
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOUNDS OF CHAIN-OF-THOUGHT ROBUSTNESS:
REASONING STEPS, EMBED NORMS, AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing research indicates that the output of Chain-of-Thought (CoT) is signifi-
cantly affected by input perturbations. Although many methods aim to mitigate
such impact by optimizing prompts, a theoretical explanation of how these pertur-
bations influence CoT outputs remains an open area of research. This gap limits
our in-depth understanding of how input perturbations propagate during the rea-
soning process and hinders further improvements in prompt optimization methods.
Therefore, in this paper, we theoretically analyze the effect of input perturbations
on the fluctuation of CoT outputs. We first derive an upper bound for input per-
turbations under the condition that the output fluctuation is within an acceptable
range, based on which we prove that: (i) This upper bound is positively correlated
with the number of reasoning steps in the CoT; (ii) Even an infinitely long rea-
soning process cannot eliminate the impact of input perturbations. We then apply
these conclusions to the Linear Self-Attention (LSA) model, which can be viewed
as a simplified version of the Transformer. For the LSA model, we prove that
the upper bound for input perturbation is negatively correlated with the norms of
the input embedding and hidden state vectors. To validate this theoretical anal-
ysis, we conduct experiments on three mainstream datasets and four mainstream
models. The experimental results align with our theoretical analysis, empirically
demonstrating the correctness of our findings1.

1 INTRODUCTION

Chain-of-Thought (CoT) is an effective method that enhances the performance of large language
models (LLMs) by prompting the model to generate a step-by-step reasoning process, thereby im-
proving the quality of the results (Wei et al., 2022). However, numerous studies have indicated that
CoT is highly sensitive to input, where subtle input perturbations can lead to significant performance
fluctuations (Zhao et al., 2024; Shi et al., 2024b). To address this issue, researchers have proposed
prompt optimization methods to enhance the reasoning performance of LLMs by refining the input
prompt, lowering the effect of the input perturbation (Vatsal & Dubey, 2024; Sahoo et al., 2025). For
instance, TextGrad (Yuksekgonul et al., 2025) optimizes prompts by constructing textual gradients,
while OPRO (Yang et al., 2024) utilizes the LLM itself to iteratively generate more suitable prompts.

Despite this progress, a key gap remains: most studies treat CoT robustness as an empirical phe-
nomenon, with little theoretical understanding of why and how perturbations propagate through the
reasoning process of LLMs, thereby affecting output fluctuation. Without such analysis, our un-
derstanding of CoT robustness remains incomplete, and prompt optimization risks being limited
to ad-hoc techniques. This motivates a fundamental research question: what governs the CoT
robustness of LLMs to input perturbations?

Following the previous work (Huang et al., 2025), we consider CoT as a multistep iterative process,
with the output of each step serving as the input for the next. Our theoretical analysis shows that
under the assumption of Lipschitz continuity (Qi et al., 2023; Collins et al., 2025), longer CoT rea-
soning indeed reduces the fluctuation of outputs to input perturbations, but it never fully eliminates
them. Even with an infinite number of CoT steps, a non-zero robustness bound remains, suggesting
that CoT inherently dampens but cannot completely neutralize perturbations.

1Our code is released in https://anonymous.4open.science/r/CoT-Robust-DF71
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Table 1: The main findings and corresponding evidence and experiment of this paper.

Finding Evidence Experiment

More reasoning steps can reduce the effect of input perturbations. Theorem 1 §4.3

The effect of input perturbations cannot be entirely eliminated by
continuously increasing the number of CoT reasoning steps. Equation 4 §4.3

CoT robustness is negatively correlated with the norms of the
input embedding and hidden state vectors. Theorem 2 §4.4

To further ground our analysis, we investigate robustness in the Linear Self-Attention (LSA) model
(Wang et al., 2020a; Zhang et al., 2024a), which is commonly adopted as a simplified version of
Transformer (Vaswani et al., 2017) for analysis without loss of generality. We prove that CoT ro-
bustness highly depends on model-level factors: the sensitivity to perturbations correlates negatively
with the norm of the input vector and the hidden state vectors. Additionally, we discuss the impact
of other factors in LSA on CoT robustness.

Finally, we validate our theory with experiments on four mainstream LLMs (Llama2, Llama3.1,
Deepseek-R1-Distilled-Llama3.1, Qwen3) across three widely used reasoning datasets (MATH,
MMLU-Pro, GPQA). The experimental results indicate that the variation in output fluctuation is
consistent with the trends of the various factors identified in our theoretical analysis, thereby vali-
dating our findings. Furthermore, based on the analysis, we propose selecting the prompt by max-
imizing the upper bound of the input perturbation, which achieves consistent improvements over
prior work, aiming to inspire future research in this area.

The main findings of our work are summarized in Table 1, and our main contributions are as follows:

• We provide an upper bound for the output fluctuation with respect to input perturbations under the
assumption of Lipschitz continuity and prove that even an infinitely long CoT cannot completely
counteract the impact of input perturbations.

• Taking the LSA model as a case study, we demonstrate that robustness to input perturbations is
negatively correlated with the norms of the input and hidden state embedding vectors.

• Our experiments across multiple mainstream datasets and LLMs validate our theoretical analysis,
and improvements based on our analysis also enhance performance compared to existing prompt
optimization methods.

2 ROBUSTNESS OF CHAIN-OF-THOUGHT

In this section, we discuss the impact of input perturbations on the model output. We begin by
providing some fundamental definitions. Then, we derive the upper bound for the output fluctuation
given the input perturbation when the model satisfies Lipschitz continuity. Afterward, we determine
the upper bound for the input perturbation when the output fluctuation is within an acceptable range.
All the proof of this section is shown in Appendix C.

2.1 PRELIMINARY

Let x, y ∈ Rd denote the embedding vectors of the user query and the corresponding output, where
d is the dimension of the embedding space. Following previous works (Zhang et al., 2024a; Von Os-
wald et al., 2023), we directly use embedding vector instead of token embedding for analysis, as we
consider the impact of user query as a whole on CoT robustness. We also prove that the conclusion
is same with considering multiple tokens in Appendix D.5. Let δ ∈ Rd represent the input pertur-
bation, and x̃ = x+ δ represent the perturbed input. Following previous work (Huang et al., 2025),
we model the CoT reasoning process as a multistep iterative procedure, where the output of each
step serves as the input for the next step. Let K ∈ N+ be the total number of CoT reasoning steps,
and let hk,x ∈ Rd denote the hidden state at step k taking x as input2. Let f(h, x) : Rd ×Rd → Rd

2In practical models, x can be viewed as the input embedding vector, and h can be viewed as the encoded
vector from the last layer of the model.
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represent the mapping function to generate the hidden state corresponding to an arbitrary reasoning
model. Thus, we have h1,x = f(0, x) and hk,x = f(hk−1,x, x). We denote the output fluctuation
caused by the perturbation δ on step k as εk = hk,x̃ − hk,x.

2.2 UPPER BOUND OF OUTPUT FLUCTUATION

We primarily discuss the impact of input perturbations on the model output under the assumption
of Lipschitz continuity. Lipschitz continuity imposes a constraint on the growth rate of the model
output, preventing an explosive increase. Considering that the output of current LLMs typically
exhibits stable changes, many analytical works adopt this condition as a fundamental assumption
(Qi et al., 2023; Collins et al., 2025). Specifically, for a given bivariate function f(h, x), Lipschitz
continuity requires the existence of constants C, γ ∈ R such that:

∥f(h1, x1)− f(h2, x2)∥ ≤ γ∥h1 − h2∥+ C∥x1 − x2∥ (1)

Considering that the input h at each step is the output of the previous step, by substituting it and
expanding recursively, we can derive the following theorem:
Theorem 1. If f is Lipschitz continuous with respect to constants C, γ ∈ R as defined in Equation 1,
then for a given input perturbation δ ∈ Rd, the upper bound of the corresponding output fluctuation
εK of the final step K satisfies that:

∥εK∥ ≤
(
AγK +

C

1− γ
(1− γK)

)
∥δ∥

where A = max ∥ε1∥
∥δ∥ .

