,Yr drawn from
N(0,1) (each point is obtained by predicting ; := h(y;) and applying the formula for the swiss roll to 0;

(Appendix .
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In Figure [4] the points are gradually and stochastically moved back towards the swiss-roll manifold but the
result contains points that fall outside of this manifold. With h, the generated points lie entirely within the
data manifold. In fact, this holds true early in the training process, as shown in Appendix Figure [1

Besides demonstrating that h can serve as an accurate generative model, this example also emphasizes an
important point — namely, that if we want to learn such a homeomorphism h, we might need to reduce the
dimensionality of the data if it is not already in its intrinsic dimension. This observation will guide us in
later sections.

2.2 Higher Dimensions

To generalize to more than one dimension, we reduce to the 1D case by considering lines that pass through
the origin. Briefly, we take the random variables obtained by restricting X and Y to each line, and apply
the homeomorphism defined for the 1D case to these random variables. We begin with a formal setup that
is very similar to the 1D case.

2.2.1 Defining h.

Let X = (X4,...,X4),Y = (Y3,...,Yy) be multivariate random-variables with continuous joint probability
density functions fx, fy, and with supports Sx, Sy, each of which is a product of d open intervals in R.
For example, X could be uniformly distributed with support Sx = (0,1) x (0,1) and Y could be normally
distributed with support Sy = R x R.

Consider first rotation invariant distributions (e.g., the standard multivariate normal). That is, assume that
for every rotation matrix R and every € R?, fx(Rx) = fx(z), and similarly for fy. For simplicity, also
assume that Sy, Sx = R%. We can now define the following homeomorphism:

h:R? — RY
hallylD i, y#0 (4)
h(y) = {0, 6’

where h; : (0,00) = (0,00) is the 1D homeomorphism applied to the random variables ||Y]], ]| X]|.

We prove that this is indeed a homeomorphism in Appendix [D] Note that this generalizes the 1D case since
for d = 1 we get y — hi(y). Intuitively, h can be seen as shrinking or stretching y to the unit vector in
y’s direction (y/||y||), and then shrinking or stretching it to reach the x, := h(y) that has the same ranked
distance as y on the line (by multiplying it by hi(||y||)). More precisely, hi produces z,’s distance from the
origin so that it has the same quantile as y’s distance from the origin (when measured with respect to the
random variables obtained by restricting Y, X to the line segment from the origin in y’s direction). Another
way of thinking about this is provided in Appendix [E]

Note that more complicated distributions can be used, as demonstrated in Figure [§] and in the 2D uniform
case, which is non-rotation-invariant (Figure [3). This is also discussed in Appendix However, for such
distributions, it may be difficult to explicitly define a homeomorphism h since h; would depend on the line.
Nevertheless, the simpler case above provides guidance on how to train a neural network to match between
two distributions on each line. Specifically, it gives rise to an algorithm that aims to perform such ’per line’
matching, which we will now introduce.

2.2.2 Learning h.

Let Dx and Dy be observed values from X and Y. Imagine first the infinite data scenario where each line
through the origin has points from both X and Y in both directions (see Figure [2| right). We would like
to use the 1D labeling scheme on each line that passes through the origin by using h; in both directions on
the line. Practically, this means that we need to identify those points from Dx and Dy that reside on the
same line and in the same direction, and match them based on their quantiles there. The former can be
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Algorithm 1 Labeling
Input:
Dx ={x1,...,z,}
Dy = {y1,...,yn} sampled from N(0,T)
Output: res
res + ||
Dsgrted pserted « sort Dy, Dy ascending by || - ||2
while Dserted £ ()
Y Di/ortcd[o}
Ty = ArgMAX, ¢ peorted cosine__sim(z,y)
Dgrted  pgerted[] )
Dggrted — Dggrted \ {xy}

res. append((y, xy))
return res

Algorithm 2 Sampling

Input: A trained on res (see Alg. 1)
1: y < sample from A (0, 1)
2: return h(y)

accomplished using maximum cosine-similarity, and the latter can be accomplished using distances from the
origin. The process is formally described in Algorithm [I|and illustrated in Figure[2] To see why Algorithm
approximates h, consider a line with an infinite sample from X and Y in both directions from the origin (see
Figure [2] right). The maximal cosine-similarity over all x € Dx and a y on this line is 1, so the algorithm
returns an x, that is on this line and in y’s direction. Because Dx, Dy are sorted by distance from the
origin, ties in cosine-similarity are broken by distance from the origin, so that the first y is matched with the
first x, the second y with the second x etc. as in the 1D case, i.e. ||z,|| approximates hq(]|y|]). Note that in
practice the probability that any given line contains points from either Dx or Dy is negligible. Nevertheless,
maximum cosine-similarity allows to approximate this well with the closes possible points, providing even
better approximations as the dataset increases. Appendix [B] gives further intuition.

