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ABSTRACT

Recent research has shown the existence of significant redundancy in large Trans-
former models. One can prune the redundant parameters without significantly
sacrificing the generalization performance. However, we question whether the
redundant parameters could have contributed more if they were properly trained.
To answer this question, we propose a novel training strategy that encourages all
parameters to be trained sufficiently. Specifically, we adaptively adjust the learning
rate for each parameter according to its sensitivity, a robust gradient-based measure
reflecting this parameter’s contribution to the model performance. A parameter
with low sensitivity is redundant, and we improve its fitting by increasing its
learning rate. In contrast, a parameter with high sensitivity is well-trained, and
we regularize it by decreasing its learning rate to prevent further overfitting. We
conduct extensive experiments on natural language understanding, neural machine
translation, and image classification to demonstrate the effectiveness of the pro-
posed schedule. Analysis shows that the proposed schedule indeed reduces the
redundancy and improves generalization performance.1

1 INTRODUCTION

Large-scale Transformer models have achieved remarkable success in various fields. Performance
of these models scales with their number of parameters, which can be up to hundreds of millions,
e.g., BERT (Devlin et al., 2018), DeBERTa (He et al., 2020), GPT-3 (Brown et al., 2020). Recent
research, however, has shown the existence of significant redundancy in the Transformer models
(Michel et al., 2019; Fan et al., 2019; Wang et al., 2019; Chen et al., 2020; Sanh et al., 2020). For
example, Sanh et al. (2020) removes around 90% of the parameters, and the models exhibit only a
marginal performance drop.
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Figure 1: Validation results
of fine-tuning BERT-base at
different sparsity levels on
the RTE dataset (Wang et al.,
2018) in Liang et al. (2021).
Solid black curve represents
the full model performance.

The existence of redundancy can hurt the model performance. Re-
cent works have demonstrated that the removal of the redundant
parameters can lead to better generalization performance, a phe-
nomenon observed in both small-scale models (Mozer & Smolensky,
1989; Rasmussen & Ghahramani, 2001; Grünwald & Grunwald,
2007) and large-scale Transformer models (Bartoldson et al., 2019;
Voita et al., 2019; Hou et al., 2020; Liang et al., 2021). As illus-
trated in Figure 1, with up to 20% of the parameters pruned, the
generalization performance boosts up to 1%.

As a result, we aim to improve model generalization through re-
dundancy elimination. However, the existence of redundancy has
long been regarded as inevitable. The common belief is that, in
each network, there always exists a set of parameters “born” to be
useless (Frankle & Carbin, 2018; Liu et al., 2018). Following this
belief, pruning, where redundant parameters are directly zeroed out,
becomes one of the most widely adopted solutions to redundancy
elimination. However, we ask a critical question here:

1Our code has been released at https://github.com/cliang1453/SAGE
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Are these parameters really redundant, or just insufficiently trained by commonly used
training strategies?

Our question is motivated by empirical observations, which show that training strategies indeed play
a role in causing redundancy. For example, different learning rates (Table 1), random seeds and
optimizers (Morcos et al., 2019) can produce models with similar performance but different sets
of redundant parameters. This suggests that the redundancy of parameters depends on the training
strategy: A training strategy often prefers specific parameters and provides them with sufficient
training. In contrast, the other parameters receive insufficient training and become under-fitted. As
a result, these parameters become redundant, such that they fail to contribute to the generalization
and prevent the model from achieving its ideal performance. Therefore, we hypothesize that with
a desirable training strategy, these redundant parameters can receive more sufficient training and
become useful ultimately.

OVLP Among Avg % OVLP

2 Models 59.8%
3 Models 46.5%
5 Models 35.7%

Table 1: Percentage of overlapping
between the 30% most redundant
parameters in 5 BERT-base models
fine-tuned using {1, 5, 8, 10, 20} ×
10−5 as learning rates on SST-2.

We verify the hypothesis by proposing a novel training strat-
egy, which encourages all parameters to be trained sufficiently.
Throughout the training process, we simultaneously excite the
under-fitted parameters to reduce redundancy and regularize
the well-fitted parameters to prevent overfitting.

More specifically, we propose an adaptive learning rate sched-
ule – SAGE (Sensitivity-guided Adaptive learninG ratE), where
each parameter learns at its own pace guided by its sensitivity.
Sensitivity originated in model pruning, where it is used to mea-
sure the redundancy of the parameters (Molchanov et al., 2016;
2019; Theis et al., 2018; Lee et al., 2018; Ding et al., 2019).
In pruning literature, parameters with low sensitivity are considered redundant. Since a redundant
parameter could be insufficiently trained and under-fitted, we promote its training by increasing its
learning rate. In contrast, for a parameter with high sensitivity, i.e., it is considered sufficiently trained
and well-fitted, we slow down its training by decreasing its learning rate to prevent overfitting.

Moreover, we introduce a local temporal variation of the sensitivity as a second factor to further guide
the learning rate. The local temporal variation essentially measures the uncertainty of sensitivity,
which mainly comes from two sources: (1) The sensitivity can have large variance due to data
sampling. This is because during training, the sensitivity is evaluated using a randomly sampled
mini-batch instead of all the training data. (2) The sensitivity of a parameter may not be stable and can
vary drastically among iterations, which introduces extra uncertainty. We define the local temporal
variation of a parameter as the absolute difference between its sensitivity and an exponential moving
average of its sensitivity from all previous iterations. A large local temporal variation implies high
uncertainty in the sensitivity at the current iteration, and therefore it is not yet a reliable indicator of
redundancy. Accordingly, we should avoid significantly decreasing its learning rate even though its
sensitivity at the current iteration might be large.