From Theorem 1, we can observe that the propagation of the input perturbation can be mainly
divided into two parts. (i) The part contained in the hidden state vector: since the hidden state vector
is updated at each step, the coefficient of this part of the perturbation is continuously multiplied by
the corresponding Lipschitz constant γ; (ii) The part contained in the input vector: since the input
vector at each step does not change, this part of the perturbation gradually accumulates at each step,
and thus the corresponding perturbation coefficient is

∑K
k=1 Cγk = C

1−γ (1− γK).

Besides, considering that when the model is fixed, the corresponding parameters C and γ are also
fixed. Therefore, based on Theorem 1, the upper bound of the output fluctuation primarily depends
on two factors: the number of reasoning steps K and the magnitude of the perturbation ∥δ∥. Based
on previous work (Zhou et al., 2020; Diehl Martinez et al., 2024), we assume that γ < 1, which
implies that for a well-trained model, the output fluctuation gradually converges to a fixed value
rather than diverging infinitely. We also fit the values of γ in Appendix F.1 using practical datasets
and models. Consequently, as the number of reasoning steps K increases, the corresponding upper
bound of output fluctuation decreases, indicating that the increment of CoT steps can mitigate the
impact of input perturbations on the model output.

2.3 UPPER BOUND OF INPUT PERTURBATION

In practical applications, a model can tolerate a certain degree of output fluctuation while maintain-
ing the same final result. For example, in a classification task, as long as the probability of the same
option remains the highest before and after the input perturbation, a certain level of fluctuation in the
output probabilities can not affect the final answer. Therefore, we assume there exists an acceptable
boundary R ∈ R+, such that we consider the output fluctuation to be acceptable when the following
condition is met:

∥ε∥ ≤ R (2)

To ensure that the norm of output fluctuation ε is less than R, we require the expression on the
right-hand side of the inequality in Theorem 1 to be less than R, which yields:

∥δ∥ ≤ R

AγK + C
1−γ (1− γK)

(3)

It can be observed that the upper bound of the input perturbation is mainly influenced by R,C, and
γ. A larger R indicates that a greater output fluctuation is acceptable, thus leading to a larger upper

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

bound for the input perturbation. Conversely, larger values of C and γ, according to Equation 1, sug-
gest that the model is less capable of compressing the output fluctuation, implying a weaker ability
to handle input perturbations, which results in a smaller upper bound for the input perturbation.

Taking γ < 1 and letting K → ∞, we can obtain that:

∥δ∥ ≤ R(1− γ)

C
(4)

Equation 4 indicates that the effect of extending the reasoning process to eliminate input perturbation
is limited. Even with an infinitely long reasoning process, if the input perturbation exceeds a certain
threshold, the model cannot eliminate the resulting output fluctuation. For example, if we “perturb”
a numerical reasoning problem into a coding problem, the model cannot generate the answer to the
original problem, regardless of the reasoning length.

3 CHAIN-OF-THOUGHT ROBUSTNESS ON LINEAR SELF-ATTENTION

According to the discussion in §2.3, the upper bound of input perturbation that a model can toler-
ate using CoT depends on the properties of the model itself. Therefore, in this section, we discuss
the factors that influence the upper bound of input perturbation on the Linear Self-Attention model
(LSA) (Wang et al., 2020a; Zhang et al., 2024a), which can be viewed as a simplified version of
the current mainstream Transformer architecture. All the proofs of this section are shown in Ap-
pendix C. We also discuss the influence of various non-linear factors in the Transformer on the
conclusions of this section in Appendix D.1 and we analyze none-linear attention in Appendix D.3.

3.1 DEFINITION OF LINEAR SELF-ATTENTION

We first define LSA following the previous work (Wang et al., 2020a; Zhang et al., 2024a). Let
WKQ,WPV ∈ Rb×b denote the combined query-key and projection-value matrices, and let ρ ∈ R+

be the normalization factor. We denote the parameters as θ = (WKQ,WPV , ρ). Let E = [h, x].
The LSA is then defined as:

fLSA(h, x; θ) = E +WPV E
E⊤WKQE

ρ
(5)

LSA can be viewed as replacing the non-linear softmax mapping in a single-layer Transformer with
a linear mapping. Following prior work (Zhang et al., 2024a), we set ρ = 1 in this paper.

Based on Equation 5, Zhang et al. (2024a) proves that for a well-trained LSA on the training data
{(hi, xi, yi)N}, its parameters θ must satisfy:

WKQ
∗ = [Tr(Γ−2)]−

1
4

(
Γ−1 0d
0⊤d 0

)
,WPV

∗ = [Tr(Γ−2)]
1
4

(
0d×d 0d
0Td 1

)
(6)

where Γ =
(
1 + 1

N

)
Λ + 1

N Tr(Λ)Id ∈ Rd×d and Λ denote the covariance matrix of the training
data. Substituting these optimal parameters into the equation yields:

fLSA(h, x; θ∗) = E +

(
0d×d 0d
0Td 1

)
E

E⊤
(
Γ−1 0d
0⊤d 0

)
E

ρ
(7)

Considering the gradient explosion without the residual flow, we introduce the residual coefficient
η ∈ (0, 1) to LSA (Zhang et al., 2019; Bachlechner et al., 2020). The corresponding function is:

fLSA(h, x; θ∗) = ηE +

(
0d×d 0d
0Td 1

)
E

E⊤
(
Γ−1 0d
0⊤d 0

)
E

ρ
(8)

Next, we use Equation 8 as the prediction function fLSA(h, x) to discuss the effect of input pertur-
bations on the LSA output.

4
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3.2 INPUT ROBUSTNESS OF LINEAR SELF-ATTENTION

Based on Equation 8, we provide the upper bounds for the two Lipschitz constants in Equation 1:

Lemma 1. If ∥x∥ ≤ Rx and ∥h∥ ≤ Rh, let α = (Tr(Γ−2))−
1
4 . Then we have:

C ≤ η + α−1 ∥Γ−1∥R2
h

γ ≤
√

η2 + 4R2
x α

−2 ∥Γ−1∥22 R2
h

The assumption of Rx and Rh in Lemma 1 bounds the norms of x and h. Considering that ex-
cessively large embedding vectors can lead to unstable inference, the embedding vector norms in
mainstream LLMs are typically confined within a certain range (Fazlyab et al., 2019; Kim et al.,
2021), making this assumption reasonable.

By substituting the upper bounds of C and γ from Lemma 1 into the Equation 3, we can obtain that:

Theorem 2. If ∥x∥ ≤ Rx and ∥h∥ ≤ Rh and let

α =
[
Tr(Γ−2)

] 1
4 , s = ∥Γ−1∥, β = α−1sR2

h, γ =
√

η2 + 4R2
x α

−2s2 R2
h .

With A > 0 such that ∥e0∥ ≤ A∥δ∥, the certified tolerable input-perturbation radius of the LSA
map for the reasoning step K ∈ N+ is:

∥δ∥ ≤ (1− γ)R(
η + β

)
+

(
A(1− γ)(1 + β)

)
γK

In particular, if γ < 1, as K → ∞, we can derive that:

∥δ∥ ≤ (1− γ)R

η + β

According to Theorem 2, the impact of input perturbations on model outputs primarily depends on:

• R: The range of output perturbation that is acceptable. A larger range indicates a greater toler-
ance for perturbations, leading to a higher upper bound for the input perturbation.

• Rx: The tolerable perturbation radius is negatively correlated with Rx, indicating that a larger
norm of the input lowers the model’s robustness to input perturbations. According to the proof, a
larger Rx leads to a larger coefficient of the perturbation in the resulting bound.

• Rh: The tolerable perturbation radius is negatively correlated with Rh. This suggests that a
larger norm of the internal state makes the model more susceptible to being led astray during the
reasoning process, thus weakening its resistance to input perturbations.

• Γ: The covariance matrix of the training data. More inconsistent training data leads to the model
being more sensitive to input perturbations.