Using the labeled samples from Algorithm |1} we train h — a feedforward neural network — using MSE as
the loss function. We then use h to generate new X instances just as in the 1D case, formally described in
Algorithm

2.2.3 Example: 2-Dimensional Uniform Distribution.

Figure 3| (B) shows a sample generated using Algorithm [2] after applying the method to the multivariate
uniform distribution X ~ U(0,1) x U(0,1). Specifically, we created Dx by sampling n = 100,000 points
from X, and created Dy by sampling the same number of points from N (0,I). We then applied Algorithm
to Dx, Dy to generate labeled data. We trained a standard feedforward neural network h (6 layers, width
6; details in Appendix Table [5)) and used it to generate new samples according to Algorithm [2 The model
was trained until convergence on a separately generated validation set with n = 10,000. The colors in both
images in Figure [3| (B) are based on the distance of the points from the origin in the Gaussian sample (the
left image in (B)), so that the image on the right reflects where each point in the Gaussian sample was
predicted to 'move’ to by h.

3 Experiments

In the previous section, we demonstrated how to learn k on synthetic data — the swiss-roll and the multivariate
uniform distribution. In this section, we will demonstrate how to apply h to images.
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Figure 5: Random generated and reconstructed images for CIFAR-10 (left), CelebA (centre) and MNIST
(right). Each of the generated samples is the decoded h(r) for a random r ~ N(0,I)) and each of the
reconstructions is the decoded vector of a random real image.

3.0.1 Setup.

In light of the discussion in Sectionon using the intrinsic dimension (ID) of the data, we use autoencoders
to represent each dataset in a lower dimensional latent space before training the GTN h. Each dataset was
trained separately (with its own autoencoder and iL) Unless mentioned otherwise, all experiments used
the same vanilla autoencoder architecture adapted to different latent dimensions (the encoder consisted of
two convolution layers with ReLU activation followed by a fully connected layer). For h we use a standard
feedforward neural network with the width and depth depending on the data. Architecture and training
details can be found in Appendix [F] and Table [5] with further details in our code.

To train iL, we set X to be the latent vectors of the training set (the encoded images), and set Y to be
the standard multivariate normal distribution of the same dimension as X (e.g., for a latent dimension of
d = 100 in the autoencoder, Y has dimension 100). Images were generated using Algorithmby computing:
autoencoder.decoder (ﬁ(r)) where 7 ~ N(0,I) (generation occurs in the latent space).

3.0.2 Evaluation.

We applied our method to MNIST, CIFAR-10, CelebA 64 x 64 and the Hands and Palm (HaP) datasets.

We first applied our method to MNIST (LeCun et al.l [1998) using a latent dimension of d = 5 to allow for
comparison with VAE for the same latent dimension (see Figure 5(b) in Kingma & Welling| (2013)). Figure
(right) shows random sets of generated images for MNIST, as well as a sample of random reconstructed
images for comparison.

Next we applied the method to CelebA (Liu et all [2015) (Figure[l]and Appendix Figure [14). Images were
center cropped to 148 x 148 and resized to 64 x 64. We tested latent dimensions of d € {10,25,50, 100},

which are within the range of the typical ID estimated for image datasets (10-50) or close (100) (Pope et al.
2021)). We used Inception Score (IS) (Salimans et all [2016)), a common evaluation metric, as the stopping
criteria: after every epoch, the GTN generated 200 random images for which the IS was evaluated. We used
IS instead of validation-set results since the IS continued to improve well beyond the point of plateau on the
validation set. Training stopped after 300 epochs of no improvement in IS. For evaluation, we used both IS
and Fréchet Inception Distance (FID) (Heusel et al., 2017). For IS, in addition to the best IS obtained by
the model, we produced the IS for a single random set of 200 reconstructed images ("recon-IS") since this
reflects the best possible IS that we can reasonably hope to achieve. Plotting IS and recon-IS by epoch,
(Appendix Figure shows that IS increases throughout the training process, and that recon-IS is either
achieved (d € {10,25}) or nearly achieved (d € {50,100}) by the GTN. For FID, the lowest FID was for
d = 100 with 66.05 and the highest was for d = 10 with 119.46. FID and IS across all dimensions are
reported in Appendix Table 2]

Observing the progress in image generation during training (Appendix F igulre7 shows that realistic images
were already obtained at half the training time (see epoch 276). One epoch took just under 1 minute (50.6
seconds on average) on a single T4 GPU, reflecting 9 hours until the last improvement in IS at epoch 640
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and < 4 hours to reach epoch 276. The relatively fast convergence raises the question whether the latent
space was approximately normal to begin with. Appendix Figure which compares images generated by
decoding random normal vectors with images generated using the GTN, demonstrates that this is not the
case.

