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ABSTRACT

This paper presents an innovative approach, called credal wrapper, to formulat-
ing a credal set representation of model averaging for Bayesian neural networks
(BNNs) and deep ensembles (DEs), capable of improving uncertainty estimation
in classification tasks. Given a finite collection of single predictive distributions
derived from BNNs or DEs, the proposed credal wrapper approach extracts an up-
per and a lower probability bound per class, acknowledging the epistemic uncer-
tainty due to the availability of a limited amount of distributions. Such probability
intervals over classes can be mapped on a convex set of probabilities (a credal
set) from which, in turn, a unique prediction can be obtained using a transforma-
tion called intersection probability transformation. In this article, we conduct ex-
tensive experiments on several out-of-distribution (OOD) detection benchmarks,
encompassing various dataset pairs (CIFAR10/100 vs SVHN/Tiny-ImageNet, CI-
FAR10 vs CIFAR10-C, CIFAR100 vs CIFAR100-C and ImageNet vs ImageNet-
O) and using different network architectures (such as VGG16, ResNet-18/50, Ef-
ficientNet B2, and ViT Base). Compared to the BNN and DE baselines, the pro-
posed credal wrapper method exhibits superior performance in uncertainty esti-
mation and achieves a lower expected calibration error on corrupted data.

1 INTRODUCTION

Despite their success in various scientific and industrial areas, deep neural networks often generate
inaccurate and overconfident predictions when faced with uncertainties induced by, e.g. out-of-
distribution (OOD) samples, natural fluctuations, or adversarial disruptions (Papernot et al., 2016;
Zhang et al., 2021; Hüllermeier & Waegeman, 2021; Hendrycks & Gimpel, 2016). Properly es-
timating the uncertainty associated with their predictions is key to improving the reliability and
robustness of neural networks (Senge et al., 2014; Kendall & Gal, 2017; Sale et al., 2023b). Re-
searchers commonly distinguish two types of uncertainty in neural networks (and machine learning
models in general). Aleatoric uncertainty (AU), also known as data uncertainty, arises from inherent
randomness such as data noise, and is irreducible. Epistemic uncertainty (EU) stems from the lack
of knowledge of the data generation process and can be reduced with increased availability of train-
ing data (Hüllermeier & Waegeman, 2021). The distinction between AU and EU can be beneficial
in applications such as active learning or OOD detection, particularly in safety-critical and practical
fields such as autonomous driving (Zhou et al., 2012) and medical diagnosis (Lambrou et al., 2010).
For example, in active learning, the objective is to avoid inputs that exhibit high AU but low EU.
Similarly, effective EU estimation can prevent the misclassification of ambiguous in-distribution
(ID) examples as OOD instances (Mukhoti et al., 2023), for the inherent ambiguity of the former
does not arise from more epistemically uncertain regions of the ID distribution.

To represent and estimate both AU and EU, researchers have recently proposed neural networks able
to output a ‘second-order’ representation in the target space, to express their uncertainty about a pre-

∗Corresponding author.

1



Published as a conference paper at ICLR 2025

diction’s uncertainty itself (Hüllermeier et al., 2022; Sale et al., 2023b; Cuzzolin, 2024). Sampling-
based approaches, among which Bayesian neural networks (BNNs) and deep ensembles (DEs), have
emerged as powerful methods in this domain.

The BNN framework (Blundell et al., 2015; Gal & Ghahramani, 2016; Krueger et al., 2017; Mobiny
et al., 2021), in particular, quantifies uncertainty by learning a posterior distribution over a net-
work’s weights; this, in turn, is used to predict a ‘second-order’ distribution (i.e., a distribution of
distributions (Hüllermeier & Waegeman, 2021)) over the target space. While BNNs are straight-
forward to construct, their training presents a significant challenge due to inherent computational
complexity. Consequently, several approximation algorithms have been developed, such as sam-
pling methods (Neal et al., 2011; Hoffman et al., 2014; Hobbhahn et al., 2022; Daxberger et al.,
2021; Tran et al., 2020; Rudner et al., 2022), variational inference approaches (Blundell et al., 2015;
Gal & Ghahramani, 2016), and Laplace approximation methodologies (Jospin et al., 2022). As com-
puting the exact ‘second-order’ distribution generated by full Bayesian inference at prediction time
is of prohibitive complexity, Bayesian model averaging (BMA) is often applied in practice (Gal &
Ghahramani, 2016). The latter entails sampling a finite set of deterministic weight values from the
posterior (obtained after training) to generate a collection of single (softmax) distributions. How-
ever, in practice, BNNs are generally challenging to scale to large datasets and architectures due to
the high computational complexity (Mukhoti et al., 2023), and a limited number of samples is often
used for BMA to reduce the inference complexity.

DEs (Lakshminarayanan et al., 2017), an established alternative approach for quantifying uncer-
tainty, have been recently serving as a strong baseline in deep learning (Ovadia et al., 2019; Gustafs-
son et al., 2020; Abe et al., 2022; Mucsányi et al., 2024). DEs marginalize multiple standard neural
network models to obtain a predictive distribution instead of explicitly inferring a distribution over
parameters such as BNNs (Lakshminarayanan et al., 2017; Band et al., 2021). At prediction time,
DEs average a finite set of single probability distributions for classification. Despite their successes
in uncertainty quantification, a recent study has shown that DEs may demonstrate relatively low
quality of EU estimation (Abe et al., 2022). They have also been criticized because of their substan-
tial demand for memory and computational resources (Liu et al., 2020; He et al., 2020).

As previously discussed, a practical challenge in both BNNs and DEs at prediction time is the
limited number of individual distributions (e.g., most papers use up to five) used to approximate
the true predictive distribution and quantify uncertainty. Therefore, an intriguing research question
arises here: Can the uncertainty quantification performance of the sampling-based approaches be
enhanced given the constrained number of predictive distributions?

Novelty and Contribution In response, this paper presents an innovative method for formulating a
credal set representation for both BNNs with BMA and DEs, capable of improving their uncertainty
estimation in classification tasks, which we term credal wrapper. Given a limited collection of
single distributions derived, at prediction time, from either BNNs or DEs, the proposed approach
computes a lower and an upper probability bound per class, i.e., a collection of probability intervals
(Tessem, 1992; De Campos et al., 1994), to acknowledge the epistemic uncertainty about the sought
exact predictive distribution induced by the limited information actually available.

Such lower and upper bounds on each class’ probability induce, in turn, a convex set of probabilities,
known as credal set (Levi, 1980; De Campos et al., 1994). From such a credal set (the output of our
credal wrapper), an intersection probability can be derived, in whose favor theoretical arguments
exist as the natural way of mapping a credal set to a single probability (Cuzzolin, 2009; 2022).

Extensive experiments are performed on several OOD detection benchmarks including different
dataset pairs (CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, CIFAR100 vs
CIFAR100-C, and ImageNet vs ImageNet-O) and utilizing various network architectures (VGG16,
ResNet-18/50, EfficientNet B2 and ViT Base). Compared to the BNN and DE baselines, the pro-
posed credal wrapper demonstrates improved uncertainty estimation and a lower expected calibra-
tion error on the corrupted test instances when using the intersection probability for class prediction.

Other Related Work Numerous mathematical theories, such as subjective probability (De Finetti,
2017), possibility theory (Zadeh, 1978; Dubois & Prade, 1990), credal sets (Kyburg Jr, 1987; Levi,
1980), probability intervals, random sets (Nguyen, 1978), and imprecise probability theory (Wal-
ley, 1991), have been devised to estimate the (epistemic) uncertainty in response to the challenge
posed by the limited availability of information (in our case, a limited number of sampled single
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distributions). These theories state that the exact probability distribution is inaccessible and that the
available evidence should instead be used to impose specific constraints on the unknown distribution.

Among them, probability intervals represent one of the simplest approaches and have attracted sig-
nificant interest among researchers (Yager & Kreinovich, 1999; Guo & Tanaka, 2010; Wei et al.,
2021; Cuzzolin, 2022). Instead of providing point-valued probabilities, probability intervals assume
that the probability values p(y) of the elements (e.g., classes) of the target space (e.g., the set of
classes) belong to an interval pL(y)≤ p(y)≤ pU (y), delimited by a lower probability bound pL(y)
and an upper probability bound pU (y). Researchers have claimed that probability intervals may
express uncertainty more appropriately than single probabilities (De Campos et al., 1994; Cano &
Moral, 2002; Guo & Tanaka, 2010), particularly in situations where: (i) limited information is avail-
able to estimate unknown and exact probabilities; (ii) individual pieces of information are in conflict:
e.g., when three predictors for the weather condition (rainy, sunny, or cloudy) predict probability
vectors (0.2, 0.6, 0.2), (0.1, 0.2, 0.7), and (0.7, 0.1, 0.2), respectively. Such undesirable scenarios
can arise when BNNs or DEs use a limited number of predictive samples, as we discuss here.

Credal sets have recently attracted increasing attention within the broader field of machine learning
for uncertainty quantification (Zaffalon, 2002; Corani & Zaffalon, 2008; Corani et al., 2012; Mauá
et al., 2017; Hüllermeier & Waegeman, 2021; Shaker & Hüllermeier, 2021; Sale et al., 2023a). The
advantage of adopting credal sets is the integration of notions of the set and probability distribution
in a single and unified framework. Using credal sets, rather than individual distributions, arguably
allows models to more naturally express epistemic uncertainty (Corani et al., 2012; Hüllermeier &
Waegeman, 2021). Concerning deep neural networks, ‘imprecise’ BNNs (Caprio et al., 2024) mod-
eling the network weights and predictions as credal sets have been proposed. Despite demonstrating
robustness, the computational complexity of imprecise BNNs is comparable to that of the ensemble
of BNNs, posing significant challenges for their widespread application. In addition, Wang et al.
(2025) have introduced credal-set interval neural networks, which predict credal sets from probabil-
ity intervals based on the deterministic interval output of interval neural networks. While effective in
uncertainty quantification for small datasets, their scalability is limited by high computational costs.

In addition to BNNs and DEs, evidential deep learning models (Malinin & Gales, 2018; 2019;
Malinin et al., 2019; Charpentier et al., 2020) have also been developed that generate a Dirichlet
distribution (another type of ‘second-order’ representation) in the target space. A drawback of these
methods is the fact that suitable Dirichlet distribution labels are not available at training time. Fur-
ther, the behaviour of these models often deviates from theoretical EU assumptions (Ulmer et al.,
2023). Recent research (Juergens et al., 2024) has shown that evidential methods often fail to faith-
fully represent EU, and that the resulting EU measures lack a meaningful quantitative interpretation.

