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ABSTRACT

Predicting relevance is a pervasive problem across digital platforms, covering
social media, entertainment, and commerce. However, when optimized solely for
relevance and engagement, many machine-learning models amplify data biases and
produce homogeneous outputs, reinforcing filter bubbles and content uniformity.
To address this issue, we introduce a pairwise top-k diversity objective with a
differentiable smooth-ranking approximation, providing a model-agnostic way to
incorporate diversity optimization directly into standard gradient-based learning.
Building on this objective, we cast relevance and diversity as a joint optimization
problem, we analyze the resulting gradient trade-offs, and propose two comple-
mentary strategies: direct optimization, which modifies the learning objective, and
indirect optimization, which reweights training data. Both strategies can be applied
either when training models from scratch or when fine-tuning existing relevance-
optimized models. We use recommendation as a natural evaluation setting where
scalability and diversity are critical, and show through extensive experiments that
our methods consistently improve diversity with negligible accuracy loss. Notably,
fine-tuning with our objective is especially efficient, requiring only a few gradient
steps to encode diversity at scale.

1 INTRODUCTION

Modern prediction models are typically evaluated by their ability to maximize accuracy, that is,
to rank or classify items in line with ground-truth labels. However, optimizing exclusively for
accuracy often yields homogeneous outputs: models repeatedly select similar items, overlook long-
tail instances, and fail to provide novel or diverse options. This challenge is particularly evident in
recommender systems, which influence decisions in shopping, entertainment, and news (Ricci et al.,
2010). However, it also arises broadly in ranking and selection tasks across machine learning (Wang
et al., 2023). When diversity is neglected, models risk reinforcing bias, amplifying popularity effects,
and reducing the utility of top-k prediction sets (Nguyen et al., 2014; Lambrecht & Tucker, 2019).

Diversity has thus emerged as an important complementary criterion. Recent user studies confirm that
diverse outputs can improve satisfaction and engagement when achieved without major loss in rele-
vance (Chen et al., 2018a; Holtz et al., 2020; Anderson et al., 2020). The trade-off between relevance
and diversity is mainly tackled by either post-hoc re-ranking methods or learning-based methods.
Post-hoc re-ranking methods (e.g., MMR, DPP) modify top-k sets to improve diversity (Carbonell &
Goldstein, 1998; Chen et al., 2018b), but typically suffer from degrading accuracy when diversity
increases (Chen et al., 2017). Model-specific learning-based methods integrate diversity into training
objectives (Borodin et al., 2017; Hurley, 2013; Wang et al., 2023), achieving strong gains with modest
accuracy loss. However, these methods rely on opaque models that obscure the source of diversity
gains, exhibit slow convergence, and are sensitive to the choice of trade-off parameter balancing
relevance and diversity. Additionally, data-centric approaches such as augmentation, reweighting,
and debiasing (Wang et al., 2021; Lai et al., 2023; Ren et al., 2018; Rastegarpanah et al., 2019)
address bias in data distributions, but do not explicitly target diversity. Despite these efforts, we
still lack a unified, differentiable, and model-agnostic framework for optimizing both relevance and
diversity directly during training.

To address these challenges, we propose a unified framework that leverages differentiable ranking to
optimize diversity in top-k prediction sets in a scalable and model-agnostic way. At the core, we use
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an effective diversity objective that can be integrated into the gradient-based training without requiring
architecture changes or post-processing. Building on this objective, we introduce two diversification
methods. (i) direct diversity-guided tuning (DDT), which augments the loss with a joint relevance—
diversity term, and (ii) meta-diversity reweighting (MDR), which preserves relevance-only training
while reweighting data points using the joint loss as a meta-objective. Our approach offers a flexible
alternative to post-hoc or model-specific diversification without compromising efficiency.

Our contributions are threefold: (1) We propose a unified differentiable framework for optimizing
relevance and diversity in top-k prediction sets, applicable to both end-to-end training and fine-
tuning; (2) we provide a theoretical analysis of gradient conflicts, deriving feasible intervals for
the trade-off parameter 5 and showing that an adaptive update coincides with the two-objective
solution of multi-gradient descent algorithm (MGDA), guaranteeing convergence to Pareto-stationary
points; (3) we empirically validate the framework on five benchmark datasets and two model
architectures, demonstrating that DDT and MDR achieve substantial diversity improvements with
minimal relevance loss, outperforming strong baselines. Notably, the diversity gains extend beyond
the explicitly optimized top-k range, reshaping subsequent predictions as well.

2 RELATED WORK

Our work is related to diverse recommender systems and multi-objective learning.

Diversity in recommender systems. Among the vast literature on recommender systems, the closest
are post-hoc and learning-based diversification methods (Zhao et al., 2025); see the survey for a
broader overview. Post-hoc methods re-rank the output of a relevance-only model to balance relevance
and diversity. Representative approaches include maximal marginal relevance (MMR) (Carbonell
& Goldstein, 1998), diversity-weighted utility maximization (DUM) (Ashkan et al., 2015), and
determinantal point processes (DPP) (Chen et al., 2018b). These methods are model-agnostic and
easy to implement, but their performance is limited by the quality of the initial relevance ranking,
and diversity gain usually comes at a cost of reduced accuracy (Chen et al., 2017).

Learning-based approaches incorporate diversity objectives directly into training, including penalties
for similarity among recommended items (Hurley, 2013; Wasilewski & Hurley, 2016), formulations
that optimize relevance—diversity trade-offs (Wang et al., 2023) list-wise, and graph-based models
that encourage coverage of item categories or long-tail exposure (Zheng et al., 2021; Yang et al.,
2023). While they often outperform post-hoc re-ranking, they require architectural modifications
or adversarial training, making them model-specific and computationally heavy. In contrast, our
framework is differentiable and model-agnostic: it can be integrated into standard training pipelines
without altering architectures or adding inference overhead.

Multi-objective learning. Related is the study of multi-objective optimization for balancing goals
such as accuracy, fairness, and revenue (Zheng & Wang, 2022). Classical approaches include
scalarization (Paul et al., 2022; Di Noia et al., 2017), which reduces multiple objectives to a single
weighted loss, and population-based heuristics such as evolutionary algorithms (Cai et al., 2020),
which approximate the Pareto front. While effective in some cases, these approaches either rely on
carefully tuned weights or suffer from high computational cost.

More recently, gradient-based methods such as the multi-gradient descent algorithm
(MGDA) (Désidéri, 2012) have been applied to recommendation. For instance, MGDA has been used
to balance accuracy with fairness (Du et al., 2025; Wu et al., 2022) and with revenue (Milojkovic et al.,
2019). These methods guarantee convergence to Pareto-stationary solutions, but their application has
so far been limited to objectives other than diversity.

3 PROBLEM FORMULATION

In this section, we introduce top-k diversity and our objectives, starting with notation. Given a
set of candidate items Z = {i1,42,...,%mn} and a collection of users U = {uy,us,...,un}, the
goal is to identify those items in Z that are most relevant for each v € U. We assume access to a
partially-observed supervision matrix R € R™*™, where entries R, ; represent relevance scores
(e.g., rating, label, or interaction). The set of all observed scores is Q = {(u,i, R, ;)}, where
N < nm is the number of observations. We use a relevance prediction model Fg with parameters
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©® to estimate the remaining scores ﬁw- = Fe(u,i). To learn such a model, we consider two
widely-used approaches. First, we consider matrix factorization (MF) (Koren et al., 2009) which
predicts ratings f{m = x;'; Y, for user v and item ¢ using the embeddings x,,,y; € R<. Second, we
consider neural network models (He et al., 2017), which predict ratings Ru,i = MLP([x,;y;]) with
a multi-layer perceptron (MLP), allowing non-linear interactions.