Therefore, we eventually require the overall learning rate schedule for each parameter to be pro-
portional to the ratio between the local temporal variation and the sensitivity. This can effectively
account for the uncertainty issue in sensitivity.

We conduct experiments on a wide range of tasks and models to demonstrate the effectiveness of
SAGE. In natural language understanding, the fine-tuning performance of BERT-base (Devlin et al.,
2018) and RoBERTa-large (Liu et al., 2019b) improves 1.4 and 0.6 task-average score on the dev
set of the GLUE benchmark (Wang et al., 2018), respectively. Furthermore, SAGE improves neural
machine translation performance using Transformer-base (Vaswani et al., 2017) on two datasets,
suggesting it also benefits training-from-scratch. SAGE also boost the image classification accuracy
on ImageNet dataset (Deng et al., 2009) with Vision Transformer models (Dosovitskiy et al., 2020).
Furthermore, our experiments demonstrate SAGE is complementary to various types of optimizers,
e.g., SGD (Robbins & Monro, 1951), Adam, and Adamax (Kingma & Ba, 2014).

Moreover, we observe several favorable proprieties of SAGE. First, it leads to balanced and sufficient
training on all parameters and produces a better-generalized model. Second, SAGE is complementary
to state-of-the-art training methods. Specifically, we show that SAGE achieves better performance on
GLUE when combined with adversarial regularization (Jiang et al., 2019).
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2 PRELIMINARY

We briefly review the sensitivity of the parameters and adaptive learning rate methods.

2.1 SENSITIVITY OF THE PARAMETERS

The sensitivity of a parameter essentially approximates the change in the loss magnitude when this
parameter is completely zeroed-out (LeCun et al., 1990; Mozer & Smolensky, 1989). If the removal
of a parameter causes a large influence on the loss, then the model is sensitive to it. More specifically,
we define a deep neural network with parameters Θ = [θ1, ..., θJ ] ∈ RJ , where for j = 1, ..., J ,
θj ∈ R denotes each parameter. We further define Θj,−j = [0, ..., 0, θj , 0, ..., 0] ∈ RJ . We denote
the loss of the model as L(Θ), and the gradients of the loss with respect to Θ as ∇ΘL(Θ). The
sensitivity of the j-th parameter is defined as the magnitude of the gradient-weight product:

Ij = |Θ⊤
j,−j∇ΘL(Θ)|. (1)

This definition is derived from the first-order Taylor expansion of L(·) with respect to θj at Θ.
Specifically, Ij approximates the absolute change of the loss given the removal of θj :

Θ⊤
j,−j∇ΘL(Θ) ≈ L(Θ)− L(Θ−Θj,−j).

The sensitivity was originally introduced for model pruning (Molchanov et al., 2016; 2019; Theis
et al., 2018; Lee et al., 2018; Ding et al., 2019; Xiao et al., 2019), and it was commonly used as an
“importance score” for model weights. The parameters with high sensitivity are of high importance
and should be kept (Lubana & Dick, 2020). Parameters with low sensitivity are considered redundant,
and they can be safely pruned with only marginal influence on the model loss.

2.2 ADAPTIVE LEARNING RATE METHODS

Adaptive learning rate methods adjust the learning rate of each individual parameter based on
the training progress. Most of these methods focus on adapting the training to the optimization
landscape, e.g., AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), RMSProp (Hinton et al.,
2012), Adam(Kingma & Ba, 2014) and RAdam (Liu et al., 2019a). Their purpose is to make the
model converge faster to the first-order stationary solutions. Specifically, these methods prefer
updating the weights with smaller second-order moments, as the loss function is generally flat along
directions corresponding to such weights.

There are also some adaptive learning rate methods focusing on the perspective of improving model
generalization (Loshchilov & Hutter, 2018; Foret et al., 2020). For example, AdamW (Loshchilov &
Hutter, 2018) propose to decouple the weight decay and gradient update to avoid regularizing weights
that have larger gradient magnitudes with a weaker strength.

3 METHOD

We introduce our proposed adaptive learning rate schedule, SAGE. Our method customizes a specific
learning rate for each parameter at each iteration. A parameter’s learning rate at a certain iteration is
determined by two factors: sensitivity and its local temporal variation.

Sensitivity of the parameters. At the t-th iteration, following Eq. (1), we define the sensitivity of
θ
(t)
j as

I
(t)
j = |Θ(t)⊤

j,−j∇Θ(t)L(Θ(t))|, (2)

which reflects the influence of removing θ(t)j in the model loss. In previous literature, θ(t)j is considered

redundant when I
(t)
j is small. In contrast, we hypothesize that θ(t)j is just insufficiently trained and

under-fitted, and can become less redundant when receiving further training.

Local temporal variation. Recall that the sensitivity measure involves excessive uncertainty, which
comes from: (1) Sensitivity is measured based on a randomly sampled mini-batch of the training data
at each iteration, which leads to a large variance; (2) Sensitivity can be unstable and vary drastically,
as changes of the model introduce extra uncertainty to the measure.