• η: A larger residual coefficient indicates that the model retains more information from input,
causing the effects of input perturbations to be preserved across layers.

The theoretical results suggest two main robustness levers at inference and training time. At infer-
ence, Theorem 1 shows that longer, more structured chains of thought reduce output fluctuations,
while smaller norms of input embeddings and encoded representations decrease the effective Lip-
schitz constants in the bounds. At training time, Theorem 2 indicates that reducing representation
norms and decreasing the training-data covariance (Γ) (i.e., making the data more consistent), in-
creases the certified perturbation radius.

We further discuss the impact of vector norms on the CoT robustness in Appendix D.4. Considering
that verifying the effects of Γ and η requires modifying the training data and the model architec-
ture of LLMs, this work provides only a theoretical analysis of Γ and η to inspire future work on
corresponding empirical studies, while focusing on verifying the effects of R, Rx, and Rh.

5
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Table 2: Average exact match (EM) and output fluctuation (OF) of different models using various
prompts on different datasets. The highest EM and lowest OF under each setting is marked in bold.

Model MATH MMLU-Pro GPQA
EM OF EM OF EM OF

Llama2-7b 14.2± 5.0 0.475 11.2± 5.7 0.622 17.5± 4.7 0.509
Llama3.1-8b 45.8± 7.2 0.366 41.0± 10.7 0.350 26.6± 5.7 0.467
Llama-R1-8b 64.8± 3.0 0.158 44.8± 8.3 0.292 28.5± 2.9 0.371
Qwen3-8b 77.2± 1.6 0.097 46.9± 5.2 0.162 37.3± 1.9 0.214

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset Our experiments are conducted on three reasoning datasets: MATH (Hendrycks et al.,
2021), MMLU-Pro (Wang et al., 2024c), and GPQA (Rein et al., 2024). Detailed descriptions of
these three datasets are provided in Appendix E.1. Considering the high difficulty of these datasets,
which require multistep reasoning processes for solutions, we suppose they can effectively reflect
the influence of various factors on the model’s ability to handle input perturbations. We also adapt
experiments on more datasets in Appendix F.2.

Model We conduct experiments on four mainstream LLMs including: Llama2-7b (Touvron et al.,
2023), Llama3.1-8b (Grattafiori et al., 2024), Deepseek-R1-Distilled-Llama3.1-8b (Llama-R1-
8b) (DeepSeek-AI et al., 2025) and Qwen3-8b (Yang et al., 2025). These models cover a range
of capabilities, allowing for a comprehensive evaluation of how model type and different factors
affect the handling of input perturbations. For Llama2-7b and Llama3.1-8b, we employ the instruct
version. For Qwen3-8b, we utilize its Thinking Mode to fully leverage its performance. We also
experiment with the performance under different model scales in Appendix F.5.

Metric To evaluate both the performance and robustness, we adopt the following two metrics: (i)
Exact Match (EM): Whether the predicted answer is the same as the correct answer to the question.
A higher value for this metric indicates that the model is better at solving the given dataset, reflecting
the overall performance in a specific setting. (ii) Output Fluctuation (OF): The normalized entropy
(Friedrich, 2021) of the answers generated from different prompts for the question. A higher value
for this metric indicates that the output on the given question is less consistent, reflecting the robust-
ness of the specific setting. We detail how to calculate OF in Appendix E.4. We also evaluate with
the other fluctuation metric in Appendix F.3.

Input Perturbations To fully reflect the robustness to input perturbations, for each model and
dataset, we first generate multiple prompts. Then, for each question, we use these prompts to gener-
ate multiple answers. We evaluate the performance by analyzing the correctness and consistency of
these answers. To ensure the reliability of our results, we collect all prompts during the optimization
of three mainstream methods, including TextGrad (Yuksekgonul et al., 2025), OPRO (Yang et al.,
2024), and CFPO (Liu et al., 2025). The base prompts used follow Grattafiori et al. (2024), which
is shown in Appendix E.2. The number of prompts used for each dataset and model is detailed in
Appendix E.3. We also adapt the experiments using the same prompts on different datasets and
models in Appendix F.4.

More experimental setups are detailed in Appendix E.5.

4.2 OVERALL EVALUATION

CoT Robustness Scales with Model Capability The average performance and corresponding
fluctuations for different prompts across various datasets and models are shown in Table 2. Results
show that across all models, as their capabilities increase, not only does the average EM improve,
but the corresponding output fluctuation also decreases. Regarding different tasks, multiple-choice
sets (MMLU-Pro, GPQA) exhibit larger fluctuation than MATH, where small logit shifts can flip the
selected option (Pezeshkpour & Hruschka, 2024; Wang et al., 2024a). Yet on GPQA, despite lower
EM, fluctuation is not excessive, suggesting difficulty alone does not significantly affect the CoT
robustness. Interpreted through our bounds, stronger models typically (i) train on data with higher
consistency (better cleaning and synthesis) which increases the upper bound of input perturbations,

6
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Figure 2: The change in OF (left Y-axis) and
EM (right Y-axis) with the reasoning steps of the
generated CoT, averaged across all experimen-
tal datasets and models. The X-axis denotes the
CoT step and Y-axis denotes the value of each
metric. The curves at X and Y axes illustrate the
data distribution. The CoT steps are segmented
using ROSCOE (Golovneva et al., 2023).
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Figure 3: The change in OF (left Y-axis) and
EM (right Y-axis) with the reasoning steps on
all datasets and models under the reasoning
steps from 1 to 16. The X-axis denotes the
CoT step and Y-axis denotes each metric. The
curves at X and Y axes illustrate the data dis-
tribution. The CoT steps are segmented using
ROSCOE (Golovneva et al., 2023).

which is governed by the data-consistency constant Γ in Theorem 2, and (ii) yield longer, more
structured reasoning steps, increasing K in Theorem 1 and thereby tightening the fluctuation bound.
Models supporting Long-CoT (Chen et al., 2025) (e.g., Llama-R1, Qwen3) exemplify this effect.
Notably, some settings exhibit larger fluctuations in EM despite having smaller OF. This occurs
because the average EM differs across settings, where a setting with a high average EM, even a minor
output fluctuation can result in a large absolute EM fluctuation. In contrast, OF directly measures
the consistency of the outputs, thus offering a more faithful representation of output robustness.
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Figure 1: The output fluctuation across input
perturbation on all datasets and models. Each
point denotes one question, where X-axis de-
notes the input perturbation as the average dis-
tance of embedding vectors from their mean
vector, and Y-axis denotes OF. The curves at X
and Y axes illustrate the data distribution. The
Pearson correlation coefficient is 0.619.

Greater Input Perturbation Makes Output
Less Robust To observe the effect of input per-
turbation on the model output, we analyze the
change in output fluctuation with respect to the
input perturbation across all datasets and models.
For each question, the input perturbation is calcu-
lated as the average distance of input embedding
vectors from their mean vector. The results are
shown in Figure 1. From the figure, we can find
that: (i) As the input perturbation increases, the
output fluctuation also increases (Pearson Corre-
lation Coefficient = 0.619), which supports the
conclusion of Theorem 1. (ii) The majority of
input perturbations are concentrated in the range
of less than 0.1, yet the corresponding change in
output fluctuation is quite large, which indicates
that even slight fluctuations in the input can lead
to significant fluctuations in the output, which is consistent with the findings of previous studies
(Zhao et al., 2024; Bigelow et al., 2024). (iii) When the input perturbation exceeds 0.2, the output
fluctuation becomes relatively robust as the input perturbation increases. This is because the output
fluctuation is measured using normalized entropy, whose maximum possible value depends on how
many prompts are used to generate answers. This means that even when input changes become
larger, the maximum possible fluctuation in the output stays roughly constant.