In both cases, the models are trained to minimize the regularized mean squared error (MSE)

. . B 2 2
® —argmén( z);g (Rui — Rui)” +A|1O]7, )

between observed relevance scores and predictions. While this approach yields models that predict
accurately, neither MF nor MLP is optimized for diversity. Top-k diversity seeks to predict relevance
scores T, € R™ of a user u, so that the top-k scores correspond to a set of diverse items Z,, (k) =
{#1,...,2k}, indicated by 1,, = top,(¥,,). To measure the diversity of the top-k (highest scoring)
items, we take a distance-based approach (Hassin et al., 1997). In particular, for a given pairwise
item-item affinity matrix S € R™*", we define diversity as the average pairwise dissimilarity
m m
Ds(Zu(k)) = WQ_ 5 DY L) -S:;) @

i=1 j=1
of items in Z, (k). Then, the average top-k diversity is simply

Loro(k) = 5 3" Ds(Zu(k)) G

While this serves as a natural diversity objective, it cannot be directly optimized with gradients as
topy,(+) involves non-differentiable operations. Our goal, however, is to optimize for relevance and
top-k diversity simultaneously as part of gradient-based optimization. To achieve this, we relax the
non-differentiable diversity reward objective (DRO) using a differentiable surrogate (DDRO) next.

Differentiable diversity. To overcome the non-differentiability challenge in top,(-), we adopt
differentiable ranking (Blondel et al., 2020), which is a continuous relaxation of sorting. The key

idea is to replace the discrete permutation z,, with a soft ranking vector ZSf) € R™, obtained by
projecting the predicted scores r,, onto the permutahedron P,,,—the convex hull of all permutations
of (1,2,...,m) embedded in an m-dimensional space. This projection is computed by solving the
following entropy-regularized optimization problem (Blondel et al., 2020):

z) = softrank(¥,) = arg min {1<f‘u, r) + H(r)} ) “4)
r€Pm | €

where H (r) is the entropy regularizer and e > 0 controls the approximation smoothness. This
definition enables the top-k soft indicator 1,,(i) = o, (k — Z,(¢)) using a scaled sigmoid function
o-(z) = [1 4+ exp(—x/7)] ! for user-defined smoothness-sharpness 7, often set to 1 in our experi-
ments. In turn, this makes it possible to train the prediction model end-to-end using diversity-aware
gradient updates. Like the discrete counterpart, soft ranking operates with O(n logn) time and O(n)
space complexity. The obvious question is, does soft ranking lead to sufficiently accurate top-k
recommendations? The better soft ranking approximates the hard ranking, the more reliable are our
top-k recommendations, formally summarized in Lemma. 1.

Lemma 1 (Soft rank approximation (Blondel et al., 2020)). Given a rating vector , let 75 € R”
be the soft rank vector obtained from optimizing (4). Then, as € — 0, the soft ranks converge to
the true ranks of T, lim._,o 7\ = rank(¥,) , where rank(t,,) € {1,...,n}"™ denotes the discrete

ranks (breaking ties arbitrarily).

Replacing indicator in Equation (3) with a the soft-ranking-derived indicator I, yields the differen-
tiable diversity reward objective
1 n m m ~ -
Lppro = N zu: ; ; L, (1)1 (5)(1 = Si5) - &)

To achieve both a high relevance and a high diversity in top-k outputs, we balance both the relevance
objective L, and diversity objective Lg;, introducing our problem below.
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Problem 2. For a given model class Fg, an item affinity matrix S, a user-defined relevance-diversity
trade-off B € [0, 1], find parameters © that minimize the joint loss

LioNnt(8,0) = BLre(®) + (1 = B) Laiv(O) . (6)

In practice, we take relevance objective L..; = Lysg and diversity objective Lqiv = —LpDRO-
While leading to an efficiently optimizable objective (6), joining them combines two diametrically
opposed goals: diversity and relevance. Diverse outputs are not necessarily the most “relevant” ones,
and vice versa. We discuss how to deal with this balance in the following section.

4 JOINT GRADIENT-BASED TRAINING

In this section, we discuss how this objective can be incorporated into practical training. We propose
two strategies: one direct, by optimizing the joint loss explicitly, and one indirect, by using the joint
loss as a meta-objective to reweigh training samples, starting with the direct approach.

4.1 BALANCING RELEVANCE AND DIVERSITY

The first approach, called direct diversity tuning (DDT), optimize the joint loss in Eq. (6). By utilizing
the differentiability of our joint loss, we take an efficient gradient-based optimization approach
in which the model parameters are updated using the gradient Vo LjoinT. As diversity opposes
relevancy, we need to ensure that the optimization converges to a solution that is both relevant
and diverse. That is, if both relevance and diversity objectives have gradients that point in similar
directions, we say that they are ‘aligned’. If the two gradient directions are aligned, any 3 decreases
both terms. However, when the gradients g, = VL, and gqiv = V Lg;yv are misaligned, any linear
combination will necessarily favor one objective at the expense of the other. We want to ensure a
descent that ensures a good diversity and accuracy balance for which we realign the gradients. For
this, we adaptively compute the optimal balance parameter S* that ensures simultaneous descent
during optimization. Formally, for gradient norms a = ||gel|| and b = ||gaiv ||, we denote the cosine
similarity by p = (gyel, gaiv)/(ab). The combined gradient is gg = Bgrel + (1 — 8)gadiv- For a step
along —gg to decrease both objectives simultaneously, the following conditions

—0re1(8) >0 <= (gre1,98) >0, —daiv(B) >0 <= (gaiv,95) >0 (A-B)

must be satisfied (Désidéri, 2012). Equivalently, the projections of the combined gradient gz onto
grel and gqiv should be positive. This guarantees that a step along —gg decreases both losses at once.
We give the feasible region of 3 that satisfies (A-B):

Lemma 3 (Common descent (Désidéri, 2012)). For any a,b > 0 and p € [—1, 1], the feasible region
of B € [0, 1] satisfying (A-B) is

1. If p > 0 (aligned), all B € [0, 1] are feasible.

2. If p = 0 (orthogonal), the feasible set is 8 € (0, 1).

3. If p < 0 (opposing), the feasible set is 3 € ( blol b ) .

a+blp|’ b+alp|
Proof sketch. The result follows from expanding the directional derivatives 6,1 (3) = —3a® — (1 —
B)abp and 445, (8) = —(1 — B)b? — Babp, and solving the inequalities (A-B) in the three cases
p>0,p=0,and p < 0. Full details are provided in Appendix A. [

Even when f lies in the feasible interval, different values may still lead to unbalanced overall progress,
with one loss improving much more than the other. To avoid this, we select the parameter

ﬂ* = arg [312[%,)%} min{—(srel(ﬁ), _(Sdiv(ﬂ)} ,

that maximizes the minimum per-step decrease, yielding a multiple gradient descent algorithm
(MGDA) (Désidéri, 2012) specialized to two objectives. MGDA finds a convex combination of
gradients that minimizes the maximum directional derivative across tasks using the closed-form

b(b — ap)

. _
p a2+ b2 —2abp

(N

4
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When p < 0, the ideal balance 5* lies in the feasible interval described in Lemma 3, ensuring
valid common descent. Intuitively, 3* equalizes the first-order decreases of relevance and diversity,
yielding a balanced update. Finally, when f3, is chosen adaptively by the MGDA rule, we obtain
convergence to Pareto-stationary solutions.