One way to measure the uncertainty of sensitivity of θj is the absolute change of sensitivity, i.e.,
|I(t)j − I

(t−1)
j |. Such a quantity often has a large variance in practice. Therefore, we propose to keep
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track of an exponential moving average of I(t)j as

Î
(t)
j = β0Î

(t−1)
j + (1− β0)I

(t)
j ,

where Î
(0)
j = 0 and β0 ∈ (0, 1) is a hyper-parameter. Based on Î

(t)
j , we measure the uncertainty of

the j-th parameter’s sensitivity using the local temporal variation defined as:

U
(t)
j = |I(t)j − Î

(t)
j |. (3)

We remark that a large U
(t)
j implies that there exists high uncertainty in I

(t)
j , and therefore it is not

yet a reliable indicator of the redundancy of θ(t)j .

Algorithm. We denote the learning rate at the t-th iteration as η(t) under the original schedule. Then
the sensitivity-guided learning rate for the j-th parameter at the t-th iteration can be computed as

η
(t)
j = η(t) ·

U
(t)
j + ϵ

Î
(t)
j + ϵ

= η(t) ·
|I(t)j − Î

(t)
j |+ ϵ

Î
(t)
j + ϵ

, (4)

where 0 < ϵ ≪ 1 prevents zero learning rate and zero denominator. Algorithm 2 shows the SAGE
algorithm for SGD, and extensions to other algorithms, such as Adam (Kingma & Ba, 2014), are
straightforward (Appendix A.4.1).

In Eq. (4), we place Î
(t)
j in the denominator, as one of our goals is to encourage all parameters to be

sufficiently trained. If Î(t)j is small, we promote its training by increasing its learning rate. If Î(t)j is
large, we slow down its training to prevent overfitting by decreasing its learning rate.

We place U
(t)
j in the numerator to measure the uncertainty in the sensitivity. A large U

(t)
j implies

I
(t)
j is not yet a reliable indicator of the redundancy in θ

(t)
j . We thus avoid significantly decreasing its

learning rate.

Algorithm 1 SGD-SAGE (⊙ denotes Hadamard product and ⊘ denotes Hadamard division)

Input: Model parameters Θ ∈ RJ ; Data D; Learning rate schedule η(·); Total training iteration T ;
Moving average coefficient β0.

1: Initialize Î(0) = 0 ∈ RJ .
2: for t = 1, ..., T do
3: Sample a minibatch b(t) from D.
4: Compute gradient ∇Θ(t)L(b(t),Θ(t)).
5: I(t) = |Θ(t) ⊙∇Θ(t)L(b(t),Θ(t))|.
6: Î(t) = β0Î

(t−1) + (1− β0)I
(t).

7: U (t) = |I(t) − Î(t)|.
8: Θ(t+1) = Θ(t) − η(t)(U (t) + ϵ)⊘ (Î(t) + ϵ)⊙∇Θ(t)L(b(t),Θ(t)).
9: end for

Computation and memory usage. SAGE adds a marginal cost to computation and memory usage.
At each iteration, we only perform an extra element-wise multiplication between the weight matrix
and the corresponding gradient matrix obtained through back-propagation. The only memory cost is
to store the exponential moving average of sensitivity.

4 EXPERIMENTS

We evaluate SAGE on widely used benchmarks for natural language understanding (NLU), neural
machine translation (NMT), and image classification.

4.1 NATURAL LANGUAGE UNDERSTANDING

Model and data. We evaluate the fine-tuning performance of the pre-trained language models,
BERT-base (Devlin et al., 2018) and RoBERTa-large (Liu et al., 2019b), on the General Language
Understanding Evaluation (GLUE, Wang et al. (2018)) benchmark. GLUE contains nine NLU tasks,
including textual entailment, question answering, sentiment analysis, and text similarity. Details
about the benchmark are deferred to Appendix A.1.1.
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Implementation Details. We implement our method using the MT-DNN code-base2. We follow the
suggested training and hyper-parameters settings from Liu et al. (2020). Specifically, we adopt Adam
and Adamax (Kingma & Ba, 2014) with corrected weight decay (Loshchilov & Hutter, 2018) as the
baseline optimizer and we set β = (0.9, 0.999). We use a linear-decay learning rate schedule, and
we apply SAGE to both Adam and Adamax.

We select learning rates in range of {1, 2, 3, 5, 8}× {10−5, 10−4}. We select β0 in range of [0.6, 0.9]
with an increment of 0.05. Other training details are reported in Appendix A.1.2.

Main results. Table 2 and Table 3 show the evaluation results on the GLUE benchmark. The dev
results are averaged over 5 different random seeds, and all gains are statistically significant3. We
select the best single task model for test evaluation.

Model Optimizer RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

BERTBASE

Devlin et al. (2018) - -/86.7 - 92.7 -/- 88.4 -/- 84.4/- -

Adam 63.5 84.1/89.0 54.7 92.9 89.2/88.8 91.1 90.9/88.1 84.5/84.4 81.5
Adam-SAGE 73.3 87.0/90.9 60.3 93.5 90.3/89.9 91.7 91.2/88.1 84.7/84.8 84.0

Adamax 69.2 86.2/90.4 57.8 92.9 89.7/89.2 91.2 90.9/88.0 84.5/84.4 82.8
Adamax-SAGE 74.0 87.3/91.0 59.7 93.8 90.3/89.8 91.8 91.2/88.2 85.0/85.2 84.2

RoBERTaLARGE

Liu et al. (2019b) 86.6 -/90.9 68.0 96.4 92.4/- 94.7 92.2/- 90.2/90.2 -

Adamax 86.6 90.4/93.1 67.5 96.4 92.4/92.2 94.7 92.1/89.3 90.4/90.3 88.7
Adamax-SAGE 87.8 91.5/93.9 68.7 96.7 92.7/92.4 94.9 92.2/89.4 90.8/90.4 89.3

Table 2: Single task fine-tuning dev results on GLUE. All results are from our implementations. ‘-’
denotes missing results.