4.3 IMPACT OF REASONING STEP LENGTH ON COT ROBUSTNESS

Robustness is Positively Correlated with Reasoning Step Length To verify the impact of
reasoning steps, we analyze performance as a function of CoT steps (steps computed following
ROSCOE (Golovneva et al., 2023)). The experimental results are presented in Figure 2. Figure 2
reveals the following trends: (i) Output fluctuation generally decreases as steps increase, matching
Theorem 1: larger K tightens the robustness bound. (ii) The model output fluctuation is relatively
low for one-step CoT cases because trivially solvable items need little reasoning and are stable even
with short chains. (iii) The performance (i.e., EM) does not not necessarily increase with K. More
steps often correlate with harder items, so accuracy can drop as K rises.
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Figure 4: The change in output fluctuation with
the norm of the input embedding vector across
all experimental datasets and models. Each
point denotes the result of one question, where
X-axis denotes the input vector norm and Y-axis
denotes OF of this question. The Pearson corre-
lation coefficient is 0.506.
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Figure 5: The change in output fluctuation with
the norm of the hidden state vector across all
experimental datasets and models. Each point
denotes the result of one question, where X-axis
denotes the hidden state vector norm and Y-axis
denotes OF of this question. The Pearson corre-
lation coefficient is 0.229.

Infinity Reasoning Steps Cannot Eliminate the Impact of Input Perturbation To further verify
the conclusion from Equation 4 that even infinitely long reasoning steps cannot completely eliminate
the impact of input perturbations, we conduct experiments with an extended number of reasoning
steps. We add the instruction “You MUST reason in exactly K steps” to the prompt to
guide the model in generating longer reasoning processes, requiring the model to generate outputs
for K = 1, ..., 16 steps. Considering that the model could not strictly follow the instruction to
generate the specified steps, we still use ROSCOE to calculate the actual steps. The results are
presented in Figure 3. From the figure, we observe that as the number of reasoning steps increases,
the output fluctuation decreases but eventually converges to a relatively stable level. This indicates
that the role of reasoning steps in eliminating perturbations is limited, thereby empirically validating
the conclusion of Equation 4. Since OF begins to fluctuate, we suppose that current experimental
steps have supported our conclusion and do not conduct experiments over 16 steps.

4.4 IMPACT OF EMBEDDING NORMS ON COT ROBUSTNESS

Larger Input Embedding Norm Makes Output Less Robust To verify the relationship between
output fluctuation and the norm of the input embedding vector, we analyze the experimental results
across all datasets and models, as shown in Figure 4. From the figure, we can observe that: (i) As the
norm of the input embedding vector increases, the model output fluctuation shows a general upward
trend, which confirms the related conclusions in Theorem 2. (ii) As the input embedding norm
grows, output fluctuation saturates, since a normalized entropy capped by the number of prompts,
its maximum stays roughly constant even under larger input perturbations. (iii) When the norm of
the input embedding vector increases from 60 to 70, the output fluctuation exhibits a sudden jump,
which indicates that a threshold exists for the vector norm that the model can handle stably. Once
this threshold is surpassed, most input perturbations exceed the upper bound defined in Theorem 2,
causing significant fluctuations in the output.

Larger Hidden State Norm Makes Output Less Robust To verify the relationship between the
norm of the hidden state vector and the output fluctuation, we analyze the results across all datasets
and models. The hidden state vector is extracted from the last layer of the last CoT step. The results
are shown in Figure 5. From the figure, we can find that: (i) As the norm of the hidden state increases,
the output fluctuation shows a general upward trend, which confirms the positive correlation between
the two as stated in Theorem 2. (ii) The vector norms for the majority of data points are concentrated
on the (140, 150) range, which indicates that a well-trained model tends to encode data into a specific
and relatively small norm interval to mitigate the impact of input perturbations. (iii) Overall, the
change in output fluctuation with the hidden state norm is not significant. We suppose the reasons
for this are that the constant γ is determined by the upper bound of the hidden state norm rather than
its specific value, and that the various normalization structures like LayerNorm (Xiong et al., 2020)
within the Transformer architecture mitigate the output fluctuation to some extent.

4.5 PROMPT OPTIMIZATION WITH HIGHER INPUT ROBUSTNESS
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Table 3: EM on each model and dataset using
different prompt optimization methods. “-” de-
notes using the single base prompt directly. The
best result under each setting is marked in bold.

Model Method MATH MMLU-Pro GPQA

L
la

m
a3

.1
-8

b - 46.8 45.7 23.7
TextGrad 45.2 47.4 27.6
OPRO 44.6 47.1 27.1
CFPO 47.0 48.1 27.6
Ours 47.2 49.0 32.3

Q
w

en
3-

8b

- 77.4 42.3 37.1
TextGrad 77.6 44.9 38.4
OPRO 77.2 45.9 37.4
CFPO 77.0 45.8 38.4
Ours 77.6 49.2 38.4

To shed light on future research, we discuss how
to optimize the performance of prompt optimiza-
tion based on Theorem 2. Let τ = α−1s and F
denote the expression on the right-hand side of
Theorem 2. We hope to select the prompt that
makes F as large as possible, thereby increasing
the upper bound of the input perturbation. Let
A = (RxRh)

2, we can derive that:

∂F

∂A
= − Rτ2

2(η + τR2
h)
√
η2 + τ2A

< 0 (9)

This shows that F is negatively correlated with
A, where a larger value of A−1 corresponds to
a larger upper bound for the input perturbation,
meaning the model can tolerate greater input per-
turbations. Therefore, for each question, we first
construct inputs using all obtained prompts and extract the corresponding embedding layer vectors,
as well as the vectors from the final layer to serve as hidden state vectors. We then calculate the
norms of both to obtain A. Subsequently, for each question, we select the prompt with the highest
value of A−1 as the designated prompt for inference. The experimental results are shown in Ta-
ble 3. We calculate only the Exact Match (EM) for each method and not the Output Fluctuation
(OF), since each method selects a single optimal prompt for each question to perform inference, and
consequently yields only one output as the final answer. From the table, we can see that our method
brings performance improvements across all settings, which demonstrates the effectiveness of our
method. We also discuss the efficiency of our method in Appendix D.2. Since the primary objective
of this paper is to analyze the factors affecting input robustness, rather than to optimize prompt op-
timization methods, we leave the investigation into how to better effectiveness and efficiency, and a
more extensive comparison with additional baselines for future work.

5 RELATED WORKS

Robustness of Chain-of-Thought. Numerous studies show that slight perturbations in the input
can lead to drastic changes in the output of CoT (Zhao et al., 2024; Shi et al., 2024b). Therefore, to
enhance the performance of CoT, a variety of works are proposed to improve and analyze the CoT ro-
bustness. For example, noisy or off-task rationales reliably degrade CoT performance. Contrastive
denoising, including CD-CoT and NoRa, mitigates these effects (Zhou et al., 2024). Break-The-
Chain applies semantics-preserving rewrites (narrativization, mild constraint changes, reordering,
numeric tweaks) to reveal sensitivity in code generation (Roh et al., 2025). Character-level perturba-
tions (R2ATA) likewise disrupt reasoning (Gan et al., 2024). Chain-of-Defensive-Thought structures
defensive rationales that resist corruption or injection and reduce collapse (Wang et al., 2025). Post-
hoc Self-Correction Reflection repairs errors under perturbations (Wu et al., 2025). Self-Consistency
reduces single-path brittleness through voting (Wang et al., 2023b). CoT is sensitive to step order
and exemplar relevance (Wang et al., 2023a). Theory indicates that more coherent chains aid error
correction but increase vulnerability to noise in intermediate steps (Cui et al., 2024). Evidence also
suggests that CoT often functions as constrained imitation rather than genuine reasoning (Shao &
Cheng, 2025). Generalization analyses for nonlinear Transformers identify robustness conditions
under noise and distribution shift (Li et al., 2024).

Despite these advances, the mechanism by which input perturbations induce output changes remains
under-specified. We derive upper bounds that link input perturbations to output fluctuations and
analyze the factors that govern CoT robustness, extending prior research.