Corollary 4 (Pareto-stationarity with adaptive 3; (Sener & Koltun, 2018)). Under diminishing step
sizes, if each By is chosen by the minimax rule (or projected variant), then every accumulation point
of {©'} is Pareto-stationary for (L1, Ldiv)-

While the adaptive choice provides balanced progress at each step, a fixed 8 remains useful, as it
avoids per-iteration computation. To contextualize our results, we introduce an additional alternative
approach which operates with a fixed 5 next. We provide details, incl. pseudocode, in Appendix B.

4.2 OPTIMIZING DIVERSITY BY EXAMPLE REWEIGHTING.

A complementary line of work on machine learning fairness and robustness has shown that reweighting
training examples can effectively mitigate inherent data bias. The central idea is to retain the standard
prediction objective, but assign adaptive weights to individual samples so that the resulting model
better aligns with a criterion (Ren et al., 2018; Rastegarpanah et al., 2019). This approach is naturally
formulated as meta-learning: the inner loop minimizes a weighted relevance loss, while the outer
loop adjusts weights using a meta-objective that encodes the criterion.

Inspired by this paradigm, we aim to improve diversity by reducing bias at the data level through
per-sample weights. Intuitively, increasing the importance of ‘minor’ items increases the chance of
their exposure. In brief, the idea is to learn the model parameters by optimizing a weighted relevance
loss, while simultaneously learn the weights that balance relevance and diversity. More concretely,
our meta-diversity reweighting (MDR) introduces a weight w,, ; € [0, 1] for each user-item pair (u, i)
in a mini-batch 3 and optimizes the reweighted relevance loss

fMsm = Y wai (Rui — R..)”. (8)
(u,i)EB

The algorithm starts with obtaining a temporary model ©’ (initializing w,, ; = 0) using a one-step
inner update. We then re-evaluate the predictions with the updated parameters and compute the joint
meta-loss LjornT. Next, we compute the gradient of £jornT With respect to w to obtain a utility
score for each sample, and finally normalize the weights of all data points in B so that they sum to 1.
The joint relevance—diversity objective is used only as a meta-loss to update the weights w, and is
never applied directly to model parameters, as detailed in Apx. B.

In contrast to direct diversity-guided tuning, which modifies the training objective itself, MDR pre-
serves the standard relevance-oriented loop while implicitly reshaping the effective data distribution.
The meta-objective encourages weights that downplay biased interactions and upweight samples that
contribute to both accuracy and diversity. This reweighting perspective allows us to test whether
diversity gains can be obtained not only by altering the optimization objective, but also by correcting
data imbalance through implicit meta-optimization.

We evaluate both DDT and MDR in two settings: from-scratch training, where relevance and diversity
are optimized jointly, and fine-tuning, where a relevance-trained model is adapted for diversity.

5 EXPERIMENTAL EVALUATION

We describe the experimental setup to evaluate the effectiveness of our proposed solutions, introducing
the datasets and evaluation criteria in this section, and provide further details in Appendix C and D.

Datasets. We evaluate our methods across three domains: entertainment, product, and social
recommendations. For entertainment, we use MovielLens, Netflix, and Yahoo-R2, which contain user
ratings on movies or music with genre/category annotations. For product recommendation we use
the Coat dataset, which includes user ratings and product attributes. For social recommendation we
use KuaiRec, a large-scale mobile video dataset with watch-time based ratings. The item affinity
matrices S are pre-computed by Jaccard similarity scores based on genre/category information of
items. Basic statistics and detailed preprocessing are given in the Appendix C.
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Table 1: Statistics of datasets and diversity metrics.

Dataset ul |z Q| DRO(Z) |C|
Coat 290 300 6960 073 33
KuaiRec 1411 3327 4676570 091 31
Netflix 4999 1112 557176 083 27
Yahoo-R2 4050 5000 684782 0.26 58
MovieLens 6040 3706 1000208 0.83 18
— B* Lower bound Upper bound —4— MF+DDT —4— NCF+DDT
— Luse DDRO DRO MF+MDR  —#— NCF+MDR
NCF + Train NCF + Fine-tune Netflix MovieLens
1.0 1.0 0.8 1
0.8
©Q (.51 0.5 Eoﬁr";ﬁ-.------—- 0A676;|=.=.=Q=Q-Q+I-I-I
0.0 1 0.0 1 | | | | | |
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% \‘ .E 0.9
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(a) Optimization with adaptive S (MovieLens). (b) Optimization with varying ‘static’ (s.

Figure 1: Optimization of relevance-diversity joint objective. Figure 1a shows results of training
and fine-tuning of NCF models with adaptive S on the MovieLens dataset. Figure 1b shows the
performance comparison of DDT and MDR applied to two models (NMF and NCF) across two
datasets with varying fixed 8 € [0, 1].

Baselines. We compare against relevance- and diversity-aware approaches: (i) Non-negative Matrix
Factorization (NMF) (Lee & Seung, 1999) as a relevance-only baseline; (ii) greedy post-processing
methods such as Maximal Marginal Relevance (MMR) (Carbonell & Goldstein, 1998) and Diversity-
weighted Utility Maximization (DUM) (Ashkan et al., 2015); (iii) probabilistic diversification via
Determinantal Point Processes (DPP) (Chen et al., 2018b); and (iv) the graph-based Diversified GNN
Recommender (DGRec) (Yang et al., 2023). We use the authors’ publicly-available implementations.

Evaluation criteria. We evaluate accuracy using hit rate, precision, and recall. For each user u, let
R, denote the top-k recommended items and 7, the set of ground-truth relevant items (i.e., rated
above a threshold), the Hit rate measures whether at least one relevant item appears in R, ; precision
is the fraction of items in R, that are in 7,,; and recall is the fraction of relevant items in 7, that
are retrieved in 'R,,. When ground-truth is unknown, we report the estimated user satisfaction using

preference likelihoods p(R., ;) € [0, 1] and threshold 7 = 0.8 as the relevance score

Relevance(u) = % Z Ip(Roi) > 7] . )
=

5.1 EXPERIMENTAL ANALYSIS

Having introduced our setup, we now introduce our research questions and experimental analysis.

Q1 Does adaptive 3 behave as predicted by our theory?

Q2 How does the choice of /3 affect the accuracy—diversity trade-off?

Q3 How do our approaches compare with established diversification methods?
Q4 How do diversity gains evolve with varying k?
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Table 2: Performance of DDT, MDR, and five competitors in terms of diversity and relevance across
Coat, Yahoo-R2, Netflix, MovieLens, and KuaiRec. We highlight the the best results with bold, and
underline the second best, reporting mean and standard deviation over 10 trials.