Paper Outline The rest of the paper is structured as follows. Sec. 2 presents how uncertainty
estimation works in different model classes. Sec. 3 introduces our credal wrapper in full detail.
Sec. 4 describes the experimental validations. Sec. 5 summarizes our conclusion and future work.
Appendices report additional experiments in §A and implementation details in §B, respectively.

2 UNCERTAINTY ESTIMATION IN DIFFERENT MODEL CLASSES

Bayesian Neural Networks BNNs model network parameters, i.e., weights and biases, as proba-
bility distributions. The resulting predictive distributions can thus be seen as ‘second-order’ distri-
butions, i.e., probability distributions of distributions (Hüllermeier & Waegeman, 2021). As men-
tioned, for computational reasons, BMA is often applied for BNN inference (Gal & Ghahramani,
2016). Namely, in a classification context, we obtain

p̃= 1
Np

∑Np

i=1 pi=
1
Np

∑Np

i=1 h
ωi

bnn(x), (1)

where pi is the sampled prediction from the deterministic model (hωi

bnn) parametrized by ωi, Np is
the number of samples, and p̃ is the averaged probability. The parameter vector ωi is obtained from
the i-th sampling instance of the parameter posterior distribution of BNNs (Jospin et al., 2022).

Employing Shannon entropy as the uncertainty measure, the total uncertainty (TU) and AU in BNNs
can be approximately quantified by calculating the entropy of the averaged prediction and averaging
the entropy of each sampled prediction (Hüllermeier & Waegeman, 2021), respectively, as follows:

TU :=H(p̃)=−
∑C

k q̃klog2q̃k, AU :=H̃(p)= 1
Np

∑Np

i=1H(pi)=− 1
Np

∑Np

i=1

∑C
kpiklog2pik , (2)
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where q̃k and pik are the k-th elements of the probability vectors p̃ and pi across the C classes,
respectively. An estimate of epistemic uncertainty can then be derived as EU := H(p̃)− H̃(p)
(Depeweg et al., 2018), which can be interpreted as an approximation of ‘mutual information’
(Hüllermeier et al., 2022; Hüllermeier & Waegeman, 2021).

Deep Ensembles DEs generate an averaged prediction from a set of M individually-trained standard
neural networks (SNNs), as follows:

p̃= 1
M

∑M
m=1hm(x)= 1

M

∑M
mpm, (3)

where pm denotes the single probability vector provided by the m-th SNN. Considered by some to
be an approximation of BMA (Wilson & Izmailov, 2020; Abe et al., 2022), DEs also quantify TU,
AU, and EU as in eq. (2), where the sampled single probability vector pi is replaced by pm.

Credal Sets Uncertainty quantification for credal sets is an active research subject (Hüllermeier &
Waegeman, 2021; Sale et al., 2023a). To that extent, researchers have developed the concepts of
generalized entropy (Abellán et al., 2006) and generalized Hartley (GH) measure (Abellán & Moral,
2000; Hüllermeier et al., 2022). However, applying the GH measure in practice is challenging due
to the high computational cost of solving constrained optimization problems involving 2C subsets
(Hüllermeier & Waegeman, 2021; Hüllermeier et al., 2022), particularly when the number of classes
C is large (e.g., C = 100). The width of the probability interval has also been proposed as an EU
measure (Hüllermeier et al., 2022), but is only applicable to binary cases. As a result, we opt for
generalized entropy. Given a credal set prediction, denoted by P, its upper and lower entropy, H(P)
and H(P), can be calculated as a generalization of the classical Shannon entropy, allowing us to
estimate the TU and AU for a credal prediction (Abellán et al., 2006), as follows:

TU :=H(P)=max
p∈P

H(p), AU :=H(P)=min
p∈P

H(p). (4)

Such measures capture the maximal and the minimal Shannon entropy within the credal set, respec-
tively. The level of EU can then be measured by their difference, namely EU :=H(P)−H(P).

3 METHODOLOGY

Inspired by the use of probability intervals for decision-making (Yager & Kreinovich, 1999; Guo &
Tanaka, 2010), we propose to build probability intervals by extracting the upper and lower bound per
class from the given set of limited (categorical) probability distributions, validating this choice via
extensive experiments in Sec. 4. E.g., consider again the task of predicting weather conditions (rainy,
sunny, or cloudy). When receiving three probability values for the rainy condition, e.g., 0.2, 0.1, and
0.7, using probability intervals we model the uncertainty on the probability of the rainy condition as
[0.1, 0.7]. Each probability interval system can determine a convex set of probabilities over the set
of classes, i.e., a credal set. Such a credal set is a more natural model than individual distributions
for representing the epistemic uncertainty encoded by the prediction, as it amounts to constraints on
the unknown exact distribution (Hüllermeier & Waegeman, 2021; Shaker & Hüllermeier, 2021; Sale
et al., 2023a). Nevertheless, a single predictive distribution, termed intersection probability, can
still be derived from a credal set to generate a unique class prediction for classification purposes.
Our credal wrapper framework is depicted in Figure 1. The remainder of this section discusses
the credal wrapper generation, a method for computational complexity reduction for uncertainty
estimation, and the intersection probability, in this order.

Credal Wrapper Generation Given a set of N individual distributions from BNNs or DEs, an
upper and a lower probability bound for k-th class element, denoted as pUk

and pLk
, respectively,

can be obtained from
pUk

= max
n=1,..,N

pn,k, pLk
= min

n=1,..,N
pn,k, (5)

where pn,k denotes the k-th element of the n-th single probability vector pn. Such probability
intervals over C classes determine a non-empty credal set P, as follows (Moral-Garcı́a & Abellán,
2021; De Campos et al., 1994):

P={p | p ∈ ∆C−1 and pk∈ [pLk
, pUk

] ∀k=1, 2, ..., C} s.t.
∑C

k pLk
≤ 1≤

∑C
k pUk

, (6)

where p denotes the valid (normalized) probability vector and ∆C−1 represents the probability
simplex on the set of C classes. The condition in eq. (6) guarantees that individual probabilities in
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Figure 1: Credal wrapper framework for a three-class (A, B, D) classification task. Given a set of
individual probability distributions (denoted as single dots) in the simplex (triangle) of probability
distributions of the classes, probability intervals (parallel lines) are derived by extracting the upper
and lower probability bounds per class, using eq. (5). Such lower and upper probability intervals
induce a credal set on {A, B, D} (P, light blue convex hull in the triangle). A single intersection
probability (the red dot) is computed from the credal set using the transform in eq. (5). Uncertainty
is estimated in the mathematical framework of credal sets in eq. (4).

the credal set satisfy the normalization condition, and their probability value per class is constrained
to the given probability interval. It can be readily proven that the probability intervals generated in
eq. (5) meet the above condition, as follows:∑C

k
pLk

=
∑C

k
min

n=1,..,N
pn,k≤

∑C

k
pn∗,k=1≤

∑C

k
max

n=1,..,N
pn,k=

∑C

k
pUk

, (7)

where n∗ is any index in 1, . . . , N . Computing H(P) in eq. (4) for uncertainty estimation, on the
other hand, requires solving the following optimization problems:

H(P)=maximize
∑C

k−pk ·log2 pk s.t.
∑C

k pk=1 and pk∈ [pLk
, pUk

] ∀k=1, ..., C, (8)

which can be addressed by using a standard solver, such as the SciPy optimization package (Virtanen
et al., 2020). To calculate H(P) in eq. (4), maximize is simply replaced by minimize. We further
discuss an alternative approach for generating credal sets in Appendix §C.

Computational Complexity Reduction Method The convex optimization problem in eq. (8) may
present a computational challenge for a large value of C (e.g., C = 1000). To mitigate this issue,
we propose an approach, termed Probability Interval Approximation (PIA), in Algorithm 1. The
PIA method initially identifies the top J − 1 relevant classes by sorting the probability values of
the intersection probability p∗ (detailed in eq. (9)) below) in descending order. Then, the remaining
elements are merged into a single class whose upper and lower probability are computed. As a
result, the dimension of the approximate probability interval is reduced from C to J .

Algorithm 1 Probability Interval Approximation
Input: [pLk

, pUk
] for k=1, ..C; Intersection probability p∗; Chosen number of classes J

Output: Approximated probability intervals [rLj , rUj ] for k=1, ..J
1: Compute the index vector for sorting p∗ in descending order as

m :=(m1,m2, ...,mC) for p∗m1
≥ p∗m2

≥ ... ≥ p∗mC

2: Calculate the upper and lower probability per selected class as
rLj

:=pLmj
, rUj

:=pUmj
for j=1, ..., J−1

3: Calculate upper and lower probability for deselected classes as
rLJ

=max(1−
∑mC

i=mJ
pUi

,
∑J−1

j=1 rLj
); rUJ

=min(1−
∑mC

i=mJ
pLi

,
∑J−1

j=1 rUj
)

Intersection Probability In classification tasks, it is desirable to eventually map a credal set to
a single probability prediction to make a unique class prediction. In our credal wrapper, from the
probability interval predictions defined in eq. (5), we derive a single intersection probability vector
for class prediction (Cuzzolin, 2022) as the unique probability distribution which (i) ensures that
the derived single probability is normalized within the probability interval system, and (ii) assumes
equal trust in the probability intervals for each class, since there is no justification for treating them
differently (Cuzzolin, 2022). Mathematically, the intersection probability, p∗, must satisfy

p∗k=pLk
+ α · (pUk

−pLk
) ∀k=1, ..., C (9)
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where p∗k is the k-th element of p∗ under a constant α∈ [0, 1]. This is a convex combination of pLk

and pUk
, so that p∗k ∈ [pLk

, pUk
]. Due to the normalization constraint,

∑C
k p∗k=1, it follows that:∑C

k

(
pLk

+α(pUk
−pLk

)
)
=1 ⇒

∑C
k (pLk

)+α
∑C

k (pUk
−pLk

)=1. (10)

As a result, the unique α can be computed as follows (Cuzzolin, 2022):

α=
(
1−

∑C
k pLk

)
/
(∑C

k (pUk
−pLk

)
)
. (11)

The intersection probability is thus given by eq. (9) with α as given in eq. (11). The intersection
probability transform follows clear rationale principles and does not suffer from the drawbacks of
other potential transforms. Let us see this in detail. (i) Taking the average probability value of the
original sampled distributions produces a valid probability vector that falls within the probability
interval system. However, such a transform does not leverage the probability bounds, thus violating
the semantics of probability intervals (Guo & Tanaka, 2010; Cano & Moral, 2002) (and also exhibit-
ing inferior performance in the experiments). (ii) Selecting the midpoint of each probability interval
[pL, pU ], instead, does not generally result in a valid normalized probability vector. (iii) Normalizing
the lower or the upper probability vectors, i.e., taking p̂Uk

=pUk
/
∑C

k pUk
or p̂Lk

=pLk
/
∑C

k pLk
,

yields a probability that is not guaranteed to be consistent with the interval system (Cuzzolin, 2020).
In Appendix §D, we further discuss the limit behavior of the intersection probability when the num-
ber of sampled probability distributions goes to infinity.