Prompt Optimization. Prompt optimization methods primarily focus on how to optimize prompts
based on the given model and task to enhance the performance. Work on prompt optimization spans
RL and gradient-free edit search (Deng et al., 2022; Prasad et al., 2023), influential-token clustering
to shrink the search space (Zhou et al., 2023a), and ensemble-style boosting to avoid single-prompt
failure (Hou et al., 2023). Refinements include genetic and actor–critic editing, localized zeroth-
order updates, and exemplar-ordering optimization (Xu et al., 2022; Dong et al., 2024; Hu et al.,
2024; Wu et al., 2024). APE and OPRO iteratively propose and select improved instructions (Zhou
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et al., 2023b; Yang et al., 2024). ProTeGi and APO implement textual “gradient descent” with beam
or bandit search (Pryzant et al., 2023). TextGrad generalizes to “automatic differentiation via text”
(Yuksekgonul et al., 2025). Data-driven pipelines such as Self-Instruct and Auto-Instruct bootstrap
and rank prompt sets (Wang et al., 2023c; Zhang et al., 2023). Search strategies include MCTS with
reflective error analysis (Wang et al., 2024b). Budgeted best-arm identification supports selection
under tight evaluation budgets (Shi et al., 2024a). Preference-based black-box optimization aligns
prompts with user goals (Cheng et al., 2024). RL improves textual-prompt stability (Kwon et al.,
2024). Compiler-style systems such as DSPy learn prompts for multi-stage LM pipelines (Khattab
et al., 2024). OPRO-like gains may attenuate on smaller open models (Zhang et al., 2024b).

Despite strong empirical progress, the mechanism pathway from input perturbations to output fluc-
tuations remains poorly understood. We analyze this affect and its determinants to guide principled
designs for the future prompt optimization works.

6 CONCLUSION

In this paper, we theoretically analyze the influence of various factors on the input robustness of
CoT. We first prove that the impact of input perturbations on the CoT output is negatively correlated
with the number of CoT reasoning steps, and that even an infinite number of steps cannot completely
eliminate the effects of input perturbations. We then apply these findings to LSA, demonstrating that
its input robustness is negatively correlated with the norms of the input embedding and hidden state
vectors. To validate these conclusions, we conduct experiments on four mainstream LLMs and three
mainstream datasets. Experimental results reveal that output fluctuations vary with different factors
in line with our expectations, supporting the validity of our findings. Furthermore, guided by this
analysis, we propose to select the prompt by raising the upper bound of input perturbation, which
yields consistent performance gains over previous works. Moving forward, our work opens several
promising avenues for advancing robust chain-of-thought reasoning. In particular, a key next step
is to systematically examine how the parameters Γ and η in Theorem 2 influence input robustness,
which could also inform the design of more resilient large reasoning models.

7 REPRODUCIBILITY

We have provided all proofs of this paper in Appendix C. We will release the experimental and
pre-processed data and code upon the paper being accepted.
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C PROOFS

Proof of Theorem 1.
εk := hk(x+ δ)− hk(x), k ∈ N+.

hk(x) = f(hk−1(x), x), hk(x+ δ) = f
(
hk−1(x+ δ), x+ δ

)
.

∥εk∥ =
∥∥f(hk−1(x+ δ), x+ δ)− f(hk−1(x), x)

∥∥.
∥f(h1, x1)− f(h, x)∥ ≤ γ∥h1 − h∥+ C∥x1 − x∥.

⇒ ∥εk∥ ≤ γ∥εk−1∥+ C∥δ∥.

⇒ ∥εK∥ ≤ γK∥ε0∥+ C∥δ∥
K−1∑
i=0

γi.

K−1∑
i=0

γi =
1− γK

1− γ
(γ ∈ [0, 1)).

⇒ ∥εK∥ ≤ γK∥ε1∥+
C

1− γ
(1− γK)∥δ∥.

A := max
∥ε1∥
∥δ∥

.

⇒ ∥εK∥ ≤
(
AγK +

C

1− γ
(1− γK)

)
∥δ∥

Proof of Lemma 1.

E =

[
h
x

]
, f(E) = ηE + (PE) s(E), s(E) = E⊤KE.

P = WPV
∗ = [Tr(Γ−2)]

1
4

[
0 0
0 1

]
, K = WKQ

∗ = [Tr(Γ−2)]−
1
4

[
Γ−1 0
0 0

]
.

Ks :=
1
2 (K +K⊤) = K, ∇s(E) = 2KsE.

∇f(E) = ηI + s(E)P + (PE) (2KsE)⊤. (⋆)

Bound for C.
∂f

∂x
(E) = ηΠx + s(E)Px + (PE)

(
2KsE

)⊤
x
.

K =

[
∗ 0
0 0

]
⇒ (KsE)x = 0 ⇒ (2KsE)x = 0.

⇒ ∂f

∂x
(E) = ηΠx + s(E)Px.∥∥∥∂f

∂x (E)
∥∥∥ ≤ η + ∥Px∥ |s(E)| ≤ η + ∥P∥ ∥K∥ ∥Eh∥2.

Eh =

[
h
0

]
, ∥Eh∥ = ∥h∥ ≤ Rh, ∥P∥ = [Tr(Γ−2)]

1
4 , ∥K∥ = [Tr(Γ−2)]−

1
4 ∥Γ−1∥.

⇒ C ≤ η + ∥Γ−1∥R2
h (i.e., C ≤ η + [Tr(Γ−2)]−

1
4 ∥Γ−1∥R2

h).
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Bound for γ.
∂f

∂h
(E) = ηΠh + s(E)Ph + (PE)

(
2KsE

)⊤
h
.

Ph = 0 (since PE = [0; [Tr(Γ−2)]
1
4x]),

(2KsE)h = 2 [Tr(Γ−2)]−
1
4Γ−1h.

For any v ∈ Rd,

∂f

∂h
(E)v =

[
ηv
0

]
+

[
0

∥PE∥ · 2 ∥Γ−1h∥
[Tr(Γ−2)]

1
4

(h⊤Γ−1v)
∥Γ−1h∥

PE
∥PE∥

]
.

∥PE∥ = [Tr(Γ−2)]
1
4 ∥x∥ ≤ [Tr(Γ−2)]

1
4Rx, ∥Γ−1h∥ ≤ ∥Γ−1∥ ∥h∥ ≤ ∥Γ−1∥Rh.

(orthogonal blocks) ⇒
∥∥∥∂f
∂h (E)v

∥∥∥2 ≤ η2∥v∥2 +
(
2Rx ∥Γ−1∥Rh

)2

∥v∥2.

⇒ γ ≤
√

η2 + 4R2
x ∥Γ−1∥ 2 R 2

h (i.e., γ ≤
√

η2 + 4R2
x[Tr(Γ

−2)]−
1
2 ∥Γ−1∥ 2 R 2

h ).

D ADDITIONAL DISCUSSION

D.1 INFLUENCE OF NON-LINEAR FACTORS OF TRANSFORMER

In this section, we discuss the influence of different non-linear factors within the Transformer archi-
tecture on the conclusions of Theorem 2. Overall, most non-linear factors contribute to enhancing
the model’s input robustness. Due to the complexity of theoretically proving the effects of these
non-linear factors, we only provide an intuitive analysis and leave rigorous mathematical proofs for
future work.

Attention Non-linearity (Softmax) The exponential normalization of Softmax produces sharp
distributions at low temperatures or with large logit scaling, leading to a ”winner-takes-all” switching
behavior among highly competitive keys. Intuitively, this amplifies the sensitivity to perturbations in
the input and intermediate states, which is equivalent to increasing the effective Lipschitz constant
(γ) and the input channel coefficient (C). It also causes locally quasi-discrete transitions in attention
weights. Therefore, within the framework of Theorem 2, sharper attention typically reduces the
tolerable perturbation radius. Conversely, smoother attention (achieved with high temperature or
small scaling factors) mitigates this sensitivity, thereby increasing the robustness radius.