Next, we designed a controlled experiment to compare our method to the closely-related VAE on both
CelebA and CIFAR-10. We used the vanilla VAE suggested for CelebA from adapting only
the latent dimension, and trained two autoencoders: (1) The suggested VAE and; (2) A vanilla autoencoder
later used to train a GTN on the learned latent representations. The transition from VAE to vanilla
autoencoder included only the necessary adaptations, so that all remaining architectural considerations and
hyper-parameters were identical between the two autoencoders. We then used the latent representations
from the vanilla autoencoder to train a GTN, where the GTN had the same architecture as in the earlier
experiments. No tuning of any kind was performed, including of the random seed (which was set once at the
very start of the entire project). Particularly, the GTN architecture and training settings (for both CelebA
and CIFAR-10) were unchanged from the previous CelebA experiments (except for the dimensions of the
input, output and latent space). Figure |§| shows a side-by-side comparison of randomly generated images
from both methods. Table provides the FID and IS results, including for reconstruction quality (i.e. recon-
FID and recon-IS, which compare reconstructions to real images). A comparison with reconstructions is also
shown in Figure[5] Although GTN outperforms VAE on both CelebA and CIFAR-10, the CIFAR-10 results
are overall worse compared to the CelebA results. This is likely since: (a) the autoencoder settings were
originally suggested for CelebA; and (b) no fine-tuning or architecture search was performed for the GTN
when transitioning from the CelebA experiment to CIFAR-10. For additional context with other methods,
we also provide Appendix Tables [3] and [4

Figure 6: Controlled comparison of GTN with VAE (Kingma et all 2016) on CelebA and CIFAR-10 —
randomly generated images from both.

We next used the CelebA dataset as well as the Hands and Palm Images (HaP) dataset
to demonstrate that GTNs indeed provide continuous interpolations. The HaP dataset is a small dataset
containing 11,000 images of upward-facing and downward-facing hands. We chose the HaP dataset since
generating hands is known to be notoriously difficult for generative models (The New Yorker., [2023; [Vox.|
, let alone interpolating between them. As in CelebA, we trained a GTN for each of the four dimensions,
on images resized to 64 x 64.
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Data Method IS 1T recon-IS{ FID | recon-FID |

CelebA VAE 1.0 1.0 94.66 83.48
GTN 1.90 1.94 73.18 67.08

VAE 1.77 1.90 286.49 277.48

CIFAR-10 GTN 2.07 2.24 238.62 181.53

Table 1: Controlled comparison of GTN with VAE (Kingma et al., 2016) on CelebA and CIFAR-10. The
VAE result was obtained by training the vanilla VAE architecture supplied in . Prior to
training the GTN we trained a new autoencoder that employs the same architectures as the vanilla VAE,
with only the necessary adaptations to transition from VAE to a vanilla autoencoder. GTN is trained on the
latent representations provided by this autoencoder, with d = 100 and d = 128 for CelebA and CIFAR-10,
respectively. We use 10,000 random training images and an equal number of random generated samples
(decoded generated latent vectors) to compute FID. We use 200 random generated and 200 random real
images for IS.
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Figure 7: Interpolations generated by a trained GTN for CelebA (top) and the HaP dataset (bottom).

Figure [7] shows that GTN indeed generates continuous interpolations. Each row contains generated interpo-
lations between two images (leftmost and rightmost). Specifically, each row contains the results of decoding
B(Ayleft +(1- )\)yright) for 20 linearly spaced A € [0, 1], where, in CelebA, both yie and yighe were sampled
from N(0,1I), and in HaP yef and yrigne are each the normal label of a real encoded image (from Algorithm
1)), chosen so that they have the same orientation. For CelebA we used the d = 100 model and for HaP we
used d = 50 (chosen after consulting the IS and FID results across all four d values in Appendix Table
while preferring a higher dimension (d € {50,100}) to retain more visual detail).