Our method gains 1.4 on dev and 1.1 on test of the task-average score on BERT-base. In large
datasets, i.e., MNLI (392K) and QNLI (108K), SAGE improves around 0.5 points. In small datasets,
i.e., RTE (2.5K) and CoLA (8.5K), we obtain more than 2 points of improvements. Such observations
indicate that SAGE is very effective on the small datasets. Furthermore, SAGE improves upon
RoBERTa-large by 0.6 average scores, suggesting SAGE can still achieve significant improvements
for larger and more adequately pre-trained models than BERT-base.

RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc F1 Mcc Acc P/S Corr Acc F1 Acc Score

BERTBASE (Devlin et al., 2018) 66.4 88.9 52.1 93.5 85.8 90.5 71.2 84.6/83.4 79.6
BERTBASE, Adamax 66.8 88.6 54.0 93.4 86.6 90.6 71.1 84.7/83.6 79.9
BERTBASE, Adamax-SAGE 69.8 89.7 54.5 94.1 87.1 90.8 71.3 84.9/83.8 80.7

Table 3: Single task fine-tuning test results from the GLUE evaluation server.

Model Optimizer IWSLT’14 De-En WMT’16 En-De

TransformerBASE
Adam 34.5 27.3
Adam-SAGE 35.1 27.7

Table 4: Neural machine translation BLEU scores on test set. All results are from our implementation.

Model Optimizer CIFAR100 ImageNet

ViT-B/32 SGD∗ 91.97 81.28
SGD-SAGE 92.68 81.72

ViT-L/32 SGD∗ 93.04 80.99
SGD-SAGE 93.74 81.90

Table 5: Image classification test accuracy. Results with ∗ are from Dosovitskiy et al. (2020). ViT-
B/32 and ViT-L/32 each denotes ViT-base and ViT-large model with 32× 32 input patch size.

2https://github.com/namisan/mt-dnn
3The dev results on RoBERTa-large are averaged over 3 different random seeds. All results have passed a

paired student t-test with p-values less than 0.05. The detailed statistics are summarized in Appendix A.1.3.
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4.2 NEURAL MACHINE TRANSLATION

Model and Data. We evaluate SAGE on the Transformer-base NMT models (Vaswani et al., 2017)
using two widely used NMT datasets, IWSLT’14 De-En (Cettolo et al., 2015)4 and WMT’16 En-De
(Bojar et al., 2016)5. IWSLT’14 De-En is a low-resource dataset, which contains 160K sentence
pairs. WMT’16 En-De is a rich-resource dataset, which contains 4.5M sentence pairs. Dataset and
pre-processing details are deferred to Appendix A.2.1.

Implementation Details. We implement the algorithms using the fairseq code-base and follow the
training and hyper-parameters settings from Ott et al. (2018; 2019). Specifically, we adopt the inverse
square root learning rate schedule and we employ Adam (Kingma & Ba, 2014) as the optimizer with
β = (0.9, 0.98). We apply SAGE to the same setting.

We select learning rates in range of {5, 7} × 10−5 ∪ {1, 2} × 10−4 and select β0 in range of
{0.5, 0.6, 0.7, 0.8, 0.9}. Comprehensive training details are reported in Appendix A.2.2.

Main results. Table 4 shows the BLEU scores on the IWSLT’14 De-En and the WMT’16 En-De
test set, where SAGE improves around 0.6 and 0.4 points, respectively. This suggests that other
than fine-tuning, SAGE can also improve the generalization of trained-from-scratch models in both
low-resource and rich-resource settings.

4.3 IMAGE CLASSIFICATION

Model and data. We evaluate SAGE using Vision Transformer models (ViT) on the CIFAR100
(Krizhevsky et al., 2009) and ILSVRC-2012 ImageNet dataset (Deng et al., 2009). Specifically, we
evaluate the fine-tuning performance of the ViT-base and ViT-large pre-trained using ImageNet-21k,
a superset of ImageNet dataset with 21k classes and 14M images. Data and pre-processing details
are deferred to Appendix A.3.1.

Implementation details. All experiments follow the suggested training configuration of Dosovitskiy
et al. (2020) and a jax-implemented code base 6. We adopt SGD as the baseline optimizer with
a momentum factor 0.9. We fine-tune the models for 100K steps for CIFAR100, and 200K steps
for ImageNet. We select learning rates in range of {0.02, 0.05, 0.08, 0.1} and select β0 in range of
{0.85, 0.90, 0.95}. Comprehensive training details are reported in Appendix A.3.2.

Main results. Table 5 shows the evaluation results on CIFAR100 and ImageNet. SAGE outperforms
baselines by a significant margin. This demonstrates that SAGE is quite general, and can be applied
to various tasks (e.g., NLP and computer vision) and optimizers (e.g., Adam, Adamax and SGD).

5 ANALYSIS

We verify that SAGE leads to more sufficient training (Section 5.1), better generalization performance
(Section 5.2), and is complementary to existing state-of-the-art regularization methods (Section 5.3).
We also provide ablation studies in Appendix A.4.4.

5.1 SAGE LEADS TO MORE SUFFICIENT TRAINING

Recall that SAGE adjusts the learning rate for each parameter according to two factors: the sensitivity
of parameters and the local temporal variation of sensitivity. By inspecting these factors, we verify
that SAGE leads to more sufficient training.