Algorithm Coat Yahoo-R2 Netflix MovieLens KuaiRec
Diversity ~ Relevance | Diversity — Relevance | Diversity = Relevance | Diversity  Relevance | Diversity  Relevance
NMF 0.77 (0.02)  0.41 (0.04) | 0.09 (0.05) 0.76 (0.02) | 0.84 (0.01) 0.88 (0.03) | 0.62 (0.08) 0.98 (0.00) | 0.89 (0.01) 0.84 (0.01)
MMR 0.80 (0.01)  0.40 (0.04) | 0.80 (0.06) 0.68 (0.03) | 0.93(0.01) 0.85(0.04) | 0.94(0.03) 0.95(0.01) | 0.99 (0.00) 0.76 (0.01)
DUM 0.81(0.01) 0.31(0.04) | 0.98 (0.02) 0.60(0.02) | 0.93(0.00) 0.71(0.03) | 0.93(0.01) 0.91(0.01) | 0.98 (0.00) 0.42 (0.01)
DPP 0.81(0.01) 0.39(0.04) | 1.00 (0.00) 0.58 (0.01) | 0.96 (0.00) 0.84(0.04) | 0.98 (0.01) 0.95(0.01) | 1.00 (0.00) 0.75 (0.01)
DGRec 0.71 (0.01)  0.69 (0.02) | 0.33(0.01) 0.83(0.02) | 0.76 (0.00) 0.83 (0.01) | 0.73 (0.01) 0.47(0.02) | 0.91 (0.02) 0.18 (0.04)
DDT 0.83 (0.01) 0.50 (0.05) | 0.98 (0.01) 0.85(0.01) | 0.98 (0.00) 0.97 (0.01) | 1.00 (0.00) 1.00 (0.00) | 0.98 (0.02) 0.95 (0.00)
MDR 0.82 (0.01) 0.47(0.03) | 0.86(0.09) 0.82(0.02) | 0.98 (0.01) 0.93 (0.02) | 0.97 (0.02) 0.99 (0.00) | 0.97 (0.01) 0.85(0.01)

In the following, we experimentally answer all these questions in detail.

Evaluating adaptive 3 optimization. We first study the direct optimization approach using both
from-scratch training and fine-tuning of a relevance-pretrained model. At each step, we adopt the
adaptive (3 rule, computing both the optimal coefficient 5* and the feasible interval from Lemma 3.
Figure 1a shows from-scratch training and fine-tuning for 100 epochs on MovieLens. We employ the
neural collaborative filtering (NCF) model with an MLP architecture, and consider top-10 diversity.

In the top row of Figure 1a, we observe that the adaptive coefficient 5* remains consistently within
the feasible interval defined by Lemma 3. We see how 5* gradually shifts from favoring relevance
toward favoring diversity, confirming that the adaptive rule preserves a common descent direction.
The bottom row reports the optimization trajectories. The relevance loss (Lyisg) decreases steadily
while diversity (DRO and DDRO) increases, showing that adaptive 3 achieves a balanced trade-off
in both training objectives. We see that fine-tuning preserves the relevance of the pretrained model,
whereas from-scratch converges to a worse stationary point.

We further observe that fine-tuning preserves the relevance performance of the pretrained model,
whereas training from scratch reduces Lysg but converges to a worse stationary point. In contrast,
both approaches reach a similar level of diversity, suggesting that regularization may hinder the
convergence towards more ‘relevant’ models during from-scratch optimization. Fine-tuning, on the
other hand, starts with a relevance-optimized model, which we effectively tune for diversity. Finally,
because DRO and DDRO are close, we empirically validated the accuracy of our relaxation. We
discuss the impact of the parameter € on approximation accuracy later. Overall, we saw that adaptive
[ effectively delivers simultaneous improvements in relevance and diversity.

Relevance-diversity trade-off. We next examine how the choice of static /3 affects relevance and
diversity. Figure 1b reports recall and diversity for DDT and MDR with MF and NCF on Netflix
and MovieLens. Starting from a relevance-trained model, we fine-tune with the joint objective (6)
while varying 8 € [0, 1], ranging from 8 = 1 (pure relevance) to 5 = 0 (pure diversity). We
run 10 random trials for each experiment and report the mean and variance. We observe a stable
low-variance recall across a wide range of /3, showing that introducing diversity does not substantially
compromise accuracy with fixed 3. A noticeable drop occurs only when 3 approaches zero, where
the objective focuses almost exclusively on diversity. In contrast, diversity improves as 3 decreases.
Moreover, DDT consistently outperforms MDR in terms of diversity with a neural network model,
while the two strategies behave more similarly with a matrix factorization model, suggesting that
reweighting is particularly beneficial for simpler low-rank models. These findings demonstrate that
fixed-S optimization offers a practical means to explore the relevance—diversity trade-off, enabling
substantial diversity gains with minimal loss of accuracy. Similar patterns are observed for MSE loss,
hit rate, and precision, with detailed results on additional datasets provided in Appendix D.

Diversity-relevance performance of all approaches. Next, we compare the proposed methods
against alternative diversification approaches across all datasets. Fixing £k = 10 and 5 = 0.2, we
fine-tune a pre-trained relevance-optimized matrix factorization model for 100 epochs and select
the most diverse checkpoint. In Table 2 we report the mean and standard deviation of diversity and
relevance scores for all methods from 10 trials.

We see that our direct diversity tuning approach (DDT) demonstrates strong performance in both
relevance and diversity, achieving either the best or second-best results across nearly all metrics and
datasets, showing the effectiveness of jointly optimizing. Similarly, we see that the implicit data
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Table 3: Diversity gain achieved by Direct Diversity Tuning (DDT) on top-1 ~ kand k + 1 ~ 2k
recommendations across five datasets Coat, Yahoo-R2, Netflix, MovieLens, and KuaiRec. We vary
the diversity reward parameter k € {5, 10, 20, 30,40} and apply DDT to pre-trained NMF and NCF,
reporting diversity gain. We report the mean and standard deviation across 10 runs.

Diversity gain (%)

Dataset ‘ 1~k ‘ k+1 ~ 2k
‘ k=5 k=10 k=20 k=30 k=40 ‘ k=5 k=10 k=20 k=30 k=40
Coat 109 (4.3) 54(1.8) 35(1.7) 29(.1) 2.6(0.8) 05047 -250@4) -18(13) -1.501.7) -1.9(0.8)
= Yahoo-R2 | 75.0(143) 77.4(8.7) 785(3.8) 78.4(24) 772(1.6) | 549(11.2) 50.8(9.9) 47.1(2.7) 452(2.1) 41.9(1.3)
= Netflix 147(23) 138(1.0) 11.3(0.7) 102(0.6) 9.6 (0.5) 78(2.6) 4217 3121 2422 22(1.8)
Z MovieLens | 41.4 (13.1) 37.2(8.3) 284(4.6) 238(3.2) 21.6(2.6) | 25.6(104) 16.2(5.1) 10.1(2.8) 8.3(2.3) 6.8 (1.6)
KuaiRec 92(1.7)  7.2(05) 9.4(0.8) 10.6(0.7) 10.9(0.8) 55(1.5) 103(2.1) 6.0(20) 33(1.0) 1404
Coat 9.7(124) 12(1.8) 69(1.3) 03(0.8) 48(0.5) -0.9(0.6) 3.5(04) -1.1(0.7) 2.7(05) -1.0(0.5)
= Yahoo-R2 | 79.5(12.8) 9.4(17.5) 79.3(7.6) 4.6(6.0) 782(87) | 49(137) 7715(46) 0.6(9.0) 77.0(6.3) 1.7(7.3)
% Netflix 13.7(2.0) 82(1.9) 13309 45(1.4) 10.8(0.7) 39(1.2)  95(0.5) 3.6(.1) 9005 32(.1)
MovieLens | 46.8 (13.0) 19.6 (6.6) 36.2(7.8) 12.7(3.0) 269(4.5) | 109(1.9) 2293.0)0 9.6(1.5 20925 9.0(1.5)
KuaiRec 8.8(1.3) 54(1.8) 65(0.3) 10.7(26) 8.7(0.7) 8.0(1.2) 10.6(0.7) 4.2(09) 11.1(0.5) 2.3(0.9)