4 EXPERIMENTAL VALIDATION

In this section, we apply OOD detection benchmarks for EU quantification assessment OOD
(Mukhoti et al., 2023; Mucsányi et al., 2024). Regarding OOD detection, a model is expected to
exhibit high EU estimates on OOD samples in comparison to in-domain (ID) instances. Conse-
quently, superior OOD detection performance provides evidence of the enhanced uncertainty esti-
mation quality. To assess OOD detection performance, we use the AUROC (Area Under the Re-
ceiver Operating Characteristic curve) and AUPRC (Area Under the Precision-Recall curve) scores.
Greater scores indicate a higher quality of uncertainty estimation. In addition to OOD detection
performance, expected calibration error (ECE) (Guo et al., 2017; Nixon et al., 2019) is also applied
to measure the model uncertainty and calibration performance. A lower ECE value signifies a closer
alignment between the model’s confidence scores and the true probabilities of the events.

Evaluation using Small-scale Datasets In this experiment, we use dataset pairs of the type
(ID samples vs OOD data), including CIFAR10 (Krizhevsky et al., 2009) vs SVHN (Hendrycks
et al., 2021)/Tiny-ImageNet (Le & Yang, 2015) and CIFAR10 vs CIFAR10-C (Hendrycks & Di-
etterich, 2019). As for BNN baselines, we choose two standardized variational BNNs: BNNR
(Auto-Encoding variational Bayes (Kingma & Welling, 2013) with the local reparameterization trick
(Molchanov et al., 2017)) and BNNF (Flipout gradient estimator with negative evidence of lower
bound loss (Wen et al., 2018)). We do not consider BNNs using sampling approaches because of
their generally high computational resource requirements (Gawlikowski et al., 2021; Jospin et al.,
2022). As for DEs, we aggregate five standard neural networks, trained using distinct random seeds.
All models are implemented on the established VGG16 (Simonyan & Zisserman, 2015) and ResNet-
18 (He et al., 2016) architectures using the CIFAR10 dataset. The number of sampled predictions
for BNNs is set to N=5. While the main aim of this work is to improve the uncertainty estimation
performance of BNNs and DEs through the credal wrapper, it is also intriguing to compare our ap-
proach with an alternative method, Ensemble Distribution Distillation (EDD) (Malinin et al., 2019),
within the evidential deep learning family. EDD aims to approximate DE predictions on the simplex
by leveraging a single Dirichlet distribution. Thus, here we train EDD from the DEs under two dis-
tinct learning rate scheduler configurations: (1) EDD-Fair, which uses the same basic scheduler as
BNNs and SNNs to ensure a fair comparison; and (2) EDD, which employs the cycle learning rate
policy described in the original EDD paper. More implementation details are given in Appendix §B.

Table 1 reports test accuracy (ACC) and ECE values on the CIFAR10 test set and the corrupted
CIFAR10 (CIFAR10-C) data as well as the OOD detection performance comparison. Regarding the
CIFAR10-C dataset, which applies 15 corruption modes to the CIFAR10 instances, with 5 inten-
sities per corruption type, Figures 2 and 3 show the OOD detection results and the ECE values of
CIFAR10 vs CIFAR10-C against increased corruption intensity, respectively. The results over the 15
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Table 1: Performance comparison between the classical and credal wrapper version of BNN and
DE, as well as EDD models. All models are implemented on VGG16/ResNet-18 backbones and
trained using CIFAR10 data as ID samples. The results are from 15 runs. The best scores per metric
are in bold. The results on corrupted data are averaged over all corruption types and intensities.

Prediction Performance OOD Detection Performance (%) using EU

ID Test Data Corrupted Data SVHN (OOD) Tiny-ImageNet (OOD)

ACC (%) ECE ACC (%) ECE AUROC AUPRC AUROC AUPRC

Baseline 90.98±0.11 0.048±0.003 21.86±1.88 0.470±0.050 86.65±1.26 90.61±0.88 84.62±0.28 80.06±0.40BNNR Ours 90.98±0.15 0.034±0.003 21.96±1.83 0.416±0.050 87.85±1.45 92.32±1.05 85.55±0.30 82.76±0.46

Baseline 90.88±0.19 0.055±0.003 23.00±1.97 0.498±0.066 86.79±0.47 90.76±0.55 84.54±0.20 79.91±0.35BNNF Ours 90.84±0.20 0.043±0.003 23.08±1.93 0.452±0.068 87.66±0.50 92.26±0.51 85.26±0.20 82.33±0.30

Baseline 93.57±0.09 0.015±0.001 24.81±0.79 0.314±0.024 89.74±1.31 93.58±0.97 88.49±0.17 85.79±0.35DE Ours 93.47±0.10 0.033±0.002 24.42±0.81 0.200±0.022 91.96±1.33 95.24±0.79 89.80±0.08 87.99±0.16

V
G

G
16

EDD 91.05±0.18 0.038±0.003 19.37±2.24 0.122±0.062 91.21±0.95 93.62±1.70 87.04±0.75 82.53±2.18

BNNR Baseline 91.87±0.17 0.058±0.002 22.38±1.31 0.498±0.030 88.32±1.22 93.03±0.74 85.83±0.25 81.43±0.51
Ours 91.86±0.18 0.055±0.002 22.45±1.30 0.460±0.030 88.40±1.25 93.16±0.79 85.99±0.20 82.51±0.39

Baseline 91.91±0.19 0.057±0.002 22.38±1.30 0.498±0.024 88.62±0.80 93.26±0.52 85.94±0.30 81.64±0.34BNNF Ours 91.90±0.18 0.055±0.002 22.43±1.30 0.464±0.024 88.71±0.81 93.41±0.51 86.06±0.31 82.69±0.27

Baseline 93.36±0.11 0.018±0.001 26.62±0.69 0.304±0.018 87.40±0.68 91.82±0.51 87.94±0.15 84.86±0.24DE Ours 93.35±0.13 0.025±0.002 26.41±0.73 0.224±0.016 88.63±0.80 92.76±0.64 89.16±0.15 87.41±0.19R
es

N
et

-1
8

EDD 92.96±0.10 0.027±0.001 27.00±1.20 0.276±0.032 87.26±1.57 91.91±1.01 88.05±0.23 83.66±0.41

corruption types are averaged. Table 1 and Figure 3 demonstrate that our intersection probability ex-
hibits comparable test ACC and ECE on ID test data, compared to the classical averaged probability.
Moreover, the calibration performance on corrupted samples is consistently better, as evidenced by
the lower ECE values. Table 1 and Figure 2 also demonstrate that our credal wrapper markedly and
persistently enhances the EU estimation of baselines. This is evidenced by the augmented OOD de-
tection performance on various data pairs and across disparate backbones. Compared to EDD, which
applies a cycle learning rate policy, our credal wrapper still consistently achieves superior perfor-
mance, as shown in Table 1 and Figure 2. Concerning EDD-Fair, we observe that fairly applying
the simple learning rate scheduler leads to low prediction performance of EDD-Fair (considerably
below the baselines) and poor EU estimation (evidenced by the lowest OOD detection values), as
shown in Table 19 in the Appendix.

Backbone: VGG16
DE: (Ours) EDDDE: (Baseline)BNNF: (Baseline)BNNF: (Ours)BNNR: (Baseline)BNNR: (Ours)

DE: (Ours) EDDDE: (Baseline)BNNF: (Baseline)BNNF: (Ours)BNNR: (Baseline)BNNR: (Ours)
Backbone: ResNet-18

Figure 2: OOD detection using EU as the metric on CIFAR10 vs CIFAR10-C of the classical and
credal wrapper version of BNNs and DE, and EDD against increased corruption intensity, using
VGG16 and ResNet-18 as backbones.

Evaluation using Large-scale Datasets In this experiment, we exclusively employ DEs (combin-
ing five SNNs) to assess the quality of EU estimation of our credal wrapper on large-scale datasets
and network architectures. This is because, in practice, BNNs are typically unable to scale to large
datasets and model architectures due to the high computational complexity (Mukhoti et al., 2023).
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BNNR (VGG16) BNNR (ResNet18)BNNF (VGG16) BNNF (ResNet18)DE (VGG16) DE (ResNet18)

Figure 3: ECE values of BNNR, BNNF, and DE on CIFAR10-C against increased corruption in-
tensity, using the averaged probability (Prob.) and our proposed intersection probability (Prob.).
VGG16 and ResNet-18 are backbones. Results are from 15 runs.

Table 2: OOD detection AUROC and AUPRC performance (%) of both the classical and credal
wrapper version of DEs using EU as the metric. The results are from 15 runs, based on the ResNet-
50 backbone. Best scores are in bold.

CIFAR10 (ID) CIFAR100 (ID) ImageNet (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD) ImageNet-O (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 89.58±0.93 92.29±1.00 86.87±0.20 83.02±0.16 73.83±1.97 84.96±1.25 78.80±0.20 74.68±0.27 65.70±0.41 63.20±0.35

Ours 93.77±0.60 96.06±0.46 88.78±0.15 86.83±0.23 80.22±1.96 89.40±1.03 81.00±0.16 77.16±0.23 66.20±0.38 63.23±0.34

For instance, training a ResNet-50-based BNN on CIFAR-10 (resized to (224, 224, 3)) failed in
our experiment due to exceeding the memory capacity of a single Nvidia A100 GPU. The dataset
pairs (ID vs OOD) considered include CIFAR10/CIFAR100 (Krizhevsky, 2012) vs SVHN/Tiny-
ImageNet, ImageNet (Deng et al., 2009) vs ImageNet-O (Hendrycks et al., 2021), CIFAR10 vs
CIFAR10-C, and CIFAR100 vs CIFAR100-C (Hendrycks & Dietterich, 2019). DEs are imple-
mented on the well-established ResNet-50 (He et al., 2016). All input data have a shape of (224,
224, 3). More training details are given in Appendix §B. The PIA algorithm (Algorithm 1) is ap-
plied using the settings J = 20 and J = 50 to calculate the generalized entropy (H(P) and H(P))
on dataset pairs involving CIFAR100 and ImageNet, respectively. Compared to classical DEs, our
credal wrapper demonstrates the enhanced OOD detection across a spectrum of data pairs, as shown
in Table 2, suggesting that our proposed method can consistently improve EU estimation.