The sensitivity distribution is more concentrated. Figure 2 shows the sensitivity distribution of
parameters in the SAGE optimized models and the baseline models. We select the hyper-parameters
that yield the best generalization performance on the BERT-base model, and we evaluate the sensitivity
of each parameter using the entire training set. See Appendix A.4.2 for implementation details.

We observe that the sensitivity distribution exhibits a lower variance in the SAGE optimized models
than the baseline models. This suggests that the sensitivity of parameters becomes more concentrated.
In other words, the amount of each parameter’s contribution is more balanced, and the model is more
sufficiently trained.

4https://wit3.fbk.eu/
5http://data.statmt.org/wmt16/translation-task/
6https://github.com/google-research/vision_transformer
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Figure 2: The sensitivity distribution of the BERT-base models fine-tuned on GLUE tasks. Note that
we drop some outliers to ease visualization.

Even the most redundant parameters contribute to the model performance. Recall that sensitivity
is a type of importance score in pruning, which is a straightforward approach to measure each
parameter’s contribution. Therefore, we conduct an unstructured, one-shot pruning experiment on
the fine-tuned BERT-base models. Specifically, we remove up to 40% parameters7 with the lowest
sensitivity scores and evaluate the pruned models’ performance. We average the results over 5
models trained with different random seeds. Figure 3 Upper shows the generalization performance
of the pruned models. To ease the comparison, Figure 3 Lower shows the change in generalization
performance with respect to the un-pruned models.

100 90  80  70 
Percentage of Weight Remaining (%)

88

90

92

94

96

A
cc

ur
ac

y

SST-2

77.5

80.0

82.5

85.0

87.5

90.0

MRPC

60

65

70

75

80 RTE Schedule
Adam 
Adam-SAGE

100 10090  80  70 
Percentage of Weight Remaining (%)

90  80  70 
Percentage of Weight Remaining (%)

100 90  80  70 
Percentage of Weight Remaining (%)

6

4

2

0

2

C
ha

ng
e 

in
 A

cc
ur

ac
y

10.0

7.5

5.0

2.5

0.0

2.5

15

10

5

0

5

100 90  80  70 
Percentage of Weight Remaining (%)

100 90  80  70 
Percentage of Weight Remaining (%)

Figure 3: Upper: Model generalization performance at different pruning ratios; Lower: Change in
generalization performance with respect to the full model. Pruning is conducted on the fine-tuned
BERT-base models.

We have the following observations:

• The pruning performance of the SAGE optimized models remains higher than that of the baseline
models (Figure 3 Upper).

• Even the most redundant parameters in the SAGE optimized models makes contributions (Figure 3
Lower). When there are over 80% of weights remaining, the pruning performance of the baseline
models is comparable or even superior than their un-pruned alternatives. In contrast, the performance
of the SAGE optimized models consistently deteriorates. This suggests that the most redundant
parameters in the baseline models fail to contribute, while those in the SAGE optimized models are
trained more sufficiently and are able to make contributions.

Sensitivity is a reliable indicator of redundancy. We visualize the local temporal variation (Figure 4)
to verify that sensitivity indeed becomes a more reliable indicator of redundancy in SAGE than in the
baselines. We track the variation for all parameters in the BERT-base model at each iteration, and

7Embedding weights are excluded.
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we evaluate the variation based on the current mini-batch of training data. See Appendix A.4.2 for
implementation details.
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Figure 4: The local temporal variation of sensitivity (with β0 = 0.7) during training.
We observe that the local temporal variation in SAGE remains lower or decreases faster than in the
baselines for all tasks. For example, the variation in the baseline approach remains large in QNLI. In
contrast, the variation in SAGE decreases, suggesting the sensitivity indeed stabilizes and becomes a
reliable indicator of redundancy.

5.2 SAGE LEADS TO BETTER GENERALIZATION PERFORMANCE

We verify that SAGE leads to better generalization performance through inspecting the learning
curves, decision boundary and hyper-parameter search space.

Figure 5: Decision boundary predicted on the
Spiral dataset. The white curve on Adam-
SAGE corresponds the decision boundary of
Adam.

Learning Curves. Figure 6 shows the training loss,
validation loss, learning rate, and sensitivity score
obtained by fine-tuning BERT-base on SST-2. All
experiment details are deferred to Appendix A.4.3.
We have two major observations: 1) SAGE’s valida-
tion loss descends faster and SAGE is less prone to
overfitting. This observation suggests that SAGE has
a regularization effect and reduces the model vari-
ance. 2) SAGE’s variance of the sensitivity score
becomes lower through training, aligning with our
observation in Figure 2. This suggests that SAGE
gives rise to a more balanced and sufficient training.
Both observations agree with our initial motivation
(Figure 1) that redundancy elimination can lead to
better generalization.
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Figure 6: Learning curves obtained by fine-tuning BERT-base on SST-2 dataset.

Hyper-parameter Study. Figure 7 shows the validation accuracy heatmap obtained by fine-tuning
BERT-base on the RTE dataset. We plot the accuracy obtained by training with different learning rates,
Adam’s βs and SAGE’s β0s. We can observe that SAGE consistently achieves a better generalization
performance within a larger region of hyper-parameter search space under different β0s. We also
provide a hyper-parameter study for more datasets in Appendix A.4.5.
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Figure 7: Validation accuracy obtained by fine-tuning BERT-base on RTE dataset with a wide range
of hyper-parameters.

Decision Boundary. Figure 5 shows the decision boundary predicted with Adam and SAGE on the
Spiral dataset. Specifically, we train a multi-layer perceptron with 3 hidden layers, each with a hidden
dimension of 100. The decision boundary predicted with SAGE is smoother and has a larger margin
than with Adam, suggesting SAGE produces a better generalized model.