reweight approach (MDR) shows highly competitive performance. Its performance is particularly
notable on Netflix, MovieLens and KuaiRec, where it approaches or matches the performance of
DDT. This supports our earlier observation that implicit, data-driven reweighting can offer strong
benefits. On the other hand, while post-hoc diversification of NMF using MMR, DUM, and DPP,
considerably improve top-k diversity, they often notably reduce relevance, aligning with the results
reported in previous studies (Chen et al., 2017). For example, DPP occasionally achieves the highest
diversity—particularly on Yahoo-R2 and KuaiRec—but at a cost of low relevance. Greedy methods
like MMR and DUM yield moderate diversity improvements but underperform in relevance. DGRec
excels in diversity on certain datasets but suffers from severe relevance degradation, especially on
KuaiRec, with a diversity of 0.91 and a relevance of 0.18. In contrast, DDT and MDR maintain a
significantly better trade-off. In summary, fine-tuning with direct and implicit methods both achieve
superior relevance-diversity trade-offs across the board, outperforming the competitors.

Diversity gain with varying k. We examine how diversity changes across the growing number
of recommended items. Starting with relevance-optimized matrix factorization and neural network
models, we fine-tune with the joint objective Lot with DDT for 10 epochs at a fixed 8 = 0.5,
and vary k € {5, 10, 20, 30, 40}, selecting the best results. Since larger top-k sets approach coverage
of the entire item space, it becomes impossible to improve diversity beyond the dataset’s average. To
account for this, we report relative diversity gains over the relevance-only baseline, normalized by the
maximum achievable score. Specifically, we measure DRO gains as the difference between fine-tuned
and pre-trained models, normalized to lie in [0, 1] and reported as percentages. We distinguish
between in-objective gains (top-k) and out-of-objective gains (the subsequent k+1 ~ 2k items).

In Table 3, we observe positive in-objective diversity gains across all datasets. In Coat, Netflix, and
MovieLens, we see a decreasing gain as k increases. The improvement is especially pronounced on
Yahoo-R2, with diversity gains exceeding 78.5 £ 3.8% in NMF and 79.3 & 7.6 in NCF at k = 20,
due to its low initial diversity (e.g., 0.09 in the base model). Substantial gains are also observed on
MovieLens (e.g., 41.4+13.1% and 46.8 £ 13% at k = 5) and Netflix, demonstrating the effectiveness
of our method across both sparse and dense recommendation scenarios.

Generality beyond the optimized range. We next ask whether the benefits of diversity optimization
extend beyond the explicitly encoded objective. To this end, we evaluate diversity not only at the
target top-k set but also in the subsequent k41 ~ 2k items in Table 3. We observe broadly positive
out-of-objective gains, which again diminish as k increases. This effect is especially strong on
Yahoo-R2 and MovieLens, showing that optimization reshapes the ranking itself: improvements are
not limited to the items directly optimized, but generalize to deeper parts of the recommendation list.
In contrast, results on Coat fluctuate around zero, likely due to its small scale and limited item pool.
These findings highlight the generality of our diversity-guided optimization: it improves diversity
not only within the objective’s explicit target (top-k) but also beyond, demonstrating that the learned
updates capture a broader notion of diversity than what is directly optimized.

Approximation error with vary e. In Figure 2, we report the approximation error between the
exact diversity DRO and its differentiable surrogate DDRO as the top-k size varies. We define the
error as |£Lpro — L£ppro|/Lpro. For small & (e.g., k < 100), setting ¢ < 10~* already yields a
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Table 4: Comparison of recommendations
lists for a user from DDT and NMF. Movies
appearing in both lists are bold.
Rank Genres Movie Title
1 Horror Vampyros Lesbos (Las Vampiras) 5
2 Thriller The Spiral Staircase =}
3 War Prisoner of the Mountains )
4 Animation, Musical Melody Time
E 5 Documentary The Gate of Heavenly Peace
a 6 Crime Lured
7 Drama Mamma Roma
8 Comedy Smashing Time
9 Adventure Ulysses (Ulisse)
10 Romance Persuasion
1 Drama Mamma Roma
2 Drama Foreign Student
3 Drama The Apple €
4 Drama, Romance Leather Jacket Love Story
E 5 Comedy Smashing Time
4 6 Documentary The Gate of Heavenly Peace Figure 2 Approximation error Of DDRO Wlth
7 Documentary Modulations N : .
8 Comedy, Romance, War ~ Forrest Gump different € and k£ on MovieLens.
9 Drama Schlafes Bruder (Brother of Sleep)
10 Drama, War Schindler’s List

close approximation. As k increases, however, a smaller € is required to maintain the same accuracy.
This highlights that the choice of ¢ is critical: an improper value can lead to arbitrarily large errors,
rendering the diversity measure unreliable for optimization.

Case study. To demonstrate the utility of our approaches, we examine the recommendations
generated from an NMF model and its diversity-optimized variant. In Table 4, we observe that
NMF produces homogeneous items where six out of ten items are labeled as drama, with remaining
entries only marginally extending into romance, documentary, comedy or War. In contrast, the DDT-
generated list spans a much broader range of genres, including horror, thriller, animation, crime,
and adventure. Despite diversity gains, DDT retains three of the top items in relevance-optimized
recommendation (Mamma Roma, Smashing Time, and Gate of Heavenly Peace), which collectively
represent the relevant genre themes (drama, comedy, and documentary, respectively), suggesting that
DDT successfully preserves relevant while enhancing diversity.

6 CONCLUSION

We addressed the issue of limited top-k diversity of relevance prediction models, which contributes
to echo chambers, reduced novelty, and social polarization. By integrating diversity into a gradient-
based optimization, we presented a unified framework for diversity-aware recommendation by
introducing a differentiable diversity objective that enables end-to-end optimization of both relevance
and diversity. We proposed two complementary, model-agnostic algorithms to support explicit and
implicit integration of diversity into standard recommender systems. With extensive experiments
on real-world datasets we demonstrated that our methods consistently improve diversity, converge
efficiently, and introduce minimal computational overhead.