Ablation Study on Network Architectures We also perform an ablation study using Efficient-
NetB2 (EffB2) (Tan & Le, 2021) and Vision Transformer Base (ViT-B) (Dosovitskiy et al., 2020)
as architecture backbones, involving CIFAR10/100 vs SVHN and Tiny-ImageNet, CIFAR10 vs
CIFAR10-C, and CIFAR100 vs CIFAR100-C. The key findings, presented in Table 3 and Figure
4, demonstrate that our credal wrapper approach significantly enhances the EU quality of DEs, and
is robust against both the dataset pairs and the architecture backbones. Furthermore, Figure 5 shows
the ECE values exhibited by DEs on both CIFAR10-C and CIFAR100-C datasets, using ResNet-50,
EffB2, and ViT-B backbones. The results indicate that adopting the intersection probability as the
final prediction, with its strong rationality foundations, can indeed empirically improve calibration
performance (lower ECE) on the corrupted samples by using the classical averaged probability.

Table 3: OOD detection AUROC and AUPRC performance (%) of the classical and credal wrap-
per version of DEs using EU as the metric. Results are from 15 runs, based on EffB2 and ViT-B
backbones. Best scores are in bold.

CIFAR 10 (ID) CIFAR 100 (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 95.76±0.59 97.43±0.47 92.32±0.14 90.72±0.22 87.52±1.52 93.81±0.80 85.29±0.15 82.98±0.24EffB2 Ours 97.60±0.25 98.74±0.14 93.55±0.15 93.17±0.16 89.20±1.19 94.58±0.56 86.23±0.10 83.69±0.21

Baseline 77.71±1.67 85.82±1.14 82.27±0.79 78.85±0.81 81.41±1.33 89.00±0.96 81.18±0.31 77.46±0.49ViT-B Ours 80.71±1.83 88.43±1.26 84.28±0.76 82.82±0.85 84.87±1.06 91.40±0.67 82.53±0.32 79.04±0.39

Ablation Study on Hyperparameter of PIA Algorithm In this experiment, we investigate the
effect of the hyperparameter J of the PIA algorithm 1. The OOD detection tasks include CIFAR100
(ID) vs SVHN (OOD) and Tiny-ImageNet (OOD) and deep ensembles are implemented on the
ResNet-50 backbone. Table 4 shows OOD detection performance and the time cost for uncertainty
quantification per sample, using different settings of J for the PIA algorithm.
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CIFAR10 vs CIFAR10-C CIFAR100 vs CIFAR100-C 
ResNet-50: (Baseline)ResNet-50: (Ours) EffB2 : (Baseline)EffB2 : (Ours) ViT-B : (Baseline)ViT-B : (Ours)

Figure 4: OOD detection performance of the classical and credal wrapper version of DEs using EU
as the metric on CIFAR10/100 vs CIFAR10-C/100-C against increased corruption intensity, using
ResNet-50, EffB2, and ViT-B as backbones.

ResNet-50 (CIFAR10) ResNet-50 (CIFAR100)EffB2 (CIFAR10) EffB2(CIFAR100)ViT-B (CIFAR10) ViT-B (CIFAR100)

Figure 5: ECE values of DEs on CIFAR10-C and CIFAR100-C against increased corruption in-
tensity, using the averaged probability (Prob.) and our proposed intersection probability (Prob.).
ResNet-50, EffB2, and ViT-B are backbones. Results are from 15 runs.

The hyperparameter J is a design choice intended to mitigate the computational cost associated
with uncertainty quantification, particularly in situations with limited computational resources. The
evaluation indicates that the proposed PIA algorithm can significantly reduce the computational
complexity of estimating uncertainty in cases of high-class classification while maintaining superior
uncertainty performance on OOD detection benchmarks. We can also observe that increasing the
value of J improves the OOD detection performance, but can lead to an increase in execution time.
This is because solving the constrained optimization problem in eq. (8) involves more variables and
constraints. Furthermore, we present the uncertainty estimates for ID and OOD samples at different
values of J in Figure 16 in Appendix §A.10. The result shows that using a small value of J leads to
an underestimation of uncertainty values, particularly for OOD samples. This phenomenon explains
why a higher value of J can achieve better OOD detection performance.

Table 4: OOD detection AUROC and AUPRC performance (%) of credal wrapper of DEs using EU
as uncertainty metrics and the time cost, using different setting of J of PIA algorithm. The OOD
detection involves CIFAR100 (ID) vs SVHN (OOD) and Tiny-ImageNet (OOD). The results are
from 15 runs, based on the ResNet-50 backbone.

J
EU as Metric Time Cost

per Sample
(ms)SVHN Tiny-ImageNet

AUROC AUPRC AUROC AUPRC

10 78.81±1.87 87.96±1.09 80.17±0.19 75.25±0.26 7.182±0.087
20 80.22±1.96 89.40±1.03 81.00±0.16 77.16±0.23 11.346±0.038
100 80.55±1.99 89.68±1.04 81.16±0.16 77.76±0.21 109.469±1.330

Computational Cost The reported time in Table 4 cost is measured on a single Intel Xeon Gold
8358 CPU@2.6 GHz, without optimization in the calculation process. As a reference, the time cost
of the classical method for uncertainty quantification per sample is 0.007±0.001ms. In addition, the
time cost for CIFAR10 without reduction can also be seen as 7.18ms from Table 4. While a bit high,
it remains practical without limiting computational resources. We also believe a more efficient code
implementation of our approach could significantly mitigate the computational cost.

Moreover, our method can achieve superior uncertainty quantification performance with fewer pre-
dictive samples, as demonstrated in Tables 5 and 6 in the Appendix. Additionally, the computational
cost analysis in Appendix §A.9 indicates that the overhead introduced by our method for entropy
calculation is negligible, particularly when accounting for the significant reduction in overall in-
ference cost. From this perspective, the proposed credal wrapper not only reduces computational
complexity but also enhances practical applicability.
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Additional Experiments Appendix §A.1 presents visualizations of the credal set predictions and
intersection probability, offering an intuitive graphical explanation of why our credal wrapper out-
performs the baseline methods. Appendix §A.2 and §A.3 present ablation studies on the number of
predictive samples in DEs and BNNs, respectively. The results consistently demonstrate the superior
performance of our credal wrapper method. Appendix §A.4 examines the EU quantification perfor-
mance of our credal wrapper using the generalized Hartley measure (Abellán & Moral, 2000), as an
alternative to the difference between upper and lower entropy in eq. (4). The results demonstrate
that our credal wrapper consistently enhances the EU estimation performance while being agnostic
to the specific EU measure for credal sets employed. Appendix §A.5 assesses the TU estimation
quality (as opposed to EU) on OOD detection benchmarks, suggesting that our credal wrapper con-
sistently improves TU estimation as well, across the different dataset pairs, network architectures,
and test settings. Appendix §A.6 presents an examination of the performance of our credal wrapper
in scenarios where the ensemble member (SNN) generates overconfident predictions. The findings
also show the improved uncertainty quantification of our credal wrapper. Appendix §A.7 presents
uncertainty estimate plots for both ID and OOD samples across various settings, providing further
qualitative evidence that our credal wrapper consistently enhances baseline uncertainty quantifi-
cation. Appendix §A.8 assesses intersection probability on corrupted samples using the negative
log-likelihood (NLL) metric, showing consistently improved performance with lower values across
extensive test scenarios.

5 CONCLUSION AND FUTURE WORK

Conclusion This paper presents an innovative approach, called a credal wrapper, to formulating
a credal set prediction for model averaging in BNNs and DEs, capable of improving their EU and
TU estimation in classification tasks. Given a limited collection of single distributions derived at
prediction time from either BNNs or DEs, the proposed approach computes a lower and an upper
probability bound per class, to acknowledge the epistemic uncertainty about the sought exact pre-
dictive distribution due to limited information availability. Such lower and upper probability bounds
on each class induce a credal set. From such a credal prediction (the output of our wrapper), an
intersection probability distribution can be derived, for which there are theoretical arguments that it
is the natural way to map a credal set to a single probability.

Extensive experiments performed on several OOD detection benchmarks, including CIFAR10/100
vs SVHN/Tiny-ImageNet, CIFAR10/100 vs CIFAR10/100-C, and ImageNet vs ImageNet-O, and
utilizing various network architectures (VGG16, ResNet-18/50, EfficientNet B2 and ViT Base),
demonstrate that, compared to BNN and DE baselines, the proposed credal wrapper approach ex-
hibits better uncertainty estimation and lower ECE on corrupted data.

Limitation and Future Work Our credal wrapper functions as a plug-and-play method for enhanc-
ing the uncertainty quantification of BNNs and DEs without requiring any additional training. How-
ever, uncertainty quantification in this setting demands a higher computational investment. Thus, if
memory usage or computational resources are strictly limited, the proposed approach may not be
the optimal solution. A primary objective of our forthcoming research is to apply and benchmark
our approach on safety-critical and real-world applications, such as medical image analysis.
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Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
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A ADDITIONAL EXPERIMENTS

A.1 VISUALIZATION OF CREDAL SET PREDICTIONS AND INTERSECTION PROBABILITY

Visualizing credal sets in high-dimensional (C) classification tasks is challenging, as it requires
a (C−1)-dimensional probability simplex. To demonstrate our credal wrapper method, we con-
sider a three-class classification scenario derived from the CIFAR10 classification tasks in the main
body, focusing on the classes ‘airplane’, ‘automobile’, and ‘others’. The class ‘others’ includes
the remaining class indices in the original CIFAR10 datasets. We visualize our credal wrapper of
ResNet50-based DEs and VGG16-based BNNRs using different sample sizes on the 2D simplex
in Figures 6 and 7. Three cases are considered: the correctly classified in-distribution (ID) sample
(left), the incorrectly classified sample (middle), and the OOD samples (right).