It is worth noting an interesting observation arising from the HaP dataset. Notice that the generated in-
terpolations in Figure |f| are between hands of the same orientation (downward facing). However, generated
interpolations between hands (downward facing) and palms (upward-facing) do not seem as natural (Ap-
pendix Figure [15)). This is likely because the dataset does not contain in-between positions for the latter
(transitions between downward and upward), but it does for the former (closed/open fingers to various de-
grees). This demonstrates that, regardless of methodology, the completeness of the dataset is important for
accurate image generation, and particularly for interpolation.
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4 Related work

GTNs are related in concept to NFs which seek to map a source distribution into a target distribution using
a sequence of bijective transformations. These are typically implemented by a neural network, often in
the form of at least tens of neural network blocks (Xu & Campbell, 2024) and sometimes more (Xu et al.,
2023)). The core of NFs is based on each of these transformations being a diffeomorphism — a specific type of
homeomorphism that is more constrained than h as it is defined between smooth manifolds (as opposed to any
topological spaces, including any manifolds) and requires that the function and its inverse are differentiable
(as opposed to just continuous for general homeomorphisms). NFs also require that the log-determinant of
the Jacobian of these transformations is tractable, posing a constraint on the model architecture. GTNs
do not pose any limitations on the model architecture. NFs also differ from GTNs in their optimization
method since NFs employ a maximum likelihood objective — typically the Kullback-Leibler (KL) divergence
while GTNs are trained using MSE. It was observed that optimizing the KL-divergence may be difficult for
more complex normalizing flow structures (Xu et all |2023). NFs may also suffer from low-quality sample
generation (Behrmann et al.l |2021)), partially because the constraint on the Jacobian, besides limiting the
model structure, may also lead to issues such as spurious local minima and numerical instability (Golinski
et al., 2019).

Continuous normalizing flow (CNF) are a relatively recent type of NFs that were developed to avoid the main
constraints posed by NFs — namely the requirements of invertibility and a tractable Jacobian determinant.
To avoid these constraints, CNFs use ordinary differential equations (ODEs) to describe the transformations
in NFs. While CNFs have provided certain improvements over NFs, they are still time-intensive (Huang &
Yeh, 2021)). Improving both the speed and performance of CNFs is an active and promising field of research.

Also closely related are VAEs since they are based on autoencoders that aim to transform the lower-
dimensional latent space into a tractable distribution. The VAE loss function optimizes two terms, namely
both the reconstruction error and the error between the prior and posterior distributions. This often leads to
training instabilities and to posterior collapse. Despite these training instabilities, methods based on VAEs
have been suggested, including Two-Stage VAE (Dai & Wipf, |2019)) which first trains a VAE to identify the
lower-dimensional manifold, and then a second VAE to transform the learned latent space into a normal
distribution. Other methods, combining VAE and flow, have also been suggested, but have seen limited
success at improving upon VAE (Xiao et al., [2019) and add architectural limitations as mentioned earlier.
Compared to VAE-based methods, GTNs have several practical advantages. One advantage is that GTNs
separate between the autoencoder and the generative process, avoiding the intricacies of balancing between
the two terms present in the VAE loss function (an in-depth analysis of the issues arising from this balancing
can be found in [Dai & Wipf| (2019))). Practically, this means that one can focus on finding a high-quality
latent representation of the data first, and then learn to generate in that latent space. This may be of par-
ticular interest in light of the use of pretrained autoencoders in state-of-the-art generative models (Rombach
et al.l |2022)). Another advantage is the training stability, with no risk of posterior collapse, which is a main
issues with VAEs. Also worth noting is the fact that GTNs show no evidence of mode collapse (a known issue
with other methods like GANs). These advantages, and the fact that GTNs employ a standard supervised
learning approach, makes them more user-friendly and easier to train than many of the existing methods.

5 Discussion

This work provides two main contributions: (1) It introduces a new class of generative models — GTNs —
that is explicitly designed for the manifold assumption and offers training stability and simplicity; (2) It
provides a new perspective on the importance of topological considerations like the intrinsic dimension of
the data in the context of generative models.

As a generative method, GTNs offer a simple and stable approach to image generation. Compared to
other generative methods like diffusion, VAE, GANs and NFs; GTNs are computationally simpler and more
user-friendly since they employ a basic supervised learning approach that does not suffer from many of the
training instabilities and specialised architectural requirements posed by other methods. GTNs also allow
the flexibility of easily replacing the autoencoder should a better one be designed. This is of value in light

11



Under review as submission to TMLR

of the recent turn to using pre-trained autoencoders for data generation (Rombach et al., 2022). VAEs, for
example, would require retraining from scratch, which means risking dealing again with training instabilities
and potential posterior collapse.