Limitations and future work. While our framework effectively promotes both relevance and
diversity in top-k recommendations, several challenges remain. First, the adaptive [ is applicable
only for a direct joint objective optimization, while it is optimal in each step, but the optimization
trajectory may converge to a compromised stationary point, which is not globally optimal. The
mechanism that leads to a global optimal solution remains unexplored. Future work includes
developing new ways to balance our competing goals via multi-objective formulations. Second, we
primarily relies on categorical similarity to quantify diversity. While this provides interpretability, it
does not capture more nuanced relationships or learned semantic embeddings. Future work extends
the research into more expressive and context-sensitive diversity metrics. Finally, as diversity bias
stems from the training data—implicit and explicit approaches often achieve similar performance
levels—we see significant potential in the data-driven diversification, such as counterfactual data
augmentation or diversity-aware sampling.

Despite these research opportunities, we observe that our methods significantly increase diversity
with only an imperceptible decrease in relevance.
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This work is primarily theoretical and focuses on incorporating diversity into machine-learning
models for ranking. All datasets used in our experiments are publicly available, and no personally
identifiable or sensitive information was collected or processed. No user studies or interventions
involving human participants were conducted.

While our approach is motivated by the goal of improving diversity in ranking outcomes, we acknowl-
edge that any deployment of such methods may have broader societal implications. Potential concerns
include including fairness considerations, potential biases in the underlying data, or unintended ef-
fects depending on the application context. We leave a deeper exploration of these implications to
future research.

REPRODUCIBILITY STATEMENT

Our code is available for review in an online anonymous repository. It will also be publicly available
upon acceptance.

Al USAGE DISCLOSURE

Large language models (LLMs) were employed during the research phase to assist with surveying
related literature, including identifying and summarizing relevant papers and methods, as well as
sketching and testing proposed approaches described in prior work. Generative models were also used
to draft scripts for data processing (e.g., formatting and visualizing data, preliminary experimental
validation). These scripts were only used for exploration and are not part of the final experimental
pipeline or released codebase. In addition, ChatGPT and Grammarly were used to assist with grammar
and phrasing in the manuscript. All outputs from these tools were reviewed, edited, and verified by
the authors, who take full responsibility for the final content.
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A PROOFS

In this appendix, we provide detailed proofs for the results on the trade-off parameter 3.

A.1 PROOF OF LEMMA 3
We minimize both
Lyel = LMSE, Laiv := —LpDRO,
so decreasing Lg;y increases diversity. Denote the gradients
Grel = vz:rela 9div = v‘cdiva gp = /Bgrel + (1 - B)gdiV7 /8 S [0, 1]7
so that direct diversity-guided tuning (DDT) performs
0" =0 —ngs.

Let
<grel ) gdiv>

-1, 1}.
ab €11

a = ||grel|| >0, b= HgdiVH > 0, P =

1: Exact first-order changes. For an infinitesimal step along —gg, the first-order changes in each
objective are

d

5re1 - %‘Crel(g - tgﬁ)‘t:O = _<grelvgﬁ>v

d
ddiv = %Ediv(@ - tgg)‘ = —(gdiv, 98)-

Substituting g = Bgrel + (1 — [)gaiv gives
Orel = 76”91@1”2 - (1 - 5)<grel7gdiv> = 7ﬂa2 - (1 - 6)ab/)’
Saiv = —(1 = B)|gaiv||* — B(gaiv, gre1) = —(1 — B)b* — Babp.

2: Common descent conditions. We require both decreases:
Ore1 < 0, dgiv < 0.
Rearranging each inequality yields the following necessary and sufficient conditions:
Ba+ (1 = B)bp > 0, (A)
(1 —=pB)b+ Bap > 0. B)

3: Case analysis of inequalities. We now analyze (A) and (B) systematically.
Inequality (A).
Ba+ (1—pB)bp >0 < pla—bp) > —bp.
e Ifa—bp>0,then 8 > a__—bb”p, we need further analyze p.

e Ifa—bp <0, then 8 < a__blf’p, we need further analyze p.

* If a — bp = 0, then the inequality holds for all 3.

Inequality (B).
(1-58)b+Pap>0 < b+ Blap—1b) > 0.

e Ifap—b>0,then g > ﬁ (RHS negative, vacuous for 3 € [0, 1]).

* Ifap — b < 0, then 8 < ﬁ, we need further analyze p.

* If ap = b, then the inequality holds for all 3.

13



Under review as a conference paper at ICLR 2026

4: Regime specialization. We specialize the above formulas to the three relevant regimes of p.
Case I: Aligned gradients (p > 0). Here the two gradients point in similar directions. We revisit
inequalities (A) and (B).

Condition (A).
Ba+ (1—=pB)bp>0 < fSla—>bp) > —bp.

e If a — bp > 0, then the right-hand side is nonpositive (—bp < 0 since p > 0). Thus the
inequality is automatically satisfied for all 5 € [0, 1]; no restriction is imposed.

* If a — bp < 0, then the inequality gives 5 < %. But since a — bp < 0 and —bp < 0, the
right-hand side is positive. In fact, one can check that a_—bbpp > 1. Therefore any 5 € [0, 1]
still satisfies the inequality.

Condition (B).
(1—=58)b+Pap>0 < b+ Plap—b) >0.

* If ap — b > 0, then the right-hand side is increasing in 8 and at 5 = 0 equals b > 0, so the
inequality holds for all 8 € [0, 1].

» If ap — b < 0, then the inequality becomes 5 < bfap. Since ap — b < 0, the denominator

b — ap > 0 and thus the right-hand side exceeds 1. Hence the condition imposes no
restriction within 5 € [0, 1].

Conclusion. Both inequalities (A) and (B) are therefore automatically satisfied when p > 0. Thus
Ol <0 and dgiv <0 for every 8 € [0, 1].

In other words, when gradients are aligned, any convex combination yields a valid common descent
direction. At 5 = 0 or 8 = 1, one loss still strictly decreases while the other is nonincreasing; for
0 < S < 1, both decrease strictly.

Case I1: Orthogonal gradients (p = 0). Plugging p = 0 into (A) and (B) gives
Ba >0 < [B>0, 1-/b>0 << B<1.
= Ora1 < 0, daiy <0 forall 5 € (0,1).
Case III: Opposing gradients (p < 0). Let p = —|p| < 0. Then

blp|
a+b|p|

blp| b )
e (L,U) = , .
s = (5 e

From (A): 8 >

=: L, From (B): 5 <

=U
b+ alpl

Thus the feasible interval is

This interval is nonempty whenever |p| < 1, since

o a )
M N EICE R

If |p| = 1 (exactly opposite gradients), then any 3 € (0, 1) still makes both dye1, daiv < 0.

Conclusion. We have characterized the feasible region of 3:

* If p > 0: every 8 € [0, 1] yields common descent.
» If p = 0: every 8 € (0, 1) yields common descent.
* If p < 0: feasible region is (L, U) as defined above.

This completes the proof of Lemma 3. O
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——> Differentiable diversity computation Differentiable o )
— Relevance computation S: similarity matrix

——> Model update with GD Approximate top-k

- 7: soft rank Soft top-k matrix
R: predicted rating
X
“lz[1]e]s] —> [oz[osfes[os[or| ———> Lppre, EQ. () —
X, Fy [21]45]48]35]12] softrank(F,)
approximation
| | error
U v | |
I — Z: exact rank Top-k matrix
Fo(U.D) 3!
:" e s[5 — ol | ] |o Lpro, Eq. (3)
Vi
s

R: observed rating 1 W

Non-differentiable
1 =
214l5]3] Lyse = ﬁz (i = Fi)
i

> L.y = Lysg > Liowr = PLiy+ (1= PLy;,

Relevance-only training updates model parameter @ via gradient V(-BLMSE

Instead, we updates model parameter © via gradient Vg L;qy7

Figure 3: DDT workflow

A.2 PROOF OF *
We seek S* such that —d,01(8) = —daiv(5). Expanding:

Ba® + (1 — B)abp = (1 — B)b* + Babp.