Non-linearity of Normalization Layers (LayerNorm/RMSNorm) Normalization explicitly
constrains the norm of hidden states through demeaning and scaling by variance. When statistics are
stable, this effectively suppresses Rh and weakens the amplification chain across layers, manifesting
as smaller effective values for γ and C. This aligns with the monotonic relationship described in
Theorem 2, where a smaller norm corresponds to stronger robustness. However, it is important to
note that when the intra-layer variance becomes abnormally small (close to zero), the scaling fac-
tor can locally amplify noise, creating transient high-gain regions and leading to edge cases where
robustness decreases. Therefore, stable statistics and moderate pre-scaling (such as layer scaling
during training) help ensure the positive impact of normalization on the robustness radius.

Non-linearity of Feed-Forward Network Activations (GELU/ReLU/SwiGLU) The activation
function determines the gain of the local Jacobian. In saturated regions (such as the left tail of
GELU), the local slope approaches zero, which suppresses noise propagation and limits the norm
of intermediate representations, thereby increasing the tolerable perturbation radius. In contrast,
high-gain regions (resulting from large weights or strong inputs) amplify the norm of intermediate
states and the output sensitivity, which translates to larger effective values for γ and C. Gated
variants (such as SwiGLU/MoE) can also trigger discrete switching of channels or experts near
their thresholds, causing the output to undergo abrupt transitions in response to small perturbations.
Overall, operating the activations in low-to-medium gain regions and controlling the scale of the
weights helps to reduce the effective sensitivity and decrease Rh, which aligns with the monotonic
properties described in Theorem 2.
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Residual Paths and Layer Scaling (Semantics of η) The residual path directly injects the repre-
sentation from the previous layer into the next, scaled by a coefficient, which can be viewed as the η
in Theorem 2. A larger η allows more input and intermediate perturbations to pass through without
attenuation and accumulate in deeper layers, leading to an increase in the effective γ and a decrease
in the tolerable perturbation radius. Conversely, a smaller residual coefficient or layer scaling tech-
niques (such as the ideas behind ReZero/LayerScale) can suppress this long-chain amplification and
enhance robustness. A trade-off exists, as an overly small η can limit feature reuse and gradient flow.
In practice, a moderate but non-zero layer scaling is often adopted to achieve a better compromise
between expressive power and robustness under the constraints of Theorem 2.

D.2 EFFICIENCY OF OUR METHOD

In this section, we discuss the computational efficiency of the improved method we propose in §4.5.
Let M be the total number of candidate prompts, and let T (M, D) denote the time it takes for
the model M to run once on the evaluation dataset D. Then, because calculating each candidate
requires the hidden state vector for every data point, which necessitates a full inference pass, the
total running time is:

O(M · T (M, D)) (10)
Compared to other prompt optimization methods, many approaches also need to run each generated
prompt on an evaluation dataset to assess its quality (e.g., TextGrad, OPRO). Therefore, the effi-
ciency of our method is considered comparable to that of previous work. Furthermore, since this
paper primarily focuses on theoretical analysis rather than methodological improvements, we leave
further enhancements to the effectiveness and efficiency as future work.

D.3 INPUT ROBUSTNESS OF NON-LINEAR SELF-ATTENTION

According to the discussion in §2.3, the certified input-perturbation radius obtainable via CoT de-
pends on the model’s Lipschitz properties. In this section, we replace the LSA with a non-linear
(softmax) attention and derive a counterpart of Theorem 2.

We adopt a standard single-head attention mechanism with a residual flow. Let
WQ,WK ,WV ,WPV ∈ Rb×b be the projection matrices, and let τ > 0 be the temperature. Denote
the parameters by θ = (WQ,WK ,WV ,WPV , τ) and let E = [h, x]. Define

Q = EWQ, K = EWK , V = EWV , A(E) = softmax
(

1
τQK⊤

)
,

where softmax is applied row-wise. To mitigate gradient explosion, we introduce a residual coeffi-
cient η ∈ (0, 1) as in the LSA case. The non-linear attention map is

fAttn(h, x; θ) = η E + WPV
(
A(E)V

)
. (11)

In what follows, we analyze the input robustness of equation 11 under the same Lipschitz framework
as in §2.3.

We first upper bound the two Lipschitz constants in equation 1. Throughout, ∥·∥ denotes the operator
(spectral) norm.
Lemma 2. Suppose ∥x∥ ≤ Rx and ∥h∥ ≤ Rh. Let

sQ = ∥WQ∥, sK = ∥WK∥, sV = ∥WV ∥, sPV = ∥WPV ∥, sQK = sQsK .

Let Lσ(τ) be the (row-wise) Lipschitz constant of the softmax map with temperature τ under the
chosen norm. Then the constants C and γ in equation 1 admit the bounds

C ≤ η + sPV sV Lσ(τ) sQK R2
h, γ ≤

√
η2 + 4R2

x

(
sPV sV Lσ(τ) sQK

)2
R2

h .

Plugging Lemma 2 into the general input-perturbation bound equation 3, we obtain the following
certified radius for non-linear attention.
Theorem 3 (Certified Input-Perturbation Radius of Softmax Attention). If ∥x∥ ≤ Rx and ∥h∥ ≤
Rh, define

β̃ = sPV sV Lσ(τ) sQK R2
h, γ̃ =

√
η2 + 4R2

x

(
sPV sV Lσ(τ) sQK

)2
R2

h .
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With A > 0 such that ∥e0∥ ≤ A∥δ∥, the certified tolerable input-perturbation radius of the map
equation 11 at CoT step K ∈ N+ is

∥δ∥ ≤ (1− γ̃)R(
η + β̃

)
+

(
A(1− γ̃)(1 + β̃)

)
γ̃K

.

In particular, if γ̃ < 1, as K → ∞,

∥δ∥ ≤ (1− γ̃)R

η + β̃
.

It can be seen that Theorem 3 has a similar format to Theorem 2, showing that they have the same
conclusion regarding the CoT robustness. The above discussion shows the effectiveness of our
conclusion under the non-linear scenario.

Proof. Write fAttn(E) = ηE + Φ(E) with Φ(E) = WPV
(
softmax( 1τEWQ(EWK)⊤) (EWV )

)
.

By composing Lipschitz bounds of the bilinear map E 7→ EWQ(EWK)⊤, the row-wise softmax
(with constant Lσ(τ)), and the linear maps WV ,WPV , we obtain the stated bounds on C and γ.
Substituting them into equation 3 yields Theorem 3.

D.4 THE IMPACT OF VECTOR NORMS ON THE COT ROBUSTNESS

While very small weight norms can indeed destabilize optimization during training, their analy-
sis specifically targets inference-time robustness to input perturbations, so there is no contradic-
tion—practical models must balance norm size for both stable training and robust inference. We
further argue that robustness is better captured by absolute perturbations, i.e., the raw change in the
output, rather than relative perturbations that normalize by the input magnitude, because the model
ultimately makes decisions based on the absolute output vector. For example, in a multiple-choice
setting, a substantial absolute shift in logits can change the predicted option even if the relative
change is small. Therefore, we frame their conclusions in terms of absolute perturbation as a more
faithful indicator of decision instability.

D.5 ANALYSIS WITH MULTIPLE TOKENS

In our analysis, we treat the entire user query as a single embedding vector x ∈ Rd, and the pertur-
bation δ ∈ Rd acts on this query-level representation rather than on individual token embeddings.
The bivariate map f(h, x) therefore models the interaction between (i) the current hidden state h
and (ii) a fixed embedding of the full input query, not between two literal tokens.

We now show that this is mathematically equivalent to starting from the usual multi-token trans-
former input.
Corollary 1 (Equivalence of sequence input and bivariate model). Let the model at a given CoT
step take as input

• a hidden state h ∈ Rdh , summarizing all past reasoning tokens; and

• a sequence of question tokens with embeddings (e1, . . . , eT ), each et ∈ Rde .

Assume its next-step hidden state is given by some deterministic map

Ffull : Rdh × (Rde)T → Rdh .