GTN’s potential was demonstrated both quantitatively and qualitatively, particularly with demonstrable
improvements over VAE. It is possible that with careful fine-tuning and with more sophisticated architec-
tures to replace the fully-connected GTNs (e.g. to convolutional-based GTNs), further improvements may
be attained (especially for CIFAR-10 where no attempts were made to fine-tune the settings or adapt the
architecture when transitioning from CelebA). Upgrading from the vanilla autoencoders may also offer im-
provements, perhaps even more significant ones — observing both the qualitative and quantitative similarity
between reconstructions and generated samples (e.g. recon-IS being nearly achieved, the similarity between
FID and real-FID as well as the similarities observed in Figure [5) shows that a large portion of the error
may be attributed to the quality of the autoencoder.

GTNs can also be extended to data that does not immediately satisfy the assumptions on the support of
the distribution (like data that is separable into disconnected components). In such a case, it is possible to
exploit the assumption that the data lies on a manifold by labeling points ’'locally’ using a mixture model
before training the GTN. We demonstrate this in Figure [§] where the data distribution is supported on two
disjoint sets. Note that GTNs were also successfully applied to distributions that are not rotation invariant,
particularly the uniform distribution. We leave a more thorough discussion and analysis of such extensions
to future work.

-15 -10 -05 00 05 10 15 2.0 -1.0 -0.5 0.0 05 10

Random normal Generated

Figure 8: Generating two disjoint uniform distributions. Left-to-right: mixture of random normal samples,
corresponding predictions generated by a GTN and actual samples from the data. The random normal
samples were generated by clustering the training data into two clusters using the fast-pytorch-kmeans
package (DeMoriarty, 2024) and using the cluster means and standard-deviations to define the normal
distributions. Labels were computed in each cluster separately according to Algorithm [I] to obtain a single
dataset for training the GTN.

Finally, the topological considerations used throughout this paper, like those relating to the intrinsic dimen-
sion of the data and connectedness, may prove useful for other methods. This has already been demonstrated
for diffusion. Another example is NFs, which are by-definition sensitive to the same topological considera-
tions discussed herein since they employ diffeomorphisms — a strict form of homeomorphisms. In particular,
this means that topological consideration like connectedness (Appendix and the intrinsic dimension are
important to consider also in the context of NFs. We note that many of these properties are often ignored
in the design of generative models, although discussions on their importance have been recently increasing
(Loaiza-Ganem et all) [2024). Such topological properties could also help understand why certain models
perform better than others. Recently, latent generative methods have been shown to improve upon pixel-
space ones (Rombach et al., [2022). One potential contribution to that success could lie in the fact that
the latent dimension is closer to the intrinsic dimension of the data, reducing the risk of generating many
out-of-distribution samples like those produced by diffusion in the swiss-roll. More broadly, topological con-
siderations like those used throughout this paper may prove useful for the design of better generative models
and for the understanding of why some methods improve upon others.
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Appendix
A

1. h is well-defined: it suffices to show that: (a) Fx|s, is invertible, and (b) that the image of Fy|g,
is in the domain of Fx\g)l(. For (a), observe that Fx|s, is continuous (the CDF of a continuous
random variable is continuous) , strictly monotonically increasing (the CDF is strictly monotonically
increasing on the support) and onto (0,1) (by definition of the CDF and the fact that the support
is an open interval). As such it is invertible. A symmetric argument can be made for Fy|g, , which
we will use later to define the inverse of h.

For (b), we know from the proof of (a) that the image of Fy|g, is the domain of FX|§}1(

2. h is a homeomorphism since: a. it is continuous as a composition of continuous functions. Indeed,
Fy|s, is continuous (the CDF of a continuous random variable is continuous). F X|§)1( is also
continuous: since Fx|g, is continuous (as was Fy|s, ) and bijective (it is invertible, as shown in
the first part) we can use the known result that a continuous and bijective function between two
open intervals has a continuous inverse (a consequence of the invariance of domain theorem). ; b.
it is bijective since the inverse is Fy|§i o Fx|sy; c. its inverse is continuous: we know from a. and
b. that h is continuous and bijective so we can again use the fact that a continuous and bijective
function between two open intervals has a continuous inverse.