Rearranging,
(a® +b* — 2abp)B = b* — abp.
Thus
B* _ b(b B a‘p)
a2+ b2 — 2abp’

When p < 0, substitution verifies L < 8* < U, where (L, U) is the interval from Lemma 3. Hence
(* is feasible and maximizes the minimum first-order decrease.

O

B ALGORITHMS

Algorithm workflow diagram Figure 3 and 4 illustrate the workflow of DDT and MDR.

DDT directly optimizes the joint loss Ljoint = BLmsk + (1 — 8)Lppro via standard gradient
descent using innovative soft-ranking, top-k selection, pairwise diversity penalties, and adaptive
diversity weights.

For MDR, in a nutshell, the meta learning procedure reweights using two different stages: the model
stage and the design stage. While the design stage updates w using gradients V., LjoinT from loss
+ diversity; the model stage updates the model © through gradients Ve L} s of the w-weighted
relevance objective. In detail, we consider the outer loop to be the standard mini-batch training
procedure that updates the model parameters for each mini-batch of data. For each data point in
the mini-batch, we initialise the weight w,, ; and copy the current model O® as a meta-model.
The inner loop is a one-step optimisation of the V,, Ljornt Where LjoinT is evaluated using the
meta-model. The value of weight is the gradient direction that maximises the £joinT. Then we
rescale and normalize the weight vector to obtain the weight distribution that implicitly encodes the
contribution of the data point towards diversity gain. Then the outloop updates the model parameter
by the weighted MSE loss (which is relevance-only).
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Meta-learning
Differentiable S: similarity matrix
X R: predicted rating N
Z: soft rank Soft top-k matrix ‘
Y Py [ex]as]as]as]re] softrank(F,) sl2]t]a]s] = [oz]os[osos]01]| =—————d LDDR(J! Eq. (5)
E——
U o R
Y Initialize w, ; = O for all (u, i) in mini batches,
I update meta model F ) _ _
FyU.I) 2 > v — Loy = Bl + (1 = PLy,
»
Ya
Y5 W weight update
W= = -
2, Wite *—— W= max(=V,,Loir.0)
24|58
> w
Lmsz‘

VL. Update model parameter use reweighed relevance objective

R: observed rating ‘

Figure 4: MDR workflow

Direct diversity-guided tuning To obtain top-k relevant and diverse recommendations—without
relying on post-hoc re-ranking or heuristic interventions—we propose an integrated approach. Our
approach DDT integrates a (-balanced relevance-diversity loss into a standard end-to-end training
pipeline. Specifically, we use gradient-based joint optimization, which promotes relevance and
diversity. The overall procedure is outlined in Algorithm 1. This method preserves the simplicity
and efficiency of conventional end-to-end training while explicitly aligning the optimization process
with our dual objective. By embedding both goals within a single differentiable framework, DDT
eliminates the need for separate re-ranking stages.

Meta diversity-guided reweighting Our second approach is inspired by meta-learning and bilevel
optimization, where hyperparameters or per-example weights are optimized with respect to a valida-
tion objective (Ren et al., 2018). Here we ask “Which training examples, if included in the update,
will reduce both training loss and improve diversity?” To this end, we estimate and assign importance
weights w,, ; € [0, 1] to training samples (u, ¢, ) for each batch B C Qpr, yielding

MSE = Z Wy, i (Ru,i - Ru,i)2 . (10)
(u,i)EB

As shown in Algorithm 2, we begin each mini-batch update (line 4) by initializing the per-example
weights w,, ; = 0, effectively ignoring all samples. We then perform a one-step inner update to
obtain a temporary model ©’ using the weighted training loss L3¢ (line 5-6), where w is currently
all zero. Next, we re-evaluate predictions using the updated parameters (line 7) and compute
the joint meta-loss Ljoint (line 8), combining relevance and diversity. For this, we compute the
gradient of Ljont With respect to w, producing a utility score for each sample. We rectify it via
w = max(—VwLjomr, 0) (line 9), and normalize (line 10) to obtain the final per-example weights w,
enforcing Z(u’ HeB Wu,i = 1. Normalization ensures that the overall gradient magnitude—and thus
the effective learning rate—remains consistent across training steps, similar to standard Stochastic
Gradient Descent (SGD), which averages over the batch (Ren et al., 2018). The final model update is
then performed using this reweighted loss (line 11). This implicit diversity-guide optimization in
MDR allows us to explore whether modifying the data sampling distribution alone can help achieve a
decent relevance-diversity trade-off. We provide an empirical answer in Section 5, demonstrating
that such implicit reweighting can be a practical and effective alternative to explicit multi-objective
optimization.
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Algorithm 1 Direct Diversity-Guided Tuning (DDT)

Require: Initialization model parameter ©, training data (), item distance matrix D, trade-off 3,
learning rate 7
1: for each epoch from 1 to 7" do
2:  for each mini-batch B € Qr do
3 R, < Fo(u,i), forall (u,i,R, ;) € B
4 Luse < Compute Lyisi(Ry i, Ry i B) with (1)
5: Lppro ¢ compute DDRO with (5)
6
7
8:

Lyoint < B Luse — (1 — B) - Lopro
0+ 0 -1 -VeLljoINT
return ©

Algorithm 2 Meta Diversity Reweighting (MDR)

Require: Initialization model parameter ©, training data {r, item distance matrix D, trade-off 3,
learning rate n
1: for each epoch from 1 to 7" do
2 for mini-batches B € Q1 do
3 R, + Fo(u,i), forall (u,i,R, ;) € B
4: w0 _
5: LYse < LYsg (R, Ruys, w; B) with (10)
6.
7
8
9

O’ + O — - Ve L{ss. update meta model.
R}, ; < Feor(u,i), forall (u,i,R, ;) € B
Lot < B Lyisg — (1 = B) - Lppro
: W < max(—VwLjonT, 0);
10: W ﬁ normalization according to Ren et al. (2018)
J i ~
11: (CREN - V(—)ﬁqﬁ)/ISE(Ru’i, Ru,i, W, B)
12: return ©

C DETAILED EXPERIMENT SETTING.

Datasets. To evaluate our methods across different recommendation scenarios, we consider datasets
from three domains: entertainment, product, and social recommendations, as detailed in Tab. 1. To
cover the entertainment domain, we use Netflix (Bennett & Lanning, 2007) and MovieLens (Harper
& Konstan, 2015) for user-movie recommendations, as well as Yahoo-R2 (Dror et al., 2012) for
user—music recommendations. These datasets contain user ratings on a 5-point scale [1, 5], along
with genre or category annotations. For Netflix (respectively, Yahoo-R2), we randomly sample 3 000
items (respectively, 5 000) and retain users with at least 20 ratings (respectively, 100+ ratings). In the
product recommendation setting, we use the Coat (Schnabel et al., 2016), which captures user-coat
interactions in e-commerce. It contains [1, 5] ratings and item ‘meta’ attributes. Finally, for the social
recommendation scenario, we consider the KuaiRec (Gao et al., 2022), which is collected from a
mobile video-sharing platform, which includes play duration, video length, and ‘watch ratios’ from 0
(never watched) to 2 (twice watched), which we linearly interpolate to 5-star ratings for consistency.