5.3 COMBINE WITH STATE-OF-THE-ART METHODS

We further show that SAGE is complementary to existing state-of-the-art regularization methods.
Specifically, we apply SAGE to SMART (Jiang et al., 2019), a state-of-the-art smoothness-inducing
adversarial regularization method. As shown in Table 6, SAGE can further improve upon SMART,
suggesting the two techniques are complementary.

Model Optimizer RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI-m/mm Average
Acc Acc/F1 Mcc Acc P/S Corr Acc Acc/F1 Acc Score

BERTBASE Adamax 69.2 86.2/90.4 57.8 92.9 89.7/89.2 91.2 90.9/88.0 84.5/84.4 82.8

SMARTBASE
Adamax 72.5 87.7/91.4 59.5 93.5 90.0/89.6 91.9 91.7/88.9 85.2/85.7 84.1
Adamax-SAGE 75.1 89.0/92.8 60.8 94.3 90.1/89.7 92.2 91.9/89.1 85.9/86.0 85.0

Table 6: Single task fine-tuning dev results on GLUE.

6 DISCUSSION

SAGE is complementary to Adaptive Gradient Methods. Our proposed method and the mainstream
adaptive gradient methods (e.g., Adam and AdaGrad) are for fundamentally different purposes. The
mainstream adaptive gradient methods aim to improve optimization by adapting to the optimization
landscape, while SAGE aims to improve generalization by eliminating the weight redundancy. The
quantities of our interest (i.e., Eq. (2) and Eq. (3)) are related to the weight redundancy. They are
not directly related to the moduli of the objective function, e.g., smoothness, curvature (which are of
the interests for optimization). As shown in our experiments (See Section 4), we do not observe any
conflicts between the two methods, as SAGE improves the model generalization performance when
being combined with several adaptive gradient methods (e.g., Adam).

Redundant Weights vs. Insufficiently Trained Weights. Lottery Ticket Hypothesis (Frankle
& Carbin, 2018) suggests that, in a randomly initialized network, there exists a well-initialized
subnetwork, which outperforms any other subnetworks and matches the full model’s performance.
This suggests the rest parameters contribute marginally to the model performance. Although the
initialization of these parameters may not be satisfactory, SAGE provides them sufficient training so
that they can learn to contribute.

7 CONCLUSION

We begin with a hypothesis that the redundant parameters can become useful if they are sufficiently
trained by desirable optimization strategies. We verify this hypothesis by proposing an adaptive
learning schedule – SAGE, which excites the under-fitted parameters to reduce redundancy and
regularize the well-fitted parameters to prevent overfitting. We demonstrate that SAGE can benefit
model generalization in a wide range of tasks and strengthen various types of optimizers.
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A APPENDIX

A.1 NATURAL LANGUAGE UNDERSTANDING

A.1.1 DATA

GLUE is a collection of nine NLU tasks. The benchmark includes question answering (Rajpurkar
et al., 2016), linguistic acceptability (CoLA, Warstadt et al. 2019), sentiment analysis (SST, Socher
et al. 2013), text similarity (STS-B, Cer et al. 2017), paraphrase detection (MRPC, Dolan & Brockett
2005), and natural language inference (RTE & MNLI, Dagan et al. 2006; Bar-Haim et al. 2006;
Giampiccolo et al. 2007; Bentivogli et al. 2009; Williams et al. 2018) tasks. Details of the GLUE
benchmark, including tasks, statistics, and evaluation metrics, are summarized in Table 13.

All the texts were tokenized using wordpieces, and were chopped to spans no longer than 512 tokens.

A.1.2 TRAINING DETAILS

To fine-tune BERT-base and RoBERTa-large models on individual tasks, we append a task-specific
fully-connected classification layer to them as in Devlin et al. (2018).

Table 7 present the hyper-parameter configurations. We tune this set of hyper-parameters on a single
seed, and report the averaged results obtained with the same configuration over all seeds. For SAGE
experiments, We slightly tune β0 within a range of 0.1 on different seeds. We apply a linear weight
decay rate of 0.01 and a gradient norm clipping threshold of 1 for all experiments. All experiments
are conducted on Nvidia V100 GPUs.

Hyper-param Experiment RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI

Learning Rate

BERTBASE, Adam 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 2e-5 2e-5
BERTBASE, Adam-SAGE 1e-4 8e-5 8e-5 3e-5 1e-4 8e-5 4e-5 5e-5
BERTBASE, Adamax 1e-4 1e-4 1e-4 5e-5 1e-4 1e-4 1e-4 8e-5
BERTBASE, Adamax-SAGE 3e-4 3e-4 2e-4 2e-4 5e-4 5e-4 3e-4 2e-4
RoBERTaLARGE, Adamax 5e-5 5e-5 3e-5 1e-5 5e-5 1e-5 1e-4 1e-5
RoBERTaLARGE, Adamax-SAGE 6e-5 2e-4 8e-5 2e-5 8e-5 3e-5 2e-4 8e-5

β0

BERTBASE, Adam-SAGE 0.60 0.80 0.70 0.80 0.60 0.70 0.75 0.70
BERTBASE, Adamax-SAGE 0.65 0.80 0.75 0.70 0.75 0.70 0.75 0.85
RoBERTaLARGE, Adamax-SAGE 0.75 0.65 0.70 0.75 0.80 0.80 0.65 0.60

Batch Size BERTBASE 16 8 32 32 32 32 32 32
RoBERTaLARGE 16 8 32 32 32 32 32 32

Epoch BERTBASE 6 6 6 6 6 3 6 3
RoBERTaLARGE 15 6 6 6 10 10 15 3

Dropout BERTBASE 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3
RoBERTaLARGE 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3

Warmup BERTBASE 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1
RoBERTaLARGE 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 7: Hyper-parameter configurations for GLUE experiments. “Epoch” refers to the total training
epochs; we adopt early-stopping strategy in practice. “Dropout” refers to classification layer dropout
ratio. “Warmup” refers to the ratio of learning rate linear warmup iterations to total training iterations.