B

To understand the rationale behind Algorithm [T} imagine four points from each of X and Y lying on the
same line, say the z-axis in R?, such that both X and Y have two points on each side of the origin (we
assume Dx, Dy are centralized). See Appendix Figure |§|, where circles are from Y and stars are from X.
The cosine similarity of each pair of points {a,b} with a € Dx,b € Dy is 1 if they are on the same side
or —1 of they are on opposite sides. Take the first y € D52"*°d (the closest one to the origin which reflects
~ 50th percentile since we assumed an equal number of points from Y on both sides). The maximum cosine
similarity out of all = € Dggrted is 1, meaning y will be matched with an = on the same side. The fact that
Dx is sorted, means that we are using the distance as a tie breaker — out of all x € Dx that are on the same
side as y, the x that is closest to the origin (~ 50th percentile) will be chosen as x,,. Likewise, the leftmost y
will be matched with the leftmost x (both Oth percentile), the rightmost y with the rightmost = (both 100th
percentile) etc. Note that if this were in R, this process coincides with the same labeling process described
in the 1D case (illustrated in Figure . Note that if Dx, Dy are not sorted, discontinuities in the labeling

may arise (see Figure .
Cc

One example of a topological property is the connectedness property — being a "single piece", like R, as
opposed to "more than one piece", like (—oo, —1) U (1, 00), is preserved between homeomorphic spaces (so, in
particular, these two are not homeomorphic, but R is homeomorphic to each of the two intervals, separately).
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Figure 9: Illustration of Algorithm [I] as described in Appendix [Bl The numbers reflect the order in which
the matching of y with z, occurs.

Figure 10: Example demonstrating that sorting Dx, Dy in the labeling algorithm is essential. Training
GTN on the 2D-uniform data on labels produced by the same algorithm with sorting removed causes test
predictions to collapse mainly to the boundary.

Therefore, if we suspect that our data is composed of separate classes like images of both hands and faces,
and we would like to train a GTN as a generative model, one option would be to use a clustering approach
and to generate labels for each cluster separately. Another would be to split our data into its different
components (learning a separate h for each). This relates to the conditions of Theorem which assume
that X’s support is an open interval. For example, if we suspect that our data can be separated into two
disjoint uniform distributions, then the theorem doesn’t apply. However, it does apply to each separate
uniformly distributed component.

D
h is injective: equating for two points y,y2 we obtain:

1 Y2
h1(||y1||)m = h1(||y2||)m

Applying the norm to both sides yields hi(||y1]]) = h1(||y=||). Since h; is injective, this means that ||y;|| =
[ly2||- Plugging this into the equality and cancelling out equal terms (y1,y2 # 0) yields y;3 = y2. The function
is also onto: since h; is onto (it is a homeomorphism) then for any z # 0 there is a value v in (0, 00) with
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Figure 11: Swiss-roll samples generated by GTN during the training process.
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Figure 12: Inception score (IS) vs recon-IS for CelebA plotted by epoch (at epochs of improvement in the IS).
At each epoch, the IS was computed for 200 randomly generated images (decoded latent vectors generated
by h from random normal vectors, formally: autoencoder.decoder(fl(r)) for r ~ N(0,1)) (solid black line).
recon-IS was computed once for a random set of 200 reconstructions (dashed gray line).

hi(v) = ||z||. Since the support of Y is R? there is a y that is on the same line as = from the origin and that
meaning that = has a y € Sy for which h(y) = «.

satisfies ||y|| = v so that: x = hy(||y|])
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lyll”
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Figure 13: Inception score (IS) vs recon-IS for HaP plotted by epoch (at epochs of improvement in IS).
At each epoch, IS was computed for 200 randomly generated images (decoded latent vectors generated by
h from random normal vectors), formally: autoencoder.decoder (?L(r)) for r ~ N(0,I)) (solid black line).
recon-IS was computed once for a random set of 200 reconstructions (dashed gray line).

h is continuous since for y # 0 it is a composition of continuous functions, and for y = 0 we observe that
lim,, ¢ h1(|\y||)”g—H =0 (”z—ﬂ is the unit vector in the direction of y and hy(||y||) — 0 as y — 0 by definition
of the CDF).

The inverse is also continuous since a continuous and bijective functions between open subsets of R? is
continuous (by the invariance of domain theorem).

Another way of thinking about this is as follows: assume for simplicity that fx, fy > 0 (so that Sx, Sy = R?
and therefore NSy and [N Sy are simply ). Since [ is a 1D manifold, X and Y induce 1D random variables

X' and Y on the line [, with pdfs fx:, fy: and CDFs Fy., Fy1. We can apply Theorem to these random
variables to obtain a homeomorphism h' for each line.