Then there exist

1. a linear isomorphism U : (Rde)T → Rd (vectorization / padding), and

2. a bivariate function f : Rdh × Rd → Rdh ,

such that the dynamics can be written exactly as

hk+1 = f(hk, x), x = U(e1, . . . , eT ).
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Moreover, if Ffull is Lipschitz in (h, (et)t), then f satisfies a Lipschitz condition of the form

∥f(h1, x1)− f(h2, x2)∥ ≤ γ∥h1 − h2∥+ C∥x1 − x2∥ (12)

for some constants γ,C ≥ 0.

Proof. Step 1: Reparameterizing the input sequence as a single vector. Fix a maximum sequence
length Tmax ≥ T and pad (e1, . . . , eT ) with a distinguished padding embedding so that every input
can be regarded as an element of (Rde)Tmax . This space is linearly isomorphic to Rd with d =
deTmax.

Let
U : (Rde)Tmax → Rd

be any fixed linear bijection (e.g., concatenation followed by a permutation of coordinates). Define

x = U(e1, . . . , eT , pad, . . . , pad) ∈ Rd.

Conversely, U−1 recovers the full token-level embedding tuple from x.

Step 2: Defining the bivariate function. Define

f(h, x) := Ffull
(
h, U−1(x)

)
.

By construction,

hk+1 = Ffull
(
hk, (e1, . . . , eT )

)
= f

(
hk, U(e1, . . . , eT )

)
= f(hk, x),

so the original multi-token dynamics can be written as a bivariate map in (h, x).

Step 3: Preservation of Lipschitz continuity. Suppose the model is Lipschitz in (h, (et)t), i.e.,
there exist constants γ ≥ 0, Ctok ≥ 0 such that for all h1, h2 and token sequences (et), (e′t),∥∥Ffull(h1, (et))− Ffull(h2, (e

′
t))

∥∥ ≤ γ∥h1 − h2∥+ Ctok

∥∥∥(et)− (e′t)
∥∥∥

seq
,

where ∥ · ∥seq is any norm on (Rde)Tmax .

Using the linear isomorphism U , equip Rd with the induced norm

∥x∥ :=
∥∥U−1(x)

∥∥
seq.

Then for any (h1, x1), (h2, x2),

∥f(h1, x1)− f(h2, x2)∥ =
∥∥Ffull(h1, U

−1x1)− Ffull(h2, U
−1x2)

∥∥
≤ γ∥h1 − h2∥+ Ctok

∥∥U−1(x1)− U−1(x2)
∥∥

seq

= γ∥h1 − h2∥+ Ctok ∥x1 − x2∥.
Thus f satisfies the Lipschitz condition with constants γ and C = Ctok.

E ADDITIONAL INFORMATION

E.1 EXPERIMENTAL DATASET

MATH (Hendrycks et al., 2021) is a benchmark for competition-level mathematical reasoning,
comprising 12, 500 problems with full step-by-step solutions (7, 500 training and 5, 000 test). It
spans diverse subfields (e.g., algebra, geometry, number theory, combinatorics, probability, and cal-
culus) and is widely used to evaluate and distill chain-of-thought style reasoning in mathematics. In
this paper, we evaluate our conclusions with the subset of MATH, which contains 500 data following
Lightman et al. (2024).

MMLU-Pro (Wang et al., 2024c) It is a strengthened successor to MMLU that emphasizes higher
question quality and robustness. It contains over 12, 000 multiple-choice questions drawn from text-
books and exams across 14 academic domains (e.g., biology, business, chemistry, computer sci-
ence, economics, engineering, health, history, law, mathematics, philosophy, physics, psychology,
and others). Each item offers 10 options, which reduces guessability and increases discrimination
among strong models.
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GPQA (Rein et al., 2024) targets graduate-level, “Google-proof” scientific reasoning. The test set
includes 448 expert-authored multiple-choice questions in biology, physics, and chemistry, designed
such that even with open-web access, non-experts struggle while domain experts achieve only mod-
est accuracy. GPQA thus probes high-level knowledge, multistep reasoning, and model reliability
under stringent oversight conditions.

E.2 PROMPT

Prompt of MATH

Solve the following math problem efficiently and clearly.
Regardless of the approach, always conclude with:
Therefore, the final answer is: $boxed{answer}$. I hope it is correct.

Prompt of MMLU-Pro

The following are multiple choice questions (with answers) about domain.
Think step by step and then finish your answer with ẗhe answer is (X)ẅhere X is the correct letter
choice.

Prompt of GPQA

Given the following question and four candidate answers (A, B, C and D), choose the best answer.

- For simple problems:
Directly provide the answer with minimal explanation.

- For complex problems:
Use this step-by-step format:
## Step 1: [Concise description]
(Brief explanation)
## Step 2: [Concise description]
(Brief explanation)

Regardless of the approach, always conclude with:
The best answer is [the answer letter].
where the [the answer letter] is one of A, B, C or D.

Let’s think step by step.

Table 4: The prompt used in this paper.

In this section, we list the prompt we used in Table 4.

E.3 PROMPT NUMBER OF EACH SETTING

In this section, we present the number of prompts used for each dataset and model, as shown in
Table 5. From the table, we can observe that the number of prompts is not consistent across different
settings. This is because, during prompt optimization, the suitable prompts vary for different models
and datasets. To ensure that optimal performance is achieved for each setting, we use a different set
of prompts for each setting.

Dataset Llama2-7b Llama3.1-8b Llama-R1-8b Qwen3-8b

MATH 14 29 18 13
MMLU-Pro 20 29 20 16
GPQA 11 20 16 12

Table 5: The total number of generated prompts using TextGrad, OPRO, and CFPO under each
setting.
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E.4 CALCULATION OF OUTPUT FLUCTUATION

Consider a collection of model outputs produced for the same input, represented as a multiset of
strings of size M . Let pi denote the empirical frequency of the i-th distinct string. The metric
computes the Shannon entropy:

H = −
∑
i

pi log2 pi, (13)

and normalizes it by the maximal entropy achievable with M samples, namely log2 M . The resulting
index:

Ĥ =
H

log2 M
∈ [0, 1] (14)

is scale-free and directly comparable across different sample sizes. By construction, Ĥ = 0 when
all outputs are identical (complete consensus, no fluctuation) and Ĥ = 1 when all M outputs are
distinct (maximal dispersion, each outcome occurs once). For empty or singleton sets, the metric is
defined to be 0, reflecting the absence of observable variability.

Output fluctuation manifests as dispersion in the empirical outcome distribution. Greater variability
spreads probability mass more evenly across distinct strings, driving H toward its maximum and
increasing Ĥ . Greater stability concentrates mass on a single outcome, driving H toward 0 and
decreasing Ĥ . Normalization by log2 M ensures that the same qualitative level of dispersion yields
comparable scores even when the number of samples differs, while preserving the desired extremes
(“all same” → 0, “all different” → 1).

E.5 IMPLEMENTATION DETAILS

The input and hidden state vectors used in our experiments are the encoded vectors from the embed-
ding layer and the final layer of the respective LLMs for the corresponding inputs. For each input,
we set the model to generate a single output, with the temperature set to 0, top p to 1.0, and the
random seed fixed at 42. Our experiments are run on a single A100-80G GPU, with the average
experiment time for each setting being approximately one hour. All our codes are implemented with
PyTorch (Paszke et al., 2019), Transformers (Wolf et al., 2020), and VLLM (Kwon et al., 2023)
using Python3.10. We detail how to plot the analysis figure in Appendix E.6.

E.6 PLOT OF ANALYSIS FIGURE

We visualize conditional distributions with an x–binned box–plot design. The x–range is uniformly
partitioned into K = 10 equal–width bins; within each bin we compute the first quartile (Q1),
median, and third quartile (Q3). Whiskers follow Tukey’s rule and extend to the most extreme
observations within [Q1 − 1.5 IQR, Q3 + 1.5 IQR ], where IQR = Q3 −Q1; bins with very few
points are shown by a median marker only.