A.1.3 EVALUATION RESULTS

Statistics of the dev set results. Table 8 shows the standard deviation of the dev set results.

Average score computation formula. For dev set results, we first obtain a score for each task by
averaging the scores of all metrics (e.g., Acc and F1) and test sets (e.g., MNLI-m and MNLI-mm)
within this task, then compute a task-average score. For test set results, we directly averages scores of
all reported metrics following Devlin et al. (2018).
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Model Optimizer RTE MRPC CoLA SST-2 STS-B QNLI QQP MNLI

BERTBASE
Adam-SAGE 0.35 0.32 0.85 0.25 0.12 0.06 0.05 0.06

Adamax-SAGE 0.56 0.69 0.12 0.23 0.03 0.06 0.08 0.10

RoBERTaLARGE Adamax-SAGE 0.51 0.78 0.50 0.19 0.08 0.00 0.05 0.05

Table 8: Standard deviation of the dev set results.

A.2 NEURAL MACHINE TRANSLATION

A.2.1 DATA

Table 9 shows the number of sentence pairs in each dataset. We use the standard newstest-2013 and
newstest-2014 as dev and test set for WMT’16 En-De. We follow Ott et al. (2019) to split the dev/test
sets for IWSLT’14 De-En.

All datasets are encoded using byte-pair encoding (BPE, Sennrich et al. (2016)). We preprocess
IWSLT’14 De-En data following fairseq8 and adopt the preprocessed WMT’16 En-De from Google9.

Data Train Dev Test
IWSLT’14 De-En 160K 7283 6750
WMT’16 En-De 4.5M 1061 1019

Table 9: The number of parallel sentences in NMT datasets.

A.2.2 TRAINING DETAILS

We adopt the Transformer-base model for both datasets. For IWSLT’14 De-En, we share the decoder
and encoder output embeddings. For WMT’16 En-De, we share all the embeddings.

Table 10 presents the hyper-parameter configurations for the best models. We apply a linear weight
decay rate of 1× 10−4 and a label smoothing ratio of 0.1 for all experiments. All experiments are
conducted on Nvidia V100 GPUs.

For IWSLT’14 De-En, we report the BLEU score of the best checkpoint using a beam size of 5 and
length penalty of 1. For WMT’16 En-De, we report the average of the last 10 checkpoints with a
beam size of 4 and length penalty of 0.6.

Hyper-param Experiment IWSLT’14 De-En WMT’16 En-De

Learning Rate Adam 5e-4 7e-4
Adam-SAGE 1e-3 2e-3

β0 Adam-SAGE 0.8 0.4

Batch size Both 4096 32768

Epoch Both 60 40

Dropout Both 0.3 0.1

Warmup Both 8000 4000

Table 10: Hyper-parameter configurations for NMT experiments. “Warmup” refers to the learning
rate linear warmup iterations.

8https://github.com/pytorch/fairseq/blob/master/examples/translation
9https://pytorchnlp.readthedocs.io/en/latest/_modules/torchnlp/datasets/wmt.html
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A.3 IMAGE CLASSIFICATION

A.3.1 DATA

For CIFAR100, we apply random cropping and random horizontal flipping to the training data.

A.3.2 TRAINING DETAILS

Table 11 present the hyper-parameter configurations for the best models. All experiments are
conducted on Nvidia V100 GPUs.

Hyper-param Experiment CIFAR100 ImageNet

Learning Rate ViT-B/32, SGD-SAGE 0.02 0.05
ViT-L/32, SGD-SAGE 0.02 0.08

β0
ViT-B/32, SGD-SAGE 0.95 0.95
ViT-L/32, SGD-SAGE 0.85 0.95

Training Steps All 10000 20000

Dropout All 0.0 0.0

Table 11: Hyper-parameter configurations for ViT experiments on CIFAR100 and ImageNet.

A.4 SUPPLEMENTS FOR METHOD AND ANALYSIS

A.4.1 ADAM-SAGE ALGORITHM

Algorithm 2 Adam-SAGE (⊙ denotes Hadamard product and ⊘ denotes Hadamard division)

Input: Model parameters Θ ∈ RJ ; Data D; Learning rate schedule η(·); Total training iteration T ;
Moving average coefficient β0, β1, β2.

1: Initialize Î(0),m(0), v(0) = 0 ∈ RJ .
2: for t = 1, ..., T do
3: Sample a minibatch b(t) from D.
4: Compute gradient g(t) = ∇Θ(t)L(b(t),Θ(t)).
5: Compute sensitivity I(t) = |Θ(t) ⊙ g(t)|.
6: m(t) = β1m

(t−1) + (1− β1)g
(t)

7: v(t) = β2v
(t−1) + (1− β2)(g

(t))2

8: Î(t) = β0Î
(t−1) + (1− β0)I

(t).
9: m̂(t) = m(t)/(1− β1)

10: v̂(t) = v(t)/(1− β2)

11: Î(t) = Î(t)/(1− β0)

12: U (t) = |I(t) − Î(t)|.
13: Update Θ(t+1) = Θ(t) − η(t)((U (t) + ϵ)⊙ m̂(t))⊘ ((Î(t) + ϵ)⊙ (

√
v̂(t) + ϵ))⊙ g(t).