18



Under review as submission to TMLR

gl v
¢ 1" "[ 1

‘I.:' r Y v’ a2
E13 =
AABACBHAN

00 ?H" 1 a
'4' Elesa o) s B
\ 3 ?rﬂe * J
'G'S""" }- Lk [
Epoch 276 Epoch 640 Reconstructed
(<4h) (~9h)

Figure 14: Randomly chosen samples generated by a GTN during the training process on CelebA with
latent dimension 100 at several epochs of improvement in the IS score, and randomly chosen real images
(bottom-right grid). Specifically, each epoch shows 200 images, each of which is the decoded iL(T) for some
random r ~ N(0,I)). The bottom right grid shows 200 images each of which is the decoded latent vector
of a random real image. Training until epoch 640 took approximately 9 hours on a single T4 GPU, with
similar-quality images obtained in less than 4 hours of training at epoch 276.
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Figure 15: Interpolations between a hand (downward facing) and a palm (upward facing).

F

The same autoencoder architecture was used for MNIST, CelebA and HaP with only the essential modifica-
tions needed to accomodate to the different input channels (1 for MNIST and 3 for CelebA and HaP) and the
different latent dimensions. The architecture consisted of a decoder with two 2d convolutional layers followed
by ReLU activation: the first convolutional layer had 64 output channels, kernel size 4, stride 2 and padding
1. The second convolutional layer consisted of 128 output channels, kernel size 4, stride 2 and padding 1.
The two convolutional layers were followed by a liner layer with the number of output features set to the
desired latent dimension d. The output activation was tanh. In the decoder we used a mirror architecutre
of one linear layer, with the number of input features being d, and two 2d transposed convolution layers.
The code for all architectures is also available in our repository. To train the autoencoders we used: a batch
size of 200 for CelebA and HaP, and 128 for MNIST; learning rate le — 4 for CelebA and HaP and le~3 for
MNIST; a weight decay of 1e~® was used in all three. We tested the two learning rates le=3 and le~*. No
further optimizations were made for the autoencoder hyperparameters.
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Without GTN With GTN
(decoded random normal)

Figure 16: Generated images by: (left) decoding random normal vectors with vectors p, o estimated from
the latent space (each image is the decoded r for some random r ~ N (u,o1)); (right) GTN (each image is
the decoded h(r) for some random r ~ N(0,1))).

CelebA images were center-cropped to 148 x 148 and resized to 64 x 64. HaP images were resized to 64 x 64.
We did not use any data augmentations during the training process.

Final architecture specifications for h appear in Appendix Table We ran a hyperparameter search for
CelebA and HaP. Initially, we ran several settings for CelebA using a small number of epochs (roughly 100-
300) for latent dimension 200 prior to consulting the literature on the intrinsic dimension of image data. We
tried learning rates of le =3, 1e~%,1e=5, 5¢ =5 for various width and depth settings. Specifically, for CelebA we
tested widths of 500, 1000, 1200, 1300, 1500 and depths of 10, 17,20, 25,27. For HaP we kept the depth at 25
after observing this obtained best results for CelebA and tested widths of 2000, 3000 as well after identifying
that HaP benefited from higher width settings.

The architectures were compared based on their IS score at each epoch. The architecture with the highest
IS score was kept. These architectures are the ones described in Appendix Table

We used the best settings, shown in Appendix Table [5] regardless of the dimension d. We did not perform
architecture optimizations per dimension. Such optimizations may provide further improvements in efficiency
and/or generative quality.

Each experiment was run on 1 NVIDIA T4 GPU with 8 vCPU + 52 GB memory, 500GB SSD. Specifically,
we used the "Deep Learning VM" by Google Click to Deploy in the Google Cloud Marketplace (image:
pytorch-1-13-cul13-v20230925-debian-10-py37), modified to the aforementioned specifications.

G

The 1D swiss-roll data is generated by sampling 6 ~ U(1.57,4.57) and computing f(0) = 6(cosf,sin§).
GTN is trained to generate 6. This example, besides demonstrating the 1D case, serves to demonstrate how
GTN operates on the ’correct’ latent representation of the data (in practice, this could be obtained by an
appropriate dimensionality reduction method, like an autoencoder).