From the visualizations, we observe that the differences between individual predictive probability
samples for correctly classified ID data and the resulting discrepancy between the intersection prob-
ability and the averaged probability are less visible. However, for incorrectly classified samples, the
differences become more apparent. Since the intersection probability is derived from probability
intervals, it tends to exhibit less overconfidence in incorrect predictions. A similar observation can
be seen in Figure 8, where the individual probabilities, the corresponding intersection probability,
and the averaged probability for the CIFAR10 and CIFAR10-C (corrupted) samples are visualized.
Furthermore, as the ensemble size increases, this reduction in overconfidence becomes even more
apparent (Figures 6 and 7). These observations explain the comparable performance of the intersec-
tion probability and the averaged probability in terms of test accuracy and expected calibration error
(ECE) on ID data but improved performance on corrupted data.

Figures 6 and 7 also illustrate that the credal sets for incorrectly classified and OOD samples are
notably larger than those for correctly classified ID samples. This behavior aligns with the construc-
tion of our credal wrapper, which is formulated by extracting the upper and lower probability limits
per class from individual probability samples. It also shows that the credal sets naturally expand
when newly sampled probabilities fall outside the original bounds (for example, the OOD cases in
Figures 6 and 7), reflecting a conservation property that reasonably incorporates new evidence rather
than disregarding it. This phenomenon can also explain why the OOD detection performance can
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be further enhanced with an increased sample size, as observed in Tables 5 and 6. Furthermore,
the theoretical foundation for uncertainty quantification using credal sets and probability interval
systems is robust, as detailed in Appendix §A.4 and Appendix §D.

airplane

automobile

others airplane

automobile

others airplane

automobile

others airplane

automobile

others
label: airplane label: airplane OOD: SVHN OOD: Tiny-ImageNet
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automobile

others airplane
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others airplane
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automobile

others
label: airplane label: airplane OOD: SVHN OOD: Tiny-ImageNet

a (𝑁 = 25) b (𝑁 = 25) c (𝑁 = 25) d (𝑁 = 25)

a (𝑁 = 5) b (𝑁 = 5) c (𝑁 = 5) d (𝑁 = 5)

individual probability samples averaged probabilityintersection probability credal set

Correctly Classified Sample Incorrectly Classified Sample Out-of-distribution (OOD) Sample

Figure 6: Visualization of our credal wrapper of ResNet50-based DEs on different ensemble sizes
(N = 5 and N = 25) in three cases: correctly classified in-distribution (ID) sample (left), incor-
rectly classified sample (middle), and OOD samples (right).
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label: automobile label: airplane OOD: SVHN OOD: Tiny-ImageNet
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individual probability samples averaged probabilityintersection probability credal set

Correctly Classified Sample Incorrectly Classified Sample Out-of-distribution (OOD) Sample

Figure 7: Visualization of our credal wrapper of VGG16-based BNNRs on different sample sizes
(N = 10 and N = 50) in three cases: correctly classified in-distribution (ID) sample (left), incor-
rectly classified sample (middle), and OOD samples (right).
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individual probability samples averaged probabilityintersection probability

label: ship label: ship 
(contrast corruption severity 5)

Figure 8: Visualization of the individual probabilities, the intersection, and the averaged probability
for one CIFAR10 sample and its corrupted version sample. For the corrupted data, the intersection
probability can remain the correct prediction while the averaged probability leads to a wrong pre-
diction.

A.2 ABLATION STUDY ON NUMBERS OF PREDICTIVE SAMPLES IN DES

In this experiment, we train 30 ResNet-50-based SNNs individually using the CIFAR10 dataset
and under different random seeds. Then, we construct DEs using different numbers of ensemble
members, namely N=3, 5, 10, 15, 20 and 25. Each type of DEs includes 15 instances using distinct
seed combinations.

Table 5 reports OOD detection performance comparisons under different numbers of samples. The
findings suggest that (i) Increasing the number of samples can indeed improve the EU estimation
of our proposed credal wrapper. (ii) Compared to classical DEs, our method consistently shows
superior performance on EU quantification, robustly against the number of samples. Figure 9 shows
the ECE performance evaluation using different settings of N on the CIFAR10-C samples. We
can observe that: (i) Increasing the number of samples overall can lead to a lower ECE value; (ii)
Compared to the naive averaging DE predictions, our intersection probability consistently achieves
lower ECE values on corrupted instances.

Table 5: OOD detection performance (%) comparison in DEs.
CIFAR10 vs SVHN CIFAR10 vs Tiny-ImageNet

AUROC AUPRC AUROC AUPRC
N

Baseline Ours Baseline Ours Baseline Ours Baseline Ours

3 89.64±1.16 91.97±1.38 92.13±1.12 94.91±1.08 86.31±0.24 87.57±0.25 81.76±0.40 85.02±0.32
5 89.26±1.02 93.50±0.79 91.96±0.97 95.79±0.70 86.83±0.25 88.65±0.25 83.12±0.38 86.77±0.37

10 90.54±0.72 95.03±0.40 93.22±0.70 96.80±0.35 87.75±0.13 89.62±0.14 84.99±0.25 88.04±0.20
15 90.78±0.68 95.31±0.47 93.23±0.62 96.91±0.43 88.10±0.10 89.94±0.10 85.59±0.16 88.44±0.13
20 91.09±0.50 95.69±0.34 93.49±0.48 97.15±0.30 88.33±0.08 90.11±0.08 85.96±0.11 88.59±0.10
25 91.31±0.27 95.84±0.15 93.62±0.24 97.24±0.12 88.46±0.04 90.22±0.05 86.17±0.08 88.72±0.07

𝑁 = 3 𝑁 = 15𝑁 = 5 𝑁 = 20𝑁 = 10 𝑁 = 25

Figure 9: ECE values of DEs with various N on CIFAR10-C against increased corruption intensity.
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A.3 ABLATION STUDY ON NUMBERS OF PREDICTIVE SAMPLES IN BNNS

In this experiment, we first increase the sampling size of BNNs at prediction time, namely N =10
and N = 50. Table 6 reports the OOD detection performance of BNNR and BNNF involving
CIFAR10 (ID) vs SVHN and Tiny-ImageNet (OODs), based on the VGG16 backbone. It shows
that the credal wrapper consistently produces better EU estimates, as evidenced by enhanced OOD
detection performance. Further, Table 13 in the Appendix reports the same comparison based on the
ResNet-18 architecture, confirming those results.

Table 6: OOD detection comparisons using EU (%) of VGG16-based BNNs.
N Method BNNR: CIFAR10 (ID) BNNF: CIFAR10 (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 86.60±1.28 90.54±1.00 85.00±0.27 80.90±0.42 86.67±0.54 90.64±0.71 84.78±0.18 80.51±0.3810 Ours 88.38±1.53 92.61±1.12 86.28±0.25 83.88±0.32 88.03±0.52 92.55±0.52 85.79±0.18 83.29±0.28

Baseline 86.60±1.37 90.44±1.02 85.41±0.21 81.79±0.30 86.63±0.60 90.56±0.79 85.10±0.19 81.28±0.3450 Ours 88.90±1.65 92.75±1.22 87.17±0.26 85.22±0.33 88.60±0.56 92.91±0.54 86.61±0.21 84.64±0.27

Tables 5 and 6 suggest that our credal wrapper provides better uncertainty estimation than Bayesian
methods, even when the latter uses more samples. For instance, the OOD detection performance
of traditional DEs with N = 25 is significantly lower than that with N = 5 when using our credal
wrapper. Moreover, the OOD performance of our credal wrapper with N=10 consistently surpasses
that of conventional BNNs with N =50. From this perspective, our credal wrapper can reduce the
complexity as increasing the number of samples typically demands more computational resources
and memory, such as the additional single models required for DEs during training and inference.

Table 7: Performance comparison when applying N=1000 to the ResNet-18-based BNNR.
ID Performance CIFAR10 vs SVHN CIFAR10 vs Tiny-ImageNet

ACC ECE AUROC AUPRC AUROC AUPRC

Baseline 91.89±0.18 0.057±0.002 87.24±1.72 93.09±0.89 83.94±0.32 81.15±0.39

Ours 91.90±0.16 0.034±0.003 89.36±1.25 93.88±0.86 86.89±0.19 84.63±0.33

Additionally, we further increase the number of samples (N=1000) for the ResNet18-based BNNR
to explore an extreme case. Table 7 compares the test ACC and ECE values between two approaches,
namely p̃ and p∗, as well as the OOD detection performance. Although a high sampling size is rarely
employed in BNNs due to the inherent complexity, the results illustrate the stability of our methods
and the consistent superiority of our credal wrapper compared to the BNN baseline.

A.4 GENERALIZED HARTLEY MEASURE FOR EU ESTIMATION OF CREDAL WRAPPER

In this section, we evaluate the EU quantification performance of our credal wrapper using the
generalized Hartley (GH) measure (Abellán & Moral, 2000), and briefly discuss the interpretation
of the generalized entropy and the GH measure in uncertainty quantification of the credal set.

Definition and Implementation The generalized Hartley measure (Abellán & Moral, 2000;
Hüllermeier & Waegeman, 2021), GH(P), captures the non-specificity across the distributions in
the credal set, and can be seen as a proxy for its volume (Hüllermeier & Waegeman, 2021; Sale
et al., 2023a) Mathematically, GH(P) calculates the expectation of the Hartley measure over all
possible subsets B on the target space Y, as follows (Abellán & Moral, 2000):

GH(P) =
∑
B⊆Y

mP(B) · log2(|B|), (12)

in which mP denotes the mass assignment function associated to a credal set P and |B| indicates
the cardinality of B. mP(B) can be computed using the Möbius inverse of the capacity function νP
(Chateauneuf & Jaffray, 1989) as follows:

mP(B) =
∑
A⊆B

(−1)|B\A|νP(A), (13)
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where B\A = y|y ∈ B and y /∈ A and νP describes the lower probability of all possible subsets
A ⊆ B. GH Measure is computationally complex to compute. However, in our case, the lower
probability νP(A) associated with the predicted credal set can be readily computed as follows:

νP(A) = max

( ∑
yj∈A

pLj
, 1−

∑
yj /∈A

pUj

)
, (14)

where pL and pU are the lower and upper probability values per class in the defined credal set.

Experimental Validation In this ablation study, we evaluate on EU estimation quality of our credal
wrapper using GH(P) measure. Table 8 reports OOD detection performance tested on CIFAR10
(ID) vs SVHN (OOD) and Tiny-ImageNet (OOD). All models are implemented on the VGG16
backbones. The results demonstrate that our credal wrapper consistently enhances EU estimation
performance and is agnostic in the sense that it can accommodate any EU measure for credal sets.