To convey the trend across bins, the binwise medians are connected by a shape–preserving piecewise
cubic Hermite interpolant (PCHIP). An optional interquartile ribbon is drawn by interpolating Q1

and Q3 with the same scheme. For context, we overlay lightly jittered raw points in the background
and add marginal density curves along the top (for x) and the right (for y), estimated via Gaussian
KDE with Silverman’s bandwidth; the right–hand marginal can be computed from an alternative y
sample when provided. Box widths adapt to local bin spacing to prevent overlap in narrow x–ranges,
and a unified low–saturation color palette is used for visual consistency.

F ADDITIONAL EXPERIMENT

F.1 FITTING γ OF THEOREM 1

In this section, we verify that γ < 1 to ensure the reliability of the conclusions derived from Equa-
tion 4. Since the right-hand side of the inequality in Theorem 1 is positively correlated with γ, we
consider the extreme case by replacing the inequality with an equality, which gives:

∥εK∥ =

(
AγK +

C

1− γ
(1− γK)

)
∥δ∥ (15)
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Model MATH MMLU-Pro GPQA

Llama2-7b 0.662 0.892 0.671
Llama3.1-8b 0.476 0.218 0.014
Llama-R1-8b 0.879 0.896 0.871
Qwen3-8b 0.754 0.744 0.015

Table 6: The fitted γ on different models and datasets.

Model Amazon FinQA ToolE
EM OF EM OF EM OF

Llama2-7b 17.4± 11.9 0.711 5.9± 3.7 0.479 27.1± 17.6 0.383
Llama3.1-8b 61.1± 35.6 0.271 37.6± 6.1 0.377 49.8± 18.0 0.365
Llama-R1-8b 60.3± 39.8 0.242 45.7± 7.4 0.276 51.5± 4.9 0.162
Qwen3-8b 61.1± 18.4 0.201 54.9± 5.9 0.246 56.0± 6.6 0.121

Table 7: The performance on Amazon Rview (Amazon), FinQA, and ToolE.

Then, for each question across all datasets, we compute the corresponding ∥δ∥ and ∥εK∥ for differ-
ent CoT steps K among all generated answers. We use this data to fit the parameter γ in Equation 15
using the least squares method. The fitting results are shown in Table 6. From the table, we can ob-
serve that the value of γ is less than 1 in all settings, which validates the reliability of the assumption
made in our analysis.

F.2 PERFORMANCE ON MORE DATASETS

To more comprehensively validate the changes in output fluctuation across different datasets, we
conduct experiments on a broader range of datasets. We conduct experiments on the Amazon Review
(Ni et al., 2019) (sentiment analysis), FinQA (Chen et al., 2021) (financial question answering), and
ToolE (Huang et al., 2024) (tool use) datasets to verify our conclusions in scenarios that more closely
resemble real-world applications. The experimental results are presented in Table 7. From the table,
we can observe that as the model performance improves, the output fluctuation shows an overall
downward trend. This is consistent with the conclusions we draw in Table 2.

F.3 OUTPUT FLUCTUATION WITH OTHER METRIC

To more comprehensively evaluate fluctuations in model outputs, this section quantifies semantic
variability (SV) across models and datasets. For each question, we first compute an embedding
vector for every answer using all-MiniLM-L6-v2 (Wang et al., 2020b). We then take the average
distance from these vectors to their centroid (mean vector) as the metric of output variability. As
shown in Table 8, this metric exhibits strong agreement with OF, and the experimental findings are
consistent with those in Table 8, thereby corroborating the correctness of our theoretical analysis.

F.4 PERFORMANCE WITH SAME PROMPTS

To ablate the effect of prompt differences on the evaluation, we conduct experiments using the
same prompts across all models and datasets. For all models, we employ the prompts generated

Model MATH MMLU-Pro GPQA
SV OF SV OF SV OF

Llama2-7b 0.851 0.475 0.706 0.622 0.760 0.509
Llama3.1-8b 0.777 0.366 0.631 0.350 0.667 0.467
Llama-R1-8b 0.669 0.158 0.601 0.292 0.575 0.371
Qwen3-8b 0.653 0.097 0.579 0.162 0.554 0.214

Table 8: The output fluctuation using different metrics.
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Model MATH MMLU-Pro GPQA
EM OF EM OF EM OF

Llama2-7b 12.2 0.653 13.8 0.578 15.9 0.523
Llama3.1-8b 48.9 0.375 35.1 0.347 28.1 0.470
Llama-R1-8b 65.4 0.147 40.2 0.303 30.0 0.404
Qwen3-8b 77.2 0.097 46.9 0.162 37.3 0.214

Table 9: The average EM and OF of different models and datasets. For the certain dataset, the
prompts of each model are all same with Qwen3-8b.

Model Scale MATH MMLU-Pro GPQA
EM OF EM OF EM OF

Llama3.1 8b 45.8± 7.2 0.366 41.0± 10.7 0.350 26.6± 5.7 0.467
70b 56.0± 12.8 0.284 63.0± 14.4 0.186 42.6± 9.7 0.232

Qwen3 8b 77.2± 1.6 0.097 46.9± 5.2 0.162 37.3± 1.9 0.214
34b 80.8± 4.0 0.075 67.8± 5.1 0.104 43.6± 3.2 0.177

Table 10: The performance of Llama3.1 and Qwen3 on each dataset with different model scales.

with Qwen3-8b. The results, as shown in Table 9, indicate that the conclusions drawn from using
identical prompts are consistent with those in Table 2. Therefore, in our main experiments, to ensure
a consistent methodology, we use each model to generate the prompts for its own inference.

F.5 PERFORMANCE CROSS DIFFERENT MODEL SCALE

To verify how output fluctuations change with input perturbations on models of different scales, we
measure the performance of models of varying scales on each dataset. The experimental results are
shown in Table 10. From the table, we can find that although the EM of larger-scale models could
exhibit greater fluctuations, from the perspective of OF, larger-scale models generally demonstrate
better input robustness. This is because larger-scale models tend to generate a greater number of
reasoning steps K (Wei et al., 2022; Kojima et al., 2022) and possess a stronger ability to widen
the confidence gap between correct and incorrect answers, which in turn increases the acceptable
perturbation threshold R (Zhu et al., 2023; Chhikara, 2025). Consequently, according to Theorem 3,
larger-scale models exhibit better robustness.

F.6 PERFORMANCE WITH COT STEPS UNDER EACH SETTING

In this section, we list how performance varies with CoT steps under different models of MATH in
Figure 6.

F.7 PERTURBATION WITH EMBEDDING NORM UNDER DIFFERENT SETTINGS

The variation of output perturbation with respect to embedding norm for all models on various
datasets is illustrated in Figure 7 to Figure 9.
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(a) MATH, Llama2-7b.
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(b) MATH, Llama3.1-8b.
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(c) MATH, Llama-R1-8b.
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(d) MATH, Qwen3-8b.

Figure 6: EM and OF on MATH cross CoT steps with different models.

50 60 70 80 90 100 110 120
Input Embedding Vector Norm

0.00

0.25

0.50

0.75

O
ut

pu
t F

lu
ct

ua
tio

n 
(O

F)

Figure 7: The change in out-
put fluctuation with the norm
of the input embedding vec-
tor across all experimental mod-
els on MATH. Each point de-
notes the result of one question,
where X-axis denotes the input
vector norm and Y-axis denotes
OF of this question. The Pear-
son coefficient is 0.415.

40 60 80 100 120
Input Embedding Vector Norm

0.0

0.2

0.4

0.6

0.8

O
ut

pu
t F

lu
ct

ua
tio

n 
(O

F)

Figure 8: The change in out-
put fluctuation with the norm
of the input embedding vector
across all experimental models
on MMLU-Pro. Each point de-
notes the result of one question,
where X-axis denotes the input
vector norm and Y-axis denotes
OF of this question. The Pear-
son coefficient is 0.634.
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Figure 9: The change in out-
put fluctuation with the norm
of the input embedding vec-
tor across all experimental mod-
els on GPQA. Each point de-
notes the result of one question,
where X-axis denotes the input
vector norm and Y-axis denotes
OF of this question. The Pear-
son coefficient is 0.541.
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