H

The fact that h is a homeomorphism is significant in the context of generative models for several reasons:
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CelebA HaP
ISt recon-IS{1 FID | IS1T recon-IS{T FID |
d=10 1.97 1.95 119.46 1.90 1.80 192.98
d=25 1.93 1.99 82.88 2.63 2.43 123.89
d =50 1.88 2.06 71.61 2.64 2.22  81.48
d=100 1.86 2.07 66.05 2.37 1.94 101.85

Table 2: Results per dataset and latent dimension using vanilla autoencoders (2 layer encoder). Inception
Score (IS) is the best IS attained during training for the given dimension and dataset for a random set of
200 reconstructions. recon-IS is the IS attained by a set of 200 reconstructions. Fréchet Inception Distance
(FID) is computed using 50,000 randomly generated images and 50, 000 random real images using the same
model that attained the reported best IS. For the smaller HaP dataset, all training images (~ 8,000) and
the same number of randomly generated images were used.

Method FID |
2 Stage VAE (Dai & Wipf, [2019) 44.4
NVAE (Vahdat & Kautz, [2020) 14.74
WAE-GAN (Tolstikhin et al., [2017) 42.0
DiffuseVAE (Pandey et al., |2022]) 3.97
GLF (Xiao et al.l [2019) 53.2

VAE + flow posterior (Xiao et all 2019)  67.9
VAE + GMM=75 (Pandey et all,[2022)  72.11
GTN (ours) 66.05

Table 3: GTN results and results reported by related methods on CelebA. GTN results are for d = 100
(from Table . All other results are as originally reported by their authors, except for NVAE which does
not report FID (results are as reported by [Pandey et al.| (2022))). Note that the methods may differ in their
evaluation settings and implementation.

1. Learnability — Since h being a homeomorphism implies that both h and h~! are continuous real-valued
functions over some subset of R, then by the universal approximation theorem they can be approximated to
arbitrary accuracy by a neural network (Hornik et all [1989). This is demonstrated in Figure @ (A).

2. Coverage and diversity — The bijectivity of a homeomorphism means that there is a one-to-one and
onto correspondence between the supports Sx and Sy. This means that we can use Y to cover all samples
that can be obtained from X and that no two samples in Y will generate the same sample in X. This is
demonstrated in Figure[q (A) and (B).

3. Continuous interpolation — The fact that h is continuous is significant for purposes of interpolation. For
example, given a generative model g : R — Sy, two points y1,y> € R, and the function: ¢(N\) = Ay1+(1—N)ys
(where ¢ : [0,1] — R) we would like (g o ¢)(A) to be continuous (e.g. for video generation). If ¢ is stochastic,
for example, this cannot be guaranteed. However, using h as g, we have that g o ¢ is continuous as a
composition of continuous functions. This provides the desired continuous interpolation between points
from X. This is demonstrated in Figure[7

4. Guiding topological properties — There are useful properties that are invariant under homeomorphisms
("topological properties") that can guide us in designing better generative models. For example, one property
is that homeomorphic manifolds must have the same dimension. The use of this property is demonstrated
in the upcoming swiss-roll exzample, where it will lead us to the conclusion that we are better off generating
swiss-roll samples from a 1D standard normal distribution, rather than from a 2D one. Another example for
a useful property is in Appendix [C}
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Method FID |
2-Stage VAE (Dai & Wipf, [2019) 72.9
NVAE (Vahdat & Kautz, [2020)) 51.67
DiffuseVAE (Pandey et al., |2022]) 2.62
GLF (Xiao et al., 2019) 88.3

VAE + flow posterior (Xiao et al., 2019)  143.6
VAE + GMM=75 (Pandey et al.,[2022) 137.68
GTN (ours) 238.62

Table 4: GTN results and results reported by related methods on CIFAR-10. GTN results are from Table
All other results are as originally reported by their authors, except for NVAE which does not report
FID (results are as reported by [Pandey et al|(2022))). Note that the methods may differ in their evaluation

settings and implementation.

E:};eildden Width Activation Ezi(;ﬁ ;iiznlng ‘]gifgi;lt Optimizer ]S?,iz;te(:h
Swiss-Roll 4 6 LeakyReLU(0.5) No le™3 No Adam 250
Uniform 6 6 LeakyReLU(0.5) No le™3 No Adam 250
MNIST 7 50 LeakyReLU(0.5) Yes le™3 No Adam 128
CelebA 26 1,200 LeakyReLU(0.5) Yes 5e7® No Adam 200
HaP 26 3,000 LeakyReLU(0.5) Yes 5e~° No Adam 200
CIFAR-10 26 1,500 LeakyReLU(0.5) Yes 5e~5 No Adam 200

Table 5: Architecture specifications for h for the different datasets. The architecture was kept the same

between the different dimensions where different dimensions were tested (CelebA, HaP).
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