Table 8: OOD detection AUROC and AUPRC performance (%) comparison between classical and
credal wrapper of BNNs and DEs using EU. The results are from 15 runs.

SVHN (OOD) Tiny-ImageNet (OOD)
Model EU AUROC AUPRC AUROC AUPRC

Baseline H(p̃)−H̃(p) 86.65±1.26 90.61±0.88 84.62±0.28 80.06±0.40BNNR Ours GH(P) 87.24±1.32 91.54±0.97 84.88±0.28 81.05±0.37

Baseline H(p̃)−H̃(p) 86.79±0.47 90.76±0.55 84.54±0.20 79.91±0.35BNNF Ours GH(P) 87.22±0.45 91.49±0.49 84.72±0.20 80.72±0.32

Baseline H(p̃)−H̃(p) 89.74±1.31 93.58±0.97 88.49±0.17 85.79±0.35

VGG16

DEs Ours GH(P) 90.37±1.33 94.21±0.89 88.98±0.13 86.88±0.26

Further Discussion on Different Uncertainty Measures Given a credal set P, it was suggested to
assume the following representation to express the uncertainty (Abellán & Moral, 2000; Hüllermeier
& Waegeman, 2021):

TU(P) = EU(P) + AU(P). (15)
As a result, given TU(P) and a generalized measure of aleatoric uncertainty (conflict) AU(P), a
generalized measure of epistemic uncertainty (non-specificity) EU(P) can be derived via disag-
gregation as EU(P) = TU(P) − AU(P). The lower entropy H(P) applied in our work indicates
the lower bound of the (aleatoric) uncertainty that remains even when all epistemic uncertainty is
removed, i.e., when P is reduced to a single distribution p ∈ P. From this perspective, H(P) cor-
responds in fact to the natural measure of irreducible (aleatoric) uncertainty. Study (Abellán et al.,
2006) justifies the use of upper entropy as a global uncertainty measure for credal sets. As for the
epistemic uncertainty, the difference H(P)−H(P) appears to be reasonable and refers to the size of
the set of candidate entropies [H(P), H(P)], quantifying uncertainty about the aleatoric uncertainty
H(p) of p. Different from H(P) − H(P) in EU estimation, the GH(P) measures the size of the
set of candidate probabilities, and hence refers to uncertainty or imprecision about the ground-truth
probability. For further discussions on the different measures and their corresponding strengths and
weaknesses in measuring predictive uncertainty, we kindly refer to (Hüllermeier et al., 2022).

A.5 TOTAL UNCERTAINTY ESTIMATION EVALUATION ON OOD DETECTION BENCHMARKS

In this section, we assess the total uncertainty (TU) estimation quality (as opposed to EU) of our
credal wrapper on various OOD detection benchmarks. Tables 9, 10, 11, 12, 13, and Figures 10,
11 show that our credal wrapper can improve the quality of TU estimation as well, across different
dataset pairs, network architectures, and test settings.

A.6 ABLATION STUDY ON OVERCONFIDENCE REGIME

In this section, we examine the performance of our credal wrapper in scenarios where the ensemble
member (SNN) generates overconfident predictions. In our credal wrapper framework, overconfi-
dence in one of the predictions would stretch the resulting credal set. This is because the upper and
lower probability bounds over classes are derived via a max/min operation in eq. (5). For instance,
in the case of 3 classes, if there are three distinct extreme probability vectors (three vertices of the
simplex), our credal wrapper method will effectively convey complete uncertainty, with the resulting
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Table 9: OOD detection AUROC and AUPRC performance (%) comparison between the classical
and credal wrapper version of BNNs and DEs, using TU as the uncertainty metric. All models are
implemented on VGG16/ResNet-18 backbones and tested on CIFAR10 (ID) vs SVHN (OOD) and
Tiny-ImageNet (OOD). The results are from 15 runs. The best scores are in bold.

ResNet-18: CIFAR10 (OOD) VGG16: CIFAR10 (OOD)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 88.18±1.30 92.68±0.86 86.40±0.24 83.16±0.40 88.57±1.47 93.26±1.08 85.50±0.31 82.60±0.41BNNR Ours 88.36±1.30 92.95±0.87 86.52±0.22 83.66±0.38 88.79±1.57 93.44±1.14 85.89±0.31 83.53±0.43

Baseline 88.43±0.83 92.90±0.51 86.45±0.33 83.22±0.33 88.32±0.50 93.06±0.51 85.30±0.20 82.32±0.30BNNF Ours 88.65±0.81 93.19±0.51 86.58±0.32 83.75±0.31 88.47±0.52 93.27±0.52 85.62±0.20 83.23±0.28

Baseline 88.47±0.80 92.82±0.64 88.96±0.14 87.22±0.18 91.20±1.29 94.87±0.78 89.55±0.08 87.89±0.14DE Ours 88.98±0.86 93.13±0.70 89.53±0.14 88.23±0.17 92.12±1.32 95.41±0.75 90.00±0.07 88.49±0.17

Table 10: OOD detection AUROC and AUPRC performance (%) of both the classical and credal
wrapper version of DEs using TU as the metric. The results are from 15 runs, based on the ResNet-
50 backbone. The best scores are in bold.

CIFAR10 (ID) CIFAR100 (ID) ImageNet (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD) ImageNet-O (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 94.80±0.43 97.26±0.29 88.80±0.19 87.21±0.29 78.53±1.94 88.83±1.01 80.75±0.15 77.65±0.19 50.20±0.07 50.44±0.06

Ours 95.44±0.37 97.57±0.23 89.30±0.17 87.97±0.25 80.71±1.96 89.97±0.99 81.46±0.14 78.29±0.17 54.87±0.08 52.27±0.05

Table 11: OOD detection AUROC and AUPRC performance (%) of both the classical and credal
wrapper version of DEs using TU as the metric. Results are from 15 runs, based on EffB2 and ViT-B
backbones. The best scores are in bold.

CIFAR10 (ID) CIFAR100 (ID)

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 97.55±0.27 98.78±0.16 93.41±0.15 93.01±0.17 88.46±1.33 94.40±0.59 86.45±0.10 84.88±0.14EffB2 Ours 97.91±0.21 98.98±0.10 93.74±0.15 93.55±0.16 89.35±1.20 94.83±0.52 86.61±0.09 84.87±0.12

Baseline 79.80±1.75 87.97±1.17 83.81±0.81 81.67±0.89 84.10±1.12 91.41±0.72 82.64±0.28 79.94±0.43ViT-B Ours 81.08±1.82 88.48±1.48 84.62±0.75 82.82±0.85 85.40±1.05 92.02±0.70 83.06±0.29 80.34±0.41

VGG16 (TU) ResNet-18 (TU) 

BNNR: (Baseline)
BNNR: (Ours) 

BNNF: (Baseline)
BNNF: (Ours) 

DE: (Baseline)
DE: (Ours) 

BNNR: (Baseline)
BNNR: (Ours) 

BNNF: (Baseline)
BNNF: (Ours) 

DE: (Baseline)
DE: (Ours) 

Figure 10: OOD detection using TU as metric on CIFAR10 vs CIFAR10-C of both the classical
and credal wrapper version BNNs and DE against increased corruption intensity, using VGG16 and
ResNet-18 as backbones.
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CIFAR10 vs CIFAR10-C (TU) CIFAR100 vs CIFAR100-C (TU) 

ResNet-50: (Baseline)
ResNet-50: (Ours) 

EffB2: (Baseline)
EffB2: (Ours)

ViT-B: (Baseline)
ViT-B: (Ours) 

ResNet-50: (Baseline)
ResNet-50: (Ours) 

EffB2: (Baseline)
EffB2: (Ours)

ViT-B: (Baseline)
ViT-B: (Ours) 

Figure 11: OOD detection using TU as the metric on CIFAR10/100 vs CIFAR10-C/100-C of both
the classical and credal wrapper version of DEs against increased corruption intensity, using ResNet-
50, EffB2, and ViT-B as backbones.

Table 12: Ablation study on numbers of predictive samples in DEs: OOD detection AUROC and
AUPRC performance (%) of both the classical and credal wrapper version of DEs using TU as
uncertainty metrics, involving CIFAR10 (ID) vs SVHN (OOD) and Tiny-ImageNet (OOD). The
results are from 15 runs. The best scores are in bold.

CIFAR10 vs SVHN CIFAR10 vs Tiny-ImageNet

AUROC AUPRC AUROC AUPRC
N

Baseline Ours Baseline Ours Baseline Ours Baseline Ours

3 94.30±0.99 94.68±1.01 97.03±0.62 97.21±0.65 88.24±0.23 88.54±0.23 86.46±0.33 86.98±0.32
5 94.78±0.54 95.40±0.55 97.19±0.38 97.49±0.40 88.71±0.25 89.17±0.26 87.10±0.37 87.86±0.37

10 95.47±0.34 96.18±0.31 97.61±0.23 97.91±0.23 89.27±0.13 89.86±0.14 87.90±0.19 88.63±0.19
15 95.55±0.32 96.25±0.37 97.63±0.23 97.88±0.29 89.48±0.08 90.11±0.10 88.19±0.12 88.87±0.12
20 95.72±0.23 96.46±0.26 97.74±0.15 97.98±0.23 89.60±0.07 90.24±0.08 88.34±0.09 88.95±0.11
25 95.80±0.12 96.53±0.12 97.78±0.08 98.01±0.10 89.67±0.04 90.32±0.05 88.42±0.05 89.01±0.07

Table 13: Ablation study on numbers of predictive samples in BNNs: OOD detection AUROC and
AUPRC performance (%) of both the classical and credal wrapper version of BNNs with increased
number of samples, involving CIFAR10 (ID) vs SVHN (OOD) and Tiny-ImageNet (OOD). The
results are from 15 runs and the best scores per uncertainty metric are in bold.