Baselines. We compare our algorithm against a broad set of state-of-the-art recommender-systems
methods, as well as diversification techniques covering greedy, probabilistic, and graph-based
strategies. To study the impact of diversification, we employ classical Non-negative MF (NMF) (Lee &
Seung, 1999) as a relevance-only baseline that does not use any diversity mechanisms. We also include
two baselines from the post-processing family: Maximal Marginal Relevance (MMR) (Carbonell &
Goldstein, 1998) and Diversity-weighted Utility Maximization (DUM) (Ashkan et al., 2015), both
greedy diversification techniques applied on top of NMF as the underlying model.

MMR greedily selects top-k items that maximizes a weighted combination of relevance and dissimi-
larity with previously selected items. DUM, on the other hand, uses a submodular combination of
relevance and category-based diversity reward. Determinantal Point Processes (DPP) (Chen et al.,
2018b) estimates the likelihood of item sets to be diverse and relevant as the determinant of an
item-item similarity kernel matrix, from which we select the top-% using a greedy selection. Finally,

17



Under review as a conference paper at ICLR 2026

Table 5: Diversity gain achieved by Direct Diversity Tuning (DDT) on top-1 ~ kand k + 1 ~ 2k
recommendations across five datasets Coat, Yahoo-R2, Netflix, MovieLens, and KuaiRec. We vary
the diversity reward parameter k& € {5, 10, 20, 30,40} and apply MDR to pre-trained NMF and NCF,
reporting diversity gain. We report the mean and standard deviation across 10 runs.

‘ Diversity gain (%)

Dataset | 1~k | k+1 ~ 2k
| k=5 k=10 k=20 k=30 k=40 | k=5 k=10 k=20 k=30 k=40
KuaiRec 8.5 (1.6) 52(2.0) 65(0.6) 99(1.3) 87(0.8) | 58(1.3) 10.1(0.7) 29(0.9) 103(0.8)  0.9(0.8)
= Coat 5234 2.7 (4.0) 23(1.) -1.2@3.7 1L1(1.3) | 04(12) 1.4(0.9) -0.4(2.0) 1.8(0.7) -1.2(1.1)
2 MovieLens | 364 (11.1)  22.0(9.9) 323(69) 12.1(44) 25441 | 7329 21731 6817 19726) 6414
7 Netflix 14.2 (2.3) 4.8(3.2) 13.0(1.3)  2.1(2.1) 10.3(0.9) 1.6 (1.7)  9.2(0.6) 1.4(2.00 8.7(0.5) 1.4 (1.5)
Yahoo-R2 | 49.8(19.1) 36.0(10.8) 59.0(12.4) 342(7.7) 65.1(5.8) | 33.1(24) 66.5(3.2) 31.4(1.3) 66.5(2.3) 29.6(1.0)
KuaiRec 13(1.8)  -0.0(1.2) 0304 12018 1.1(09 | 09(1.2) 13(09 02(0.9 1406 0.0(08)
w Coat 0.8 (2.3) 0.9 (1.2) 0809 03(0.7) 0709 | -03(08) 03(0.6) -0.1(0.3) 02(04) 0.1(0.6)
% MovieLens | 33.2(11.8) 6.143) 17.8(59) 36(23) 95@38)| 19200 4928 1L1(13) 34(.7) 06(.0)
Netflix 4.6 (2.4) 1.4(1.4) 28(1.3) -0.1(L.1) 1.1(09) | -05(0.8) 04(04) -02(0.3) 02(0.3) -0.0(0.3)
Yahoo-R2 | 27.0(15.3)  -0.2(88) 20.8(10.2) 23(83) 19585 | 73(7.1) 167(8.1) 20(54) 16069 32(3.2)

we include a recent embedding-based method, Diversified GNN Recommender (DGRec) (Yang et al.,
2023), which introduces a diversity-aware aggregation mechanism into graph neural networks by
selecting neighbors that maximize coverage over item categories.

Evaluation criteria. We evaluate model accuracy using metrics suitable for top-k recommendations,
hit rate, precision, and recall metrics. For each user u, let R,, denote the top-k recommended items
and 7, the set of ground-truth relevant items (i.e., rated above 4 in the test set). Hit rate measures
whether at least one relevant item appears in R,,; precision is the fraction of items in R, that are in
T, and recall is the fraction of relevant items in 7, that are retrieved in R,,.

However, the above requires known ground-truth. To evaluate the relevance of unseen items, we
compute the potential user satisfaction as the relevance score

Relevance(u) = % Z p(R.:) > 7], (11)
i€RY

using preference likelihoods p(R., ;) € [0, 1].

Experiment environment. We conduct all our experiments on 2 AMD Epyc 7742 CPUs, 1 TB
of RAM and 1 NVIDIA DGX-A100 GPU. Our code is written in Python v3.11.7. All results are
averaged over 10 independent runs. We adopt the Adam optimizer during the optimization.

Detailed Parameter setting. In all experiment, we set ¢ = 10~ for a exact rank approximation.
During the optimization with adaptive 3, we choose a learning rate [ = 0.01 for the matrix factoriza-
tion model, and [ = 0.001 for the neural network model. We keep the Adam weight decay parameter
as the default.

D ADDITIONAL EXPERIMENT

We report the additional experiment results that are omitted in the main content. Figure 5 shows the
adaptive (3 based optimization of two datasets (MovieLens and Netflix) and two models (NMF and
NCF). The patterns are consistently aligned with the analysis. Figure 6 shows the 4 accuracy metric
results: recall, mean squared error, hit rate, and precision, along with the diversity reword objective
score (DRO). Similar to Table 3, Table 5 presents the in-objective and out-objective diversity gain of
NMF and NCF with MDR.
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Figure 5: Optimization of relevance-diversity joint objective with adaptive 3.
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Figure 6: Performance comparison of DDT and MDR applied to two recommender models (NMF and
NCF) across five datasets: Coat, Yahoo-R2, Netflix, MovieLens, and KuaiRec. We vary the parameter
B € [0,1] to control the trade-off between relevance and diversity, where 5 = 1 corresponds to
optimizing only the relevance loss Lysg and S = 0 corresponds to optimizing only the diversity loss
Lppro- The x-axis indicates the value of 3. The y-axis shows recall (top row), mean squared error(
second row), hit rate (third row), precision (fourth row), and diversity reword objective (DRO) score
with k£ = 10 (bottom row). In each setting, we initialize from a pre-trained model (using Ly;sg only),
then fine-tune with the joint loss £jomnT for 10 epochs, selecting the best result by diversity score.
All experiments are repeated 10 times, and we report the mean and standard deviation.
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Figure 7: Rank approximation error with varing parameter ¢ and item size. The y-axis is the
approximaiton error between exact rank and softrank approximation ||Z — Z||2/+/n, x-axis report
the number of items. It clearly show that set e = % yield zero approximation error, and there is a
tunable space to achive samll error with larger e.
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