14: end for

A.4.2 IMPLEMENTATION DETAILS FOR SECTION 5.1

Figure 2 experiments: Due to the extremely large model size, we only sample 110K parameters per
layer (in total 12×110K parameters) to calculate the distribution. We select the hyper-parameters that
yield the best generalization performance on the BERT-base model, and we evaluate the sensitivity of
each parameter using the entire training set.

Figure 4 experiments: Following previous experiment’s practice, we randomly sample 110K parame-
ters per layer (in total 12× 110K parameters), and for visualization purposes, we plot 60 randomly
selected iterations. We adopt the learning rate corresponding to the best training performance for
both SAGE and the baselines.
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A.4.3 IMPLEMENTATION DETAILS FOR SECTION 5.2

Plotting the parameter sensitivity distribution throughout training can be computational expensive.
The distribution varies significantly throughout training and often fails to provide a meaningful
visualisation. As a result, we compute the structured sensitivity score instead of the parameter
sensitivity score. Specifically, we compute a single sensitivity score for each Transformer weight
block Θ at iteration t using the structured counterpart of the parameter sensitivity metric widely
adopted in the existing structured pruning literature (Michel et al., 2019; Liang et al., 2021). Following
common structured pruning practice, we split Transformer models into 12 feed-forward weight
modules and 12 multi-head attention weight modules, and plot the average and variance of the
sensitivity of these modules’ sensitivity scores throughout the training.

We present the results obtained with the hyper-parameters that yield the best generalization perfor-
mance on the BERT-base model for both Adamax (Baseline) and Adamax-SAGE (SAGE).

A.4.4 ABLATION STUDY

To further interpret the role of the parameter sensitivity I and the local temporal variation U , we
conduct an ablation study on these two factors. Specifically, we check five variants of Eq. (4):
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j = η(t)(Î

(t)
j + ϵ)(U

(t)
j + ϵ)
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(t)
j = η(t)(Î

(t)
j + ϵ)/(U

(t)
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j = η(t)(Î
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Variant 4. η
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j = η(t)/(Î

(t)
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Variant 5. η
(t)
j = η(t)(U

(t)
j + ϵ)

For Variants 1,2 and 3, we aim to check the performance of giving a high/low-sensitive parameter a
high/low, instead of low/high learning rate. Specifically, we place (Î

(t)
j + ϵ) in the numerator, so that

the learning rates increase for the high sensitive parameters and decrease for low sensitive parameters.

For Variants 4 and 5, we aim to check the performance of eliminating the influence of one of these
factors. Specifically, we fix the local temporal variation term to 1 in Variant 4 and fix the sensitivity
term to 1 in Variant 5.

A.4.5 HYPER-PARAMETER STUDY

We investigate the influence of hyper-parameters learning rate and β0 on the performance of SAGE
(Figure 8). As can be seen, SAGE requires a larger learning rate than the baselines to offset the small
scale of the modulation term (the optimal baseline learning rate lies in 5 × 10−5 ∼ 1 × 10−4 for
MNLI, 5 × 10−4 ∼ 7 × 10−4 for IWSLT 14 De-En and 0.1 ∼ 0.2 for CIFAR10). Furthermore,
switching to a larger learning rate requires a lower β0 to maintain the same level of performance.
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Figure 8: Parameter study on learning rate and β0.

All five variants show no clear gain upon the baseline on both RTE and SST-2 datasets after careful
hyper-parameter tuning. Specifically, we observe that the Variants 1 and 3 converge very fast at the
early stage of training, and then quickly start overfitting. In Variants 2 and 4, the training collapses
due to gradient explosion or vanishing.
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Variant Name Learning Rate Modulating Term RTE SST-2

Adam 1 63.5 92.9
Adam-SAGE (U

(t)
j + ϵ)/(Î

(t)
j + ϵ) 73.3 93.5

Variant 1. (Î
(t)
j + ϵ)(U

(t)
j + ϵ) 63.5 91.2

Variant 2. (Î
(t)
j + ϵ)/(U

(t)
j + ϵ) Unconverged Unconverged

Variant 3. Î
(t)
j + ϵ 63.8 91.1

Variant 4. 1/(Î
(t)
j + ϵ) Unconverged Unconverged

Variant 5. U
(t)
j + ϵ 63.8 91.1

Table 12: Ablation study on parameter sensitivity and local temporal variations.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 13: Summary of the GLUE benchmark.

18


	Introduction
	Preliminary
	Sensitivity of the parameters
	Adaptive Learning Rate Methods

	Method
	Experiments
	Natural Language Understanding
	Neural Machine Translation
	Image Classification

	Analysis
	SAGE Leads to More Sufficient Training
	SAGE Leads to Better Generalization Performance
	Combine with State-Of-The-Art Methods

	Discussion
	Conclusion
	Appendix
	Natural Language Understanding
	Data
	Training Details
	Evaluation Results

	Neural Machine Translation
	Data
	Training Details

	Image Classification
	Data
	Training Details

	Supplements for method and analysis
	Adam-SAGE Algorithm
	Implementation Details for Section 5.1
	Implementation Details for Section 5.2
	Ablation Study
	Hyper-parameter Study