Model N Method EU Measure as Metric TU Measure as Metric

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 86.60±1.28 90.54±1.00 85.00±0.27 80.90±0.42 88.63±1.49 93.26±1.10 85.77±0.27 82.93±0.3510 Ours 88.38±1.53 92.61±1.12 86.28±0.25 83.88±0.32 88.99±1.61 93.45±1.17 86.44±0.27 84.28±0.34

Baseline 86.60±1.37 90.44±1.02 85.41±0.21 81.79±0.30 88.67±1.54 93.29±1.12 86.02±0.24 83.31±0.30
BNNR

50 Ours 88.90±1.65 92.75±1.22 87.17±0.26 85.22±0.33 89.17±1.69 93.24±1.25 87.22±0.26 85.35±0.33

Baseline 86.67±0.54 90.64±0.71 84.78±0.18 80.51±0.38 88.31±0.50 93.05±0.50 85.44±0.19 82.53±0.3410 Ours 88.03±0.52 92.55±0.52 85.79±0.18 83.29±0.28 88.58±0.53 93.31±0.51 85.99±0.19 83.80±0.29

Baseline 86.63±0.60 90.56±0.79 85.10±0.19 81.28±0.34 88.34±0.53 93.07±0.51 85.63±0.20 82.80±0.32

V
G

G
16

BNNF
50 Ours 88.60±0.56 92.91±0.54 86.61±0.21 84.64±0.27 88.86±0.55 93.34±0.54 86.67±0.21 84.82±0.27

Baseline 88.46±1.23 93.19±0.77 85.85±0.22 81.58±0.37 88.24±1.29 92.71±0.85 86.43±0.24 83.22±0.4010 Ours 88.61±1.26 93.35±0.83 86.16±0.20 82.99±0.26 88.53±1.29 93.09±0.88 86.63±0.21 83.91±0.35

Baseline 88.43±1.27 93.33±0.77 85.58±0.23 81.70±0.42 88.28±1.27 92.74±0.84 86.45±0.24 83.25±0.40
BNNR

50 Ours 88.93±1.24 93.61±0.83 86.48±0.21 83.80±0.34 88.84±1.26 93.35±0.86 86.82±0.22 84.38±0.36

Baseline 88.77±0.85 93.45±0.56 85.97±0.31 81.83±0.27 88.49±0.83 92.93±0.50 86.48±0.34 83.26±0.3510 Ours 88.96±0.83 93.62±0.55 86.28±0.33 83.22±0.36 88.84±0.81 93.36±0.52 86.70±0.33 84.03±0.35

Baseline 88.79±0.95 93.59±0.61 85.67±0.35 81.88±0.35 88.54±0.82 92.97±0.50 86.49±0.33 83.30±0.35

R
es

N
et

-1
8

BNNF
50 Ours 89.30±0.83 93.89±0.55 86.59±0.33 83.99±0.35 89.18±0.81 93.64±0.54 86.90±0.32 84.53±0.36
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credal set encompassing the entire simplex. This conservative nature can be sensible, as it expresses
our full ignorance of the correct classification.

Furthermore, we conduct an additional ablation study to explore the benefit of our method given
overconfident prediction samples. We manually and randomly transform one of the predictions of
the same input image from five deep ensembles to a one-hot probability and compare the OOD
detection performance of our method and the classical approach. Table 14 also shows our credal
wrapper can improve the uncertainty quantification even in overconfident scenarios.

Table 14: OOD detection using EU (left) and TU (right) as uncertainty metrics in overconfident
scenarios. The results are from 15 runs, based on the ResNet-50 backbone. The best scores per
uncertainty metric are in bold.
Model Method Epistemic Uncertainty Measure as Metric Total Uncertainty Measure as Metric

SVHN (OOD) Tiny-ImageNet (OOD) SVHN (OOD) Tiny-ImageNet (OOD)

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 90.42±0.81 93.30±0.86 87.01±0.20 83.53±0.28 94.36±0.45 96.98±0.32 88.54±0.19 86.82±0.30DE Ours 94.92±0.39 97.26±0.25 88.98±0.17 87.42±0.27 95.24±0.38 97.48±0.23 89.12±0.17 87.74±0.27

A.7 QUALITATIVE EVALUATION OF UNCERTAINTY ESTIMATION OF CREDAL WRAPPER

In this section, we present the estimates of the EU and TU on the ID and OOD samples of the
classical DE (using H(p̃) − H̃(p) and H(p̃), respectively) and our credal wrapper (using H(P) −
H(P) and H(P), respectively) in Figures 12 and 13. The results qualitatively demonstrate that
our credal wrapper consistently enhances the uncertainty quantification of classical DEs. This is
evidenced by the significantly larger uncertainty estimates for the OOD samples, which correspond
to the expected and desirable behavior.

CIFAR10 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

CIFAR10 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

CIFAR10 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

ResNet-50

EffB2

ViT-B

Figure 12: EU and TU estimates of ID (CIFAR10) and OOD (SVHN and Tiny-ImageNet) samples
of the classical and credal wrapper version of DEs, obtained using ResNet-50, EffB2, and ViT
backbones. Results are from 15 runs.
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CIFAR100 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

CIFAR100 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

CIFAR100 (ID) SVHN (OOD) Tiny-ImageNet (OOD)

ResNet-50

EffB2

ViT-B

Figure 13: EU and TU estimates of ID (CIFAR100) and OOD (SVHN and Tiny-ImageNet) samples
of the classical and credal wrapper version of DEs, obtained using ResNet-50, EffB2, and ViT
backbones. Results are from 15 runs.

A.8 EVALUATION OF INTERSECTION PROBABILITY ON CORRUPTED SAMPLES USING NLL
METRIC

In this section, we further evaluate the intersection probability on corrupted samples using the neg-
ative log-likelihood (NLL) metric. A smaller NLL indicates that the model is more confident and
accurate in predicting the correct class for each input (Dusenberry et al., 2020). Figures 14 and 15
show the consistent superiority of the intersection probability on corrupted data in extensive test
cases, as evidenced by smaller NLL values.

BNNR (VGG16) BNNR (ResNet18)BNNF (VGG16) BNNF (ResNet18)DE (VGG16) DE (ResNet18)

Figure 14: NLL values of BNNR, BNNF, and DE on CIFAR10-C against increased corruption
intensity, using the averaged probability (Avg. Prob.) and our proposed intersection probability (Int.
Prob.). VGG16 and ResNet-18 are backbones. Results are from 15 runs.

ResNet-50 (CIFAR10) ResNet-50 (CIFAR100)EffB2 (CIFAR10) EffB2(CIFAR100)ViT-B (CIFAR10) ViT-B (CIFAR100)

Figure 15: NLL values of DEs on CIFAR10-C and CIFAR100-C against increased corruption in-
tensity, using the averaged probability (Avg. Prob.) and our proposed intersection probability (Int.
Prob.). ResNet-50, EffB2, and ViT-B are backbones. Results are from 15 runs.
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A.9 ADDITIONAL RESULTS ON COMPUTATIONAL COST

In this section, we present the CPU time cost comparison in Table 15. The results demonstrate
that, despite the higher time cost, our method remains practical, potentially even achieving real-time
capability, particularly for low-dimensional classification problems without strict computational re-
source constraints. In addition, we are confident that a more efficient code implementation of our
approach could further reduce computational overhead.

Table 15: Time cost (ms) comparison for uncertainty (entropy) calculation of a single input instance.
The cost is measured by a single Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz and is averaged from
20 runs.

C 3 10 20 100

Baseline 0.002 0.002 0.002 0.006
Ours 2.526 5.921 9.694 87.384

Furthermore, our method demonstrates superior uncertainty quantification performance while re-
quiring fewer predictive samples (N ), as shown in Tables 5 and 6. For instance, the credal set
version of DEs-5 (N = 5) surpasses the classical DEs-25 in performance. Similarly, the credal set
versions of BNNR and BNNs achieve higher performance using only 10 predictive samples com-
pared to their classical counterparts, which require 50 samples. We report the inference complexity
of these models across various values of N in Tables 16 and 17. The inference times are measured
using the same single CPU and an advanced Nvidia A100-SXM4-80GB GPU. The results indicate
that the additional overhead introduced by our method for entropy calculation is negligible, espe-
cially when considering the substantial reduction in overall inference cost. In addition, our approach
significantly reduces GPU memory consumption. For example, DEs-25 and BNNF (N = 50) fail
to make inferences on a single Nvidia A100-SXM4-40GB GPU due to memory constraints.

From the perspective of delivering higher uncertainty quantification performance with fewer pre-
dictive samples, the proposed credal wrapper reduces the computational complexity and enhances
practical applicability.

Table 16: Inference complexity for a single input instance from ResNet-50-based DEs with different
ensemble sizes. The inference time is averaged from 20 runs. CPU: A single Intel(R) Xeon(R) Gold
6240 CPU @ 2.60GHz; GPU: A single Nvidia A100-SXM4-80GB GPU.

Ensemble Size Model Size Inference CPU Cost Inference GPU Cost
N (MB) (ms) (ms)

DEs 5 500.05 941.9 ± 144.4 300.4 ± 97.7
DEs 25 2500.25 4495.3 ± 120.8 1429.7 ± 110.0

Table 17: Inference complexity for a single input instance from VGG16-based BNNRs and BNNFs
with sample ensemble size. The inference time is averaged from 20 runs. CPU: A single Intel(R)
Xeon(R) Gold 6240 CPU @ 2.60GHz; GPU: A single Nvidia A100-SXM4-80GB GPU.

Sample Size Inference CPU Cost Inference GPU Cost
N (ms) (ms)

BNNR 10 4951.4 ± 91.8 1982.9 ± 204.3
BNNR 50 23466.4 ± 165.6 9758.2 ± 197.9

BNNF 10 5474.9 ± 92.7 2241.1 ± 203.8
BNNF 50 27498.8 ± 478.1 11046.2 ± 214.6

A.10 ADDITIONAL RESULTS ON DIFFERENT HYPERPARAMETERS OF PIA ALGORITHM

The hyperparameter J of the PIA algorithm 1 is a design choice intended to mitigate the com-
putational cost associated with uncertainty quantification, particularly in situations with limited
computational resources. As demonstrated in the ablation study results in Table 4, the proposed
PIA algorithm significantly reduces the computational complexity of uncertainty estimation in high-
class classification scenarios, while maintaining strong uncertainty performance on OOD detection

25



Published as a conference paper at ICLR 2025

benchmarks. Increasing the value of J enhances the performance. Furthermore, we present the EU
and TU estimates for ID (CIFAR100) and OOD (SVHN and Tiny-ImageNet) samples at different
values of J in Figure 4. The figure shows that using a small value of J leads to underestimating the
EU and TU, particularly for OOD samples. This phenomenon explains why a higher value of J can
achieve better OOD detection performance.

𝐽 = 10
𝐽 = 20
𝐽 = 100

𝐽 = 10
𝐽 = 20
𝐽 = 100

𝐽 = 10
𝐽 = 20
𝐽 = 100

𝐽 = 10
𝐽 = 20
𝐽 = 100

𝐽 = 10
𝐽 = 20
𝐽 = 100

𝐽 = 10
𝐽 = 20
𝐽 = 100

Figure 16: EU and TU estimates of ID (CIFAR100) and OOD (SVHN and Tiny-ImageNet) samples
of the credal wrapper version of DEs using different values of J , obtained using the ResNet-50
backbone. Results are from 15 runs.

Table 18: OOD detection AUROC and AUPRC performance (%) of credal wrapper of DEs using TU
as uncertainty metrics using different setting of J of PIA algorithm. The OOD detection involves
CIFAR100 (ID) vs SVHN (OOD) and Tiny-ImageNet (OOD). The results are from 15 runs, based
on the ResNet-50 backbone.

J
TU as Metric

SVHN Tiny-ImageNet

AUROC AUPRC AUROC AUPRC

10 80.05±1.92 89.30±0.97 81.24±0.14 77.60±0.18
20 80.71±1.96 89.97±0.99 81.46±0.14 78.29±0.17
100 80.90±1.98 90.07±1.00 81.52±0.14 78.50±0.15

B EXPERIMENTAL IMPLEMENTATION DETAILS

Training Details In terms of the evaluation using the small-scale datasets, all models are imple-
mented on the established VGG16 and ResNet-18 architectures using the CIFAR10 dataset. The
Adam optimizer is applied with a learning rate scheduler, initialized at 0.001, and subjected to a 0.1
reduction at epochs 80 and 120. Standard neural networks (SNNs) and BNNs are trained for 100 and
150 epochs, respectively. Standard data augmentation is uniformly implemented across all method-
ologies to enhance the training performance quality of training data and training performance. The
training batch size is set as 128. The device is a single Tesla P100-SXM2-16GB GPU. The standard
data split is applied. In terms of EDDs, for each learning rate scheduler configuration, as discussed
in Sec. 4, we train 15 models for 100 epochs, one from each distinct DE. All other training config-
urations, such as data splitting and augmentation, are kept consistent with those used for the other
models. Additionally, temperature annealing, outlined in the original EDD paper (Malinin et al.,
2019), is also applied during the EDD training process.

In terms of the evaluation using the large-scale datasets, we mainly use two Tesla P100-SXM2-
16GB GPUs as devices to contract deep ensembles by independently training 15 standard neural
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networks (SNNs) under different random seeds. The input shape of the networks is (224, 224,
3). The Adam optimizer is employed, with a learning rate scheduler set at 0.001 and reduced to
0.0001 during the final 5 training epochs. Concerning the CIFAR10 dataset, SNNs are trained
using 15, 15, and 25 epochs for ResNet-50, EffB2, and ViT-B backbones, respectively. As for the
CIFAR100 dataset, SNNs are trained using 20, 20, and 25 epochs for ResNet-50, EffB2, and ViT-
B backbones, respectively. Note that models based on ViT-B backbones are trained on one single
Nvidia A100-SXM4-40GB GPU. In the ImageNet experiments, we employ one single Nvidia A100-
SXM4-40GB GPU to retrain SNNs based on a pre-trained ResNet-50 model for 3 epochs, using the
Adam optimizer with an initialized learning rate of 1e−6, under different random seeds. Standard
data split is applied to all training processes. In ImageNet experiments, we apply three epochs
as we observed that increasing the number of epochs further leads to lower validation loss and
accuracy. The choice of not training them from scratch is mainly due to computational constraints.
Although this setting may have implications for the performance of ensembles, regardless of the
absolute baseline performance of ensembles under different training settings, our method exhibits a
consistent improvement.

Table 19: Poor ID prediction and OOD detection performance of EDD-Fair. CIFAR10 as ID data.

Model ID Prediction Performance OOD Detection Performance using EU

SVHN (OOD) Tiny-ImageNet (OOD)

ACC (%) ECE AUROC AUPRC AUROC AUPRC

VGG16 EDD-fair 56.57±12.56 0.249±0.047 56.60±12.35 71.10±7.51 55.73±4.75 51.32±3.19
ResNet-18 EDD-fair 85.68±3.48 0.102±0.056 85.30±7.85 90.16±5.95 76.84±4.59 69.84±4.29

OOD Detection Process In this paper, the OOD detection process is treated as a binary classifica-
tion. We label ID and OOD samples as 0 and 1, respectively. The model’s uncertainty estimation
(using the EU or TU) for each sample is the ‘prediction’ for the detection. In terms of performance
indicators, the applied AUROC quantifies the rates of true and false positives. The AUPRC evalu-
ates precision and recall trade-offs, providing valuable insights into the model’s effectiveness across
different confidence levels.

ECE Evaluation Process In the context of ECE, a ‘well-calibrated’ prediction is expected to have
a confidence value of 80% and be correct in approximately 80% of the test cases. To calculate ECE,
predictions are split into a predetermined number Q of bins B of equal confidence range. The ECE
is then calculated by summing the absolute difference between the average accuracy and confidence
within each bin (Mehrtens et al., 2023):

ECE :=
∑G

g=1

|Bg|
n

∣∣∣∣acc(Bg)− conf(Bg)

∣∣∣∣, (16)

where |Bg| is the number of samples in the g-th bin and n is the total number of samples.

C DISCUSSION ON GENERATING CREDAL SETS FROM INDIVIDUAL
PROBABILITY DISTRIBUTIONS

Given a finite set of probability predictions, a possible alternative method for generating a credal
set, termed convex hull approach, also exists. This method involves directly constructing the convex
hull from the finite set of predictions. In our credal wrapper, the probability intervals define the
credal set by injecting upper and lower bounds per class in eq. (5) and eq. (6), whereas the convex
hull method requires computing all vertices of the credal sets.

The theoretical underpinning for the convex hull method when reasoning with coherent lower prob-
abilities (and, therefore, the corresponding credal sets) is that it allows us to comply with the co-
herence principle (Walley, 1991). In a Bayesian context, individual predictions (such as those of
networks with specified weights) can be interpreted as subjective pieces of evidence about a fact
(e.g., what is the true class of an input observation). Coherence ensures that one realizes the full
implications of such partial assessments (Walley, 1991; Cuzzolin, 2008). Figure 17 conceptually
shows the differences between two methods in a 2D simplex.
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Figure 17: Different credal set generation methods. Left: our credal wrapper; right: convex hull.

Compared to the convex hull method, our probability interval systems exhibit a more conservative
nature. Another practical difference is that the convex hull method is highly computationally com-
plex, preventing it from being practically implemented in multi-class classification tasks. In the
following, we aim to explain the associated complexity of the calculation process.

Given such a coherent lower probability, denoted as P , the associated credal set K(P ) comprises all
probability measures (P(Y)) in the target space (Y) that can be defined as follows:

K(P ) := {P ∈ P(Y) | P (A) ≥ P (A) ∀A ⊆ Y}. (17)

Further, P is considered coherent if it can be computed as:

P (A) = min
P∈K(P )

P (A) ∀A ⊆ Y (18)

where A denotes any possible subset of the target space Y.

Mapping the finite set probabilistic predictions to a credal set generally requires the following steps:

i) Compute the lower probability for any subset A of the target space P (A).

ii) Compute the masses over the subsets by using Möbius inverse (Chateauneuf & Jaffray, 1989):

mP (A) =
∑
B⊆A

(−1)|A\B|P (B) ∀A ⊆ Y. (19)

iii) Compute the vertices of the credal set K(P ). Its vertices are all the distributions Pπ induced
by a permutation π = {xπ(1), . . . , xπ(|Y|)} of the elements of its sample space Y, of the form
(Chateauneuf & Jaffray, 1989; Cuzzolin, 2008)

Pπ[P ](xπ(i)) =
∑

A∋xπ(i); A̸∋xπ(j) ∀j<i

mP (A) (20)

The vertex (the extreme probability) assigns to each class, put in position π(i) by the permutation
π, the mass of all the focal elements (sets of classes with non-zero mass) containing it, but not
containing any elements preceding it in the permutation order (Wallner, 2005).

The above procedure is quite computationally expensive, because i) When the number of classes
|Y| = C is large, it can be highly inefficient to compute probabilities for all 2C events in the power
set of Y). ii) Compute the vertices in eq. (20) is extremely computationally difficult.

On the contrary, the probability interval systems applied do not suffer such computational burden, as
shown in eq. (5) and eq. (6), the resulting credal set is directly defined by C pairs probability bounds
over classes. The extensive experimental validation also strongly demonstrates the consistently
improved uncertainty performance of our proposed credal wrapper.

D DISCUSSION ON CREDAL WRAPPER IN CASES OF INFINITE SAMPLES

In this section, we aim to discuss the behaviour of the credal wrapper and the associated intersection
probability in the case of infinitely many samples from individual probability distributions. In this
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context, we assume that the support of the sampled distribution spans the entire simplex, without
imposing any additional distributional constraints.

If we assume the predictions are sampled from a ‘second-order’ distribution (as in the BNN case),
when one keeps collecting samples the corresponding credal set in eq. (6) expands (as it relies on
min/max probability calculations in eq. (5)). Therefore, as p∗ is a function of the probability interval
bounds of the credal set (and not the actually collected samples), for N that goes to infinity will tend
to the p∗ of the probability simplex ∆, i.e., the uniform distribution. Indeed, this does not happen to
the BMA theoretically, which averages the samples. However:

(i) The argument for the rationality of the representative p∗ of an interval probability system is
compelling (Cuzzolin, 2009; 2022). The same asymptotic effect is shared by the center of mass of
the credal set, indicating that this is a feature inherent to the credal representation itself.

(ii) In practice, N is small even in the general cases of BNNs (N = 5). In the ablation study in
Sec. A.3, we examine the performance of our credal wrapper in cases of N = 10, N = 50, and
even N = 1000, our credal wrapper consistently shows an improved uncertainty estimation and
calibration performance, as shown in Tables 7, 6 and Figures 3, 14. As the practical performance of
p∗ is better than BMA, it appears that BMA can be biased/less representative at N never going to
infinite w.r.t. p∗, whereas it enjoys better convergence properties.

(iii) This does not apply to ensembles, as ensemble members are not ‘sampled’ from any distribution.
The ablation study in Appendix §A.2 as well as Figures 3, 5, 14, 15 suggest that the consistent
superior performance of p∗ of calibration performance on corrupted data.
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